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Despite the nonlinear nature of turbulence, there is evidence that part of the energy-transfer
mechanisms sustaining wall turbulence can be ascribed to linear processes. The different
scenarios stem from linear stability theory and comprise exponential instabilities, neutral
modes, transient growth from non-normal operators and parametric instabilities from
temporal mean flow variations, among others. These mechanisms, each potentially capable
of leading to the observed turbulence structure, are rooted in simplified physical models.
Whether the flow follows any or a combination of them remains elusive. Here, we evaluate
the linear mechanisms responsible for the energy transfer from the streamwise-averaged
mean flow (U) to the fluctuating velocities (u′). To that end, we use cause-and-effect
analysis based on interventions: manipulation of the causing variable leads to changes
in the effect. This is achieved by direct numerical simulation of turbulent channel flows
at low Reynolds number, in which the energy transfer from U to u′ is constrained to
preclude a targeted linear mechanism. We show that transient growth is sufficient for
sustaining realistic wall turbulence. Self-sustaining turbulence persists when exponential
instabilities, neutral modes and parametric instabilities of the mean flow are suppressed.
We further show that a key component of transient growth is the Orr/push-over mechanism
induced by spanwise variations of the base flow. Finally, we demonstrate that an ensemble
of simulations with various frozen-in-time U arranged so that only transient growth is
active, can faithfully represent the energy transfer from U to u′ as in realistic turbulence.
Our approach provides direct cause-and-effect evaluation of the linear energy-injection

† Email address for correspondence: adrianld@mit.edu
‡ Present address: Faculty of Aerospace Engineering, Technion – Israel Institute of Technology,

Haifa 32000, Israel.

© The Author(s), 2021. Published by Cambridge University Press 914 A8-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:adrianld@mit.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.902&domain=pdf
https://doi.org/10.1017/jfm.2020.902


A. Lozano-Durán and others

mechanisms from U to u′ in the fully nonlinear system and simplifies the conceptual
model of self-sustaining wall turbulence.

Key words: turbulence simulation, turbulence theory, turbulent boundary layers

1. Introduction

Turbulence is a highly nonlinear phenomenon. Nevertheless, there is ample agreement
that some of the processes sustaining wall turbulence can be faithfully represented by
linearising the equations of motion about an appropriate reference flow state, i.e. base
flow (Malkus 1956; Reynolds & Tiederman 1967; Hussain & Reynolds 1970; Landahl
1975; Butler & Farrell 1993; Jiménez 2013). One of these processes is the transfer of
kinetic energy from the mean flow to the fluctuating velocities. The different mechanisms
originate from linear stability theory and constitute the foundations of many control and
modelling strategies (e.g. Kim & Bewley 2006; Schmid & Henningson 2012; McKeon
2017; Rowley & Dawson 2017; Zare, Georgiou & Jovanović 2020; Jovanović 2021). As
such, establishing the relevance of a particular theory is consequential to comprehend,
model and control the structure of wall-bounded turbulence by linear methods (e.g.
Kim & Lim 2000; Högberg, Bewley & Henningson 2003; Del Álamo & Jiménez 2006;
Hwang & Cossu 2010c; Zare, Jovanović & Georgiou 2017; Morra et al. 2019; Towne,
Lozano-Durán & Yang 2020). Despite the ubiquity of linear theories, their significance
in wall turbulence remains outstanding. One of the main limitations to assess the role
of a concrete linear process in the flow has been the lack of conclusive cause-and-effect
assessment of the mechanisms in question. In the present work, we devise a collection
of numerical experiments of turbulent flows over a flat wall, in which the Navier–Stokes
equations are minimally altered to suppress the causal link entailing the energy transfer
from the mean flow to the fluctuating velocities via various linear mechanisms.

Before diving into the intricacies of the different linear mechanisms, one may ask why
we should insist on describing this energy transfer using linear theories if turbulence is
undoubtedly a nonlinear phenomenon. One reason is that the energy source for fluctuations
in wall turbulence is controlled by spatial changes in the mean velocity (i.e. mean shear)
(Batchelor & Proudman 1954; Brown & Roshko 1974; Jiménez 2013). When the flow is
decomposed into a base flow (U) and fluctuations (u′), the equations of motion naturally
reduce to a system comprising a linear term and nonlinear term,

∂u′

∂t
= L(U)u′︸ ︷︷ ︸

linear
processes

+ N(u′)︸ ︷︷ ︸
nonlinear
processes

. (1.1)

If U is chosen such that the volume integral of u′ · N vanishes (see §§ 2.2 and 6.1), the
linear term in (1.1) is the sole source of energy for u′, which explains the unceasing
surge of interest in linear theories. Note that constructing (1.1) does not require invoking
linearisation about U nor assuming that u′ is small. We can always partition the flow
into U + u′ for an arbitrary U , write (1.1), refer to the linear mechanisms supported by
L(U), and inquire their relevance in sustaining turbulence. Hence, we do not challenge
here the validity of a particular linearisation. Instead, the question raised is whether the
linear mechanisms supported by U (i.e. L(U)) are useful in explaining the dynamics of
u′. It is clear that there exists a myriad of different flow partitions U + u′, but not all of
them are meaningful to explain the dynamics of the flow. If U is chosen wisely, it has
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been demonstrated in many occasions that numerous features of the energy-containing
scales can be elucidated from the linear dynamics in (1.1) (e.g. Reed, Saric & Arnal 1996;
Cambon & Scott 1999; Schmid 2007; Farrell & Ioannou 2012; McKeon 2017). This is the
case for strongly inhomogeneous environments, such as wall turbulence with large-scale
pressure or body forces imposed (e.g. in the streamwise direction), and geophysical flows,
in which rotation and stratification impose strong constraints on the flow (Farrell &
Ioannou 2019). An additional, less glamorous, motivation for arbitrarily partitioning the
flow into U + u′ (thus enabling the use of linear theories) is a matter of practicality:
our current framework to analyse linear systems is well beyond the tools to understand
nonlinear equations. Hence, inasmuch the linear equations meaningfully represent the
physics of the problem, linear tools greatly aid the analysis and facilitate the development
of prediction and control strategies.

The rationale behind the formulation and validation of a linear theory for the energy
transfer between flow structures comprises four elements: (i) the existence in wall
turbulence of recurrent fluid motions (or coherent structures) involved in a self-sustaining
process, (ii) the selection of a base flow which (iii) enables the prediction of these coherent
motions via linear theory, and (iv) a cause-and-effect framework to evaluate the presence
of the linear mechanism in actual nonlinear turbulence. These four points are discussed
below.

1.1. Coherent structures and self-sustaining wall turbulence
Since the experiments by Klebanoff, Tidstrom & Sargent (1962), Kline et al. (1967) and
Kim, Kline & Reynolds (1971), it was realised that despite the conspicuous disorder of
wall turbulence, the flow in the vicinity of walls can be apprehended as a collection
of recurrent patterns, usually referred to as coherent structures (Richardson 1922). Of
particular interest are those structures carrying most of the kinetic energy and momentum,
further categorised as streaks (regions of high and low velocity aligned with the mean
flow direction) and rolls/vortices (regions of rotating fluid) (Robinson 1991; Panton 2001;
Adrian 2007; Smits, McKeon & Marusic 2011; Jiménez 2012, 2018).

Close to the wall in the so-called buffer layer, the current consensus is that these
energy-containing structures are involved in a quasi-periodic self-sustaining process and
that their space–time structure plays a crucial role in the maintenance of shear-driven
turbulence (e.g. Kim et al. 1971; Jiménez & Moin 1991; Butler & Farrell 1993; Hamilton,
Kim & Waleffe 1995; Waleffe 1997; Jiménez & Pinelli 1999; Schoppa & Hussain 2002;
Farrell & Ioannou 2012; Jiménez 2012; Constantinou et al. 2014; Farrell et al. 2016; Farrell,
Gayme & Ioannou 2017a). The self-sustaining process is based on the emergence of
streaks from wall-normal ejections of fluid (Landahl 1975) followed by the meandering
and breakdown of the newborn streaks (Swearingen & Blackwelder 1987; Hall & Smith
1991; Waleffe 1995, 1997; Schoppa & Hussain 2002; Kawahara et al. 2003). The cycle
is restarted by the generation of new vortices from the perturbations created by the
disrupted streaks. The interwoven relation between vortices and streaks was demonstrated
by Jiménez & Pinelli (1999), who showed that damping out either of them inevitably
interrupts the turbulence cycle. A similar but more disorganised scenario is hypothesised
to occur for the larger energy-containing structures further away from the wall within the
logarithmic layer (e.g. Flores & Jiménez 2010; Hwang & Cossu 2011; Cossu & Hwang
2017; Lozano-Durán, Bae & Encinar 2019), although the focus of the present work is on
the buffer layer (i.e. low Reynolds numbers). Linear theories have been instrumental in
unfolding and explaining various stages of the self-sustaining process, and the existence
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of coherent structures has aided the selection of particular base flows to linearise the
equations of motion.

The self-sustaining nature of wall turbulence has also been investigated from
the viewpoint of dynamical-systems theory. In this framework, the spatio-temporal
structure of turbulence is thought of as a low-dimensional manifold around which
the dynamical system spends a substantial fraction of time (Jiménez 1987). According
to the dynamical-systems perspective, the simplest description of turbulence is then
given by a collection of ‘invariant solutions’ (equilibrium states and periodic orbits)
embedded in a high-dimensional turbulent attractor (Kawahara, Uhlmann & van Veen
2012). The first dynamical-system investigations of turbulence in shear flows began with
the discovery of nonlinear equilibrium states, referred to as ‘exact coherent structures’,
of Couette flow (Nagata 1990). Since then, there have been multiple descriptions of such
equilibrium states in shear flows in channels and pipes, often involving unstable travelling
waves (e.g. Kawahara & Kida 2001; Waleffe 2001; Faisst & Eckhardt 2003; Wedin &
Kerswell 2004; Gibson, Halcrow & Cvitanović 2009; van Veen & Kawahara 2011; Kreilos
& Eckhardt 2012; Park & Graham 2015; Hwang, Willis & Cossu 2016). Particularly
relevant for the study of self-sustaining processes is the discovery of time-periodic
solutions by Kawahara & Kida (2001) and later by others (e.g. Toh & Itano 2003;
Viswanath 2007; Gibson, Halcrow & Cvitanović 2008; Kawahara et al. 2012; Willis,
Cvitanović & Avila 2013). These time-periodic solutions were first found for plane Couette
flow and exhibited a full regeneration cycle comprising the formation and breakdown
of streamwise vortices and low-velocity streaks. The dynamical-system approach has
also provided the grounds to conceive turbulence as a superposition of invariant
solutions and their manifolds, which would constitute the skeleton of flow trajectories
in turbulence (Auerbach et al. 1987; Cvitanović 1991). Thus, the simplicity provided
by invariant solutions facilitates the inspection for linear processes at a given stage in
the self-sustaining cycle. However, while realistic turbulence does share similarities with
these exact coherent structures, the latter have been restricted to very low Reynolds
numbers. The actual dynamics of wall turbulence are significantly more complex and
chaotic, and the relationship of realistic high-Reynolds-number turbulent flows with the
exact-coherent-states interpretation remains unsettled. In the present work, we show that
turbulence statistics might be recovered by ensemble averaging a collection of solutions in
the spirit of Cvitanović (1991), although in our case these solutions are not exact coherent
structures.

Another theoretical nonlinear framework to describe self-sustaining processes and
transition to turbulence has been proposed by Hall & Smith (1988) and Hall & Smith
(1991) in terms of vortex–wave interactions (VWI). The approach has been shown to
be the equivalent high-Reynolds-number representation of the exact coherent structures
discussed above (Wang, Gibson & Waleffe 2007; Hall & Sherwin 2010). Vortex–wave
interactions theory involves an intricately delicate balance between a neutrally stable wave,
a roll and a streak. According to VWI, a neutrally stable wave drives a streamwise-uniform
roll by forcing the critical layer of the streamwise-averaged mean flow. The roll
produces streaks through the lift-up effect by interacting with a neutrally stable mean
flow (averaged in streamwise and spanwise directions). Finally, the streaks generate a
spanwise-varying base flow that supports the neutrally stable wave, closing the cycle.
Subsequent developments of the VWI theory include extensions to multiscale motions
consistent with the logarithmic layer (Hall 2018). Other descriptions of self-sustaining
turbulence in the vein of vortex–wave interactions are the studies by Deguchi, Hall
& Walton (2013) and Deguchi & Hall (2015), the high-Reynolds-number theory by
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Ozcakir et al. (2016); Ozcakir, Hall & Tanveer (2019), and the semi-analytic model by
Chini et al. (2017) and Montemuro et al. (2020); the latter devoted to the formation
and maintenance of uniform momentum zones and interlaced vortical fissures studied
by asymptotic analysis. While the theories above could provide a plausible explanation
for how turbulence self-sustains, we are still lacking direct cause-and-effect evidence
regarding whether one or a combination of the abovementioned mechanisms are actually
at work in realistic turbulent flows.

1.2. Base flow
As shown in (1.1), formulating a linear theory entails the partition of the flow into
two components: a base flow U (which might be space- and/or time-dependent), and
fluctuations (or perturbations) u′ about that base flow. In the fluid-stability community,
it is customary to use as base flow a solution of the Navier–Stokes equations and
rigorously linearise the equations about that state. The resulting analysis is then valid
for small-amplitude perturbations. On the other hand, the turbulence community has
commonly used as base flow a mean velocity defined by some averaging procedure
(which is not a solution of the Navier–Stokes equations) and then loosely rely on the
linear stability theory to analyse the response of perturbations (which are generally not
small in amplitude) under the assumption of frozen-in-time base flow. This is obviously
far from rigorous and some authors have found questionable the use of linear stability
theory by the turbulence community (further discussed in § 6.5). Here, we overcome this
hindrance by considering a cause-and-effect analysis on the full nonlinear system in (1.1).
First, we refer to base flow U as any arbitrary reference flow state to separate the flow
into U + u′. Second, as discussed above for (1.1), we can always partition the equations
for u′ into a linear and nonlinear component and inquire the necessity of the linear
mechanisms in L(U) to sustain the flow. The usefulness of the base flow U is measured
by to what extent the dynamics of u′ are explained by the linear mechanisms supported
by U , which circumvents the problem of linearisation. Even if the classic hydrodynamic
linear-stability-theory is not rigorously applicable to our base flows, we still employ the
terminology ‘instability’ to refer to the linear growth provided by L(U).

We now turn our attention to how to choose U when the flow is turbulent. Historically,
the existence of coherent structures in wall turbulence has motivated the selection of
particular base flows, such that the linear dynamics supported by these base flows is
the seed for the inception of new coherent structures consistent with observations in
real turbulence. The resulting distorted flow might be used again as a base flow, which
describes the generation of new coherent structures and so forth. In this manner, the
ultimate cause maintaining turbulence is conceptualised as the energy transfer from the
base flow to the fluctuating flow, as sketched in figure 1. The selection of the base flow
stands as the most important decision to formulate linear theory for sustaining turbulent
fluctuations, as the physical mechanisms ascribed to the linear component of (1.1) depend
crucially on this choice.

Hereafter, we consider the turbulent flow over a flat plate where x, y and z are the
streamwise, wall-normal and spanwise directions, respectively; see figure 1. Common
choices for the base flow are the average of the streamwise velocity u over homogeneous
directions (x and z) and time (t), denoted by 〈u〉xzt, or only over x or z in some small
(minimal) domain, denoted by 〈u〉x and 〈u〉z, respectively. The notation 〈u〉i,j,... denotes
averaging over the coordinates i, j, . . ., and it is formally introduced in § 2. In turbulent
boundary layers and channels, the y-dependent base flow 〈u〉xzt has been successful in
predicting the formation of streaks, a process sometimes referred to as primary instability
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Wall

Feedback

u′ fluctuations

U ( y, z, t) base flow

y

z
x

Energy transfer

Figure 1. Schematic of the energy transfer from the base flow U = U( y, z, t)x̂ to the fluctuating
velocities u′. The energy transfer (red arrow) from U to u′ can be investigated via the linear dynamics of
the governing equation of u′. The cycle is closed by the nonlinear feedback from u′ back to U (grey arrow).

(or, more generally, primary linear process). The resulting streaky flow (now represented
by 〈u〉x) can be utilised as the new base flow to generate the subsequent vortices or,
more generally, disorganised fluctuations. This process is usually referred to as secondary
instability (or, here, as secondary linear process). We next survey the main linear theories
associated with these two sets of linear processes.

