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Abstract

Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering
effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague—Dawley rats were divided into
four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48-95 %) of WHLB.
High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The
lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion
of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot
analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase a, cholesterol
7a-hydroxylase, LDL receptor, liver X receptor, and PPARa and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme
A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-
dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol

accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.
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Cholesterol is a lipid that is synthesised in the body. It is also
consumed as part of the daily diet. Although cholesterol plays
important biochemical roles in the body, high cholesterol levels
and abnormal metabolism can lead to the development of
chronic obesity-related diseases, such as CVD"?. As an alter-
native to pharmacological medicine, dietary means to control
risk factors for obesity-related diseases have recently received
considerable attention to reduce CVD risk®™.
evidence suggests that the cholesterol-lowering effects could
be achieved by the following mechanisms, each with its own
cellular markers: inhibition of hepatic synthesis, which has
AMP-activated protein kinase « (AMPKa)™?, 3-hydroxy-
3-methylglutaryl coenzyme A reductase (HMG-CoAn and
sterol regulatory element-binding protein-1c (SREBP-10)'® as
biomarkers; inhibition of cholesterol accumulation in peripheral
tissue, with apoB"”, LDL receptor (LDLR)®?, liver X receptor
(IXR)'” and PPARa'" as biomarkers; acceleration of choles-
terol conversion into bile acids, with cholesterol 7a-hydroxylase

Accumulated

(CYP7A1)(1D and farnesoid X receptor (FXR)I? as biomarkers;
and inhibition of bile acid reabsorption, with apical sodium-
dependent bile acid transporter (ASBT), FXR and ileal bile
acid-binding protein (IBABP)(B) as biomarkers. The relative
activity of each mechanism can be assessed by quantifying
relevant biomarkers®.

Increasing evidence supports that higher whole-grain con-
sumption is associated with a reduced risk of CVD develop-
ment?*'. According to previous studies, barley exhibited
hypocholesterolaemic effects, which may be attributed
to its bioactive components, particularly dietary fibre and
p-glucans™>*”. In contrast to regular hulled barley, hull-less
barley is more advantageous in terms of processing and food
applications®”. Highland hull-less barley, also known as
Qingke in Chinese, grows under extreme geographical condi-
tions and contains a higher amount of f-glucans and dietary
fibre®?. However, available information on the cholesterol-
lowering effect of whole-grain highland hull-less barley

Abbreviations: AMPKa, AMP-activated protein kinase a; ASBT, apical sodium-dependent bile acid transporter; BC, blank control; CYP7A1, cholesterol 7a-
hydroxylase; FXR, farnesoid X receptor; HD, high dose; HFD, high-fat diet; HMG-CoAr, 3-hydroxy-3-methylglutaryl coenzyme A reductase; IBABP, ileal bile
acid-binding protein; LD, low dose; LDLR, LDL receptor; LXR, liver X receptor; NC, normal control; SREBP-1c¢, sterol regulatory element-binding protein-1c; TC,

total cholesterol; WHLB, whole-grain highland hull-less barley.
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(WHLB) is limited. In particular, the specific mechanism by
which WHLB affects cholesterol metabolism is still unknown.

Thus, the present study aims to determine the hypocholes-
terolaemic effect and mechanism of WHLB. Plasma levels of
total cholesterol (TC), TAG, LDL-cholesterol and HDL-
cholesterol and TC, TAG and total lipid levels of the liver
were investigated after high-fat diet (HFD)-fed rats were given
different amounts of WHLB. The degrees of hepatic steatosis
were examined through haematoxylin—eosin (H&E) staining of
sections of the liver. Bile acid levels in small intestinal contents
and faeces were examined simultaneously. To determine the
molecular mechanism, real-time PCR (RT-PCR) was conducted
to quantify the mRNA levels of abovementioned cellular
biomarkers. Protein levels of CYP7A1, HMG-CoAr, LDLR, ASBT
and IBABP were analysed to confirm the main results of
RT-PCR. Overall, this study may provide important implications
for future functional food development of WHLB.

