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Abstract. In this paper, we study centrally symmetric Birkhoff billiard tables. We introduce
a closed invariant set MB consisting of locally maximizing orbits of the billiard map lying
inside the region B bounded by two invariant curves of 4-periodic orbits. We give an effec-
tive bound from above on the measure of this invariant set in terms of the isoperimetric
defect of the curve. The equality case occurs if and only if the curve is a circle.
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1. Introduction
In this paper, we study Birkhoff billiards for centrally symmetricC2-smooth strictly convex
curves in the plane. We introduce the set MB lying in the region B between two invariant
curves α, ᾱ in the phase space (see Figure 1). The set MB, by definition, consists of those
orbits such that any finite sub-segment is locally maximizing, for the length functional L
associated to the billiard table. We assume that α, ᾱ consist of 4-periodic orbits of rotation
numbers 1/4 and 3/4, respectively. It then follows that the set MB is a closed set which is
invariant under the billiard map T. Our goal in this paper is to get an upper bound on the
measure of the set MB which is sharp, that is, the case when MB occupies the whole of
B occurs if and only if the billiard table is circular. Thus, we show that the measure of the
complement set�B := B \ MB can be estimated from below in terms of the isoperimetric
defect of the billiard domain.

These bounds are of obvious importance for classical dynamics (and probably also for
quantum properties), because all ‘rotational’ invariant curves, as well as Aubry–Mather
sets, are filled by orbits which are locally length maximizing (we refer to the monographs
[3, 17–19] for background material).
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1742 M. Bialy

FIGURE 1. The region B.

Estimates of this type were obtained previously in [6, 11], as an effective version of the
so called the E. Hopf rigidity phenomenon for billiards.

The estimate presented here is related to the recent progress in the Birkhoff conjecture
[9] for centrally symmetric billiard tables. Similarly to [9], we consider here the class
of C2-billiard tables having invariant curve consisting of 4-periodic orbits and use its
properties. We refer here to papers [1, 2, 13–16] for other powerful recent approaches.
However, the main novelty of the present paper is that the region B lies away from the
boundary of the phase cylinder.

It is an open question how to remove the restriction of central symmetry of the billiard
table. It is also interesting if effective bounds can be found for a region between two
arbitrary invariant curves in the phase space.

We now turn to the needed background and the formulation of the main result. Let
γ be a C2-smooth simple closed convex curve of positive curvature in R

2. We fix the
counterclockwise orientation on γ . We shall use the arclength parametrization s as well
as the parametrization by the angle ψ formed by the outer unit normal n to γ with a
fixed direction. These two parametrizations are related by dψ = k(s) ds, where k(s) is the
curvature at the point γ (s).

The natural phase space of the Birkhoff billiard inside γ is the space A of all oriented
lines that intersect γ . This space is topologically a cylinder and we shall refer to it as the
phase cylinder of T. The billiard map T acts on A by the reflection law in γ . The phase
cylinder carries a natural symplectic structure that can be described as follows.

Each oriented line is identified with the pair (cos δ, s), δ ∈ (0, π), where γ (s) is
the incoming point and δ is the angle between the line and the tangent γ ′(s). In these
coordinates, the symplectic form is dλ, where λ = cos δ ds and cos δ plays the role of
momentum variable. We shall denote by μ the corresponding invariant measure on the
phase space A. The billiard map T is a symplectic map and the chord length L(s, s1) =
|γ (s)− γ (s1)| is a generating function of T (see Figure 2). Namely,

T ∗λ− λ = cos δ1 ds1 − cos δ ds = dL.

Moreover, one can check that T satisfies the twist condition:

L12(s, s1) > 0, (1)
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FIGURE 2. Generating function L corresponding to the 1-form λ.

meaning that T is a negative twist symplectic map (here and below, we use subindex
1 and/or 2 for the partial derivative with respect to the first or the second argument,
respectively).