1.3. Linear theories of self-sustaining wall turbulence
Several linear mechanisms have been proposed as plausible scenarios to rationalise the
transfer of energy from the large-scale mean flow to the fluctuating velocities. We discuss
below the linear processes ascribed to two of the most widely used base flows, namely, the
y-dependent streakless mean velocity profile 〈u〉xzt, and the y − z-dependent time-varying
streaky base flow 〈u〉x. The predictions by the two base flows should not be considered
contradictory but rather complementary, as the former might be thought as the cause of
the latter and vice versa.

In the primary linear process, it is generally agreed that the linear dynamics about
〈u〉xzt is able to explain the formation of the streaks Ustreak = 〈u〉x − 〈u〉xzt. The process
involves the redistribution of fluid near the wall by streamwise vortices leading to
the formation of streaks through the lift-up mechanism (Landahl 1975; Lee, Kim &
Moin 1990; Butler & Farrell 1993; Farrell & Ioannou 1993a; Kim & Lim 2000;
Jiménez 2012). In this case, the base flow, while being exponentially stable, supports
the growth of perturbations for a period of time due to the non-normality of the linear
operator about that very base flow; a process referred to as non-modal transient growth
(e.g. Farrell 1988; Gustavsson 1991; Butler & Farrell 1993; Trefethen et al. 1993;
Farrell & Ioannou 1996; Del Álamo & Jiménez 2006; Schmid 2007; Cossu, Pujals
& Depardon 2009). Other studies suggest that the generation of streaks is due to the
structure-forming properties of the linearised Navier–Stokes operator, independent of
any organised vortices (Chernyshenko & Baig 2005), or due to the interaction of the
background free-stream turbulence and the roll-streak structures (Farrell, Ioannou &
Nikolaidis 2017b), but the non-modal nature of the linear operator is still crucially invoked.
Input–output analysis of the linearised Navier–Stokes equations has also been successful
in characterising the non-modal response of the base flow 〈u〉xzt (Farrell & Ioannou 1993b;
Jovanović & Bamieh 2005; Hwang & Cossu 2010a; Zare et al. 2017; Ahmadi et al. 2019;
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Jovanović 2021). The input–output approach combines the linearised Navier–Stokes
equations with harmonic or stochastic forcing (white or coloured in time) to qualitatively
predict structural features of turbulent shear flows. Similarly, resolvent analysis (McKeon
& Sharma 2010; McKeon 2017) provides pairs of response and nonlinear-forcing modes
consistent with the linear Navier–Stokes operator with respect to the base flow 〈u〉xzt
and enables the identification of the most amplified energetic motions in wall turbulent
flows. A key aspect of the latter energy transfer is the formation of critical layers or
regions where the wave velocity is equal to the base flow (see also Moarref et al.
2013). Both input–output and resolvent analysis formulate the problem in the frequency
domain, and the sustained response of the perturbations should be understood through a
persistent forcing in time. These amplification mechanisms can be classified as resonant
or pseudoresonant, depending on whether the amplification of perturbations is associated
with modal instabilities or non-normality of the operator, respectively. Interestingly, the
flow structures responsible for the energy transfer obtained in the frequency domain are
remarkably similar to the structures identified with non-normal transient growth posed
as an initial value problem (Hwang & Cossu 2010b; Symon et al. 2018), i.e. the genesis
of streaks from cross-flow perturbation via a lift-up mechanism. In the present work, we
favour the time-domain formulation over the frequency-domain approach as the former is
easily understood as a sequence of events, which facilitates the cause-and-effect analysis
of self-sustaining turbulence pursued here.

The scenarios described in the paragraph above pertain to the study of y-dependent
base flows and, as such, are concerned with primary linear processes. The summary of
studies in the left column of table 1 shows that, except for a handful of studies performed
under very particular conditions, most investigations advocate for transient growth as the
main cause for the genesis of the streamwise streaks via energy transfer from 〈u〉xzt to
Ustreak. Indeed, the few works which do not support the transient growth are from the
1950s or performed in a different context, such as laminar–turbulent transition. There is
hardly any controversy regarding the formation of the streaks, and here we focus on the
linear mechanisms underpinned by 〈u〉x once the streak is formed, i.e. secondary linear
processes.

Motivated by the streamwise-elongated structure of the streaks, we take our base flow
U to consist of the instantaneous streamwise-averaged velocity U( y, z, t) = 〈u〉x in the
streamwise direction of a minimal channel domain (see § 2) with zero wall-normal and
spanwise flow, i.e. U = (U, 0, 0). Our choice is supported by previous studies in the
literature, and most of the works reported in table 1 (right column) conducted their
analysis by linearising the equations of motion about U( y, z, t). Yet, other alternative base
flows might be also justified a priori, and one of the goals here is to investigate whether
U( y, z, t) is a meaningful choice to describe the energy transfer from the large scales to
the fluctuating flow.

The linear mechanisms supported by U( y, z, t) can be categorised into three groups:
(i) modal instability of the mean streamwise flow, (ii) non-modal transient growth, and
(iii) non-modal transient growth assisted by parametric instability of the time-varying base
flow. Other classifications are possible, and ours is motivated by the terminology adopted
in previous works. Table 1 (right columns) compiles the literature in favour of one or other
mechanism. The table, while not an exhaustive compilation of existing works on the topic,
hints at a lack of consensus on which is the prevailing linear mechanism responsible for
the energy transfer from the streaky mean flow to the fluctuations, or if any, it implies that
the dominant idea is that exponential instability is the one responsible. We show in this
work that the latter is not the case; modal instabilities of the mean streamwise flow are
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Reference

Linear mechanism for
y-dependent base flow

〈u〉xzt Reference

Linear mechanism for
( y, z)-dependent base

flow 〈u〉x

Malkus (1956) NEU Schoppa & Hussain (2002) TG
Kim et al. (1971) EXP (V) Hœpffner et al. (2005) TG & EXP (S)
Skote et al. (2002) EXP (V) de Giovanetti et al. (2017) TG & EXP (S)
Jovanović & Bamieh (2005) EXP/TG Cassinelli et al. (2017) TG & EXP (S)
Farrell (1988) TG Farrell & Ioannou (2012) TG PARA
Landahl (1990) TG Thomas et al. (2015) TG PARA
Lee et al. (1990) TG Farrell et al. (2016) TG PARA
Farrell & Ioannou (1993b) TG Farrell & Ioannou (2017) TG PARA
Reddy & Henningson (1993) TG Nikolaidis et al. (2016) TG PARA
Butler & Farrell (1993) TG Swearingen & Blackwelder (1987) EXP (S)
Trefethen et al. (1993) TG Hall & Smith (1991) EXP (S)
Kim & Lim (2000) TG Yu & Liu (1991) EXP (S)
Chernyshenko & Baig (2005) TG Yu & Liu (1994) EXP (S)
Del Álamo & Jiménez (2006) TG Li & Malik (1995) EXP (S/V)
Cossu et al. (2009) TG Park & Huerre (1995) EXP (S)
Pujals et al. (2009) TG Hamilton et al. (1995) EXP (S)
Hwang & Cossu (2010b) TG Bottaro & Klingmann (1996) EXP (S)
Hwang & Cossu (2010a) TG Waleffe (1997) EXP (S)
McKeon & Sharma (2010) TG Reddy et al. (1998) EXP (S)
Jiménez (2013) TG Andersson et al. (2001) EXP (S)
Alizard (2015) TG Asai et al. (2002) EXP (S)
Jiménez (2015) TG Kawahara et al. (2003) EXP (S)
Encinar & Jiménez (2020) TG Hall & Sherwin (2010) EXP (S)

Marquillie et al. (2011) EXP (S/V)
Park, Hwang & Cossu (2011) EXP (S)
Alizard (2015) EXP (S)
Chini et al. (2017) EXP (V)
Hack & Moin (2018) EXP (V)
Montemuro et al. (2020) EXP (V)
Wang et al. (2007) EXP (S)
Hall & Sherwin (2010) NEU
Deguchi et al. (2013) NEU
Deguchi & Hall (2015) NEU
Hall (2018) NEU

Table 1. Proposed linear mechanisms responsible for the energy transfer from the base flow to fluctuations
for: left columns, y-dependent base flows (primary linear process); right columns, ( y, z)-dependent base
flows (secondary linear process). Mechanisms are abbreviated as: EXP, exponential instability; TG, transient
growth; TG PARA, transient growth assisted by parametric instability; NEU, modally neutral. For EXP, V
and S refer to varicose and sinuous instabilities, respectively. The work by Hack & Moin (2018) considered
a (x, y, z)-dependent base flow, but it was included in the right columns as it is devoted to the study of
secondary instability. The label TG for studies formulated in the frequency domain should be understood
as pseudoresonant amplification of perturbations due to non-normality of the linear operator. Swearingen &
Blackwelder (1987), Yu & Liu (1991, 1994), Hall & Smith (1991), Bottaro & Klingmann (1996), Li & Malik
(1995) and Park & Huerre (1995) study the secondary instability in Taylor–Görtler vortices. Asai, Minagawa
& Nishioka (2002), Bottaro & Klingmann (1996), Park & Huerre (1995), Reddy & Henningson (1993),
Hœpffner, Brandt & Henningdon (2005), Jovanović & Bamieh (2005) and Wang et al. (2007) investigate
laminar-to-turbulent transition and suggest that the mechanism might be at play in the turbulent regime. The
works by Kim et al. (1971), Swearingen & Blackwelder (1987), Bottaro & Klingmann (1996) and Asai et al.
(2002) are laboratory experiments, whereas the remainder are numerical investigations. Farrell & Ioannou
(2012), Thomas et al. (2015), Farrell et al. (2016) and Nikolaidis et al. (2016) are carried out in the context
of restricted nonlinear Navier–Stokes. Additionally, some works focus on the buffer layer, logarithmic layer
or outer layer. The table highlights one or two linear mechanisms from each reference, but many works
acknowledge the presence of other mechanisms which are not mentioned in the table. The reader is referred to
each particular work for details.
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Cause-and-effect of linear mechanisms in wall turbulence

not crucial for self-sustaining turbulence. Next, we briefly describe mechanisms (i), (ii)
and (iii).

In mechanism (i), it is hypothesised that the energy is transferred from the mean
flow U( y, z, t) to the fluctuating flow through modal instability in the form of strong
inflectional variations in the spanwise direction (Hamilton et al. 1995; Waleffe 1997;
Karp & Cohen 2017) or wall-normal direction (Chini et al. 2017; Montemuro et al.
2020), corrugated vortex sheets (Kawahara et al. 2003), or intense localised patches of
low-momentum fluid (Andersson et al. 2001; Hack & Moin 2018). These exponential
instabilities are markedly robust at all times (Lozano-Durán, Karp & Constantinou 2018)
and, therefore, their excitation has been proposed to be the mechanism that replenishes the
perturbation energy of the turbulent flow (Hamilton et al. 1995; Waleffe 1997; Andersson
et al. 2001; Kawahara et al. 2003; Marquillie et al. 2011; Hack & Zaki 2014; Hack &
Moin 2018). Other studies have speculated that the streaky base flow U( y, z, t) might
originate from the primary Taylor–Görtler instability. In this case, the varying wall shear
induced by large-scale structures gives rise to sufficient streamline curvature in x to trigger
the instability (Brown & Thomas 1977; Phillips, Wu & Lumley 1996; Saric, Reed &
White 2003). Consequently, it has also been hypothesised that the following secondary
exponential instability of the Taylor–Görtler base flow is the mechanism to generate
turbulence fluctuations (Swearingen & Blackwelder 1987; Yu & Liu 1991, 1994; Hall
& Smith 1991; Li & Malik 1995; Park & Huerre 1995; Bottaro & Klingmann 1996;
Karp & Hack 2018). Exponential instabilities above are commonly classified according
to their symmetries as varicose and sinuous. The varicose instability (symmetric in the
streamwise and wall-normal velocities) is commonly associated with inflection points in
the base flow along the wall-normal direction, while the sinuous instability (symmetric
in the spanwise velocity) relates to inflection points in the spanwise directions (Park &
Huerre 1995; Schmid & Henningson 2012). In all of the scenarios above, the exponential
instability of the streak is thought to be central to the maintenance of wall turbulence.
Additionally, the modal character of the base flow also plays a key role in the VWI theory,
but in this case it is not necessary for base flows to be unstable for nonlinear states to
develop. Instead, it is postulated that the regeneration cycle is supported by the interaction
of a roll with the neutrally stable mean streamwise flow (Hall & Smith 1991; Deguchi et al.
2013; Hall 2018).

Mechanism (ii), transient growth, involves the redistribution of energy from the streak
to the fluctuations via transient algebraic amplification. The transient growth scenario of
the streaky base flow U( y, z, t) (not to be confused with the transient growth of 〈u〉xzt( y)
discussed above) gained popularity since the work by Schoppa & Hussain (2002), who
argued that transient growth may be the most relevant mechanism not only for streak
formation but also for their eventual breakdown. Schoppa & Hussain (2002) showed that
most streaks detected in actual wall-turbulence simulations are indeed exponentially stable
for the set of wavenumbers considered. Hence, the loss of stability of the streaks would
be better explained by the transient growth of perturbations that would lead to vorticity
sheet formation and nonlinear saturation. The findings by Schoppa & Hussain (2002) have
long been criticised, and the absence of unstable streaks can be also interpreted as an
indication that instability is important, as the unstable streaks break fast and are harder to
observe. Other criticism argues that, far from the wall, streaks might not provide a reservoir
of energy large enough to sustain the flow fluctuations (Jiménez 2018). Some authors
have further argued that distinguishing between streak transient growth and streak modal
instability would be virtually impossible, as both emerge almost concurrently during the
streak breakdown (Hœpffner et al. 2005; Cassinelli et al. 2017; de Giovanetti et al. 2017),
and, hence, both are driving mechanisms of self-sustaining turbulence.
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Finally, mechanism (iii), transient growth assisted by parametric instability, has been
advanced in recent years by Farrell, Ioannou & coworkers (Farrell & Ioannou 1999, 2017,
2012; Farrell et al. 2016, 2017a; Nikolaidis et al. 2016; Bretheim, Meneveau & Gayme
2018). They adopted the perspective of statistical state dynamics (SSD) to develop a
tractable theory for the maintenance of wall turbulence. Within the SSD framework, the
perturbations are maintained by an essentially time-dependent, parametric instability of
the base flow. The concept of ‘parametric instability’ refers here to perturbation growth
that is inherently caused by the time dependence of the base flow U. The self-sustaining
mechanism proposed by SSD still relies on the highly non-normal streamwise roll and
streak structure. However, it differs from other mechanisms above in that it requires the
time variations of U for the growth of perturbations to be supported. Furthermore, it
implies that mechanisms based on critical layers (e.g. Hall & Smith 1988, 1991; Hall
& Sherwin 2010) and modal or non-modal growth processes alone (e.g. Waleffe 1997;
Schoppa & Hussain 2002) are not responsible for most of the energy transfer from U to
u′, as they ignore both the intrinsic time dependence of the base flow or the non-normal
aspect of the linear dynamics.

1.4. Cause-and-effect of linear mechanisms
The scenarios (i), (ii) and (iii), although consistent with the observed turbulence
structure (Robinson 1991; Panton 2001; Jiménez 2018), are rooted in simplified
theoretical arguments. It remains to establish whether self-sustaining turbulence follows
predominantly one of the abovementioned mechanisms, or a combination of them. One
major obstacle to assess linear theories arises from the lack of tools in turbulence
research that resolve the cause-and-effect dilemma and unambiguously attributes a set
of observed dynamics to well-defined causes. This brings to attention the issue of causal
inference, which is a central theme in many scientific disciplines but is barely discussed
in turbulence research with the exception of a handful of works (Tissot et al. 2014;
Liang & Lozano-Durán 2017; Bae, Encinar & Lozano-Durán 2018a; Lozano-Durán et al.
2019). It is via cause-and-effect relationships that we gain understanding of a given
phenomenon, namely, that we are able to shape the course of events by deliberate
actions or policies (Pearl 2009). It is for that reason that causal thinking is so pervasive.
Typically, causality is inferred from a priori analysis of frozen flow snapshots or, at
most, by time correlation between pairs of signals extracted from the flow. However,
elucidating causality, which inherently occurs over the course of time, is challenging
using a frozen-analysis approach, and time correlations lack the directionality and
asymmetry required to guarantee causation (i.e. correlation does not imply causation)
(Beebee, Hitchcock & Menzies 2012). Recently, Lozano-Durán et al. (2019) introduced
a probabilistic measure of causality to study self-sustaining wall turbulence based on the
Shannon entropy that relies on a non-intrusive framework for causal inference. In the
present work, we provide a complementary ‘intrusive’ viewpoint.