Methods
Sample preparation

WHLB (Tibet Hordeum vulgare 1. Zangging 320) was provided
by Jun Pro Food Co., Ltd. WHLB was dried in an oven at 55°C for
24h and then ground and passed through an 80-mesh sieve
(0-5mm). The moisture (American Association of Cereal Chemists
(AACC) method 44-16)*? content in WHLB was 871 (sp 0-03) %.
The contents (based on dry weight) of ash (AACC method
08-01)*?, fat (AACC method 30-10)??, protein (KjelFlex K-360
nitrogen determination system; Buchi Laboratory Equipment
Trading, Ltd) and f-glucans (Mixed-linkage f-glucan kit; Mega-
zyme Int. Ireland Ltd) in WHLB were 1-95 (sp 0-08), 1-03 (sp 0-02),
17-00 (sp 0-26) and 5-77 (sp 0-28) g/100 g, respectively. The con-
tents (based on dry weight) of total dietary fibre, insoluble dietary
fibre, and soluble dietary fibre contents (AOAC method
991.43)® in WHLB were 19-01 (sp 0-54), 11-64 (sp 0-95) and 9-28
(sp 0-01) g/100 g, respectively.

Animals and diets

Four dietary groups were created to investigate the dosage
effect of WHLB, as follows: normal control (NC) group, fed with
normal AIN—95G(2/') diet; blank control (BC) group, fed with an
HFD, plus 1% cholesterol and with additional 10 % lard instead
of soyabean oil'?; the low-dose (LD) group, fed with HFD
containing low-dose (10 %) of WHLB; and the high-dose (HD)
group, fed with HFD containing high dose (48:95 %) of WHLB
instead of maize starch®®” (online Supplementary Table $1). To
study the time effect of WHLB, half of the animals in each group
were fed with experimental diets for 4 weeks, whereas the
other half was fed for 8 weeks. Therefore, a total of eight groups
were created. The sample size was calculated by power analysis
according to the formula for quantitative data published by
Charan & Kantharia®”. The type I error (a/significance level)
was set at 0-05 and the power at 0-80 (with f/type II error at
0-02). The effect size was set at 0-50 (plasma TC of rats
decreased from 4-00 to 3-50mmol/l after high diet dose of
WHLB) and sp at 0-33 (mmol/]), based on an initial pilot study.
A sample size of eight animals for each group was sufficient for

consideration of 10% attrition. We finally used nine rats per
group, because three rats were housed in one stainless steel
screen-bottomed cage because of the limited space. Therefore,
a total of 72 4-week-old specific pathogen-free Sprague—
Dawley male rats (151 (sp 12) g weight) were purchased from
Chonggqing Tengxin Biotechnology Co., Ltd (permitted by SCXK
2012-0005 (Chongging)). The room was illuminated with a 12h
light-12 h dark cycle at a constant temperature of 23 +2°C and a
relative humidity of 55 (sp 10)%. The rats were acclimated by
feeding with an AIN-93G diet for 1 week and were given free
access to food and water. After acclimation, rats were randomly
assigned to the four dietary groups (n 18/group). The experi-
ment design was approved by the Animal Care and Use
Committee of Southwest University (Permit SYXK2009-0002)
and strictly conducted in accordance with the guidelines for
animal care of the National Institute of Health®®.

Sampling and analytical procedures

Fresh faeces (approximately 0-2-1-0 g and 0-2-0-4 g) of each rat
were collected weekly. The water content and pH of the faeces
were determined. Faeces were collected on the last 3d of the
experimental period, freeze-dried, and then milled for bile acid
measurement®”. On the last day of the experimental period,
the rats were fasted overnight (12-14h) and lightly anaes-
thetised with diethyl ether®®. Their body weights were mea-
sured. After decapitation, blood was collected from the neck of
each rat into a blood collection tube (Vacutainer; Liuyang City
Medical Instrument Factory) containing heparin as an anti-
coagulant. The plasma was centrifuged at 1400 g at 4°C (5810
centrifuge; Eppendorf China Ltd) for 15 min and the obtained
plasma was stored at —80°C until analysis.

The stomach, liver, kidney, abdominal fat and caecum
(together with the contents) of each rat were immediately
removed, washed with ice-cold 0-9 % Nacl solution, blotted dry
on filter paper, and weighed. Organ index was evaluated as
follows: organ weight (g)/body weight (g)x 100"'”. The liver
was incised to 5X5X5mm sections and fixed in Bouin
solution®. Liver tissues (1-0 and 0-1 g from each rat were
dissected, washed, frozen in liquid N,, and stored at —80°C for
lipid analysis and RNA extraction, respectively. The small
intestine of each rat was excised. The small intestine was
douched with ice-cold 0-9 % NacCl solution. Then, a suspension
of intestinal content was collect, freeze-dried, weighed, and
then milled for bile acid measurement®”. A total of 0-1g of the
small intestine (ileum part) in each rat was dissected, washed,
frozen in liquid N,, and stored at —80°C for RNA extraction.
Liver and ileum tissues (0-2 g) were collected from each rat in
the NC, BC and HD groups after 8 weeks of feeding and stored
at —80°C for protein extraction.

