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Abstract. Continuous maps from the real line to itself give, in a natural way, a partial
ordering of permutations. This ordering restricted to cycles is studied.

Necessary and sufficient conditions are given for a cycle to have an immediate
predecessor. When a cycle has an immediate predecessor it is unique; it is shown
how to construct it. Every cycle has immediate successors; it is shown how to
construct them.

0. Introduction
Continuous maps from the real line to itself give, in a natural way, a partial ordering
of permutations. The ordering, restricted to cycles, has been studied in [2] and [3].

In this paper attention is again restricted to cycles rather than to permutations
in general; cycles correspond to periodic orbits. Necessary and sufficient conditions
are given for a cycle to have an immediate predecessor. When a cycle has an
immediate predecessor it is unique; the paper shows how to construct it. Every cycle
has immediate successors; it is shown how to construct them.

Essentially, two cycles are next to one another in this ordering if and only if one
can be obtained from the other by period doubling.

I would like to thank Z. Nitecki for some useful discussions during the formative
stages of this paper. I would also like to thank the referee for helpful suggestions
for the proof of Lemma 4.4.

1. Basics
Throughout this paper (Sn, °) will denote the group of permutations on n objects.
Cn denotes the subset of Sn consisting of cycles. All functions will be assumed to
be continuous maps from the real line to itself.

Many of the definitions used in this paper were first introduced in [3]. They are
re-stated here for ease of exposition. A longer list of references for the ideas
introduced here can be found in [3]. Much of the language used is algebraic; [1]
may be helpful in giving a more geometric viewpoint.

Definition 1.1. Given a function,/ its set of permutations denoted Perm (/) is defined
by the following. A permutation, 0, belongs to Perm (/) if there exist real x, <
x2<- • <xn such that/(*,) = xeii).

Definition 1.2. Let 6 and 77 be cycles. Say 6 dominates 77, denoted by 17 [>0, if
{/| 0 e Perm (/)} is contained in {/| 77 e Perm (/)}.
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Definition 1.3. If 8 is a cycle let Dom (0) denote the set of cycles dominated by 8
i.e. Dom(0) = {i7|T;[>0}.

Definition 1.4. We will say 9 is an immediate successor to T/, or 17 is an immediate
predecessor to 0, if 0 ̂  17 and Dom (0) = Dom (77) u{0}.

Definition 1.5. Suppose that 0 belongs to Perm (/) and that x , , . . . , xn represents
the reals such that /(x,) = xe(l). Then a directed graph can be associated to 8 and
/ in the following way. The graph has n - 1 vertices / , , . . . , / „ _ ! , and an arrow is
drawn from Jk to /, if and only if f([xk, xk+1]) 2 [xh x,+1]. This graph will be called
the Markov graph associated to / and 8.

Definition 1.6. Given a permutation 8 belonging to Sn the primitive function f
associated to 8 is defined by the following:

(2) f(tk + (l - t)(k+l)) = td(k) + (l -
(3) /(x) = 0(l) i fx< l ;
(4) / (x) = 0(n) i fx>n;

where k = \,...,n and 0< f < 1.

Definition 1.7. The Markov graph associated to 6 and its primitive function will be
called the Markov graph of 0.

For proof of the following lemma see [3] where it is also called Lemma 1.8.

LEMMA 1.8. Let 8 belong to Cn and 77 to Cm and 8^r\. Then 8 dominates r\ if and
only if the Markov graph of 8 has a non-repetitive loop of length m corresponding to 77.

Definition 1.9. Let JhJh • • • Jin denote a non-repetitive loop in the Markov graph
of a permutation. This corresponds to a periodic point of period n. Let
Cycle (Ji,Ji2 • • • JiJ denote the element of Cn that corresponds to this periodic point.
From the fact that the primitive function is piecewise monotone it follows that
Cycle (/,,/,, • • • /,„) is well-defined.
Example 1.10. Consider the cycle (123). It has Markov graph

/, ^ ^ j? .
Figure 1 shows the graph of the primitive function associated to (123). This graph
has JxJ2h as a loop of length three. Cycle {JiJ2Ji) is easily seen to be (123).