Remark. Traditionally, the generating function is the negative of ours, that is, the negative
chord length. However, we prefer, for convenience, sign + for the generating function and
hence the twist condition in equation (1) for the billiard map. Consequently, we deal with
maximizing (and not minimizing) orbits.

For the generating function L, we can naturally define the variational principle as
follows. For the configuration sequence {sn}, we associate the formal sum

L{sn} =
∑
n

L(sn, sn+1).

Configurations {sn}, corresponding to billiard trajectories, are critical points of the
functional L.

We shall consider locally maximizing configurations, that is, those configurations which
give local maximum for the functional between any two end-points. We shall call such
configurations m-configurations, and the corresponding orbits on the phase cylinder A,
m-orbits. We denote by M ⊂ A the set swept by all m-orbits corresponding to the
variational principle for the generating function L. We shall also use the following notation:

MB := M ∩ B, �B := B \ MB.

Let γ ⊂ R
2 be a C2-smooth, centrally symmetric, convex closed curve of positive

curvature. We shall assume that the billiard map corresponding to γ has a rotational
(that is, winding once around the cylinder and simple) invariant curve α ⊂ A consisting
of 4-periodic orbits. We shall denote by ᾱ the corresponding invariant curve of rotation
number 3

4 . This curve consists of the same billiard trajectories but with the reversed
orientation of the lines. Our main result is the following.

THEOREM 1.1. Suppose that the billiard ball map T of γ has a continuous rotational
invariant curve α ⊂ A of rotation number 1/4, consisting of 4-periodic orbits. Let ᾱ be
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the corresponding invariant curve of rotation number 3
4 . Let B ⊂ A be the domain between

the curves α and ᾱ (see Figure 1). Then the following estimate holds:

3β
16
(P 2 − 4πA) ≤ μ(�B), (2)

where P , A denote the perimeter and the area of γ , and β > 0 is the minimal curvature
of γ .

Sharp estimates for M were obtained first in [6] and then in [11] as a quantitative
version of the so called E.Hopf rigidity phenomenon for billiards discovered in [4] and
then [5, 20]. In [11], the region between the invariant curve α and the boundary of the
phase cylinder was considered, while in the present paper, the region B lies away from the
boundary. The significance of the invariant curve of 4-periodic orbits was first understood
in [9], and we shall remember the properties of this curve here and use them below.

Here are some useful corollaries of Theorem 1.1.

COROLLARY 1.2. Set MB of locally maximizing orbits occupies the whole region B if
and only if γ is a circle.

In fact, one can reformulate Corollary 1.2 in a dynamical way.

COROLLARY 1.3. Suppose that the restriction of billiard map T to B has an invariant
measurable field of non-vertical oriented lines, with the orientation chosen on the lines
coherently by the condition ds > 0. Then γ is a circle.

This is especially useful in establishing the following geometric fact.

COROLLARY 1.4. If γ is not a circle, then there always exist a point x ∈ B and a vertical
tangent vector v ∈ TxB such that for some positive integer n, the vector DT n(v) is again
vertical (this exactly means that the points x and T nx are conjugate).

Corollary 1.3 follows immediately from Theorem 1.1 applying the criterion of local
maximality in terms of Jacobi fields [11, Theorem 1.1].

To deduce Corollary 1.4, one can argue analogously to [4]. More precisely, suppose,
by contradiction, that for any vertical vector v ∈ TxB and any positive integer n, the
vector DT n(v) is not vertical. This implies that any finite segment of a billiard trajectory
{γ (sn), n ∈ [M , N]} has a non-degenerate matrix of second variation δ2LMN . Then, by a
continuity argument, all the matrices δ2LMN must be negative definite (because this holds
true for orbits lying on the rotational invariant curve α). Hence, all billiard configurations,
corresponding to the orbits lying in B, are locally maximizing. Therefore, Theorem 1.1
applies and the curve γ is a circle, which is a contradiction.