Lipid analysis

The concentrations of bile acids in freeze-dried small intestinal
contents and faeces were determined using a Rat Total Bile Acid
Elisa kit (Fengxiang Biotech Co., Ltd) according to the manu-
facturer’s instructions. Total lipid in the liver was extracted
according to the method of Folch et al.®” and subsequently
determined gravimetrically®”. The levels of TAG and TC in the

ssaud Aisianun abplquied Aq auluo paysiignd LE8O008LSY L L£000S/210L°0L/B10"10p//:sdny


https://doi.org/10.1017/S0007114518000831

o

British Journal of Nutrition

1104 X. Xia et al.

plasma and liver were quantified with enzymatic methods using
assay kits purchased from Sichuan Maker Biotechnology Co.,
Ltd. LDL-cholesterol and HDL-cholesterol in the plasma were
also quantified through enzymatic methods using assay kits
(Sichuan Maker). Measurements were performed using a 7020
Automatic Analyzer (Hitachi) in accordance with the manu-
facturer’s instructions.

Histopathological analysis

The liver was stored in 70 % ethanol until histological analysis
after storing at Bouin solution for 24h. A portion of the stored
liver was embedded in paraffin and then cut into 5-pm thick
semi-serial histological sections using RM2235 microtome
(Microsystems GmbH). Then H&E staining was performed®.
Representative images were acquired at 20X magnification
using an Olympus BX43 microscope (Olympus Optical Co.).

RNA extraction and real-time PCR analysis of gene expression

Total RNA was extracted from the frozen liver and ileum
samples using RNAiso Plus reagent (Takara Bio, Inc.). RNA
concentration and quality were checked using a NanoDrop
2000 spectrophotometer (Thermo Scientific and integrity was
examined using a 1:2% (w/v) agarose gel. Extracted RNA was
used for complementary DNA (cDNA) synthesis using Prime-
Script RT reagent kit with gDNA Eraser (Takara). The resulting
cDNA was amplified using the SYBR Premix Ex Taq II (Takara)
and specific primers (Table 1, synthesised by Sangon Biotech
Co., Ltd). The gene expressions of AMPKa, ApoB, CYP7A1,
FXR, HMG-CoAr, LDLR, LXR, PPARa and SREBP-1c in the liver
and ASBT, FXR, and IBABP in the ileum were investigated.
RT-PCR was performed using the LightScanner 32 system
(BioFire Diagnostics). The amplification programme consisted
of one cycle of 95°C for 30s, 45-55 cycles of 95°C for 5s and
60°C for 20s. To examine the quality of amplification products,
melting curve analysis was performed under the following
conditions: 95°C 0's, 20°C/s; 65°C 15, 20°C/s; 95°C 0's, 0-1°C/s,
continuous measurement of fluorescence; and 50°C cooled 30s,
20°C/s. Melting peaks were recorded by plotting the absolute
value of the first derivative against the temperature®?. Gene

Table 1. Primers for real-time PCR

expression was calculated using 2744 method; the f-actin
gene was used as the housekeeping gene for normalisation®".

Protein extraction and Western blot assays

Protein was extracted from the frozen liver and ileum samples
using a commercial Tissue Total Protein Lysis Buffer (Biotech).
The amount of pooled proteins was determined using a com-
mercial Bradford Protein Assay Kit (Beijing Solarbio Science &
Technology Co., Ltd) with bovine serum albumin as the stan-
dard. SDS-PAGE and Western blot analysis were performed
according to the protocol of Zhang et al® After blocking in
PBS containing 2% Tween-20 and 3% bovine serum antigen,
the membranes were incubated with anti-CYP7A1, anti-HMG-
CoAr, anti-LDLR, anti-ASBT or anti-IBABP experimental anti-
bodies (Abcam, Inc.) overnight at 4°C. The f-actin was used as
a loading control. The membrane was washed thrice with PBS-T
(0-1% Tween-20 in PBS) and incubated with horseradish
peroxidase-conjugated secondary antibodies at room tempera-
ture for 1h. Reactive bands were visualised by a SuperSignal R
West Pico Chemiluminescence substrate (Pierce). The density
of each protein immunoblot was determined using Quantity
One Analyzer software (Bio-Rad Laboratories).

