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COUNTEREXAMPLES TO SMOOTHING CONVEX FUNCTIONS 

BY 

PATRICK ADRIAN NEALE SMITH 

ABSTRACT. Greene and Wu have shown that any continuous strongly 
convex function on a Riemannian manifold can be uniformly approximated 
by infinitely differentiable strongly convex functions. This result is not true 
if the word 'strongly' is omitted; in this paper, we give examples of 
manifolds on which %k convex functions cannot be approximated by %k+ ' 
convex functions (k = 0, 1,2, . . .). 

Introduction. Greene and Wu have proven ([2], Theorem 2) that any continuous 
strictly convex function on a %* Riemannian manifold can be uniformly approximated 
by cê00 strictly convex functions. They comment that they do not know if this theorem 
remains true when the assumption of strict convexity is replaced by simple convexity. 
The purpose of this paper is to show that the theorem fails in this case. 

The examples used here are similar to those used by Fornaess in f 1] to disprove a 
similar result for plurisubharmonic functions. We will construct, for k = 0, 1,. . . o°, 
a manifold M with points p, q E M and a convex function p E %k(M) such that p(p) 
41 p(g), but <j(p) = d(q) whenever CT E %k+ '(M) is convex (here %x+ '(M) means 
the real analytic functions on M). 

Greene and Wu have pointed out that it is still not known whether semilocal approx
imation is possible. That is, if p is a continuous convex function in a neighbourhood 
of a compact subset AT of a Riemannian manifold M and e > 0, is there a %x convex 
function CT in a neighbourhood of A' such that |cr - p| < e on Kl Such an approximation 
is always possible on locally Euclidean spaces. (This can be seen by a simple con
volution argument.) On the other hand, the manifold used here for the case k — oo is 
locally Euclidean, but has the property that semilocal approximation of %"' convex 
functions by real analytic convex functions is not possible. 

It should also be noted that convex functions can always be semilocally approximated 
by %™ subharmonic functions (see Proposition 1 of [6]). 

I would like to thank John Erik Fornaess for suggesting the connection between this 
problem and [1]. 

The Examples. We first recall that a function on a Riemannian manifold is said to 
be convex if it is convex along every geodesic, when considered as a function of arc 
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length. The manifolds that we will consider will all be constructed by defining an open 
subset il of R2 and using translations to identify various points within il. The metric 
used will be the Euclidean metric on R2, so the convex functions will be those functions 
on the manifold which are convex as functions on il. 

The basic construction is the following: for any (a, b) E R2, we put 

A(a, b) = {\y - b\ < 1} U {a - 3 < x < a - 2, \y - b\ < 2} 
U {a - 1 < x < a, \y - b\ < 2} 

and obtain a manifold M (a, b) from A(ay b) by identifying, for a E (a — 3, a — 2) 
and p E (b + 1, b + 2), 

(a, P) 
(a + 2, p) 

with 
with 

(a + 2, p - 3) 
(a, P - 3) 

(see Figure 1). Also, put N(a, b) — {(x,y) EM (a, b):a - 3 < x < a}. We then have: 

r 
<(a,b) 

J 
FIG. 1. M(a, b) 

LEMMA 1. Any convex function f on N(a, b) must be constant. 

PROOF: For each x0 with a — 3 < x0 < a — 2, the set {x = x0} U {x = 2 + x0} is 
a compact geodesic in N(a, b), so / must be constant on this set. In particular, 
/(*o> y) = / (2 + x0, y) whenever \y - b\ < 1. 

Fix y0 with \y0 — b\ < 1; then/(x, y0) is a convex function of x. If a — 3 < X\ < 
x2 < a — 2, then X\ < x2 < 2 + xx < 2 + x2,f(xu y0) = f(2 + xx, y0), and/(x2, 
y0) = / ( 2 H- x2, y0)- It follows from the convexity off(x, y{)) that/(x,, y0) = f(x2, Jo)-
Thus , / i s constant on {(x, y()):a — 3 < x < a — 2}, and hence also on {(*, j 0 ) : 
a — 1 < x < a}. Since/is convex, this forces/to be constant on each line segment 
{(x, y0):a - 3 < x < a}. 

We have now shown that/is constant on the vertical lines {x = x0}, x0 E (a — 3, 
a — 2) U {a — 1, a), and on the horizontal lines {y = y0}, y() E (b — 1, b 4- 1). Since 
these lines cover N(a, b),f must be constant. • 

All of the manifolds we construct will contain one or more of these M(a, b); the 
'usual' identifications on A {a, b) will refer to those used above to construct M(a, b). 

https://doi.org/10.4153/CMB-1986-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-047-5


310 P. A. N. SMITH [September 

We will consider three separate cases. In order of increasing complexity, these are: 
k = *>, k = 0, and 1 < k < °o. 

CASE 1 (k = <*>). Here we take M = M(0, 0). By Lemma 1, every real analytic convex 
function on M is constant on JV(0, 0), and hence is constant on all of M. On the other 
hand, it is easy to construct non-constant %rj convex functions on M, so we see that %* 
convex functions on M can not be approximated by real analytic convex functions. 