3-

1 -
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Example 1.11. Consider the cycle ( 1 3 2 4). It has Markov graph

J, * = * J3.

V
The only non-repetitive loops contained in this graph are JiJ3 and J2. Cycle (/1/3)
is (12) and Cycle (J2) is (1).

The aim of this paper is to prove the following theorem.

THEOREM 1.12. Let 6 belong to Cn.

(1) The following statements are equivalent:
(a) 6 has an immediate predecessor;
(b) 0 is splittable;
(c) there is only one non-repetitive loop from J, to itself in the Markov graph of 6;
(d) there does not exist a loop in the Markov graph of 6 whose cycle is 8.

(2) If 0 has an immediate predecessor it is unique and is 6%.
(3) There are exactly 2"~l immediate successors to 6.

Remark 1.13. Some of the terms used in the above statement will be introduced
later. However, it can be seen from statement 1 that the cycle in example 1.10 does
not have an immediate predecessor and the cycle in example 1.11 does.

2. Successors
In this section it will be shown how to construct immediate successors to a cycle
6. Later it will be shown that all successors can be constructed in this way.

Definition 2.1. Let 6eCn, then 0* is defined by 0*(2fc) = 20(fc), 0*(2fc-l) =

Definition 2.2. Let ps denote the transposition ( 2 s - 1 2s).

Remark 2.3. If 0 e Cn then 0* ° p,, ° p,2 ° • • • ° p,2m _ belongs to C2n, where 1 < i, < n
for \^j&2m — 1. This is straightforward to check; or see [3].

LEMMA 2.4. If 0 belongs to Cn then 0* ° pix ° p,2 ° • • •»p,2m , is an immediate successor
to 8, where 1 < i, < nfor 1 < j < 2m -1. The Markov graph of 6* ° ph ° ph ° • • • ° pJ2m_,
contains only one non-repetitive loop from J^ to itself

Proof. Denote 6* ° p, ° p,-2 ° • • • ° p,2m_, by -q. Consider the Markov graph of 77. From
the definition it is easily checked that there is exactly one arrow leaving J^Vo-i
and it goes to J2e

k*\\)~\- Thus there is a loop

J . >
This is an attractive cycle in the sense that there may be arrows coming into this
loop but there are no arrows leaving it. The subscripts in this loop contain all the
odd numbers from 1 to 2n - 1 . Clearly, the cycle of this loop is 6.
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Now consider the rest of the Markov graph of 17. The only other loops must
consist of J's with even subscripts. By definition there is an arrow from J2k to J2m

iff one of the following holds: either
(1) i)(2fc)<2m and r/(2k+l)>2m + l; or
(2) Tj(2fe+l)<2m and T?(2fe)>2m + 1.

Since v(2k) is either 20(fc) or 20(fc)-l and -q(2k+\) is 20(fc+l)-l or20(A:+l)
there is an arrow from J2k to J2m iff one of the following holds: either

(1) 0(/c)<m and 0(fc+l)> m + l; or
(2) 0(fc+l)<m and 6(k)>m + \,

but this is just the condition for there to be an arrow from Jk to Jm in the Markov
graph of 0. Thus the Markov graph of 77 restricted to the J's with even subscripts
is equivalent to the Markov graph of 0. So Dom (77) = Dom (0) u {17}.

3. The fundamental loop
This section shows how to pick out a particular loop in the Markov graph of 0. It
is shown that the cycle of this loop is either 0 or 6%. Later it will be shown that 0
has immediate predecessors if and only if the cycle of the fundamental loop is 0*.