2. Important tools
2.1. Non-standard generating function. Another way to get the same symplectic form
is to fix an origin in R

2 (we shall fix the origin at the center of γ ) and to introduce
the coordinates (p, ϕ) on the space of all oriented lines, so that ϕ is the angle between
the right unit normal to the line and the horizontal, and p is the signed distance to
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FIGURE 3. Generating function S corresponding to the 1-form β.

the line (see Figure 3). In this way, the space of oriented lines is identified with T ∗S1.
Moreover, the standard symplectic form dβ with β = pdϕ coincides with the symplectic
form described before. In this description, p plays the role of momentum variable.

For the second choice of the coordinates (p, ϕ), the generating function was found first
in [8] for the two-dimensional case and then in [7] for higher dimensions (see [10] for
further applications). This function S is determined by the formulas:

T ∗β − β = p1 dϕ1 − p dϕ = dS, S(ϕ, ϕ1) = 2h(ψ) sin δ,

where

ψ := ϕ1 + ϕ

2
, δ := ϕ1 − ϕ

2
.

Here and throughout this paper, we denote by h the support function of γ with respect to 0:

h(ψ) := max
γ

〈
γ , nψ

〉
,

where nψ is the unit outer normal to γ in the direction ψ . The fact that S is the generating
function for T means that the line with coordinates (p, ϕ) is mapped into the line (p1, ϕ1)

(see Figure 3) if and only if

p = −S1(ϕ, ϕ1) = h(ψ) cos δ − h′(ψ) sin δ,

p1 = S2(ϕ, ϕ1) = h(ψ) cos δ + h′(ψ) sin δ.
(3)

It follows from the direct computation (see below Proposition 2.4) that the map T
satisfies the twist condition with respect to the symplectic coordinates (p, ϕ)meaning that
the cross-derivative satisfies S12 = 1

2ρ(ψ) sin δ > 0, where ρ(ψ) = h′′(ψ)+ h(ψ) > 0
is the radius of curvature.
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FIGURE 4. Rectangle Q0Q1Q2Q3 corresponding to the 4-periodic orbit forming parallelogram P0P1P2P3.

2.2. Two variational principles. One can associate variational principle S also for the
function S:

S{ϕn} =
∑
n

S(ϕn, ϕn+1).

In [11], we gave a criterion for an orbit to be locally maximizing. It then follows from this
criterion that the set M does not depend on which generating function L or S is used for
the map T. We shall use the function S to prove Theorem 1.1.

Remark. It appears that vertical vector in the statement of the Corollary 1.4 can be
understood with respect to each of the vertical foliations {s = const} or {ϕ = const}. This
follows from the proof of Corollary 1.4 and the fact, proven in [11], that the classes of
locally maximizing orbits corresponding to the generating functions L, S coincide.

In particular, the existence of conjugate points with respect to the vertical foliation
{ϕ = const} implies that one can find a beam of parallel lines such that after n reflections,
the beam becomes parallel (infinitesimally) again.

2.3. Properties of the invariant curve of 4-periodic orbits. If the billiard curve γ is an
ellipse, then there exists a rotational invariant curve α consisting of 4-periodic orbits. The
corresponding quadrilaterals inscribed in γ are called Poncelet 4-gons. It is well known
(see [12] for several proofs) that all Poncelet 4-gons for an ellipse are parallelograms. This
fact can be generalized from the case of an ellipse to any centrally symmetric billiard table.
We now turn to state the results from [9] and refer to [9] for the proofs. The next theorem
is illustrated in Figure 4.

THEOREM 2.1. Let γ be a centrally symmetric billiard table. Assume that billiard ball
map T : A → A has a continuous rotational invariant curve α = {δ = d(ψ)} of rotation
number 1

4 consisting of 4-periodic orbits of T. Then the following properties hold.
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(A) Function d(ψ) is π -periodic and the billiard quadrilaterals corresponding to the
traces of the orbits contained in the invariant curve α are parallelograms.