This example also shows that semilocal approximation of %* convex functions by 
real analytic convex functions fails even on locally Euclidean spaces. For if we take 

K l M < 2} 

u 

3 U , " 3 S ' S < 2 

then AT is a compact subset of M and any real analytic function convex in a neigh
bourhood of K must be constant on K, but this is not true for %™ convex functions. 

CASE 2 (k = 0). Put 

il = A(0, 0) U A ( - l , 5) U {0 <x < 1, - 2 < 3; < 7} 
and let M be the manifold obtained from ft by identifying (a, 6 + (3) with (a, —2 + 
p) whenever 0 < a, (3 < 1, in addition to making the usual identifications on A(0, 0) 
and A(—\, 5) (see Figure 2). 

r—^ c ^ C 

<-1,5) -(0,5) 

•(0,0) 

FIG. 2. The manifold used for k = 0. 

https://doi.org/10.4153/CMB-1986-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-047-5


1986] SMOOTHING CONVEX FUNCTIONS 311 

LEMMA 2.1fvisa%1 convex function on M, then <T(0, 0) = or(— 1, 5). 

PROOF: By Lemma 1, a must be constant on N(0, 0) and N(-\, 5). Hence, 
(da/djt)(0, 0) = (da/djc)(-l, 5) = 0. 

For 0 < *o < 1, the line {x = x0} is a compact geodesic in M, so cr(jt0, 0) = 
CT(JC0, 5). Thus, (dv/dx)(0, 5) = (dcr/djc)(0, 0) = 0 and cr(0, 5) = a(0, 0). 

Since (da/djt)(- 1, 5) = (dv/dx)(0, 5) = 0, the convexity of a implies that a is 
constant on {(*, 5 ) : - l < x < 0}, so a(0, 0) = a(0, 5) = a ( - l , 5). • 

Now define p on M by 

0 i f jc<0, y<2 

x if x > 0 

JC if * > - 1 , y > 3 

Then p is a c€° convex function on M, p(0, 0) = 0, and p(— 1, 5) = — 1. 

CASE 3(1 < k < o°). For eac/i « > 2, choose an e„ vv/r/z 0 < e„ < 1/(AZ — 1) — 1/n, 

fi = A(0, 0) U Ur=2 ^(0, 5n) U {- | < x < - | , j > 9j 

uu; 

U {nk < •* < "* + e„, |v - 5AZ| < 2} 

M will be the manifold obtained from il by making the usual identifications on 
A(0, 0) and each A(0, 5n), and also, for 0 < a < e„, 0 < P < 1, identifying 

(1/w -f a, 1 + P) with (nk + a, 5AZ - 2 + p) 
(/i* + a, 5n + 1 + p) with (1/w + a, - 2 + p) 

(see Figure 3). 

LEMMA 3. If a is a %k+ ' convex function on M, then CT(0, 0) = CT(0, 10). 

PROOF: Put g(x) = v(x, 0) and gn(x) = v(x, 5n), « > 2. Then by Lemma 1, each 
g„ is constant on [ — 3, 0], as is g. 

Put f(y) = CT(—3/2, y). Then fis a convex function on (9, °o), and is constant on 
each interval (5n — \, 5n + 1), n > 2; this implies that fis constant. Letting r be this 
constant, we then have gn(x) = r for each JC E [ — 3, 0] and n > 2. 
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1 

J 
1 

j ' u k j 

•(0,0) .(l/n,0) <1/2,0) 

nntrir: 
FIG. 3. The manifold used for 1 < k < o°. 

From the construction of M, we must have g((\/n) + *) = g„(V + JC) whenever 0 
< x < €„. Hence, gn(w*) = gUAO and £,',(«*) = g'(\/n). Since ^ (0) = 0 and g'n is 
increasing, this gives us 

0 ^ g„(nk) - g,M < /i*sJ(w*) 

or 

°-*(i)- r ï £ , ,**'( i 
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But g isc€Â:+1 and constant on [ -3 , 0], so g'(x) is o{xk) near 0. Hence, lim nkg'(\/n) 
= 0, so g(0) = r = #2(0), proving the lemma. w_>x • 

We must now find a %k convex function p on M with p(0, 0) =£ p(0, 10). To do this, 
we first choose, for each n > 2, a c€x convex function gn on /? with 

8n(x) 

-k for x < 0 

| \ H I 

for x > w*. 

(This is possible, since we will then have 0 < gn(n
k) - gn(0) < nkg'n(n

k) and g"(nk) 
> 0 ) . 

Once the gn have been chosen, we put 
'0 i f ; c < 0 , \y\<2 

, . . Î+ I if JC > 0, \y\<2 
pU, y) = \ 

1 -k if JC < 0, v > 8 

.^n(jc) if x > 0, |^ - 5«| < 2, « > 2. 
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