Here, we evaluate the contribution of different linear mechanisms via direct
numerical simulation of channel flows with constrained energy extraction from the
streamwise-averaged mean flow. To that end, we modify the Navier–Stokes equations
to suppress the causal link for a targeted linear mechanism, while maintaining a fully
nonlinear system. This approach falls within the category of ‘instantiated’ causality, i.e.
intrusively perturbing a system (cause) and observing the consequences (effect) (Pearl
2009). In our case, altering the system has the benefit of providing a clear cause-and-effect
assessment of the importance of each linear mechanism implicated in sustaining the flow.
These ‘conceptual numerical experiments’ have been long practised in turbulence research
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Cause-and-effect of linear mechanisms in wall turbulence

and many notorious examples can be found in the literature. However, the connection
between conceptual numerical experiments and causality has been loose. In the present
work, we aim to promote the formalisation and systematic use of cause-and-effect analysis
to solve new and long-standing unsettled problems in fluid mechanics.

The study is organised as follows: § 2 contains the numerical details of the turbulent
channel flow simulations. The statistics of interest for wall turbulence are reviewed in § 3.
In § 4 we briefly outline the linear theories of self-sustaining wall turbulence and evaluate
a priori their potential relevance for sustaining the flow. In § 5 we discuss the discovery
of cause-and-effect relationships by interventions in the system. The actual relevance
of different linear mechanisms from a cause-and-effect perspective is investigated in
§ 6. The section is further subdivided into subsections devoted to the cause-and-effect
of exponential instabilities and transient growth with and without parametric instability.
Finally, we conclude in § 7.

2. Minimal turbulent channel flows units

2.1. Numerical experiments
To investigate the role of different linear mechanisms, we perform direct numerical
simulations of incompressible turbulent channel flows driven by a constant mean pressure
gradient. Hereafter, the streamwise, wall-normal and spanwise directions of the channel
are denoted by x, y and z, respectively, the corresponding flow velocity components by u,
v, w, and pressure by p. The density of the fluid is ρ, the kinematic viscosity of the fluid
is ν, and the channel height is h. The wall is located at y = 0, where no-slip boundary
conditions apply, whereas free stress and no penetration conditions are imposed at y = h.
The streamwise and spanwise directions are periodic.

The simulations are characterised by the friction Reynolds number, Reτ , defined
as the ratio of the channel height to the viscous length scale δv = ν/uτ , where
uτ is the characteristic velocity based on the mean skin friction at the wall u2

τ ≡
ν〈∂u(x, 0, z, t)/∂y〉xzt. Here, the Reynolds number is Reτ = h/δv ≈ 180. The streamwise,
wall-normal and spanwise sizes of the computational domain are L+

x ≈ 337, L+
y ≈ 186

and L+
z ≈ 168, respectively, where the superscript + denotes quantities scaled by ν and uτ .

Jiménez & Moin (1991) showed these ‘minimal channels’ contain an elementary turbulent
flow unit comprised of a single streamwise streak and a pair of staggered quasi-streamwise
vortices, that reproduce the dynamics of the flow in larger domains. Hence, the current
numerical experiment isolates the few, most relevant, coherent structures involved in
self-sustaining turbulence in the buffer layer. It also provides an ideal testbed for studying
linear mechanisms, as it enables the identification of a meaningful base flow for these
elementary coherent structures. In appendix A we assess the sensitivity of the key results
presented in this study to changes in the domain extent (Lx and Lz). We find that our
conclusions still hold when the size of the computational domain is doubled in each
direction.

We integrate the incompressible Navier–Stokes equations

∂u
∂t

= −u · ∇u − 1
ρ

∇p + ν∇2u + f , (2.1a)

∇ · u = 0, (2.1b)

with u def= (u, v, w) and f = (u2
τ /h, 0, 0).
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Case
Sustained?

Equation for u′ Equation for U Feedback from
u′ → U

Active linear mechanisms for
energy transfer from

U → u′

R180
✓

(3.1a) U( y, z, t) from
(3.1b)

✓ Exponential instabilities
Transient growth
Parametric instabilities

NF180
✓

(6.2) Precomputed
U( y, z, t)
from R180

✗ Exponential instabilities
Transient growth
Parametric instabilities

NF − SEI180
✓

(6.8) Precomputed
U( y, z, t)
from R180

✗ Transient growth
Parametric instabilities

R − SEI180
✓

(6.12a) U( y, z, t) from
(6.12b)

✓ Transient growth
Parametric instabilities

NF − TG180
✓/✗

(6.13a) Precomputed
U( y, z, t0)
from R180 at
a frozen t0

✗ Transient growth

NF − NLU180
✓

(6.23), (6.29),
(6.22c), (6.22d)

Precomputed
U( y, z, t)
from R180

✗ Exponential instabilities
Transient growth

without lift-up
Parametric instabilities

NF − NPO180
✗

(6.24), (6.22b),
(6.22c), (6.22d)

Precomputed
U( y, z, t)
from R180

✗ Exponential instabilities
Transient growth without

push-over
Parametric instabilities

NF − NO180
✗

(6.22a), (6.29),
(6.22c), (6.22d)

Precomputed
U( y, z, t)
from R180

✗ Exponential instabilities
Transient growth

without Orr
Parametric instabilities

Table 2. List of cases of turbulent channel flows with and without constrained linear mechanisms. The friction
Reynolds number is Reτ ≈ 180 for all cases. The cases are labelled following the nomenclature: R, regular
wall turbulence with feedback U → u′ allowed; NF, no-feedback from U → u′ allowed; SEI, suppressed
exponential instabilities; TG, only transient growth without exponential nor parametric instabilities; NLU, no
linear lift-up of the streak; NPO, no linear push-over of the streak; NO, no linear Orr of the streak.

The simulations are performed with a staggered, second-order, finite differences scheme
(Orlandi 2000) and a fractional-step method (Kim & Moin 1985) with a third-order
Runge–Kutta time-advancing scheme (Wray 1990). The solution is advanced in time using
a constant time step chosen appropriately so that the Courant–Friedrichs–Lewy condition
is below 0.5. The code has been presented in previous studies on turbulent channel flows
(Lozano-Durán & Bae 2016; Bae et al. 2018b, 2019). In addition, we performed various
numerical experiments (summarised in the second column of table 2) in which we time
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Figure 2. Decomposition of the instantaneous flow into a streamwise mean base flow and fluctuations.
Instantaneous isosurface of streamwise velocity for (a) the total flow u, (b) the streak base flow U and (c) the
absolute value of the fluctuations |u′|. The values of the isosurfaces are 0.6 (a,b) and 0.1 (c) of the maximum
streamwise velocity. Shading represents the distance to the wall from dark (y = 0) to light (y = h). The arrow
in panel (a) indicates the mean flow direction. Results for case R180.

advance two sets of equations: one for the base flow U and one for the fluctuations u′. In
this manner, we are able to independently control the dynamics of U and u′. We discuss
in detail these additional experiments in § 6.

The streamwise and spanwise grid resolutions are �x+ ≈ 6.5 and �z+ ≈ 3.3,
respectively, and the minimum and maximum wall-normal resolutions are �y+

min ≈
0.2 and �y+

max ≈ 6.1. The corresponding number of grid points in x, y and z are
64 × 90 × 64, respectively. All the simulations presented here were run for at least
300h/uτ units of time after transients. This time period is orders of magnitude longer
than the typical lifetime of individual energy-containing eddies (Lozano-Durán & Jiménez
2014), and allows us to collect meaningful statistics of the self-sustaining cycle.

2.2. Base flow

We partition the flow into fluctuating velocities u′ def= (u′, v′, w′) and base flow U , defined

as the time-varying mean streamwise velocity U def= (U, 0, 0), where

U( y, z, t) def= 〈u〉x = 1
Lx

∫ Lx

0
u(x, y, z, t) dx, (2.2)

such that u′ def= u − U, v′ def= v and w′ def= w. Hereafter, 〈·〉i,j,k,... denotes averaging over the
directions (or time) i, j, k,. . . , for example,

〈u〉xzt = 1
LxLzTs

∫ Lx

0

∫ Lz

0

∫ Ts

0
u(x, y, z, t) dt dz dx, (2.3)

where Ts is a time horizon long enough to remove any time fluctuations. Figure 2 illustrates
this flow decomposition and figure 3 depicts three typical snapshots of the base flow
defined in (2.2). Note that because we are using a minimal box for the channel, only a
single energy-containing eddy fits in the domain. Hence, U computed in minimal boxes
is a meaningful base flow ‘felt’ by individual flow structures. This would not be the case
in larger domains in which the effect of the multiple structures present in the flow cancels
out and does not contribute to U.
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Figure 3. Examples of base flow, defined as U( y, z, t) def= 〈u〉x, for a turbulent channel flow at Reτ ≈ 180 (case
R180 from § 3). The examples are representative instances with (a,b) strong streak activity and (c) quiescent
times with weak streak activity. The shading represents the value of the streamwise velocity in wall units.

We have not included in the base flow (2.2) the contributions from the streamwise
averages of v and w components, V def= 〈v〉x and W def= 〈w〉x, as these are not traditionally
included in the study of stability of the streaky flow. Indeed, the vast majority of studies
reported in table 1 do not account for V and W in their analysis. The results obtained
using (U, 0, 0) as a base flow were repeated for a base flow consisting of (U, V, W), and a
concise overview of the findings can be found in appendix B. In summary, the conclusions
drawn for base flows (U, 0, 0) or (U, V, W) are similar and, thus, we focus on the former
for simplicity.

The equation of motion for the base flow U = (U, 0, 0) is obtained by averaging the
Navier–Stokes equations (2.1) in the streamwise direction,

∂U
∂t

+ U · ∇U = −D〈u′ · ∇u′〉x − D
ρ

∇〈p〉x + ν∇2U + f , (2.4a)

∇ · U = 0, (2.4b)

where the operator D sets the y- and z-components of the nonlinear terms and pressure to
zero for consistency with U = (U, 0, 0) (see appendix B). Subtracting (2.4) from (2.1) we
get that the fluctuating flow u′ is governed by

∂u′

∂t
= L(U)u′︸ ︷︷ ︸

linear
processes

+ N(u′)︸ ︷︷ ︸
nonlinear
processes

, (2.5)

where L(U) is the linearised Navier–Stokes operator for the fluctuating state vector about
the instantaneous U (see figure 2b) such that

L(U)u′ = P
[
−U · ∇u′ − u′ · ∇U + ν∇2u′

]
. (2.6)

The operator P accounts for the kinematic divergence-free condition, ∇ · u′ = 0.
Conversely, N(u′) collectively denotes the nonlinear terms, which are quadratic with
respect to fluctuating flow fields,

N(u′) = P [−u′ · ∇u′ + D〈u′ · ∇u′〉x
]
. (2.7)

We are interested in the dynamics of u′ governed by (2.5). Note that the flow partition
U + u′ as defined in (2.2) implies that the energy injection into the velocity fluctuations
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is ascribed to linear processes from L(U), since the term N(u′) is only responsible for
redistributing the energy in space and scales among the fluctuations, i.e. the domain
integral of u′ · N vanishes identically and, thus,

∂

∂t
〈E〉xyz = 〈

u′ · L(U)u′〉
xyz , (2.8)

where E def= |u′|2/2 is the fluctuating turbulent kinetic energy.
In the rest of the paper, in addition to solutions of the Navier–Stokes equations (2.1), we

modify (2.6) to preclude the energy transfer from U to u′ for targeted linear mechanisms.
The simulations carried out are summarised in table 2, which includes the active linear
mechanisms for energy transfer from U to u′ and whether the cases are capable of
sustaining turbulent fluctuations. The details on how the equations of motion are modified
for each case are discussed in the remainder of the paper.

3. Regular wall turbulence

First, we solve the Navier–Stokes equations without any modification, so that all
mechanisms for energy transfers from the base flow to the fluctuations are naturally
allowed. We refer to this case as the ‘regular channel’ (R180). We provide an overview of
the self-sustaining state of the flow and one-point statistics for R180. The results are used
as a reference solution in forthcoming sections. The governing equations for the regular
channel flow are (2.4) and (2.5):

∂u′

∂t
= L(U)u′ + N(u′), (3.1a)

∂U
∂t

= −U · ∇U − D〈u′ · ∇u′〉x − D
ρ

∇〈p〉x + ν∇2U + f , ∇ · U = 0. (3.1b)

The history of the domain-averaged turbulent kinetic energy, 〈E〉xyz, is shown in
figure 4(a). The evolution of 〈E〉xyz reveals the widely documented intermittent behaviour
of the turbulent kinetic energy: relatively low turbulent kinetic energy states followed
by occasional spikes usually ascribed to the regeneration and bursting stages of the
self-sustaining cycle. As an example, figure 5 contains the streamwise velocity at three
instants with different degrees of turbulence activity. If we interpret bursts events as
moments of intense turbulent kinetic energy, the time autocorrelation of 〈E〉xyz allows
us to define a characteristic burst duration (Tb), and the period between two consecutive
bursts (Tp). Figure 4(b) shows that Tb ≈ h/uτ measured as the time for zero correlation,
while Tp ≈ 4h/uτ given by the time distance between two consecutive maxima. Later on,
we compare this burst period Tb with the characteristic time scales for energy injection
into u′.

A useful representation of the high-dimensional dynamics of the solution is obtained by
projecting the instantaneous flow trajectory onto the two-dimensional space defined by the
domain-averaged production and dissipation rates

〈P〉xyz
def=
〈
−u′v′ ∂U

∂y
− u′w′ ∂U

∂z

〉
xyz

, (3.2)

〈D〉xyz
def= 〈−2νS : S〉xyz , (3.3)

where S is the rate of strain tensor for the fluctuating velocities, and the colon
denotes double inner product. The statistically stationary state of the system requires
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Figure 4. (a) The history of the domain-averaged turbulent kinetic energy of the fluctuations 〈E〉xyz. Note that
only 30h/uτ units of time are shown in the panel but the simulation was carried out for more than 300h/uτ .
(b) The time autocorrelation of 〈E〉xyz. The vertical dotted and dash–dotted lines are t = h/uτ ≈ Tb (burst
duration) and t = 4.3h/uτ ≈ Tp (time between bursts), respectively. Results for regular channel flow R180.
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Figure 5. Instantaneous isosurface of the streamwise velocity u at different times for R180. The value of the
isosurface is 0.65 of the maximum streamwise velocity. Shading represents the distance to the wall from dark
(y = 0) to light (y = h). The arrow indicates the mean flow direction.

〈P〉xyzt = −〈D〉xyzt. The results, plotted in figure 6(a), show that the projected solution
revolts around 〈P〉xyzt = −〈D〉xyzt and is characterised by excursions into the high
dissipation and high production regions, consistent with previous works (e.g. Jiménez et al.
2005; Kawahara et al. 2012).

The mean velocity profile and root-mean-squared (r.m.s.) fluctuating velocities for the
regular channel are shown in figure 6(b–e). The results are compiled for the statistical
steady state after initial transients. These have also been reported in the literature, with
the worth noting difference that here the streamwise fluctuating velocity is defined as
u′ = u − 〈u〉x, while in previous studies it is common to choose u′′ = u − 〈u〉xzt instead.
Figure 6(b–e) also contain the one-point statistics for a non-minimal channel flow with
L+

x × L+
z = 2312 × 1156 (Lx × Lz ≈ 12.5h × 6.3h) denoted by L180. The mean profile

and cross-flow fluctuations in larger unconstrained domains are essentially captured in the
minimal box, while u′ is underpredicted. The missing u′ is due to larger-scale motions that
do not participate in the buffer layer self-sustaining cycle (Jiménez & Moin 1991; Flores
& Jiménez 2010). A large amount of u′ is recovered when the minimal channel domain is
enlarged in the streamwise direction and appendix A shows that our conclusions still hold
when the minimal channel streamwise length is doubled.
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Figure 6. (a) Projection of the flow trajectory for R180 onto the average production rate 〈P〉xyz and
dissipation rate 〈D〉xyz plane. The arrows indicate the time direction of the trajectory, which on average rotates
counterclockwise. The red dashed line is 〈P〉xyz = −〈D〉xyz and the red circle 〈P〉xyzt = −〈D〉xyzt. The trajectory
projected covers 15h/uτ units of time. (b) Streamwise mean velocity profile and (c) streamwise, (d) wall-normal
and (e) spanwise root-mean-squared fluctuating velocities as a function of the wall-normal distance for R180
and equivalent non-minimal channel L180 with L+

x × L+
z = 2312 × 1156 (Lx × Lz ≈ 12.5h × 6.3h).