(B) The tangent lines to γ at the vertices of the parallelogram form a rectangle.
(C) 0 < d(ψ) < π/2, d(ψ + π/2) = π/2 − d(ψ).
(D) The functions d and h satisfy the identities

tan d(ψ) = h(ψ)

h(ψ + π/2)
= −h

′(ψ + π/2)
h′(ψ)

,

and

h2(ψ)+ h2
(
ψ + π

2

)
= R2 = const.

Remark. It follows from Theorem 2.1 item (D) that the orthoptic curve associated with
γ is a circle of radius R (like in the case of an ellipse). Here the orthoptic curve of γ , by
definition, is the locus of points Q, such that the two tangents to γ passing through Q form
a right angle.

COROLLARY 2.2. Let γ be a convex centrally symmetric billiard table. Let α = {δ =
d(ψ)} ⊂ A be an invariant curve consisting of 4-periodic orbits. It then follows from
Theorem 2.1 item (D) that

h(ψ) = R sin d(ψ), h

(
ψ + π

2

)
= R cos d(ψ),

for a positive constant R.

COROLLARY 2.3. The explicit formulas of item (D) show that the invariant curve α is
necessarily C2-smooth, since the support function h is C2-smooth by assumption.

2.4. Function ω and an inequality. It turns out that one can introduce a measurable
bounded function ω on the set M satisfying the inequality:

ω(p1, ϕ1)− ω(p, ϕ) ≥ S11(ϕ, ϕ1)+ S22(ϕ, ϕ1)+ 2S12(ϕ, ϕ1). (4)

The construction of this function (see [4]) was inspired by the celebrated E.Hopf theorem
on tori with no conjugate points. Let us sketch this construction. Let {(pn, ϕn)} be a
locally maximizing orbit of the point z = (p0, ϕ0). It then follows that there exists an
invariant vector field {(δpn, δϕn)} along the orbit {(pn, ϕn)} such that the corresponding
field δϕn is a Jacobi field along the billiard configuration {ϕn} (normalized by δϕ0 = 1)
and is strictly positive. Remember, a Jacobi field along a configuration {ϕn} is a sequence
{δϕn} satisfying the discrete Jacobi equation:

bn−1δϕn−1 + anδϕn + bnδϕn+1 = 0, (5)

where, as before,

an = S22(ϕn−1, ϕn)+ S11(ϕn, ϕn+1), bn = S12(ϕn, ϕn+1).
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Then the invariance of the field {(δpn, δϕn)} along the orbit implies (by differentiating
the formula pn = −S1(ϕn, ϕn+1)):

δpn = −S11(ϕn, ϕn+1)δϕn − S12(ϕn, ϕn+1)δϕn+1,

or equivalently, due to the Jacobi equation:

δpn = S22(ϕn−1, ϕn)δϕn + S12(ϕn−1, ϕn)δϕn−1.

Then one defines ω(pn, ϕn) := δpn/δϕn. One can prove that ω is a measurable function
and satisfies the relations:{

ω(T (p, ϕ)) = S22(ϕ, ϕ1)+ S12(ϕ, ϕ1)δϕ1(ϕ, p)−1,

ω(p, ϕ) = −S11(ϕ, ϕ1)− S12(ϕ, ϕ1)δϕ1(ϕ, p).
(6)

Subtracting the second equation from the first one and using S12 > 0, δϕ1 > 0, we get the
inequality in equation (4).

Also notice that from equation (6), we have the inequality

S22(ϕ−1, ϕ) < ω(p, ϕ) < −S11(ϕ, ϕ1),

since in equation (6), S12, δϕ1, δϕ−1 are positive. Using Proposition (2.4), it then follows
that function ω is bounded on MB:

|ω| < max
B

{|S11|, |S22|} < K(γ ),

where K(γ ) depends only on γ (for example, one can set K(γ ) = maxγ {ρ + h+ |h′|},
using the formulas of Proposition (2.4)).