Statistical analysis

The results are reported as mean values and standard deviations.
Statistical analysis was conducted through one-way ANOVA using
SPSS 20.0 software (IBM). P<0-05 was regarded as statistically
significant.

Results
Organ indexes

The changes in organ indexes among all groups are displayed
in Table 2. No significant differences in stomach and kidney
indexes were observed among all groups. The indexes of liver
and abdominal fat of the BC group were significantly higher
than those in the NC group. The abdominal fat indexes in the
LD group were significantly lower, whereas the caecum indexes

Detected sites Gene Forward primer

Reverse primer Reference

Liver AMPKa 5'-ACCTGAGAACGTCCTGCTTG-3'
ApoB 5'-TTGACACACTGAAGTTCCTA-3'
CYP7A1 5'-GAGGGATTGAAGCACAAGAACC-3'
HMG-CoAr 5-GACCAACCTTCTACCTCAGCAAG-3'
LDLR 5'-CAGCTCTGTGTGAACCTGGA-3'
LXR 5'-CATCAAGGGAGCACGCTACATT-3'
PPARa 5'-TCACACAATGCAATCCGTTT-3'
SREBP-1c  5-GGAGCCATGGATTGCACATT-3'

lleum ASBT 5'-GTGACATGGACCTCAGTGTTAGC-3'
IBABP 5'-CAGACTTCCCCAACTATCACCAG-3'
Liver and ileum FXR 5'-GCTAAGGAAGTGCAGAGAGATGG-3’

Housekeeping gene B-Actin 5'-ACGGTCAGGTCATCACTATCG-3'

5'-GGCCTGCGTACAATCTTCCT-3'
5'-ACATCAAACCCTGGTATTAG-3'
5'-ATGCCCAGAGAATAGCGAGGT-3'
5'-ACAACTCACCAGCCATCACAGT-3'
5-TTCTTCAGGTTGGGGATCAG-3'
5'-GCATTTGCGAAGGCGACAC-3'
5-GGCCTTGACCTTGTTCATGT-3'
5'-AGGAAGGCTTCCAGAGAGGA-3'
5'-GTAGGGGATCACAATCGTTCCT-3'
5'-TCAAGCCACCCTCTTGCTTAC-3'
5'-ATAGCTTGGTCGTGGAGGTCACT-3'
5'-GGCATAGAGGTCTTTACGGATG-3'

@)
(29)
(27)
27)
(1)
(1)
31)
(29)
27)
27)
(1)
(27)

AMPKa, AMP-activated protein kinase a; CYP7A1, cholesterol 7a-hydroxylase; HMG-CoAr, 3-hydroxy-3-methylglutaryl coenzyme A reductase; LDLR,
LDL receptor; LXR, liver X receptor; SREBP-1c, sterol regulatory element-binding protein-1c; ASBT, apical sodium-dependent bile acid transporter;

IBABP, ileal bile acid-binding protein; FXR, farnesoid X receptor.
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Table 2. Effect of diet with different doses of whole-grain highland
hull-less barley on organ indexes of high-fat diet Sprague—Dawley rats*
(Mean values and standard deviations; n 9)

NC BC LD HD

Organ indexes Mean spb Mean sp Mean spb Mean sb

Stomach index

Week 4 056 002 059 016 055 013 051 0-02
Week 8 0-44% 003 047% 003 043% 004 046° 007
Liver index

Week 4 2972 005 3-27° 029 311 037 3.03% 021
Week 8 2.99° 0.052 3-87° 015 3.81° 022 348° 045
Kidney index

Week 4 075 008 071® 006 077% 003 075° 0-02
Week 8 075% 002 071% 001 077% 005 075° 0-08
Abdominal fat index

Week 4 066 015 1.02° 0.08 076 006 059 0-14
Week 8 071 018 1.09° 0.14 0-85*° 0.07 0-69° 0-19
Caecum index

Week 4 1.41% 031 1.56° 015 1.74° 037 2:32° 031
Week 8 1.42% 029 125 002 128 027 2.10° 0-31

NC, normal control group; BC, blank control group; LD, low-dose group; and HD, high-
dose group.

abc Mean values in the same row with unlike letters are significantly different
(P<0-05).