4. Linear theories of self-sustaining wall turbulence: a priori non-causal analysis

The expected scenario of the full self-sustaining cycle in wall turbulence is the linear
amplification of u′ induced by the operator L(U) followed by nonlinear saturation of
u′, scattering and generation of new disturbances by N . We focus here on the linear
component of (2.5),

∂u′
linear
∂t

= L(U)u′
linear. (4.1)

The most general solution to (4.1) is given by the Peano–Baker series (see § 4.3),
which accounts simultaneously for exponential growth, non-modal transient growth and
non-modal transient growth assisted by parametric instability. However, we dissect (4.1)
and revisit separately the different linear mechanisms that can transfer energy from the
base flow to the fluctuating velocities. The plausibility of each mechanism in L(U) as
a contender to transfer energy from U to u′ is investigated in a non-intrusive manner
by interrogating the data from R180. This constitutes a non-causal analysis, as we are
neglecting the nonlinear terms in (4.1), whereas the actual system (2.5) is nonlinear.
This is not a minor point as the nonlinear term N can immediately counteract the linear
growth by L(U)u′. Thus, this section only provides an assessment on the plausibility of
different linear growths. The actual relevance of the linear mechanisms is assessed in the
cause-and-effect analysis in § 6.
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Figure 7. Representative exponential instability of the streak. (a) Instantaneous isosurface of the base flow
U. The value of the isosurface is 0.6 of the maximum and the shading represents the distance to the wall.
(b) Isosurface of the instantaneous streamwise velocity for the eigenmode associated with the most unstable
eigenvalue λmaxh/uτ ≈ 3. The flow structure of the eigenmode is consistent with a sinuous instability. The
values of the isosurface are −0.5 (dark) and 0.5 (light) of the maximum streamwise velocity.

4.1. Energy transfer via exponential instability
The first mechanism considered is modal instability of the instantaneous base flow. At any
given time, the exponential instabilities are obtained by eigendecomposition of the matrix
representation of the linear operator L(U) in (2.5),

L(U) = QΛQ−1, (4.2)

where Q consists of the eigenvectors organised in columns, Q−1 is the inverse of Q, and Λ

is the diagonal matrix of associated eigenvalues, λj + iωj, with λj, ωj ∈ R. Equation (4.1)
admits solutions of the form u′

linear ∼ c exp [(λj + iωj)t], with c a constant. Hence, we
say that the base flow is unstable if any of the growth rates λj is positive. More details
on the stability analysis are provided in appendix C along with the validation of our
implementation in appendix D. Figure 7 shows a representative example of the streamwise
velocity for an unstable eigenmode. The predominant eigenmode has typically a sinuous
structure of positive and negative patches of velocity flanking the velocity streak side by
side, which may lead to its subsequent meandering and eventual breakdown. Varicose-type
modes are also observed but they are less frequent.

Figure 8(a) shows the probability density functions of the growth rate of the four least
stable eigenvalues of L(U). On average, the operator L(U) contains two to three unstable
eigenmodes at any given instant. Denoting the Fourier streamwise wavenumber as kx,
the most unstable eigenmode usually corresponds to kx = 2π/Lx, although occasionally
modes with kx = 2π/(2Lx) become the most unstable. The sensitivity of our results to Lx
is further discussed in appendix A. The history of the maximum growth rate supported by
L(U), denoted by λ1 = λmax, is shown in figure 8(b). The flow is exponentially unstable
(λmax > 0) more than 90 % of the time. The average e-folding time for an exponentially
unstable perturbation is roughly h/uτ , which is comparable to the bursting duration Tb.

The ansatz underlying modal instability is that the spatial structure of the base flow
remains constant in time. Therefore, we expect the above linear instability to manifest in
the flow only when λmax is much larger than the time rate of change of the base flow U,
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Figure 8. (a) Probability density functions of the growth rate of the four least stable eigenvalues of L(U),
λ1 > λ2 > λ3 > λ4. (b) The time series of the most unstable eigenvalue λmax = λ1 of L(U). (c) The time
series of the ratio of λmax/λU , where λU is the growth rate of the base flow given by (4.3). The horizontal
dashed and dotted lines are λmax/λU = 1 and λmax/λU = 10, respectively. Results for regular channel R180.

defined as

λU
def=
〈

1
2

|dEU/dt|
EU

〉
yz

, (4.3)

where EU
def= U2/2 is the energy of the base flow. The ratio λmax/λU for λmax > 0, shown

in figure 8(c), is approximately 5 on average and occasionally achieves values of 20, i.e.
the time changes of U might be 5 to 20 times slower than the e-folding time of the most
unstable eigenmode. The growth of the modal instabilities is not overwhelmingly faster
than the changes on the base flow. However, considering that the exponential growth of
disturbances is supported for a non-negligible fraction of the flow history (roughly 90 % of
the time as shown before), modal instability of L(U) still stands as a potential mechanism
sustaining the fluctuations. Note that the argument above does not imply that exponential
instabilities are necessarily relevant for the flow when λmax/λU is large, but only that they
could manifest based on their characteristic time scales. In fact, we show in § 6.2 that
exponential instabilities are not a requisite to sustain turbulence.

4.2. Energy transfer via transient growth
The second linear mechanism considered is the non-modal transient growth of the
fluctuations. The linear dynamics of (4.1) can be formally written as

u′
linear(t + T) = Φt→t+T u′

linear(t). (4.4)

The propagator Φt→t+T maps the fluctuating flow from time t to time t + T and represents
the cumulative effect of the linear operator L(U) during the period from t to t + T . If the
base flow remains constant for t ∈ [t0, t0 + T], then the propagator simplifies to

Φt0→t0+T = exp (L0 T) , (4.5)

where L0 denotes L(U( y, z, t0)).
Equation (4.4) accounts for both the modal and non-modal growth of u′ for t ∈ [t0, t0 +

T]. The exponential growth of the fluctuating velocities was already quantified in § 4.1.
Here we are concerned with the transient growth of u′ supported by L0. To that end, we
exclude from the analysis any growth of fluctuations due to the modal instabilities of L0.
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This is achieved by the modified operator L̃0,

L̃0
def= QΛ̃Q−1, (4.6)

where Λ̃ is the stabilised counterpart of Λ in (4.2) obtained by setting the real part (λj)
of all unstable eigenvalues of Λ equal to −λj, while their phase speed and eigenmode
structure are left unchanged. We assessed that the transient growth properties of L̃0 are
mostly insensitive to the amount of stabilisation introduced in Λ when λj > 0 are replaced
by −aλj with a ∈ [1/10, 10]. The potential effectiveness of transient growth due to a
base flow U( y, z, t0) is then characterised by the energy gain G over some time period
T , defined as

G(t0, T, u′
0)

def=
〈
u′

T · u′
T
〉
xyz〈

u′
0 · u′

0
〉
xyz

, (4.7)

where u′
T

def= u′
linear(x, y, z, t0 + T), u′

0
def= u′

linear(x, y, z, t0) and T is the time horizon for
which the gain G is computed.

The energy, being a bilinear form, can be expressed as an inner product, e.g.(
u′, u′) def= 〈

u′ · u′〉
xyz . (4.8)

Using the definition (4.8) and the form of the propagator (4.5) for the frozen linear operator
L̃0, the energy gain is rewritten as

G
(
t0, T, u′

0
) =

(
u′

T , u′
T
)(

u′
0, u′

0
) =

(
eL̃0Tu′

0, eL̃0Tu′
0

)
(
u′

0, u′
0
) =

(
u′

0, eL̃
†
0TeL̃0Tu′

0

)
(
u′

0, u′
0
) . (4.9)

In the last equality, dagger † denotes the adjoint operator. Note that, for T → ∞, the energy
gain (4.9) tends to 0, since the operator L̃0 is exponentially stable. The maximum gain over
all initial conditions u′

0, denoted by Gmax(t0, T) = supu′
0
(G), is given by the square of the

largest singular value of the stabilised linear propagator Φ̃0 (Butler & Farrell 1993; Farrell
& Ioannou 1996),

Φ̃t0→t0+T = exp(L̃0T), (4.10)

= MΣN †, (4.11)

where Σ is a diagonal matrix, whose positive entries σj are the singular values of exp(L̃0T)

and the columns of M and of N are the output modes (or left-singular vectors) and input
modes (or right-singular vectors) of exp(L̃0T), respectively.

The maximum gain Gmax for R180 as a function of the optimisation time T is shown in
figure 9(a). The values of Gmax also depend on t0; figure 9(a) features the mean and the
standard deviation of Gmax for more than 1000 uncorrelated instants t0. Figure 9(a) reveals
that non-normality alone is potentially able to produce fluctuation energy growth of the
order of Gmax ≈ 100. On average, the time horizon for maximum gain is attained at Tmax ≈
0.35h/uτ . Thus, the maximum non-normal energy gain is obtained at a similar time scale
as the bursting time, Tp (see § 3). For an elapsed time of Tmax, the auto-correlation of the
base flow,

CUU
def= 〈[

U( y, z, t) − 〈U〉t
] [

U( y, z, t + T) − 〈U〉t
]〉

yzt , (4.12)

has a value of 0.7, as shown in figure 9(a), which is reasonably high to justify the
‘frozen-base-flow’ assumption underlying the calculation of G. The probability density
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Figure 9. Energy transfer via transient growth with frozen-in-time base flow. (a) The ensemble average of the
maximum energy gain Gmax(t0, T) (black solid line, see (4.13)) over different initial instances t0, as a function
of the time horizon T . Shaded regions denote ± half standard deviation of Gmax(t0, T) for a given T . The
vertical dashed line denotes Tmax = 0.35h/uτ . The blue dotted line is the auto-correlation of U, CUU and its
values appear on the right vertical axis. (b) Probability density function of gains Gmax(t0, Tmax). Results for
regular channel R180.

function (p.d.f.) of Gmax at Tmax (figure 9b) shows that U( y, z, t0) at certain times can
support gains as high as 300.

The results here support the hypothesis of transient growth of the ‘frozen’ mean
streamwise flow U( y, z, t0) as a tenable candidate to sustain wall turbulence. It is worth
noting that the maximum gain Gmax obtained with a streaky base flow U( y, z, t0) is
considerably larger than the limited gains of around 10 reported in previous studies focused
in the buffer layer (Del Álamo & Jiménez 2006; Cossu et al. 2009; Pujals et al. 2009). In
latter works, the base flow selected was 〈u〉xzt, which lacks any spanwise z-structure and,
hence, supports much lower gains compared to U( y, z, t0).

Figure 10 provides an example of the input and output modes associated with
the maximum optimal gain for one selected instant t0. The flow displays a sinuous
backwards-leaning perturbation (input mode) that is being tilted forward by the mean
shear over the time T (output mode). The process is reminiscent of the linear Orr/lift-up
mechanism driven by continuity and wall-normal transport of momentum characteristic
of the bursting process and streak formation (Orr 1907; Ellingsen & Palm 1975; Kim &
Lim 2000; Jiménez 2013; Encinar & Jiménez 2020). Unlike the studies that used the base
flow 〈u〉xzt, our choice of a spanwise-varying base flow U( y, z, t) = 〈u〉x limits both the
spanwise extent and location of the input and output modes, which are controlled by the
spanwise location of the streak.

4.3. Energy transfer via transient growth with time-varying base flow
In the previous section we have considered frozen-in-time base flows. We now relax this
assumption such that the (stabilised) linear operator is time dependent L̃(U( y, z, t)). The
propagator Φ̃ t

t0→t0+T (now with superscript t), is given by the Peano–Baker series (Rugh
1996),

Φ̃ t
t0→t0+T = I +

∫ t0+T

t0
L̃(t1) dt1 +

∫ t0+T

t0
L̃(t1)

∫ t1

t0
L̃(t2) dt2 dt1 + · · · , (4.13)
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Figure 10. Representative sinuous input and output modes associated with the transient growth of the streak.
Isosurfaces of (a,c) the input and (b,d) the output wall-normal velocity mode associated with the largest singular
value of Φ̃t0→t0+T from (4.9) at T = 0.35h/uτ . The isosurface are −0.5 (dark) and 0.5 (light) of the maximum
wall-normal velocity. The gain is Gmax = 136. The coloured contours at x = Lx are 0.2, 0.4, 0.6 and 0.7 of the
maximum velocity of the base flow. The result is for the regular channel R180.

where I is the identity matrix and we have simplified the notation to L̃(t) = L̃(U( y, z, t)).
The propagator Φ̃ t

t0→t0+T represents the cumulative effect of U( y, z, t) from t0 to t0 + T
accounting for time variations in the base flow. The energy gain of (4.13) is

Gt(t0, T, u′
0) = (u′

0, (Φ̃
t
t0→t0+T)†(Φ̃ t

t0→t0+T)u′
0)

(u′
0, u′

0)
. (4.14)

In contrast with the frozen-base-flow propagator Φ̃t0→t0+T in (4.9), the time variations of
the operator L̃(U) can either weaken or enhance the energy transfer from U to u′. Another
difference is that the Gt now admits a finite value at T → ∞, despite that L̃(U) is modally
stable at all instances. One potential route to enhance the gain for short times and/or
achieve finite gains for long times is the parametric instability of the streak discussed in
the introduction (Farrell & Ioannou 2012). However, it is shown below that none of these
effects seem to be at play.

To evaluate the transient growth with time-varying base flows, we reconstruct the
propagator without exponential instabilities Φ̃ t

t0→t0+T for case R180. In virtue of the
property Φ̃ t

t0→t0+T = Φ̃ t
t1→t0+TΦ̃ t

t0→t1 for t0 ≤ t1 ≤ t0 + T , the propagator is numerically
computed by the ordered product of exponentials under the assumption of small �t as

Φ̃ t
t0→t0+T ≈ exp

[
L̃(t0 + (n − 1)�t)�t

]
· · · exp

[
L̃(t0 + �t)�t

]
exp

[
L̃(t0)�t

]
, (4.15)

where T = n�t, with n a positive integer. We saved the time history of U( y, z, t) from
R180 at all time steps and used it to compute Φ̃ t

t0→t0+T via (4.15). We take �t+ ≈ 0.05,
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Figure 11. Energy transfer via transient growth with time-varying base flow. (a) The ensemble average of the
maximum energy gain Gt

max(t0, T) (black solid line, see (4.13)) and Gmax(t0, T) (red dashed line, see (4.11))
over different initial instances t0, as a function of the time horizon T . Shaded regions denote ± half-standard
deviation of Gt

max(t0, T) for a given T . The vertical dashed line denotes Tmax = 0.35h/uτ . (b) Probability
density function of gains for Gt

max(t0, Tmax) (black solid line) and Gmax(t0, Tmax) (red dashed line). Results for
regular channel R180.

which is the time step used to integrate the equations of motion. The maximum gain
supported by Φ̃ t

t0→t0+T is compared with its frozen-base-flow counterpart Φ̃t0→t0+T in
figure 11. The results reveal that energy growth with time-varying base flows is almost
identical to the energy growth under the frozen-base-flow assumption up to T ≈ Tmax =
0.35h/uτ , which also corresponds to the time for maximum gain for Φ̃ t

t0→t0+T . For longer
times T > Tmax, the gain with time-varying base flows is depleted with respect to that of
the frozen base flow, and tends to zero for T → ∞ (not shown). The results show that
accounting for time variations of the base flow has a negligible effect on energy transfer
for short times, but gains for frozen base flows are over estimated for long times otherwise.

The propagator Φ̃ t
t0→t0+T can also be analysed in terms of input and output modes.

The input and output modes for the time-varying base flow are again a backwards-leaning
perturbation (input mode) that is being tilted forward by the mean shear (output mode),
very similar to the example shown in figure 10, but not shown here for brevity.

5. Cause-and-effect discovery with interventions

The analysis above was performed a priori by interrogating the data from R180 in a
non-intrusive manner. This provides a valuable insight about the energy injection into
the fluctuations, but hinders our ability to faithfully assess cause-and-effect links between
linear mechanisms and their actual impact on the fully nonlinear system.

The most intuitive definition of causality relies on interventions: manipulation of the
causing variable leads to changes in the effect (Pearl 2009; Eichler 2013). More precisely,
to describe the causal effect that a process A (e.g. exponential growth of instability)
exerts on another process B (e.g. growth of turbulent kinetic energy), we consider the
intervention in the governing equations of the system that sets A to a modified value Ai
and observe the post-intervention consequences. How to identify the intervention Ai that
best unveils the causality from A to B is not trivial and relies on our knowledge of the
system and shrewdness to modify it (Eberhardt & Scheines 2007; Hyttinen, Eberhardt
& Hoyer 2013). When we do not have any prior knowledge of how A might affect
B, we need to resort to randomised interventions for discovering causal relationships
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(Fisher 1936). In following sections the reader will notice that many of the conclusions
drawn on (A causes B) are often framed as a result of a negation, which is justified by the
duality: (A causes B) ≡ (no B implies no A). Thus, we can assess the causality from A to
B using either of the two hypotheses.