2.5. Derivatives of generating function S. The derivatives of the generating function S
can be immediately computed.

PROPOSITION 2.4. The second partial derivatives of S are

S11(ϕ, ϕ1) = 1
2 (h

′′(ψ)− h(ψ)) sin δ − h′(ψ) cos δ;

S22(ϕ, ϕ1) = 1
2 (h

′′(ψ)− h(ψ)) sin δ + h′(ψ) cos δ;

S12(ϕ, ϕ1) = 1
2 (h

′′(ψ)+ h(ψ)) sin δ,

where ψ := (ϕ1 + ϕ)/2, δ := (ϕ1 − ϕ)/2.

3. Proof of Theorem 1.1
In the following, we shall work with the coordinates (p, ϕ) and the function ω constructed
above for the generating function S. We start the proof of Theorem 1.1 integrating
equation (4) over MB with respect to the invariant measure dμ = dpdϕ.

To perform the integration, we compute the invariant measure as follows.
The symplectic form dp ∧ dϕ can be written using generating function in equation (3):

dp ∧ dϕ = −d(S1(ϕ, ϕ1)) ∧ dϕ = S12dϕ ∧ dϕ1.
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Since T is symplectic, the measure

dμ = dpdϕ = S12dϕdϕ1

is invariant. Using the explicit formula for the second derivative (Proposition 2.4), we
compute

dμ = S12dϕdϕ1 = ( 1
2ρ(ψ) sin δ

)
dϕdϕ1 = ρ(ψ) sin δdψdδ,

where (see Figure 3 showing all the notation)

ρ(ψ) = h′′(ψ)+ h(ψ)

is the radius of curvature of γ , and

ψ := ϕ1 + ϕ

2
, δ := ϕ1 − ϕ

2
.

Hence, integrating the inequality in equation (4) with respect to the invariant measure
dμ, we obtain

0 ≥
∫
MB

[S11(ϕ, ϕ1)+ 2S12(ϕ, ϕ1)+ S22(ϕ, ϕ1)]dμ.

Moreover, we get from Proposition 2.4, after obvious simplifications,

S11(ϕ, ϕ1)+ 2S12(ϕ, ϕ1)+ S22(ϕ, ϕ1) = 2h′′(ψ) sin δ.

Thus, equation (4) yields the inequality:

0 ≥
∫
MB

[(h′′(ψ) sin δ]dμ. (7)

Since MB = B \�B, we get∫
B

[(h′′(ψ) sin δ] dμ ≤
∫
�B

[(h′′(ψ) sin δ] dμ. (8)

Let us denote

I :=
∫
B

[(h′′(ψ) sin δ] dμ. (9)

We shall give an upper bound for the right-hand side of equation (8), and a lower bound
on the left-hand side I, and together we get the required bound. For the right-hand side of
equation (8), write∫

�B

h′′(ψ) sin δdμ ≤
∣∣∣∣
∫
�B

h′′(ψ) sin δdμ
∣∣∣∣

≤
∫
�B

|h′′(ψ) sin δ|dμ ≤ μ(�B) max
�B

|h′′|. (10)

Since h(ψ)+ h′′(ψ) = ρ(ψ), where ρ(ψ) is the radius of curvature, then

|h′′| ≤ ρ + max h.
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Since γ is centrally symmetric, we have max h ≤ D/2, where D is the diameter. Also, the
maximal radius of curvature of γ is 1/β, where β is the minimal curvature of γ . This gives
us the estimate

I ≤
∫
�B

h′′(ψ) sin δ dμ ≤
(
D

2
+ 1
β

)
μ(�B) ≤ 2

β
μ(�B), (11)

where we used Blaschke’s rolling disk theorem, stating that γ is contained inside a disk
with radius equal to the maximal radius of curvature of γ , and this means that D ≤ 2/β.

We now turn to estimate I from below. Namely, we shall prove in the next section the
following.

THEOREM 3.1. Integral I can be estimated from below:

I ≥ 3
8 (P

2 − 4πA).

Proof of Theorem 1.1 follows immediately from equation (11) and Theorem 3.1.