* Caecum index was calculated together with the contents.

were significantly higher than those in the BC group after
4-week feeding. All organ indexes of the LD group were similar
with those of the BC group after 8-week feeding. However, the
indexes of liver and abdominal fat of HD groups were signifi-
cantly lower than those in the BC group. Caecum indexes of HD
groups were significantly higher than those in other groups.

Plasma and liver lipid profiles

Changes in plasma and liver lipid levels are shown in Fig. 1. The
plasma TC, TAG, HDL-cholesterol and LDL-cholesterol levels in
the BC group were significantly higher than those in the NC
group. The TC and LDL-cholesterol levels in the HD group were
significantly lower than those in the BC group. HDL-cholesterol
levels in the HD group were significantly higher than those in
the BC group after 8-week feeding. The TC, TAG, and total lipid
levels in the liver of all HFD groups were significantly higher
than those in the NC group. The TC content and lipid con-
centration in the liver of the HD group were significantly lower
than those in the BC group at week 8. TAG levels of the HD group
were slightly lower than the BC and LD groups, whereas the
difference was not significant. The lipid levels of the LD group
showed no significant differences with those of the BC group.

Haematoxylin—eosin-stained sections of liver

After stained with H&E, the degrees of hepatic steatosis were
examined (Fig. 2). In the liver of the NC group, the cells had clear
borders with intact cytoplasm and prominent nuclei. Moreover, no
inflammatory cell infiltrate was observed. Different degrees of
hepatic steatosis were observed in other rat groups. Significant
morphological changes were observed in the liver cells of the BC
group after 4 weeks of the HFD. Steatosis became significant,
excessive lipid accumulation occurred in vesicles, and most
lipid droplets surrounded the nucleus or were located at the side
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Fig. 1. Effect of diet with different doses of whole-grain highland hull-less
barley on plasma (A) and liver (B) lipid levels of high-fat diet Sprague—Dawley
rats. Values are means (n 9) and standard deviations. #°° Mean values of the
same index in the four groups with unlike letters are significantly different
(P<0-05). TC, total cholesterol; F4, normal control group; B, blank control
group; [, low-dose group; [, high-dose group.

of the cells. Meanwhile, some lipids formed large droplets after
8 weeks of the HFD. Compared with the BC group, hepatic
steatosis slightly decreased in the LD group, whereas remarkably
decreased in the HD group.

Bile acid levels in small intestinal contents and faeces

The dry weights of small intestinal contents and faeces were not
affected by fat intake (Table 3). The dry weights of faeces in the
HD group were significantly higher than other groups. The bile
acid levels of small intestinal contents and faeces in the BC and LD
groups showed no significant difference after 8-week feeding.
However, the bile acid levels in small intestinal contents and faeces
of HD groups were significantly higher than those of the other
groups. Changes in water content and pH of faeces were also
measured (online Supplementary Fig. S1). The faecal water con-
tents of all groups were fluctuating changed. Similarly to water
content, the faecal pH of all groups fluctuated. However, the pH of
the HD group had the lowest values compared with other groups.

mRNA levels of key genes in hepatic and ileal lipid
metabolism

The integrity of the total RNA extracted from liver was verified
by agarose gel electrophoresis images, in which three clear
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Fig. 2. Effect of diet with different doses of whole-grain highland hull-less
barley on haematoxylin—eosin-stained liver sections of high-fat diet Sprague—
Dawley rats. NC, normal control group; BC, blank control group; LD, low-dose
group; HD, high-dose group.

bands (58, 18S and 28S) were observed for each representative
sample (online Supplementary Fig. S2). The specificity of pri-
mers was confirmed by melting curves, in which only one
dominant peak was observed for each primer (online Supple-
mentary Fig. S3). Changes in mRNA levels of measured genes
are shown in Fig. 3. The mRNA levels of ApoB, SREBP-1c and
HMG-CoAr in the BC group were significantly higher than those
in the NC group. The mRNA levels of measured genes in the LD
group showed no significant difference with that in the BC
group, except for PPARa levels which were significantly higher
than those in the BC group after 4-week feeding. Compared with
the BC group, the mRNA levels of AMPKa, LDLR, PPARa and ileal
FXR in the HD group were significantly higher, whereas mRNA
levels of HMG-CoAr and ASBT were significantly lower. The mRNA
levels of CYP7A1 and LXR in the HD group were significantly
higher than those in the BC group after 8-week feeding.