As turbulence is a high-dimensional chaotic system, we are concerned with the
statistical alterations in the system after the intervention rather than changes in individual
events. The probability distribution of the process B for the non-intervened system is
measured by P(B). The causal effect of A on B can be quantified by any functional of
the post-intervention distribution P(B|A = Ai), where P(·|A = Ai) is the probability of the
intervened system. The most commonly used measure of the statistical effect of A on B is
the mean causal effect defined as the average increase or decrease in value caused by the
intervention.

In the next section we follow this approach to assess the relevance of different linear
mechanisms on the energy transfer from the base flow U to the fluctuations u′. The starting
point is the R180 system (3.1), which is sensibly modified to suppress a targeted linear
mechanism.

6. Linear theories of self-sustaining wall turbulence: cause-and-effect analysis

6.1. Wall turbulence without explicit feedback from u′ to U
In previous sections, we have acted as if

∂u′

∂t
= L(U)u′ + N(u′) (6.1)

is linear in the term L(U)u′. This is obviously not true because U( y, z, t) depends on u′
via the nonlinear feedback term −〈u′ · ∇u′〉x (see the base flow evolution equation (3.1b)).

Prior to investigating the cause-and-effect links of linear mechanisms in L(U), we derive
a surrogate system in which the energy injection is strictly linear by preventing the explicit
feedback from u′ to U . To achieve this, we proceed as follows.

(i) We perform a simulation of R180 for 600h/uτ units of time (after transients) with a
constant time step.

(ii) We store the base flow at all time steps. We denote the time series of this base flow
as U0 = U( y, z, t) from case R180.

(iii) We time integrate the system

∂u′

∂t
= L(U0)u′ + N(u′), (6.2)

U0 = U( y, z, t) from case R180. (6.3)

Equation (6.2) is initialised from a random, incompressible velocity field and it is
integrated for 600h/uτ units of time using the same time step as in R180. Equation (6.2)
is akin to the Navier–Stokes equations, in which the equation of motion of U is replaced
by U = (U0, 0, 0). We refer to this case as ‘channel flow with no-feedback’ or NF180 for
short. Note that the base flow U0 has no explicit feedback from u′ in (6.2), although it
has been implicitly ‘shaped’ by the velocity fluctuations of R180 and, as such, it contains
dynamic information of actual wall turbulence. The key difference in (6.2) is that the term
L(U0)u′ is now strictly linear while preserving both the modal and non-modal properties
of L(U) in R180.
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Figure 12. (a) The history of the domain-averaged turbulent kinetic energy of the fluctuations 〈E〉xyz. Note
that only 30h/uτ units of time are shown in the panel but the simulation was carried out for 600h/uτ .
(b) Projection of the flow trajectory onto the average production rate 〈P〉xyz and dissipation rate 〈D〉xyz plane.
The arrows indicate the time direction of the trajectory, which on average rotates counterclockwise. The red
dashed line is 〈P〉xyz = −〈D〉xyz and the red circle 〈P〉xyzt = −〈D〉xyzt. The trajectory projected covers 15h/uτ

units of time. The results are for NF180.

The flow sustained in NF180 is turbulent as revealed by the history of the turbulent
kinetic energy in figure 12(a). Moreover, the footprint of the flow trajectory projected
onto the 〈P〉xyz–〈D〉xyz plane in figure 12(b) also exhibits a similar behaviour to R180: the
flow is organised around 〈P〉xyz = −〈D〉xyz with excursions into the high/low dissipation
and production regions with predominantly counterclockwise motions. This assessment
is merely qualitative and some differences are expected between the 〈P〉xyz–〈D〉xyz
trajectories in R180 and NF180.

The mean turbulence intensities for NF180 are shown in figure 13. Statistics are collected
once the system reaches the statistically steady state. The mean velocity profile is omitted
as it is identical to that of R180 in figure 6(b). For comparison, figure 13 includes the
one-point statistics for R180 (previously shown in figure 6c–e). The main consequence of
precluding the nonlinear feedback from u′ to U is an increase of the level of the turbulence
intensities, i.e. the feedback mechanism counteracts the growth of fluctuating velocities in
R180. Despite these differences, we can still argue that the turbulence intensities in NF180
are alike those in R180 by noting that the friction velocity uτ is no longer the appropriate
scaling velocity for NF180. The traditional argument for uτ as the relevant velocity scale
for the energy-containing eddies is that the turbulence intensities equilibrate to comply
with the mean integrated momentum balance,

−〈uv〉 ≈ u2
τ (1 − y/h), (6.4)

after viscous effects are neglected (Townsend 1976; Tuerke & Jiménez 2013). As a
result, uτ ≈ √−〈uv〉/(1 − y/h) stands as the characteristic velocity for all wall-normal
distances. However, we have altered the momentum equation for case NF180, which
renders the balance in (6.4) invalid. A more general argument was made by Lozano-Durán
& Bae (2019) by which the characteristic velocity of the energy-containing eddies, u, is
controlled by the characteristic production rate of turbulent kinetic energy, P ∼ u2

/t,
where t is the time scale to extract energy from the mean shear

t ∼ 1√
(∂U/∂y)2 + (∂U/∂z)2

. (6.5)
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Figure 13. (a) Streamwise, (b) wall-normal and (c) spanwise mean root-mean-squared fluctuating velocities
as a function of the wall-normal distance for case R180 normalised by uτ , case NF180 normalised by uτ and
NF180 normalised by u.

Taking as characteristic production rate

P ∼
√(

u′v′ ∂U
∂y

)2

+
(

u′w′ ∂U
∂z

)2

, (6.6)

a characteristic velocity scale is constructed as

u( y) def=
√

〈Pt〉xzt

1 − y/h
, (6.7)

which generalizes the concept of friction velocity. The factor 1/
√

1 − y/h is introduced
for convenience in analogy with uτ in (6.4) so that u reduces to uτ for the regular wall
turbulence.

Figure 13 shows that the turbulence intensities, when scaled with u, resemble those
of R180, at least for y > 0.1h where viscous effects are negligible. This suggests that the
underlying flow dynamics of NF180 is of a similar nature as the regular channel case
R180 under the proper scaling. Thus, hereafter we utilise NF180 as the reference case for
comparisons as we have shown that it exhibits similar dynamics to regular wall turbulence
while being truly linear in L̃(U)u′. Occasionally, we allow back the feedback u′ → U .

6.2. Wall turbulence without exponential instability of the streaks
We modify the operator L(U0) so that all the unstable eigenmodes are rendered stable at
all times. We refer to this case as the ‘non-feedback channel with suppressed exponential
instabilities’ (NF-SEI180) and we inquire whether turbulence is sustained under those
conditions. The approach is implemented by replacing L(U0) at each time instance by its
exponentially stable counterpart L̃(U0), introduced in (4.6). The governing equations for
the channel with suppressed exponential instabilities are

∂u′

∂t
= L̃(U0)u′ + N(u′), (6.8)

U0 = U( y, z, t) from case R180. (6.9)

The stable counterpart of L(U0) given by L̃(U0) guarantees an exponentially stable wall
turbulence with respect to the base flow at all times, while leaving other linear mechanisms
almost intact. Note that the analysis § 4.1 was performed a priori using data from R180,
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Figure 14. (a) Probability density functions of the growth rate of the four least stable eigenvalues of L̃(U0),
λ1 > λ2 > λ3 > λ4. (b) The history of the most unstable eigenvalue λmax of L̃(U0). Results are for the channel
with suppressed modal instabilities NF-SEI180.

while in the present case the nonlinear dynamical system (6.8) is actually integrated in
time. The simulation was initialised using a flow field from R180, from which the unstable
and neutral modes are projected out, and integrated in time for 300h/uτ after transients. It
was assessed that initialising the equation with a random velocity field yields exactly the
same conclusions.

It is useful to note that the stabilisation of L(U0) in (6.8) can be interpreted as the
addition of a forcing term to the right-hand side of (6.8) by considering the approximation
to L̃(U0),

L̂(U0) = L(U0) −
n∑

j=1

2λjU jU†
j ≈ L̃(U0), (6.10)

where U j is the eigenmode of L(U0) associated with eigenvalue λj > 0, and n is the total
number of unstable eigenvalues. The factor 2 on the right-hand side of (6.10) transforms
λj > 0 for L(U0) into −λj for L̂(U0) in analogy with the stabilised operator L̃; see (4.6).
Equation (6.10) is approximate, as L(U0) is highly non-normal. However, we confirmed
that the largest eigenvalues and eigenmodes of L̂(U0) and L̃(U0) are almost identical most
of the time (see discussion in appendix E). In virtue of (6.10), the modification of L(U0)
in (6.10) is easily interpretable: stabilising L(U0) is equivalent to introducing a linear drag
term, −Fu′, in which the drag coefficient depends on the base flow U( y, z, t), i.e.

F(U) =
n∑

j=1

2λjU jU†
j , (6.11)

that counteracts the growth of the unstable modes at a rate proportional to the growth rate
of the mode itself.

The results of integrating (6.8) are presented in figures 14 and 15. The probability
density functions of λj and a segment of the time series of the maximum modal growth rate
of L̃(U0) are shown in figure 14, which confirms that the system is successfully stabilised.

Figure 15(a) shows the history of the turbulent kinetic energy for NF-SEI180 after
initial transients. The result verifies that turbulence persists when L(U0) is replaced by
its modally stable counterpart L̃(U0). The patterns of the flow trajectories projected onto
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Figure 15. (a) The history of the domain-averaged turbulent kinetic energy of the fluctuations 〈E〉xyz. Note that
only 30h/uτ units of time are shown in the panel, but the simulation was carried out for more than 300h/uτ .
(b) Projection of the flow trajectory onto the average production rate 〈P〉xyz and dissipation rate 〈D〉xyz plane.
The arrows indicate the time direction of the trajectory, which on average rotates counterclockwise. The red
dashed line is 〈P〉xyz = −〈D〉xyz and the red circle 〈P〉xyzt = −〈D〉xyzt. The trajectory projected covers 15h/uτ

units of time. Results are for the channel with suppressed modal instabilities NF-SEI180.
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Figure 16. (a) Streamwise, (b) wall-normal and (c) spanwise root-mean-squared fluctuating velocities as a
function of the wall-normal distance for the non-feedback channel NF180 and the non-feedback channel with
suppressed exponential instabilities NF-SEI180.

the production–dissipation plane (figure 15b) exhibits features similar to those discussed
above for R180 and NF180.

The turbulence intensities for NF-SEI180 are presented in figure 16 and compared
with those for NF180. The mean profile is the same as R180 (not shown). Notably, the
channel flow without exponential instabilities is capable of sustaining turbulence. The new
flow equilibrates at a state with fluctuations depleted by roughly 10–20 %. The outcome
demonstrates that, even if the linear instabilities of the streak manifest in the flow, they are
not required for maintaining wall turbulence.

It is worth emphasising that, according to the post-processing analysis in § 4, modal
instabilities stand as a viable mechanism to explain the energy transfer from U to u′. Yet,
we have demonstrated here that turbulence remains almost unchanged in their absence.
This illustrates very vividly the risks of evaluating linear (and other) theories a priori
without accounting for the cause-and-effect relations in the actual flow.

6.2.1. Case with explicit feedback from u′ to U allowed
It was shown above that turbulence is sustained despite the absence of exponential
instabilities. This was demonstrated for NF-SEI180, in which the nonlinear feedback from
u′ to U was excluded. We have seen in § 6.1 that inhibiting the feedback from u′ to U
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Figure 17. (a) The history of the most unstable eigenvalue λmax of L̃(U). (b) The history of the turbulent
kinetic energy of the fluctuation energy E = 1

2 |u′|2 averaged over the channel domain. Note that only 30h/uτ

units of time are shown in panels (a,b), but the simulation was carried out for more than 300h/uτ . (c) Projection
of the flow trajectory onto the average production rate 〈P〉xyz and dissipation rate 〈D〉xyz plane. The arrows
indicate the time direction of the trajectory, which on average rotates counterclockwise. The red dashed line is
〈P〉xyz = −〈D〉xyz and the red circle 〈P〉xyzt = −〈D〉xyzt. The trajectory projected covers 15h/uτ units of time.
Results for channel with suppressed modal instabilities but with feedback from u′ to U allowed (R-SEI180).

actually enhances the turbulence intensities with respect to uτ . This may cast doubts on
whether the ‘weaker’ fluctuations from R180 can be sustained when modal instabilities are
also cancelled out. To clarify this point, we resolve a channel with suppressed exponential
instabilities in which the feedback from u′ to U is allowed. The equations of motion in this
case are

∂u′

∂t
= L̃(U)u′ + N(u′), (6.12a)

∂U
∂t

= −U · ∇U − D〈u′ · ∇u′〉x − D
ρ

∇〈p〉x + ν∇2U + f , ∇ · U = 0. (6.12b)

We refer to this case as ‘regular channel with suppressed exponential instabilities’
or R-SEI180. Note that the only difference of (6.12) from the original Navier–Stokes
equations (2.1) is the modally stable L̃(U) instead of L(U). The base flow U is now
dynamically coupled to u′ via the nonlinear term −D〈u′ · ∇u′〉x in (6.12b). A similar
experiment was done by Farrell & Ioannou (2012) for Couette flow at low Reynolds
numbers. We initialise simulations of (6.12) from a flow field of R180 after projecting
out the unstable and neutral modes from this initial condition. It was checked that using
random velocities as the initial condition yields the same results.

The history of λmax for L̃(U), shown in figure 17(a), confirms that modal instabilities are
successfully removed. Figure 17(b) contains the evolution of the turbulent kinetic energy
and shows that turbulence persists under the stabilised linear dynamics of (6.12a). The
flow trajectories projected onto the production–dissipation plane (figure 17c) also exhibit
similar features to those discussed above for R180 and NF-SEI180.

The mean velocity profiles and turbulence intensities for R-SEI180 and R180 are shown
in figure 18. The results are consistent with the trends reported in figure 16 for NF-SEI180
and NF180: turbulence without modal instabilities is sustained despite allowing the
feedback from u′ to U . As in NF-SEI180, the resulting velocity fluctuations are depleted
by roughly 10 %. Figure 19 portrays snapshots of the streamwise velocity at three different
instants for the R-SEI180 simulation. As in R180 (cf. figure 5), the spatial organisation
of the streak cycles through different stages of elongated straight motion, meandering
and breakdown, although the first two states (figure 19a,b) occur more frequently than in
R180. Indeed, if we consider the common definition for the streamwise velocity fluctuation
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Figure 18. (a) Streamwise mean velocity profile, and (b,c) streamwise, (d) wall-normal and (e) spanwise mean
root-mean-squared fluctuating velocities as a function of the wall-normal distance for the regular channel
(R180) and the channel with suppressed exponential instabilities but with the feedback from u′ to U allowed
(R-SEI180). Note that the streamwise fluctuating velocity in panel (b) is defined as u′′ = u − 〈u〉xzt, while in
panel (c) is defined as u′ = u − U.
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Figure 19. Instantaneous isosurface of the streamwise velocity at different times for R-SEI180. The value of
the isosurface is 0.65 of the maximum streamwise velocity. Shading represents the distance to the wall from
dark (y = 0) to light (y = h). The arrow indicates the mean flow direction.

u′′ = u − 〈u〉xzt, which contains part of the streaky flow, the new flow in R-SEI180 attains
an augmented streak intensity as clearly depicted in figure 18(b). The outcome is consistent
with the occasional inhibition of the streak meandering or breakdown via exponential
instability, which enhances u′′, whereas wall-normal (v′′ = v′) and spanwise (w′′ = v′)
turbulence intensities are diminished due to a lack of vortices succeeding the collapse of
the streak (namely, mechanism (i) discussed in the introduction). This behaviour was also
observed in many drag reduction investigations (Jung, Mangiavacchi & Akhavan 1992;
Laadhari, Skandaji & Morel 1994; Choi & Clayton 2001; Ricco & Quadrio 2008).

As a final comment, Lozano-Durán et al. (2018) showed in a preliminary work that
turbulence was not sustained when L(U) was stabilised by L(U) − μI, where μ > 0
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is a damping parameter and I is the identity operator. However, it can be shown that
introducing the linear drag −μu′ reduces the gains supported by L(U) by a factor of
exp(−2μT), with T the optimisation time. Hence, stabilising L(U) via a linear drag term
−μu′ also disrupts the transient growth mechanism severely and this was the cause for the
lack of sustained turbulence in Lozano-Durán et al. (2018). Conversely, we have shown
that L̃(U) is physically interpretable as the stabilisation of L(U) via a linear forcing
directed toward modal instabilities (L̃(U)u′ ≈ L(U)u′ − Fu′, see (6.11)). This entails a
much gentler modification which leaves almost intact the transient growth mechanisms of
L(U), as opposed to L(U) − μI.