4. Proof of Theorem 3.1
Substituting into the integral I the explicit expression dμ = ρ(ψ) sin δ dψ dδ and
integrating first with respect to δ, we get from equation (9):

I =
∫ 2π

0
dψ

[
h′′(h+ h′′)

∫ π−d(ψ) dδ sin2 δ

d(ψ)

]
. (12)

Here we used the fact that in the coordinates (ψ , δ), the domain of integration takes the
form

B = {(ψ , δ) : ψ ∈ [0, 2π ], δ ∈ [d(ψ), π − d(ψ)]}.

Here and below, d(ψ) is the function described in §2.3.
Integrating in equation (12) with respect to δ, we obtain

I =
∫ 2π

0

[
h′′(ψ)(h′′(ψ)+ h(ψ))

](π
2

− d(ψ)+ 1
2

sin 2d(ψ)
)
dψ . (13)

Now we substitute into equation (13) the expressions for h, h′, h′′ via d(ψ) using Corollary
2.2 of Theorem 2.1: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h = R sin d ,

h′ = R cos d d ′,
h′′ = R cos d d ′′ − R sin d (d ′)2,

d

(
ψ + π

2

)
= π

2
− d(ψ).

(14)

In what follows, we usually omit the arguments for the functions h, d and their derivatives.
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Thus, we get from equation (11) the following equality on the function d:

I = R2
∫ 2π

0
(sin d − sin d d ′2 + cos d d ′′)(− sin d d ′2 + cos d d ′′)

×
(
π

2
− d + 1

2
sin 2d

)
dψ

= R2
∫ 2π

0
U dψ , (15)

where we introduced U by the formula

U := (sin d − sin d d ′2 + cos d d ′′)(− sin d d ′2 + cos d d ′′)(
π

2
− d + 1

2
sin 2d

)
.

The assumption of central symmetry implies that h(ψ), d(ψ) are π -periodic. Hence,∫ 2π

0
U(ψ) dψ = 2

∫ π

0
U(ψ) dψ .

We shall prove now the following estimate.

THEOREM 4.1. ∫ π

0
U(ψ) dψ ≥ 3

16R2 (P
2 − 4πA).

Proof. The idea of the proof is to proceed in three steps: ‘symmetrization’, integration by
parts, and Wirtinger inequality. Doing this, we pass to a new integrand, Ũ , satisfying the
inequality Ũ ≥ const h′2. Moreover, integrating this inequality, we will be able to estimate
the integral of Ũ from below by isoperimetric defect.

We write

U = U1 + U2 + U3 + U4 + U5,

where

U1 = d ′′2 cos2 d

(
π

2
− d + 1

2
sin 2d

)
,

U2 = −2d ′′d ′2 sin d cos d
(
π

2
− d + 1

2
sin 2d

)
,

U3 = d ′′ sin d cos d
(
π

2
− d + 1

2
sin 2d

)
,

U4 = d ′4 sin2 d

(
π

2
− d + 1

2
sin 2d

)
,

U5 = −d ′2 sin2 d

(
π

2
− d + 1

2
sin 2d

)
.

Step 1. Symmetrization. We perform the change of the integration variable by the
rule ψ → ψ + π/2. By equation (14), which is the consequence of Theorem 2.1 and
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Corollary 2.2, this intertwines sin(d) with cos(d) and changes the sign of d ′′. Denote the
changed integrand by Ûj .

Also denote the ‘symmetrized’ integrand by

Vj := Uj + Ûj .

Then we have ∫ π

0
Uj(ψ) dψ =

∫ π

0
Ûj (ψ) dψ = 1

2

∫ π

0
Vj (ψ) dψ ,

where Vj can be written as

V1 = d ′′2
(
π

4
+

(
π

4
− d

)
cos 2d + 1

2
sin 2d

)
,

V2 = d ′′d ′2 sin 2d
(

2d − π

2

)
,

V3 = d ′′ sin 2d
(
π

4
− d

)
,

V4 = d ′4
(
π

4
+

(
d − π

4

)
cos 2d + 1

2
sin 2d

)
,

V5 = −d ′2
(
π

4
+

(
d − π

4

)
cos 2d + 1

2
sin 2d

)
.