Table 3. Effect of diet with different doses of whole-grain highland hull-
less barley on the bile acid levels in small intestinal contents and faeces of
high-fat diet Sprague—Dawley rats

(Mean values and standard deviations; n 9)

NC BC LD HD

Mean so Mean spb Mean SD Mean sp

Small intestinal content
Dry weight (g)

Week 4 038 0-05 0-34% 005 0-35° 0-04 0-34% 005
Week 8 0-35° 0-02 0-30° 002 0-32° 001 0-36° 005
Bile acid (umol/g)
Week 4 44612 4.29 6563° 370 7648° 1.64 83-76% 349
Week 8 46112 3.20 66-11° 524 74.24° 529 91.99° 2.12
Faeces
Dry weight (g/d)
Week 4 1.08% 0.07 1.22° 011 1.322 012  1.81° 0-10
Week 8 1-112 0-05 1.30* 007 1412 011  2.16° 0.08

Bile acid (umol/d)
Week 4 11.63% 024 1821° 2.63 20.55° 2.25b 28.16° 1.77
Week 8 12:43% 1.37 19.94° 2.67 22.41° 1.28b 31.01° 2.46

NC, normal control group; BC, blank control group; LD, low-dose group; and HD, high-
dose group.

abcd Mean values in the same row with unlike letters are significantly different
(P<0-05).

Protein levels of key genes in hepatic and ileal lipid
metabolism

Expressions of hepatic protein (CYP7A1, HMG-CoAr and LDLR)
and ileal protein (ASBT and IBABP) in the NC, BC and HD groups
after 8-week feeding are shown in Fig. 4. Similar to the RT-PCR
results, the expression levels of CYP7A1 and LDLR in the HD
group were significantly higher, whereas the levels of HMG-CoAr
and ASBT were significantly lower than in the BC group.

Discussion

To provide insights into the hypocholesterolaemic effect and
mechanism of WHLB so as to offer economic significance for its
consumption, the hypocholesterolaemic effect of WHLB was
investigated systematically in the present study. The 2015-2020
Dietary Guidelines for Americans recommend that at least
one-half of all grains consumed should be whole grains®®.
A growing body of evidence supports that
whole-grain consumption is associated with a reduced risk of
developing chronic diseases”>. Therefore, we replaced all
maize starch with WHLB (48:95%) in the HD group. As a
control, the LD group was fed with 10% WHLB, which was
lower than the recommended dose. Our previous study showed
that WHLB increased body weight and feed efficiency ratios
while decreased the obesity degree of HFD rats*V. Con-
sistently, results of organ index tests showed that the indexes of
liver and abdominal fat in HFD rats decreased significantly after
administration of high-dose WHLB. The liver plays a central role

(D and increased abdominal
34)

increased

in maintaining lipid homoeostasis
fat has been linked to increased CVD risk®
suggested that WHLB regulated lipid metabolism.

The results of plasma and liver lipid tests showed that
administration of high-dose WHLB significantly decreased the
TC and LDL-cholesterol levels in the plasma and the TC and the

. These results
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(A) Liver NC BC HD llume NC BC HD
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Relative protein expression B

ASBT

CYP7A1 H IBABP

Fig. 4. Effect of whole-grain highland hull-less barley on hepatic protein
(cholesterol 7a-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl coenzyme A
reductase (HMG-CoAr) and LDL receptor (LDLR)) and ileal protein (apical sodium-
dependent bile acid transporter (ASBT) and ileal bile acid-binding protein (IBABP))
expressions after 8 weeks of feeding. Values are means (n 9) and standard
deviations. The protein levels in each sample were normalised to the B-actin level.
Histograms illustrate the densitometric analysis of protein levels shown in (A) based
on B-actin expression (B). NC, normal control group; BC, blank control group; HD,
high-dose group. B: [, NC; &, BC; ™, HD. ab Mean values of the same index in
the three groups with unlike letters are significantly different (P < 0-05).