Definition 3.1. Let 0 be a cycle of length n. Then the fundamental loop associated
to 0, denoted Loop{0), is a path in the Markov graph of 0 defined in the following
way: Choose e small enough so that the length of the interval / '([1,1 + e]) is less
than 1 for 0< (< n. Then for each 1 there exists a unique integer k(i) such that

/••([l,l + e])c[*(i),fc(i) + l].
Then Loop (0) is the path defined by A(o"*A(i+i) for 0— ' — i + l.

Note 3.2. Since fc(0) = 1 and k(n) = 1 this path is actually a loop.
Definition 3.3. A cycle 0 e C2n will be called splittable if for each k, 1 < k < n, there
exists a j such that /({2k - 1 , 2k}) = {2j - 1 , 2./}.

Definition 3.4. If 0eC2 n is splittable then 0* is defined by 6*(k) = lnt[\0(2k)~\,
where Int means round up to the nearest integer.

Remark 3.5. In [3] 0* was defined for simple permutations of power 2".

LEMMA 3.6. Let 0e Cn. Then Cycle (Loop (0)) is either 0 or 0*.
Proof. Loop (0) is a loop of length n. This is either a non-repetitive loop or consists
of repetitions of a shorter loop. These two cases will be considered separately.

If Loop(0) consists of a non-repetitive loop then Cycle (Loop(0)) belongs to
Cn. Since 0(i) is the unique integer in/'([1,1 + e]), where [1,1 + e] is as in Definition
2.1, it is clear that Cycle (Loop (0)) is 0.

Suppose Loop(0) consists of repetitions of a shorter loop. As /'([1,1 + e]),
0< / < n - 1 , contains all the integers from 1 to n, Loop (0) can repeat a vertex Jk

at most twice. Thus Cycle (Loop (0)) must be a cycle of length n/2. The loop starts
at Ji, this means Jx is repeated twice and so J2 cannot be repeated, thus J2 is not
in the path. Similarly, it can be shown that none of the even subscripted J's are in
the loop and all of the odd subscripted J's are contained in the path. From this it
follows easily that 0 is splittable and Cycle (Loop (0)) is 0*.
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4. Predecessors
This section shows when a cycle has an immediate predecessor. It also shows that
if a cycle has an immediate predecessor then the predecessor is unique. A method
of constructing it is also given.

LEMMA 4.1. If 6 is splittable then 0^ is an immediate predecessor to 0.

Proof. If 0 is splittable then there exist transpositions p , , , . . . , p,-2m_1 such that
0 = (0%)* ° ph ° • • • ° Pt2m_l • Thus by Lemma 2.4 6% is an immediate predecessor to 0.

Remark 4.2. Note that if 0 has an immediate predecessor then it is unique. This
follows from the fact that t> is anti-symmetric (see [2] for proof of this).

LEMMA 4.3. Let 6eCn. Let JlJ2- • • Jn denote a loop in the Markov graph of 0. If
Cycle ( / , / 2 • • • / „ ) = 6 then Loop (0) = / , J2 • • • Jn.

Proof. Suppose that Cycle (J\h • • • J«)= 0 and that Loop (0) # J ^ • • • / „ . This
implies that there exists a periodic point x with permutation type of 0 with f'(x) e
(1, n) for any integer i. Thus whenever there is a periodic point with permutation
type of 0 there is another periodic point with permutation type of 0 contained
within it. This means there must be an infinite number of periodic points of period n.

Clearly one can choose a polynomial P such that P(i) = 0(i) for 1 < i < n. Since
P is a polynomial it only has a finite number of periodic points of period n. This
gives a contradiction once it is seen that the Markov graph associated to P contains
in a natural way the Markov graph of 6, (see [4]).

LEMMA 4.4. If Cycle (Loop (6)) = 0 then 0 has no immediate predecessors and there
is more than one non-repetitive loop from Jt to itself in the Markov graph of 0.