Step 2. Integration by parts. Terms V2 and V3 contain d ′′ in the first power. Therefore,
we apply integration by parts for V2, V3 to get rid of the second derivative d ′′. Notice that
thanks to the π -periodicity of the integrands, the off-integration terms vanish. Thus, we
get new integrands Wi , i = 1, . . . , 5, where

W1 = V1 = d ′′2
(
π

4
+

(
π

4
− d

)
cos 2d + 1

2
sin 2d

)
,

W2 = d ′4
(

− 4
3

cos 2d
(
d − π

4

)
− 2

3
sin 2d

)
,

W3 = d ′2
(

2 cos 2d
(
d − π

4

)
+ sin 2d

)
,

W4 = V4 = d ′4
(
π

4
+

(
d − π

4

)
cos 2d + 1

2
sin 2d

)
,

W5 = V5 = −d ′2
(
π

4
+

(
d − π

4

)
cos 2d + 1

2
sin 2d

)
.

Thus, we get for the integral of U:

∫ π

0
U dψ =

∫ π

0

5∑
i=1

Ui dψ = 1
2

∫ π

0

5∑
i=1

Vi dψ = 1
2

∫ π

0

5∑
i=1

Wi dψ . (16)
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Summing W2 +W4 and W3 +W5, we rewrite using only three summands:

X1 := W1 = d ′′2
(
π

4
+

(
π

4
− d

)
cos 2d + 1

2
sin 2d

)
,

X2 := W2 +W4 = d ′4
(
π

4
− 1

3

(
d − π

4

)
cos 2d − 1

6
sin 2d

)
,

X3 := W3 +W5 = d ′2
(

− π

4
+

(
d − π

4

)
cos 2d + 1

2
sin 2d

)
.

Thus, we have ∫ π

0
U dψ = 1

2

∫ π

0
(X1 +X2 +X3) dψ . (17)

Step 3. Use of the Wirtinger inequality. Let us introduce the function of d which is the
multiplier in X1:

f (d) := π

4
+

(
π

4
− d

)
cos 2d + 1

2
sin 2d .

This function is strictly positive since d varies in (0, π/2). In fact, one can say more
precisely

f ∈
[

1
2

+ π

4
,
π

2

)
.

Also we can write

X2 = d ′4f2, f2 := π

4
− 1

3

(
d − π

4

)
cos 2d − 1

6
sin 2d ,

and one can see that f2 is positive as well.
Similarly for X3, we have

X3 = d ′2f3, f3 := −π
4

+
(
d − π

4

)
cos 2d + 1

2
sin 2d = (sin 2d − f ).

However, the function f3 is not necessarily positive. To bypass this difficulty, we shall use
the Wirtinger inequality, which we apply to the function

Y := d ′√f .

Notice that Y is π -periodic and has zero average, since it can be written as a complete
derivative. Hence, ∫ π

0
(Y ′2 − 4Y 2) dψ ≥ 0.

We have the following expressions:

Y ′ = √
f d ′′ + f ′

2
√
f
d ′2 ⇒ Y ′2 = f d ′′2 + f ′ d ′′d ′2 + f ′2

4f
d ′4.

https://doi.org/10.1017/etds.2023.70 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.70


1754 M. Bialy

Therefore,∫ π

0
(Y ′2 − 4Y 2) dψ =

∫ π

0

(
f d ′′2 + f ′ d ′′d ′2 + f ′2

4f
d ′4 − 4f d ′2

)
dψ

=
∫ π

0

(
f d ′′2 − f ′′

3
d ′4 + f ′2

4f
d ′4 − 4f d ′2

)
dψ =

∫ π

0
g dψ ≥ 0,

where g := (f d ′′2 − f ′′3d ′4 + (f ′2/4f )d ′4 − 4f d ′2) and we performed integration by
parts again.