total lipid levels in the liver. Elevated plasma levels of TC and
LDL-cholesterol are biomarkers for elevated risk of cvD®@.
Ishimwe et al.®> reported that 1% reduction in TC and 1%

reduction in LDL-cholesterol translate to a 2% and 1% decrease
in heart disease risk. The lipid-lowering activity of WHLB was
consistent with previously evaluated barley?®173® The lipid
regulation effect of WHLB was further confirmed through
hepatocyte morphologic observation. The hepatic fat-droplet
accumulation decreased after consuming WHLB diet, particu-
larly at high doses. However, WHLB diet did not significantly
affect TAG levels, which was in line with results from barley”@
and oat diet", whereas the mechanism should be further
studied. HDL-cholesterol levels in the HD group were sig-
nificantly higher than those in the BC group after 8-week
feeding. High levels of functional HDL in plasma protect against
atherosclerotic coronary disease®”. Kim et al.'” reported that
HDL-cholesterol levels in Syrian Golden hamsters with HFD
were slightly increased after administrating diets that contain
bread of whole-grain barley. Meanwhile, Sindhu & Khe-
tarpaul(%) reported that barley diet did not significantly affect
HDL-cholesterol in mice. Hoang et al 16 reported that the HDL-
cholesterol levels were slightly decreased in HFD mice after a
whole-grain barley diet. These differences may be attributed to
the varieties of grains or experimental animal species used.
Lipoprotein metabolism differs between different experimental
model species. For example, mice show up to 40-fold higher
LDL clearance by the liver compared with humans, and mice
carry most of their plasma cholesterol in HDL particles®®.
Cholesterol is mainly eliminated from the body via conver-
sion to bile acids"®. Bile acid levels in small intestinal contents
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and faeces were investigated accordingly. Results showed that
diet with high-dose WHLB significantly increased the bile acid
levels in small intestinal contents and faeces of HFD rats. These
results suggested that WHLB may regulate lipid metabolism by
increasing bile acid excretion, which is consistent with the
mechanism of barley(m'”’/‘m. p-Glucan and dietary fibre com-
pounds were reported to delay bile acid reabsorption and
facilitate faecal bile acid excretions”’~*”. Martinez-Floresa
et al Y reported that hypocholesterolaemic effect of dietary
fibre attributed primarily to soluble dietary fibre. WHLB used in
the current study has relatively high content of f-glucans and
dietary fibre, particularly soluble dietary fibre, compared with
other grains“®>™* Therefore, the hypocholesterolaemic effect
of WHLB may be partly attributed to its high content of f-glucan
and (soluble) dietary fibre. Undigested dietary fibre will be
fermented in the caecum, which is a site of vigorous microbial
activity in rats, thereby yielding various prodtlcts(45) . The values
of caecum indexes and faecal dry weights in HD groups were
significantly higher, whereas the faecal pH was markedly lower
compared with those in the BC group, thereby corresponding to
the changes in bile acid.

To study the molecular mechanism by which WHLB affects the
lipid metabolism of the HFD rats, the mRNA levels of key genes
in hepatic and ileal lipid metabolic were measured. AMPKa,
HMG-CoAr and SREBP-1c were proven to be involved in hepatic
cholesterol synthesis. AMPK regulates lipid metabolism and
inhibits cholesterol synthesis by inducing the inhibitory phos-
phorylation of HMG-CoAr. AMPK can also inhibit fatty acid
synthesis by inducing the inhibitory phosphorylation of
SREBP-1¢?. HMG-CoAr is the rate-limiting enzyme for choles-
terol synthesis™. Meanwhile, SREBP-1c is a transcription factor
that modulates the expression of a large number of genes
involved in the synthesis of cholesterol®. RT-PCR results showed
that the mRNA levels of HMG-CoAr and SREBP-1c were sig-
nificantly up-regulated in the BC group, which indicated that
HFD stimulated cholesterol synthesis. These results were corre-
sponded with the high levels of plasma and liver lipid of the BC
group. After administration of high-dose WHLB, the mRNA levels
of HMG-CoAr significantly decreased, whereas the AMPKa levels
significantly increased. These results suggested that the low TC
concentrations in the HD group may be due to the down-
regulation of HMG-CoAr, which in turn may be partly caused by
the up-regulation of AMPKa. The down-regulation of HMG-CoAr
after WHLB intake was also noted with the intake of barley(m).