6.3. Wall turbulence exclusively supported by transient growth
The effect of non-modal transient growth as the main source for energy injection from U
into u′ is now assessed by ‘freezing’ the base flow U( y, z, ti) at the instant ti. In order
to steer clear of the potential effect of exponential instabilities, the numerical experiment
here is performed using the stabilised linear operator L̃(U( y, z, ti)). For a given U( y, z, ti),
we refer to this case as ‘channel flow with modally stable, frozen-in-time base flow’,
or NF-TG180i, with i an index indicating the case number. Let us denote the flow for
NF-TG180i as u{i} (and similarly for other flow quantities). The governing equations for
NF-TG180i are

∂u′
{i}

∂t
= L̃{i} u′

{i} + N(u′
{i}), (6.13a)

U{i} = U( y, z, ti) from case R180, (6.13b)

where L̃{i} = L̃(U( y, z, ti)). The set-up in (6.13) disposes of energy transfers that are
due to both modal and parametric instabilities, while allowing the transient growth
of fluctuations. For a given ti, the simulation is initialised from NF-SEI180 at t = ti
(projecting out neutral and unstable modes), and continued for t > ti. We performed more
than 500 simulations using different frozen base flows U( y, z, ti) extracted from R180.

The evolution of the turbulent kinetic energy is shown in figure 20(a) for ten cases
NF-TG180i, i = 1, . . . , 10. After freezing the base flow at ti, most of the cases remain
turbulent, while some others decay before 40h/uτ . Turbulence was sustained in 80 % of
the NF-TG180i simulations. In the cases for which turbulence persists, the projection of
the flow trajectory onto the 〈P〉xyz–〈D〉xyz plane is reminiscent of the self-sustaining cycle
for R180; an example is shown in figure 20(b). Since L̃{i} is modally stable, a necessary
ingredient to sustain turbulence in NF-TG180i is the scattering and generation of new
disturbances by N(u′

{i}). Indeed, we verify in appendix F that the system (6.13) decays
when the nonlinear term N(u′

{i}) is discarded.
The one-point statistics for each NF-TG180i vary for different U( y, z, ti). To illustrate

the differences among cases, figure 20(c– f ) contain the mean velocity profiles and
fluctuating velocities for NF-TG180i, i = 1, . . . , 10. Note that this is only a small sample;
the total number of cases simulated is above 500. In some occasions, U( y, z, ti) is
such that the system equilibrates in a state of intensified turbulence with respect to
NF-SEI180 (i.e. 〈E〉xyzt for NF-TG180i larger than for NF-SEI180), while other base flows
result in weakened turbulence. Figure 21 shows instances of the streamwise velocity
for representative cases with intensified (a–c) and weakened (d– f ) turbulent states.
The intensified turbulence features a highly disorganised state akin to a broken streak,
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Figure 20. (a) The history of the domain-averaged turbulent kinetic energy of the fluctuations 〈E〉xyz. Different
colours denote various cases of NF-TG180i for i = 1, . . . , 10. The time ti is the instant at which the mean flow
is frozen-in-time. (b) Projection of the flow trajectory onto the average production rate 〈P{5}〉xyz and dissipation
rate 〈D{5}〉xyz plane for NF-TG1805. The arrows indicate the time direction of the trajectory, which on average
rotates counterclockwise. The dashed line is 〈P{5}〉xyz = −〈D{5}〉xyz and the circle 〈P{5}〉xyzt = −〈D{5}〉xyzt.
The trajectory projected covers 15h/uτ units of time. (c) Mean velocity profile, and (d) root-mean-squared
streamwise, (e) wall-normal and ( f ) spanwise fluctuating velocities for ten cases NF-TG180i, i = 1, . . . , 10.
The black dashed lines show same results for NF-SEI180.

whereas the weakened turbulence resembles the quiescent stages of wall turbulence with
a well-formed persistent streak.

Figure 22 shows the average turbulent kinetic energy of a given case NF-TG180i as a
function of the maximum gain G{i},max at T = Tmax. The results reveal that turbulence
is not maintained when G{i},max � 50, although this critical gain might be Reynolds
number dependent. The trend also suggests that the level of the turbulence intensities for
NF-TG180i increases with the amount of transient growth supported by each U( y, z, ti)
and scales approximately as

〈E{i}〉xyzt ∼ G{i},max. (6.14)

We attempt to explain this observation by invoking the severe assumption that N(u′
{i}) acts

as a time-varying forcing whose net effect is independent of u′
{i}, i.e. N(u′

{i}) ≈ N {i}(t)
(see, for instance, Farrell & Ioannou 1993b; Zare et al. 2020; Jovanović 2021). Under
those conditions, the solution to (6.13a) is obtained via the Green’s function as

u′
{i}(t) ≈ Φ̃{i}(t − ti)u′

{i}(ti) +
∫ t

ti
Φ̃{i}(t − τ)N {i}(τ ) dτ, (6.15)

with Φ̃{i}(t) = exp[L̃{i}(t)]. The turbulent kinetic energy of (6.15), after transients, is

〈E{i}〉xyzt = 1
2

〈(∫ t

ti
Φ̃{i}(t − τ)N {i}(τ ) dτ,

∫ t

ti
Φ̃{i}(t − τ)N {i}(τ )dτ

)〉
t
. (6.16)

After considering the singular-value decomposition on Φ̃{i} = M{i}Σ{i}N†
{i} then

〈E{i}〉xyzt ∼ σ 2
{i},max ∼ G{i},max, (6.17)
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Figure 21. Examples of base flows (a,d) and instantaneous isosurfaces of the streamwise velocity at different
times (b,c,e, f ). Panels (a–c) are for NF-TG1805, which is representative of a state with enhanced turbulence
intensities. Panels (d,e, f ) are for NF-TG18010, which is representative of a state with weakened turbulence. In
panels (b,c,e, f ), the value of the isosurfaces is 0.65 of the maximum streamwise velocity and shading represent
the distance to the wall located at y = 0. The arrow indicates the mean flow direction.
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Figure 22. Mean turbulent kinetic energy conditioned to the maximum gain G{i},max at T = Tmax compiled
over NF-TG180i. The red solid line represents the mean value; the shaded area denotes ± one standard
deviation.

which establishes a link between the level of turbulent kinetic energy and the non-normal
energy gain provided by the linear dynamics as anticipated by figure 22. Nonetheless, the
scatter of the data in figure 22 is still large and the relation between 〈E{i}〉xyzt and G{i},max is
not perfectly linear. This is not surprising as the actual mechanism regulating the intensity
of turbulence does not depend exclusively on G{i},max but also on the replenishment of
fluctuations given by the projection of N(u′

{i}) onto Φ̃{i}.
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Figure 23. (a) Mean velocity profile, (b) root-mean-squared streamwise, (c) wall-normal and (d) spanwise
fluctuating velocities. The black solid line is the ensemble average of turbulent cases NF-TG180i, namely,
〈〈u{i}〉xzt〉e, 〈〈u′2

{i}〉1/2
xzt 〉e, 〈〈v′2

{i}〉1/2
xzt 〉e and 〈〈w′2

{i}〉1/2
xzt 〉e; the shaded region denotes ± one standard deviation

with respect to the ensemble average operator 〈·〉e; the red dashed line is 〈u′2〉1/2
xzt , 〈v′2〉1/2

xzt and 〈w′2〉1/2
xzt for

NF-SEI180.

To evaluate the compound result of NF-TG180i, we define the ensemble average of a
quantity φ{i} over cases NF-TG180i as

〈φ{i}〉e =
N∑

i=1

φ{i}
N

, (6.18)

where 1, . . . , N is the collection of cases NF-TG180i which remain turbulent. The
ensemble average of the mean and r.m.s. fluctuating velocities are presented in figure 23.
The results are compared with those from NF-SEI180, which is similar to NF-TG180i but
with time varying U. The outcome is striking: the ensemble averages over NF-TG180i
cases (black solid lines) coincide almost perfectly with the one-point statistics for
NF-SEI180 (dashed red lines). Given that the current set-up is composed of ‘static’ base
flows, ∂U/∂t (= 0) does not play any role in the flow dynamics of NF-TG180i. Thus, we
conclude that energy transfer via parametric instabilities (intimately related to ∂U/∂t) is
not required to sustain the flow. Time variations of U are only necessary to sample the
phase space of ‘regular’ turbulence with different non-normal gains so that the ensemble
of NF-TG180i results in nominal wall turbulence statistics.

The wall-normal behaviour of the turbulence intensities for NF-TG180i are determined
by the fluctuation energy balance〈

u′
{i} · L̃{i}u′

{i} + u′
{i} · N(u′

{i})
〉
xzt

= 0. (6.19)
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Similarly, the average turbulent kinetic energy for NF-SEI180 is dictated by the balance〈
u′ · L̃(U)u′ + u′ · N(u′)

〉
xzt

= 0, (6.20)

where L̃(U) and u′ are now the linear operator and velocity vector, respectively, for case
NF-SEI180. The excellent agreement between NF-SEI180 and the ensemble average over
NF-TG180i suggests that 〈

u′
{i} · L̃{i}u′

{i}
〉
xzte

≈
〈
u′ · L̃u′

〉
xzt

. (6.21)

An interpretation of (6.21) (and of figure 23) is that the collection of linear transient
growth events due to frozen U( y, z, ti) at different instances ti provides an accurate
representation of the actual time-varying energy transfer from U to u′ in NF-SEI180.
From a dynamical-systems viewpoint: the sampling of the phase-space under the time
varying U is statistically equivalent to an ensemble average of solutions in equilibrium
with frozen instances of U. This is an indication that the nonlinear dynamics supported
by N are in quasi-equilibrium with L(U), i.e. the way the energy is input into the system
changes slowly in time. The latter argument can be posed in terms of the time scales of
the base flow TU and turbulent kinetic energy TE. Defining TU as the time at which the
auto-correlation of U (see (4.12)) decays to 0.5 (similarly for TE from the auto-correlation
of E), the ratio TU/TE is found to be roughly 10. Therefore, changes in the base flow are
ten times slower than changes in the turbulent kinetic energy, which is consistent with the
discussion above.

As a final note, in a preliminary work Lozano-Durán et al. (2020) noticed that turbulent
channel flows decayed when freezing the base flow, which may initially seem inconsistent
with the present results. However, a main difference is that in the present work we are
imposing the base flow from actual wall turbulence (R180), while Lozano-Durán et al.
(2020) imposed a base flow from modified turbulence. The statistical sample used in the
present work is also far larger than that used by Lozano-Durán et al. (2020).

6.4. Distilling the transient growth mechanisms
We have shown above that transient growth is the simplest linear model to explain
self-sustaining turbulence. In this section we further dissect the relevance of different
transient growth mechanisms and the implications for the streaky structure of the base
flow. We turn our attention back to (6.2), which can be written as

∂u′

∂t
= −U0

∂u′

∂x
− v′ ∂U0

∂y
− w′ ∂U0

∂z
− 1

ρ

∂p′

∂x
+ ν∇2u′ + Nu′, (6.22a)

∂v′

∂t
= −U0

∂v′

∂x
− 1

ρ

∂p′

∂y
+ ν∇2v′ + Nv′, (6.22b)

∂w′

∂t
= −U0

∂w′

∂x
− 1

ρ

∂p′

∂z
+ ν∇2w′ + Nw′, (6.22c)

0 = ∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
, (6.22d)

where we have explicitly expanded the linear components, and Nu′, Nv′ and Nw′ stand
for the remaining nonlinear terms. The base flow is U0 = U( y, z, t) from case R180
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and no feedback from u′ to U is allowed. Equations (6.22) allow for exponential and
parametric instabilities, but we have shown that these are inconsequential for sustaining
the flow. Hence, we admit the possibility of both instabilities for the sake of reducing the
computational cost of solving (6.22).

We define the streak flow by Ustreak = U0( y, z, t) − 〈u〉xz, and proceed to examine three
transient growth mechanisms:

(i) linear lift-up of the streak by −v′∂Ustreak/∂y in (6.22a);
(ii) linear push-over of the streak by −w′∂Ustreak/∂z in (6.22a); and

(iii) linear Orr of the streak by −∂p′/∂y in (6.22b) and continuity in (6.22d).

In mechanisms (i) and (ii), velocities perpendicular to the base shear (0, ∂U0/∂y,
∂U0/∂z) extract energy from the latter to energise the streamwise perturbations, which
persist after transients (Ellingsen & Palm 1975). For perturbations in the form of v′,
the active linear term for energy transfer is −v′∂Ustreak/∂y, which is referred to as the
lift-up effect. For perturbations in the form of w′, the energy is transferred through
−w′∂Ustreak/∂z. We label the latter as ‘push-over effect’ to make a clear distinction from
the lift-up mechanism, as one relies on spanwise shear of the base flow and the other on
the wall-normal shear. The terminology varicose and sinuous is commonly used to refer
to the perturbations from mechanism (i) and mechanism (ii), respectively. In mechanism
(iii), velocities perpendicular to the base shear are amplified when backwards-leaning
perturbations are tilted forward until they are roughly normal to the base shear, and
are damped as they continue to be tilted past that point. Mechanisms (i) and (ii) occur
concurrently with mechanism (iii), but the amplification in the latter is guided by
continuity. In mechanism (iii), the pressure inhibits the cross-shear velocities when the
structures are strongly tilted, and releases the inhibition when they are closer to vertical
(Orr 1907; Jiménez 2013; Chagelishvili et al. 2016).

We perform three additional experiments each aiming to suppress one of the linear
mechanisms discussed above. In the first experiment, we modify (6.22a) to suppress the
linear lift-up of the streak,

∂u′

∂t
= −U0

∂u′

∂x
−

�����
v′ ∂Ustreak

∂y
− v′ ∂〈u〉xz

∂y
− w′ ∂Ustreak

∂z
− 1

ρ

∂p′

∂x
+ ν∇2u′ + Nu′, (6.23)

while the equations for v′, w′ and continuity remain intact. We labelled this case as
NF-NFU180 (no feedback and no lift-up). The second experiment consists of a channel
without linear push-over mechanism of the streak,

∂u′

∂t
= −U0

∂u′

∂x
− v′ ∂Ustreak

∂y
− v′ ∂〈u〉xz

∂y
−

�����
w′ ∂Ustreak

∂z
− 1

ρ

∂p′

∂x
+ ν∇2u′ + Nu′, (6.24)

which is referred to as NF-NPO180 (no feedback and no push-over). Again the equations
for v′, w′ and continuity remain the same. We might note here that both modal and
non-modal growth share the physical source of the fluctuation amplification: w∂U/∂z for
sinuous motions and v∂U/∂y for varicose motions. Hence, by modifying the latter terms
we are also interfering with the modal growth of the system, although, as argued above,
we do not worry about this in this section.
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In the third experiment, we modify the linear dynamics of v′ to constrain mechanism
(iii). The equation dictating the linear Orr is given by

∂v′
linear
∂t

+ U0
∂v′

linear
∂x

= − 1
ρ

∂p′
linear
∂y

, (6.25)

where we have neglected the viscous effects. As seen in (6.25), the Orr amplification of
v′

linear is controlled by p′
linear, which is the only source term on the right-hand side of the

equation. The linear pressure can be easily obtained by solving

1
ρ

∇2p′
linear = −2

∂U0

∂y
∂v′

∂x
− 2

∂U0

∂z
∂w′

∂x
. (6.26)

If we focus on the linear pressure induced by the streak then

1
ρ

∇2p′s
linear = −2

∂Ustreak

∂y
∂v′

∂x
− 2

∂Ustreak

∂z
∂w′

∂x
. (6.27)

We inhibit the linear Orr mechanism of the streak by introducing a forcing term fOrr on
the right-hand side of the v′ equation to counteract the gradient of the linear pressure:

fOrr = − 1
ρ

∂p′s
linear
∂y

. (6.28)

Then, the system (6.22a)–(6.22d) is modified by replacing (6.22b) by

∂v′

∂t
= −U0

∂v′

∂x
− 1

ρ

∂p′

∂y
+ ν∇2v′ + Nv′ − fOrr. (6.29)

We refer to this case as NF-NO180 (no feedback and no Orr).
The three cases are initialised using flow fields from NF180. Different initial conditions

were tested and the subsequent evolution of the flow was similar regardless of the
details of the initial velocity. The evolution of the turbulent kinetic energy for one
initialisation is shown in figure 24(a). The case without streak lift-up (NF-NLU180) is
the only one sustained. The r.m.s. velocity fluctuations after transients for NF-NLU180
are shown in figure 24(b). Interestingly, blocking the streak lift-up enhances u′ close
to the wall, implying that the wall-normal variations of the streak provide a stabilising
effect. Conversely, the cases without streak push-over (NF-NPO180) or Orr mechanisms
(NF-NO180) decay in less than 5uτ /h. Therefore, we conclude that both streak push-over
and the Orr amplification are essential transient growth mechanisms for sustaining the
fluctuations. Three more cases analogous to NF-NLU180, NF-NPO180 and NF-NO180
were conducted by allowing the feedback of the fluctuations back into the base flow. The
conclusions drawn for these cases are similar to the ones presented above, and they are not
included here for the sake of brevity.