Thus, finally we can write

X1 +X2 +X3 = g + d ′4
(
f2 + f ′′

3
− f ′2

4f

)
+ (f3 + 4f )

= g + d ′4
(
f2 + f ′′

3
− f ′2

4f

)
+ d ′2(sin 2d + 3f ).

The following claim is crucial.

LEMMA 4.2. Both expressions (sin 2d + 3f ) and (f2 + f ′′/3 − f ′2/4f ) of the last
formula are strictly positive.

Proof. (1) Since f ∈ [ 1
2 + π/4, π/2), then (3f + sin 2d) ≥ 3

2 + 3π/4. Analyzing the
behavior of the function f, one can claim more:

(3f + sin 2d) ≥ 3f (0) = 3π
2

. (18)

(2) For the expression (f2 + f ′′/3 − f ′2/4f ), we need to compute

f ′ = −2
(
π

4
− d

)
sin 2d ,

f ′′ = −4
(
π

4
− d

)
cos 2d + 2 sin 2d .

We substitute f2 and the second derivative of f :(
f2 + f ′′

3
− f ′2

4f

)
= f ′′

3
− f ′2

4f
+ π

4
− 1

3

(
d − π

4

)
cos 2d − 1

6
sin 2d

= −f
′2

4f
+ 1

3

[
− 4

(
π

4
− d

)
cos 2d + 2 sin 2d

]
+ π

4
− 1

3

(
d − π

4

)
cos 2d − 1

6
sin 2d

= −f
′2

4f
+ π

4
+

(
d − π

4

)
cos 2d + 1

2
sin 2d .

Thus, we need to check the sign of the expression:

−
(
π

4
− d

)2

sin2 2d +
(
π

4
+

(
π

4
− d

)
cos 2d + 1

2
sin 2d

)

×
(
π

4
+

(
d − π

4

)
cos 2d + 1

2
sin 2d

)
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= −
(
d − π

4

)2

+ π2

42 + 1
4

sin2 2d + π

4
sin 2d

= −
(
d − π

4

)2

+
(
π

4
+ 1

2
sin 2d

)2

.

Notice that since d ∈ (0, π/2), then |d − π/4| < π/4 and hence the last expression is
strictly positive. This completes the proof of Lemma 4.2.

We are now in position to finish the proof of Theorem 4.1. Using Lemma 4.2, we can
deduce from equation (17) with the help of equation (18),

2
∫ π

0
U dψ ≥

∫ π

0
d ′2(sin 2d + 3f ) dψ ≥

∫ π

0

3π
2
d ′2 dψ

≥
∫ π

0

3π
2

cos2 d d ′2 dψ = 3π
2R2

∫ π

0
h′2 dψ , (19)

where we used h′ = R cos d d ′ of equation (14) in the last equality.
Now consider the isoperimetric defect P 2 − 4πA for the curve γ . We have the classical

formulas:

P =
∫ 2π

0
h dψ , A = 1

2

∫ 2π

0
(h2 − h′2) dψ .

By Cauchy–Schwartz inequality, we have

P 2 ≤ 2π
∫ 2π

0
h2 dψ = 2π

(
2A+

∫ 2π

0
h′2 dψ

)
.

Hence, using equation (19), we get

P 2 − 4πA ≤ 2π
∫ 2π

0
h′2 dψ = 4π

∫ π

0
h′2 dψ ≤ 16

3
R2

∫ π

0
U dψ .

This completes the proof of Theorem 4.1.

5. Discussion
It is very natural to ask if one can reconstruct elliptic billiards by sharp inequalities
containing the measures μ(�B), μ(MB) (similarly to Theorem 1.1).

It would be very interesting to extend the ideas used in this paper to other Hamiltonian
systems such as twist symplectic maps, as well as to continuous time systems.

An important goal in the study of Birkhoff billiards, as well as of general twist maps,
in particular of standard-like maps, is to understand the dynamical behavior between two
invariant curves. Our result can be considered as a step in this direction. It is not clear,
however, how to approach this goal for arbitrary invariant curves and also how to remove
the central-symmetry assumption.
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