A REMARK ON RATIONAL CUBOIDS

BY
JOHN LEECH

It is a well known unsolved problem whether there exists a perfect rational cuboid, a rectangular parallelepiped whose edges, face diagonals and body diagonal all have integer lengths. (For a recent survey see Leech [4].) This would require simultaneous solution in integers of the four equations

$$
x_{2}^{2}+x_{3}^{2}=y_{1}^{2}, \quad x_{3}^{2}+x_{1}^{2}=y_{2}^{2}, \quad x_{1}^{2}+x_{2}^{2}=y_{3}^{2}, \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=z^{2} .
$$

An early parametric solution of the first three of these equations (a rational cuboid) was given by Saunderson [5], but is usually associated with the name of Euler; it has

$$
\begin{equation*}
x_{1}=4 a b c, \quad x_{2}=a\left(4 b^{2}-c^{2}\right), \quad x_{3}=b\left(4 a^{2}-c^{2}\right) \tag{1}
\end{equation*}
$$

where a, b, c satisfy $a^{2}+b^{2}=c^{2}$. Spohn [6] showed that such a cuboid cannot be perfect.

A construction, known to Euler, for deriving one rational cuboid from another, consists of replacing x_{1}, x_{2}, x_{3} by their products in pairs $x_{2} x_{3}, x_{3} x_{1}, x_{1} x_{2}$. From the Euler cuboid (1), after removing common factors, we obtain
(2) $x_{1}=\left(4 a^{2}-c^{2}\right)\left(4 b^{2}-c^{2}\right), \quad x_{2}=4 b c\left(4 a^{2}-c^{2}\right), x_{3}=4 a c\left(4 b^{2}-c^{2}\right)$.

Spohn [7] was unable to complete a proof that such a cuboid cannot be perfect; complete proofs have been given by Chein [1] and Lagrange [3].

This note is to remark that both impossibilities are immediate consequences of the nonexistence of integers $m, n(n \neq 0)$ satisfying both $m^{2}+n^{2}=p^{2}$ and $m^{2}+5 n^{2}=q^{2}$. This last impossibility was probably known to Euler, but seems to have been first formally established by Collins [2].

For the Euler cuboid (1) we have $x_{2}^{2}+x_{3}^{2}=c^{6}$, and so

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =c^{2}\left(16 a^{2} b^{2}+c^{4}\right) \\
& =c^{2}\left(\left(a^{2}-b^{2}\right)^{2}+5(2 a b)^{2}\right) .
\end{aligned}
$$

This last factor cannot be square, as $m=a^{2}-b^{2}, n=2 a b$ satisfy $m^{2}+n^{2}=$ $\left(a^{2}+b^{2}\right)^{2}$ and cannot also satisfy $m^{2}+5 n^{2}=q^{2}$.

For the derived cuboid (2) we have $x_{1}=16 a^{2} b^{2}-3 c^{4}$ and $x_{2}^{2}+x_{3}^{2}=16 c^{8}$,
and so

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =256 a^{4} b^{4}-96 a^{2} b^{2} c^{4}+25 c^{8} \\
& =\left(16 a^{2} b^{2}-5 c^{4}\right)^{2}+\left(8 a b c^{2}\right)^{2}
\end{aligned}
$$

This expression cannot be square, as $m=16 a^{2} b^{2}-5 c^{4}, n=8 a b c^{2}$ satisfy $m^{2}+5 n^{2}=\left(16 a^{2} b^{2}+5 c^{4}\right)^{2}$ and cannot also satisfy $m^{2}+n^{2}=p^{2}$.

References

1. E. Z. Chein, On the derived cuboid of an Eulerian triple. Canad. Math. Bull. 20 (1977) 509-510.
2. M. Collins, A tract on the possible and impossible cases of quadratic duplicate equalities..., Dublin 1858.
3. J. Lagrange, Sur le dérivé du cuboïde eulérien. Canad. Math. Bull. 22 (1979) 239-241.
4. J. Leech, The rational cuboid revisited. Amer. Math. Monthly 84 (1977) 518-533.
5. N. Saunderson, The elements of algebra, Vol 2, Cambridge 1740.
6. W. G. Spohn, On the integral cuboid. Amer. Math. Monthly 79 (1972) 57-59.
7. W. G. Spohn, On the derived cuboid. Canad. Math. Bull. 17 (1974) 575-577.

Computing Science
University of Stirling
Stirling
Scotland