The necessity of push-over (−w′∂Ustreak/∂z) points at the spanwise variations of Ustreak
(equivalent to spanwise variations of U0) as a key structural feature to sustain turbulence.
To test this claim, we resort to the cases NF-TG180i presented in § 6.3 and inspect their
mean turbulent kinetic energy conditioned to the marker for the spanwise-shear strength

Γ{i} =
〈(

∂Ustreak( y, z, ti)
∂z

)2
〉1/2

yzt

. (6.30)

The results, shown in figure 25(a), corroborate the hypothesis that the average kinetic
energy of the flow depends on the strength of ∂Ustreak( y, z, ti)/∂z. Additionally, frozen
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Figure 24. (a) The history of the domain-averaged turbulent kinetic energy of the fluctuations 〈E〉xyz for
NF-NLU180; NF-NPO180; and NF-NO180. The time t = 0 is the instant at which the simulations are started.
(b) The root-mean-squared streamwise (black), wall-normal (blue) and spanwise (dark orange) fluctuating
velocities for NF-NLU180 and NF180.
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Figure 25. (a) Mean turbulent kinetic energy and (b) maximum gain G{i},max at T = Tmax conditioned to the
marker for the spanwise-shear strength Γ{i} = 〈(∂U0( y, z, ti)/∂z)2〉1/2

yzt compiled over NF-TG180i. The red solid
line represents the mean value; the shaded area denotes ± one standard deviation.

base flows with Γ{i} below the critical value of Γ +
{i},c ≈ 0.03 are too feeble to maintain

turbulence. This is further supported by figure 25(b), which shows that the maximum gain
of the base flow also increases with Γ{i}. A visual impression of base flows that are either
able or unable to sustain turbulence can be gained from the examples shown in figure 26.
The message conveyed by figure 26 agrees with the discussion above: base flows capable of
sustaining turbulence are accompanied by strong spanwise variations, ∂Ustreak/∂z, while
base flows unable to maintain turbulence have milder ∂Ustreak/∂z.

6.5. Relation with previous studies on secondary linear process
Among the studies in table 1 regarding the secondary linear process, those labelled
as TG, TG & EXP, and TG PARA advocate for the algebraic transient growth of the
perturbations as a central linear mechanism to energise the velocity fluctuations. The
work by Farrell, Ioannou and co-workers complemented the transient growth picture with
parametric growth of the perturbations resulting from the time variability of the base flow.
In their view, the growth of fluctuations is a concatenation of transient growth events that
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Figure 26. Examples of base flows able to support turbulence (a–c) and unable to support turbulence (d– f )
from cases NF-TG180i discussed in § 6.3. Visual inspection of the base flows suggests that spanwise variations
of U are crucial to sustain turbulence.

occur as the base flow varies. We have shown here that time changes in the base flow
are needed to recover regular turbulence statistics; however, these time changes do not
enhance the energy transfer from the base flow to the fluctuations and, thus, they are not
strictly necessary to sustain the flow. The works labelled as TG & EXP deemed both
transient growth and modal growth relevant for sustaining wall turbulence, as they are
intimately entangled in the equations of motion. On the contrary, Schoppa & Hussain
(2002) argued that modal instability was irrelevant to streak breakdown, and that transient
growth driven by the streak profile was the dominant process. The mechanism in Schoppa
& Hussain (2002) was referred to as STG (streak transient growth, i.e. secondary linear
process) to make a clear distinction with the more traditional transient growth supported
by 〈u〉xzt (i.e. primary linear process). In this sense, our conclusions are more aligned
with Schoppa & Hussain (2002), and transient growth is identified here to overcome
other linear mechanisms. Schoppa & Hussain (2002) also analysed the physical process
at play during transient growth in terms of vortex dynamics. They formulated the problem
in the streak-vortex-line coordinate system, that procures a clear interpretation of the
perturbation vorticity generation. They found that w′ perturbations of moderately low
amplitude lead to the generation of new vortices and sustained near-wall turbulence via
the ‘shearing’ mechanism. The latter results are also consistent with our analysis in § 6.4,
where we showed that the push-over mechanism (represented by −w′∂Ustreak/∂z) drives
the generation of perturbations. Schoppa & Hussain (2002) traced back the source of
fluctuations to ∂〈u〉xzt/∂n, where n is the direction normal to the base flow vortex lines and
includes contributions of both ∂〈u〉x/∂y and ∂〈u〉x/∂z. Here, we have further demonstrated
that the spanwise shear ∂〈u〉x/∂z ≡ ∂Ustreak/∂z dominates over ∂Ustreak/∂y.

Despite our main conclusions being consistent with Schoppa & Hussain (2002), the
causal analysis followed in the present study is fundamentally different from that adopted
in previous works. This is an important point, as our approach allows us to tackle the
criticism raised by the community on transient growth as the prevailing mechanism for the
secondary linear process. In the remainder of this section, we survey previous criticisms
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and discuss how our contributions overcome existing deficiencies. First, it is pertinent to
clarify that transient growth due to high non-normality of the linearised Navier–Stokes
operator is an intrinsic feature of the equations of motion. Transient growth represents the
transport of momentum normal to the base shear, which is a necessary requirement for
mixing of the flow and, hence, for turbulence. Therefore, the debate in the community
is not about the ubiquity of transient growth in turbulence, but about the necessity of
additional sorts of instabilities to sustain the fluctuations (as shown in table 1).

The scepticism on the ability of transient growth alone to fuel the generation of u′ has
materialised in the following forms.

(i) Jiménez (2018) pointed out that the absence of unstable streaks reported by Schoppa
& Hussain (2002) can be interpreted as an indication that the instability is important.
Quoting Jiménez (2018): One may think of the low probability of finding upright
pencils on a shaking table. Unstable flow patterns would not be found precisely
because instability destroys them.’

(ii) Jiménez (2018) also argued that transient growth as envisioned by Schoppa &
Hussain (2002) is a property of the streak itself, implying that the energy of
u′ is drawn from the energy of Ustreak. The premise is reasonable close to the
wall, where |u′|2/2 is a small fraction of streak energy U2

streak/2, but it becomes
problematic farther from the wall, where both energies are comparable. If the
transverse velocities had to obtain their energy from the streak, one would expect
a negative correlation between the two energies, but the opposite seems to be true.
Instead, Jiménez (2018) suggested that the actual source of energy for u′ would come
from 〈u〉xzt, which is also part of the base flow in Schoppa & Hussain (2002).

(iii) Other authors have reasoned, as mentioned above, that it is essentially impossible
to distinguish between streak transient growth and streak modal instability, as both
processes can be traced back to the same source term in the linearised Navier–Stokes
equations, namely, −w′∂〈u〉x/∂z − v′∂〈u〉x/∂y (Hœpffner et al. 2005; Cassinelli
et al. 2017; de Giovanetti et al. 2017). Consequently, both transient growth and
modal instability occur concurrently during streak breakdown and both should be
considered responsible for replenishing u′.

(iv) Another criticism comes from the effect of time-varying base flows. Schoppa &
Hussain (2002) investigated the effect of unfrozen streaks on modal instabilities and
transient growth. They showed that unfrozen (freely diffusing) streaks are still able to
support transient growth with amplifications of the order of 10, whereas the initially
unstable base flow provided only a factor of 2. However, the analysis was performed
on freely decaying streaks, while streaks in actual wall turbulence are subjected to
periods of both growth and decay. Precluding the growth phase of the streaks might
have important consequences for the growth of perturbations. For example, Farrell &
Ioannou (2012) have shown that a potential route to enhance the gain for short times
and/or achieve finite gains for long times is the parametric instability of the streak
discussed in the introduction (Farrell & Ioannou 1999, 2012; Farrell et al. 2016). In
contrast with the freely diffusing base flow, alternating periods of growth and decay
in the base flow can enhance the energy transfer from U to u′ and should be taken
into consideration.

(v) Finally, some authors have criticised or at least found questionable the use of linear
stability theory to analyse time-varying base flows and base flows defined by an
average (for example, 〈u〉x) rather than by a solution of the Navier–Stokes equations.
Most of the successful and well-established results from linear stability theory have
been derived in the case of laminar-to-turbulence transition with small perturbations,
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where the underlying assumptions are rigorously satisfied. This is obviously not the
case for turbulent flows (see the discussion in Hussain 1983, 1986). One conceptual
objection is the fact that stability analysis of ‘frozen’ turbulent profiles would be
appropriate only if the time scales of the actual time-varying mean flow were much
smaller than those of the instabilities. However, some authors have pointed out that
time changes in the turbulent mean flow could be of the same order as those of
the instability wave. Thus, the instabilities do not ‘see’ this mean flow and their
evolution departs noticeably from that predicted from linear stability theory. Another
recurrent objection is granting the status of ‘perturbations’ (assumed to be small,
e.g. <0.1 %), to the turbulent fluctuations, u′ (which might reach values above
10 % of the mean flow, especially close to the wall). Hence, the evolution of these
(not-so-small) u′ ‘perturbations’ is subjected to non-negligible contributions from
nonlinear interactions, which might invalidate the predictions from linear stability
theory.

We have addressed the criticism discussed above by formulating the problem within a
cause-and-effect framework. Whilst there is no such thing as a methodology free from
limitations, we have argued that cause-and-effect analysis entails a substantial leap in the
study of turbulence compared to non-causal analysis by post-processing of data. Following
the same order used to introduce the criticism above, we address each as follows.

(i) We have contributed to settle the debate regarding the role played by modal
instabilities by showing that these are not necessary to sustain wall turbulence. This
was achieved by completely precluding the possibility of exponential growth from
the linear Navier–Stokes operator at all times (see § 6.2).

(ii) We have shown that inhibiting the effect of ∂Ustreak/∂z interrupts the self-sustaining
cycle. Hence, the extraction of energy from the streak ∂Ustreak/∂z is a necessary
condition to maintain u′. Note that we do not imply that ∂〈u〉xzt/∂y is inconsequential
to sustaining turbulence, but that the spanwise variations of the streak are also an
active participant in the self-sustaining cycle of turbulence (see § 6.4).

(iii) Despite the fact that modal and non-modal growth of the fluctuations originate from
the same physical term in the Navier–Stokes equations, we have established a clear
distinction between both mechanisms by manipulating the linear Navier–Stokes
operator. We have shown that it is possible to block modal instabilities, while
maintaining the transient growth mechanism almost intact (see § 6.3).

(iv) Both post-processing analysis § 4 and cause-and-effect analysis in § 6 comprise
time-varying base flows which evolve in a realistic manner, as they are extracted
from actual direct numerical simulation data. As such, the evolution of the base flow
experiences periods of both growth and decay consistent with actual wall turbulence,
which allows for an accurate estimation of the linear mechanism assisting the growth
of u′.

(v) The validity of linear theories for fully developed turbulence is more subtle, and
we have commented on this topic in § 1. Paraphrasing the argument given in the
introduction, expressing the fluctuation equation in the form of (1.1) does not require
invoking linearisation about U nor assuming that u′ is small. If the volume integral
of u′ · N(u′) is zero then the only way of sustaining u′ is through the energy
injection from u′ · L(U)u′. Thus, for a partition of the flow U + u′, we can always
refer to the linear mechanisms supported by L(U) and assess their relevance in
sustaining turbulence regardless of how ‘good’ the linearisation is. This is because
our cause-and-effect analysis is conducted for the fully nonlinear equations, instead
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of only for the linear component. Thus, when we inquire about the validity of a
particular linearisation we are indeed asking about the usefulness of the partition
U + u′ in explaining the dynamics of u′ via the linear mechanisms supported by U ,
which circumvents the problem of linearisation.

We close this section by discussing some discrepancies with Schoppa & Hussain (2002).
The stability analysis conducted in § 4.1 reveals that our base flow U( y, z) is modally
unstable 90 % of the time. On the contrary, Schoppa & Hussain (2002) found that most
streaks have intensities that are too low to be modally unstable. It is unclear what is the
root of such a difference – it might be related to the synthetic base flow used in Schoppa
& Hussain (2002), while here we used instantaneous base flow from direct numerical
simulations, which are more corrugated and prone to modal instabilities. Other possible
explanations are the criteria used by Schoppa & Hussain (2002) to quantify unstable
streaks via a vorticity-based inclination angle, or the use of a minimal turbulent channel in
the present study. A second difference of our work with Schoppa & Hussain (2002) comes
from the value of the gains provided by transient growth. In § 4.2 we have shown that our
gains are of the order of 100, while the gains reported in Schoppa & Hussain (2002) are
of the order of 10. The cause for this discrepancy is related to the perturbation chosen
by Schoppa & Hussain (2002), which differs substantially from ours. Schoppa & Hussain
(2002) used a physics-motivated perturbation in w′. In our case, we are considering optimal
perturbations, which lead to much higher amplifications.

7. Conclusions

We have investigated the processes responsible for the energy transfer in wall turbulence
from the streamwise-averaged mean flow U( y, z, t) to the fluctuating flow u′(x, y, z, t).
This energy transfer is the backbone of self-sustaining wall turbulence and a subject of
heated debates. It has long been hypothesised that the mechanism by which the energy is
transferred from U to u′ can be captured by the linearised Navier–Stokes equations and
various linear theories stand as tenable candidates to rationalise this process. The most
prominent theories are exponential instabilities of the base flow, nonlinear interactions
facilitated via neutral modes, non-modal transient growth and non-modal transient growth
supported by parametric instability, among others (see table 1). To date, a conclusive study
regarding the role played by each linear mechanism has been elusive due to the lack of
methodologies designed to unveil causal inference in the flow.

In the present work, we have used cause-and-effect analysis based on interventions
to assess the role played by different linear mechanisms in sustaining turbulence. The
approach is rooted on the concept that manipulation of the causing variable leads to
changes in the effect. To that end, we sensibly modified the Navier–Stokes equations of
a turbulent channel flow to preclude one or various linear mechanisms participating in
the energy transfer from U to u′. We devised a set of numerical experiments tailored
for minimal turbulent channel units at Reτ ≈ 180 in which the feedback from u′ → U is
blocked to isolate the energy transfer from U → u′. The active linear mechanisms for each
numerical experiment and its consequences are summarised in table 2. In the first set of
the experiments, the linear Navier–Stokes operator is modified to render any exponential
instabilities of the streaks stable, thus precluding the energy transfer from U → u′ via
exponential growth or interaction with neutral modes. In the second set of experiments,
we simulated turbulent channel flows with prescribed, frozen-in-time, exponentially stable
base flows, such that both parametric instabilities as well as exponential instabilities
are suppressed. The last set of experiments is devoted to further pinpoint the process
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for energy transfer via transient growth by constraining the linear Orr, lift-up or
push-over mechanisms, the latter being analogous to the lift-up effect but in the spanwise
direction.

The main contribution of this work is to establish that transient growth alone is capable
of sustaining wall turbulence with realistic mean velocity and turbulence intensities
in the absence of exponential instabilities, neutral modes and parametric instabilities.
We have further shown that transient growth originates mostly from the Orr/push-over
mechanisms due to spanwise variations of U. Our results are obtained for the fully
nonlinear Navier–Stokes equations in which the scattering of fluctuations by the nonlinear
term is required in combination with transient growth. Exponential instabilities also
manifest in the flow, but they are only responsible for approximately 10 % of the turbulent
fluctuating velocities, and more importantly, turbulence persists when they are inhibited.
We have also shown that turbulence persists when disposing of parametric instabilities
by using exponentially stable frozen-in-time base flows. In these cases, the statistics of
the resulting turbulence depend on the particular frozen base flow selected. However,
the ensemble average of cases with different frozen-in-time base flows reproduces the
statistics of actual (time-varying-U) turbulence with striking accuracy. This was justified
by showing that the way the energy is input from U into the system changes slowly
compared to the nonlinear dynamics of u′. In summary, turbulence statistics are essentially
explained by a collection of linear transient growth processes in conjunction with nonlinear
scattering. The evidence that the ensemble average over multiple solutions (§ 6.3) offers a
simplified but complete representation of the system also resembles the dynamical-system
viewpoint that a large enough set of (invariant) solutions and their manifolds constitute the
skeleton of flow trajectories in turbulence (Auerbach et al. 1987; Cvitanović 1991).