When the hepatic cholesterol synthesis increased, the liver
secretes cholesterol with ApoB and increases the circulating
LDL”. Increased level of LDL, which is the principal athero-
genic lipoprotein in the blood, promotes cholesterol accumu-
lation in the artery wall, thereby initiating atherosclerosis®.
Therefore, the significant up-regulation of ApoB in the BC
group may be responsible for the high LDL-cholesterol levels
and abdominal fat indexes. Conversely, LDLR mediates endo-
cytosis of LDL and increases the reabsorption of LDL,
decreasing synthesis of liver cholesterol®”. The significant up-
regulation of LDLR in the HD group may be responsible for the
low LDL-cholesterol levels and abdominal fat indexes. HDL
plays a central role in transporting cholesterol from extrahepatic
tissues to the liver for catabolism of cholesterol to bile acids.

Thus, HDL is thought to contribute to removing cholesterol
from peripheral tissues™"”. Regulator of HDL biogenesis is up-
regulated by the transcription factor LXR, and HDL expression is
further enhanced by PPARa activation™. Compared with the
BC group, the significantly higher mRNA levels of PPARa in the
LD group may be responsible for the significantly lowered
abdominal fat indexes at week 4. The mRNA levels of LXR and
PPARa in the HD group were higher than those in the BC
group, and the difference became significant after 8-week
feeding. Consistent with our results, Ogata et al."*"
that PPAR and LXR are involved in HDL biogenesis in a coop-
erative signal transduction pathway. The concurrent up-
regulation of LXR and PPARa may be responsible for the high
HDL-cholesterol levels in the HD group.

In the liver, CYP7A1 catalyses the rate-limiting step in the bile
acid synthetic pathway”. The mRNA levels of CYP7A1 in the
HD group were significantly higher than those in the BC group
after 8-week feeding. Musso et al.“” reported that LXR can
increase CYP7A1 transcription; therefore, the CYP7A1l up-
regulation may be attributed to LXR up-regulation. Consistent
with our results, Choi et al.“*® and Yang et al.“* reported that
barley f-glucan diet significantly increased the mRNA level of
CYP7Al. Hoang et al'® reported that hepatic CYP7A1
expression was surprisingly decreased after barley diet, and
they partly attributed the effect to the up-regulation of hepatic
FXR. FXR, a ligand-activated transcription factor belonging to
the adopted orphan receptor, plays an important role in main-
taining the health of the liver and the intestines”®”. Hepatic FXR
has been proposed to play a central role in the feedback
repression of the CYP7A1l gene(lz) . However, the negative
correlation between FXR and CYP7A1 was uncertainty®®.
Conversely, Musso et al.“*” reported that FXR activates the bile
acid synthesis by inducing CYP7A1. Bile acids are reabsorbed
by the ASBT at the end of the small intestine (ileum part) and
transferred from the apical to the basolateral membrane by the
IBABP"?. FXR was coupled to reduce ASBT expression,
thereby resulting in decreased intestinal absorption of bile
acids®. ASBT is almost exclusively expressed in the terminal
section of the ileum®". Therefore, the mRNA levels of ASBT,
FXR and IBABP in the ileum were investigated. The significantly
decreased level of ASBT after a diet with a high dose of WHLB,
which may be caused by the significantly increased level of ileal
FXR, was consistent with the reported effect of barley diet by
Hoang et al®. Therefore, the CYP7A1 up-regulation and
ASBT down-regulation may be responsible for the high content
of bile acid in the small intestine and faeces after WHLB diet.

We only investigated the protein levels of CYP7A1, HMG-
CoAr, LDLR, ASBT and IBABP because of the limited mature
experimental antibody. The protein levels of these biomarkers
were consistent with their mRNA levels, thereby confirming the
validity of the RT-PCR analysis. We only studied the mRNA and
protein levels of several key genes related to hepatic and ileal
lipid metabolism. However, the lipid regulatory mechanism of
diet involves numerous proteins%. Therefore, proteome ana-
lysis should be performed in future studies to comprehensively
investigate the lipid regulatory mechanism of WHLB.

In conclusion, high dose of WHLB has a hypocholester-
olaemic effect, and the molecular mechanism of this effect may

concluded
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include inhibition of cholesterol synthesis through up-
regulation of AMPKa expression and down-regulation of
HMG-CoAr expression; stimulation of cholesterol conversion to
bile acids through up-regulation of CYP7A1 expression;
decrease cholesterol accumulation in peripheral tissues through
up-regulation of expression of LDLR, LXR and PPARg«; inhibition
of bile acid reabsorption through up-regulation of ileal FXR
expression and down-regulation of ASBT expression.
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