Proof. Loop (0) gives a non-repetitive path from Jt, to itself of length n. However,
since there is an integer fc,l</c<n-l such that fk(2) = 1 there is a path from J,
to itself of length k, which has length strictly less than n. Thus the Markov graph
of 0 has more than one non-repetitive loop from / , to itself. For any positive integer
h let 0hn+k be defined by taking the cycle of the loop that consists of going around
Loop (0) h times and then going around the shorter path once.

We make the following statements about 0^n+k.
(1) 0hn+k>0 for any h.
(2) 1 < en

hH+k(l)< 0\"n+k{\)< •< 0t+k{\).
(3) 0Z+k(l)<0ln+k(l) for all 1,7 such that 0<j<hn, n-fj, 0< i < h - 1.

Proofs of the second two statements will be outlined. The first statement is obvious.
Let / denote the primitive function associated to 0. Let A denote the set of points

in the interval Jt whose trajectory of length n follows Loop (0). Then A is an interval
adjacent to 1 and is mapped by / " linearly onto / j . From this and the fact that
/ " ( I ) = 1 statement 2 easily follows.

Let x denote a point in 7, whose orbit corresponds to 0hn+k. If n-fj, 0<j<hn
and fJ(x)eJl then Jj(x)iA (otherwise Loop(0) would be repetitive). Therefore
f{x) > f'"(x) for i = 0 , 1 , . . . , / ) - 1 and consequently the third statement is seen to
be true.
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Suppose 0 has an immediate predecessor, denote it 77. Then 0hn+k\>t] for any h.
Suppose Tj e Cm and choose h > m. Now consider the loop of the Markov graph of
17 that corresponds to dhn+k. Denote it by K^K^ Kh • • •. Since 0{"n+fc(l) < 6^1" (1)
one has ijn < io + 1 ) n for j = 0 , 1 , . . . , n -1.

If iJn = i(J+i)n for some value of j , then KijnKijn+i • • • Ki(j+I)n is a loop. If this loop
is non-repetitive then the cycle corresponding to this loop is an element of Cn and
it is easily seen (using an interval like A in the argument above) that this cycle is
0, but this gives a contradiction since it means 77 dominates 0.

So if ijn = i(j+i)n then KijnKijn+l • • • K.^ n must consist of repetitions of a smaller
loop. Denote the smaller loop by K^K,^ • • • Kijn+p. Let g denote the primitive
function for 77 and let B denote the interval constructed in the same way as A
above, but for this loop of length p. Then gp maps B linearly onto Jijn. If g

p\B is
order preserving then 0£"+^(l)< d(^+k"{l), which contradicts statement 3. If gp\B

is order reversing then since gp\B is expanding, dJhn
++k

p{\)< 0{"n+k{l), which contra-
dicts statement 2 if n = 2p, or statement 3 if n > 2p.

Thus ijn 7* i'(j+i)n for j = 0 , 1 , . . . , n -1 and statement 2 gives i0 < in < i2n • • • < ihn

but this leads to a contradiction since-the Markov graph associated to 17 has only
m — 1 vertices and by construction m is less than h.

Thus 77 cannot dominate 0nn+k and so rj cannot be an immediate predecessor to 6.

5. Proof of Theorem 1.12

Statement 1. Lemma 4.1 shows statement (b) implies (a). Lemmas 4.3, 4.4 show (a)
implies (d). Lemma 3.6 shows (d) implies (b). Lemmas 4.3 and 4.4 show that (c)
implies (d). Finally, Lemma 4.1 and Lemma 2.4 show that (b) implies (c).

Statement 2. This follows from remark 4.2, property (b) and Lemma 4.1.

Statement 3. Let 0 belong to Cn. If 17 is an immediate successor to 0 then by
statement 2, 0 = j)^, Thus 77 = 0* ° pk ° • • • ° p,2m_1. Lemma 2.4 shows that any permu-
tation formed by composing 0* with an odd number of transpositions is an immediate
successor to 0. There are 2""1 of these permutations.
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