The outcome of this study is consistent with Schoppa & Hussain (2002). However, as
inferred from the literature review in table 1, the transient growth scenario was far from
being widely accepted. The possibility of turbulence exclusively supported by transient
growth has been long hypothesised (Trefethen et al. 1993), but its relevance has never been
persuasively shown in the full Navier–Stokes equations using cause-and-effect analysis. To
the best of our knowledge, our results are the most conclusive demonstration of transient
growth (via Orr/push-over) as a key driving mechanism of self-sustaining turbulence. It is
important to emphasise that our conclusions do not imply that other mechanisms are not
active in wall turbulence. Indeed, we have shown that modal instabilities do manifest in
the flow, and to some extent this and other mechanisms have been observed by previous
investigators. We have also shown that time variations of U are necessary to sample
the perturbation phase-space and recover the nominal turbulence statistics. The picture
promoted here is that the linear energy transfer via transient growth overwhelms other
competing mechanisms and, as such, is able to explain most of the flow statistics. This
simplifies the conceptual model of wall turbulence and unravels the linear processes that
should be targeted in turbulence modelling and control.

Our conclusions regarding the dynamics of wall turbulence were drawn using
direct numerical simulations of the Navier–Stokes equations at low Reynolds numbers
representative of the buffer layer. It remains to establish whether similar conclusions apply
to higher Reτ . The analysis was also performed in channels computed using minimal flow
units, chosen as simplified representations of naturally occurring wall turbulence. Yet, we
have shown that our results are qualitatively similar when the domain size is doubled.
We expect that the approach presented here paves the way for future investigations at
high-Reynolds-numbers turbulence obtained in larger unconstrained domains, in addition
to extensions to different flow configurations in which the role of linear mechanisms
remains unsettled.

914 A8-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.902


A. Lozano-Durán and others

Acknowledgements. We thank J. Bae, G. Chini, B. Farrell, Y. Hwang, P. Hall, F. Hussain, P. Ioannou and
J. Jiménez for insightful discussions and comments.

Funding. This work was supported by the Coturb project of the European Research Council
(ERC-2014.AdG-669505) during the 2019 Coturb Turbulence Summer Workshop at the Universidad
Politécnica de Madrid. M.-A.N. acknowledges the support of the Hellenic Foundation for Research and
Innovation, and the General Secretariat for Research and Technology (grant number 1718/14518). A.L.-D.
acknowledges the support of the NASA Transformative Aeronautics Concepts Program (grant number
NNX15AU93A) and the Office of Naval Research (grant number N000141712310). N.C.C. was supported
by the Australian Research Council (grant number CE170100023). M.K. was supported by the Air Force
Office of Scientific Research under grant FA9550-16-1-0319 and the Office of Naval Research under grant
N00014-17-1-2341.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Adrián Lozano-Durán http://orcid.org/0000-0001-9306-0261;
Navid C. Constantinou http://orcid.org/0000-0002-8149-4094;
Marios-Andreas Nikolaidis http://orcid.org/0000-0002-0603-2850;
Michael Karp http://orcid.org/0000-0003-3649-2492.

Appendix A. Sensitivity to the size of the computational domain

The minimum size of the computational domain required to sustain turbulence in channels
at low Reynolds number was extensively studied by Jiménez & Moin (1991). The
streamwise and spanwise lengths of our simulations were selected to comply with these
minimum requirements. We verified that decreasing the streamwise (Lx) and spanwise
(Lz) extends of our domain any further in the current set-up leads to laminarisation of the
flow. In this appendix we focus on the sensitivity of our results to increasing Lx and Lz.
The former is potentially the most critical length as the base flow is defined by taking
the streamwise average of u. We have also seen that the most unstable instabilities occur
for the wavenumber kx = 2π/Lx, which is the harmonic excitation and, hence, might be
susceptible to changes in Lx. Therefore, we centre our attention on Lx and the role of
subharmonic instabilities. Some comments are made at the end of the appendix on the
sensitivity to Lz.

Prior to conducting the sensitivity analysis for Lx, we can anticipate that the
subharmonic instabilities associated with kx = 2π/(nLx) with n > 1 are probably of little
relevance for sustaining the flow. The most obvious reason is that wavenumbers equal or
smaller than kx = π/Lx are not accommodated in the domain (they simply do not fit in
x) and subharmonic instabilities cannot manifest in the flow. Given that our simulations
show that turbulence is sustained with a realistic mean profile and fluctuating velocities
for the chosen Lx, the importance of the (non-existent) subharmonic instabilities must be
minor. To ascertain that this is the case, we (i) perform an a priori analysis of the stability
of U( y, z, t) assuming that instabilities from kx = π/Lx are realisable, and (ii) conduct
additional simulations by doubling the streamwise domain.

We study the stability of U( y, z, t) from case R180, similar to the analysis in § 4.1. In this
occasion, we focus on the growth rates for perturbations with streamwise wavenumbers
kx = π/Lx and kx = 2π/Lx denoted by λkx=π/Lx

max and λkx=2π/Lx
max , respectively. It is important

to remark that λkx=π/Lx
max is the hypothetical growth rate of exponential instabilities with

wavenumber kx = π/Lx if they were allowed to manifest in the flow (which they are not).
The p.d.f. of the ratio λkx=2π/Lx

max /λ
kx=π/Lx
max for a given base flow at time ti, U( y, z, ti), is

plotted in figure 27(a), and shows that the harmonic instability (which are realisable in
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Figure 28. Decomposition of the instantaneous flow into a streamwise mean base flow and fluctuations for
case R-2Lx-180. Instantaneous isosurface of streamwise velocity for (a) the total flow u, (b) the streak base
flow U and (c) the absolute value of the fluctuations |u′|. The values of the isosurfaces are 0.6 (a,b) and 0.1
(c) of the maximum streamwise velocity. Shading represents the distance to the wall from dark (y = 0) to light
(y = h). The arrow in panel (a) indicates the mean flow direction.

the simulation) prevails over the (hypothetical) subharmonic instability. The data also
reveal that λkx=2π/Lx

max > λ
kx=π/Lx
max approximately 80 % of the time. The result proves that

the base flows for case R180 are more receptive to harmonic instabilities than they are to
subharmonic instabilities.

The second analysis consists of an actual simulation with streamwise domain length
equal to 2L+

x ≈ 673 (2Lx ≈ 3.66h), such that the instabilities associated with kx = π/Lx
are now allowed in the flow (note that Lx and Lz signify the domain size of R180). We label
this case as R-2Lx-180, which is analogous to R180 but with doubled streamwise domain
length. Figure 28 illustrates the flow decomposition into base flow and fluctuations for
R-2Lx-180 and figure 29 depicts three examples of base flows. Consistently, the base flows
for R-2Lx-180 are defined as U( y, z, t) = 〈u〉x = 1/2Lx

∫ 2Lx
0 u dx.

Figure 30 shows the r.m.s. fluctuating velocities for R-2Lx-180 compared with the
minimal channel flow R180. The main effect of enlarging the domain in x is an increase
in u′, which comes from the larger scales accommodated by the computational box. The
energy in u′ is now closer to the nominal value in non-minimal domains, but we have
argued in § 3 that this additional energy is not strictly required to sustain turbulence.
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Figure 30. (a) Streamwise, (b) wall-normal and (c) spanwise root-mean-squared fluctuating velocities as a
function of the wall-normal distance for R-2Lx-180 (black solid line) and equivalent non-minimal channel
(L180) with 6.7L+

x × 6.7L+
z = 2312 × 1156 (≈ 12.5h × 6.3h) (black dashed line), where Lx and Lz signify the

channel domain for R180. Case R180 is represented by dotted lines.

The stability analysis of U( y, z, t) for R-2Lx-180 and wavenumbers kx = π/Lx and kx =
2π/Lx is included in figure 27(b). The outcome is similar to R180: λkx=2π/Lx

max prevails over
λ

kx=π/Lx
max most of the time, and this is true even if now the streamwise domain is 2Lx. This

suggests that the most unstable wavelength should be around the length of the minimal
channel.

To complete the analysis and build confidence in the results presented in the paper, we
perform two simulations with constrained linear dynamics using R-2Lx-180 as a baseline.
In the first case, a selected base flow from R-2Lx-180 is frozen-in-time and the exponential
instabilities are removed. We denote this case as NF-TG-2Lx-180{1} (similar to cases
NF-TG180{i} in § 6.3). In the second case, the linear push-over mechanism is cancelled
out (similar to case NF-NPO180 in § 6.4). The cases are initialised from R-2Lx-180,
although it was assessed that the conclusions are independent of the initial condition.
The evolution of the turbulence kinetic energy for both cases is shown in figure 31.
For NF-TG-2Lx-180{1}, turbulence is maintained despite the lack of exponential and
parametric instabilities. For the particular base flow chosen in NF-TG-2Lx-180{1}, the
turbulent kinetic energy is on average larger than that for R-2Lx-180, although other
base flows (not shown) exhibit a lower value. Conversely, the turbulent kinetic energy
decays for NF-NPO-2Lx-180, where the linear push-over is suppressed. Therefore, the
main conclusions drawn from simulations with a streamwise domain equal to 2Lx are
consistent with those discussed in the paper with streamwise domain Lx.

Finally, we carried out simulations analogous to those described above doubling the
spanwise length of the domain. Our conclusions remain unchanged. This is not unexpected
as enlarging Lz mostly translates into an increment on the number of coherent structures
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Figure 31. The history of the domain-averaged turbulent kinetic energy of the fluctuations 〈E〉xyz for the case
with frozen base flow without exponential instabilities (NF-TG-2Lx-1801), channel without linear push-over
(NF-NPO-2Lx-180) and regular channel flow (R-2Lx-180). The vertical axis is linear in panel (a) and
logarithmic in panel (b).

contained in the domain along the z direction. The new channel is not minimal as it
contains more than one elementary flow unit, but the characteristics of the base flow are
barely affected.

Appendix B. Results for base flow (U, V , W )

For completeness, we repeat the analysis in § 6 using this time the streamwise-averaged v

and w as part of our base flow, i.e.

U def= (U, V, W) = (〈u〉x, 〈v〉x, 〈w〉x). (B1)

Consequently, the perturbations are now defined as u′ = u − U, v′ = v − V and w′ = w −
W. We carried out simulations analogous to those discussed in table 2. The conclusions
drawn using (U, V, W) as the base flow are similar to those using (U, 0, 0). Here we report
some of the key results.

The new equation for U is obtained by replacing the operator D used to set the y- and
z-components, namely,

D =
⎡⎣1 0 0

0 0 0
0 0 0

⎤⎦ , (B2)

by the identity operator D = I such that

∂U
∂t

+ U · ∇U = −〈u′ · ∇u′〉x − 1
ρ

∇〈p〉x + ν∇2U + f , (B3a)

∇ · U = 0. (B3b)

The equation for the new fluctuating velocity vector is

∂u′

∂t
= L(U)u′ + N(u′), (B4a)

L(U)u′ = P
[
−U · ∇u′ − u′ · ∇U + ν∇2u′

]
, (B4b)

N(u′) = P [−u′ · ∇u′ + 〈u′ · ∇u′〉x
]
. (B4c)
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Figure 32. (a) Streamwise, (b) wall-normal and (c) spanwise mean root-mean-squared fluctuating velocities
as a function of the wall-normal distance for case R180 normalised by uτ , case ÑF180 normalised by uτ and
ÑF180 normalised by u.

First, we remove the explicit feedback from u′ to (U, V, W) and refer to this case as ÑF180
(analogous to NF180). Figure 32 shows that the effect of blocking the feedback from u′ to
(U, V, W) is to enhance the fluctuating velocities, similarly to NF180. The results exhibit
an improved collapse when the velocities are scaled by u, which is more representative of
characteristic flow velocity.

In the second experiment, we remove the exponential instability of the streaks and
label the case as ÑF-SEI180 (analogous to NF-SE180). The results, included in figure 33
(red dashed lines), show that turbulence is maintained in the absence of exponential
instabilities. When comparing ÑF-SEI180 with ÑF180, the former exhibits a mildly
reduced level of fluctuating velocities (similar to the observation from NF-SEI180
compared to NF180).

Finally, we perform simulations freezing the base flow in addition to removing the
exponential instabilities as in § 6.3. The cases are denoted as ÑF-TG180i (analogous to
NF-TG180i). Turbulence is sustained in 90 % of the cases. From figure 33 we conclude that
the discussion in § 6.3 is broadly applicable to the base flow (U, V, W): wall turbulence
exclusively supported by transient growth is sustained and able to produce realistic flow
statistics.

Appendix C. Details of the stability analysis

In this appendix we describe the linear stability analysis of a base flow, U( y, z, t), which is
inhomogeneous in two spatial directions (e.g., Karp & Cohen 2014). At given time t = t0,
we assume the following velocity field:

u = (U( y, z, t0), 0, 0) + εu′, 0 < ε � 1. (C1)

Here the base flow U is assumed parallel, steady and streamwise independent, and u′ is
the disturbance. Substituting (C1) into the incompressible Navier–Stokes equations (2.1),
neglecting terms of order ε2 and higher, and gathering the terms at order ε, we obtain the
linearised equations for the disturbances:

∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= 0, (C2a)

∂u′

∂t
+ U

∂u′

∂x
+ v′ ∂U

∂y
+ w′ ∂U

∂z
= − 1

ρ

∂p′

∂x
+ ν∇2u′, (C2b)
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Figure 33. (a) Mean velocity profile, (b) root-mean-squared streamwise, (c) wall-normal and (d) spanwise
fluctuating velocities: the black solid line is the ensemble average of turbulent cases ÑF-TG180i, namely,
〈〈u{i}〉xzt〉e, 〈〈u′2

{i}〉1/2
xzt 〉e, 〈〈v′2

{i}〉1/2
xzt 〉e and 〈〈w′2

{i}〉1/2
xzt 〉e; the shaded region denotes ± one standard deviation

with respect to the ensemble average operator 〈·〉e; the red dashed line is 〈u′2〉1/2
xzt , 〈v′2〉1/2

xzt , and 〈w′2〉1/2
xzt for

ÑF-SEI180.

∂v′

∂t
+ U

∂v′

∂x
= − 1

ρ

∂p′

∂y
+ ν∇2v′, (C2c)

∂w′

∂t
+ U

∂w′

∂x
= − 1

ρ

∂p′

∂z
+ ν∇2w′. (C2d)

The boundary conditions are no slip at the wall and free slip for u′ and w′ and
impermeability for v′ at the top. Homogeneity in x and t allows us to assume that all
flow fields for the disturbances take the form, e.g.

u′ = û′( y, z) exp((λ+ iω)t + ikxx), (C3)

where kx is the streamwise wavenumber, and λ+ iω is the temporal complex eigenvalue.
(Similarly for v′, w′ and p′.)

Substituting (C3) into the linearised equations (C2), they can be rearranged as a
generalized eigenvalue problem,⎛⎜⎝Dx Dy Dz O

C Uy Uz Dx
O C O Dy
O O C Dz

⎞⎟⎠
⎛⎜⎝ ũ′

ṽ′
w̃′
p̃′

⎞⎟⎠ = (λ+ iω)

⎛⎜⎝O O O O
−I O O O
O −I O O
O O −I O

⎞⎟⎠
⎛⎜⎝ ũ′

ṽ′
w̃′
p̃′

⎞⎟⎠ . (C4)
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Here, I is the identity matrix, O is a zero matrix, ũ′ is a one-dimensional representation of
a two-dimensional vector

ũ′ def= (
û′( y1, z1), . . . , û′( y1, zNz), · · · , û′( yNy, z1), . . . , û′( yNy, zNz)

)T
, (C5)

and similarly for ṽ′, w̃′ and p̃′. Furthermore, the matrices C, Uy , Uz , Dx , Dy and Dz are
given by

C = ikxdiag (U) − ν
(

Ī z ⊗ D̄2
y + D̄2

z ⊗ Ī y − k2
x Ī z ⊗ Ī y

)
, (C6a)

Uy = diag
{(

Ī z ⊗ D̄y
)

U
}
, (C6b)

Uz = diag
{(

D̄z ⊗ Ī y
)

U
}
, (C6c)

Dx = ikx Ī z ⊗ Ī y , (C6d)

Dy = Ī z ⊗ D̄y , (C6e)

Dz = D̄z ⊗ Ī y , (C6f )

where ⊗ is the Kronecker product and U is the one-dimensional representation of U
(similarly to ũ′). The matrices Ī y and Ī z are the identity matrices of dimensions Ny × Ny
and Nz × Nz, respectively, and D̄y and D̄z are the matrices that represent differentiation
in y and z directions, respectively. The eigenvalue problem is solved numerically for all
streamwise wavenumbers kx on-the-fly during the simulations.

Appendix D. Validation of eigenvalue calculation

The eigenvalue calculation described in appendix C was numerically implemented in the
code which solves the equations of motion such that, at a given time t, the eigenvalues of
L(U( y, z, t)) are computed on-the-fly. To verify the implementation, a second independent
solver was used, which takes as input the base flows U( y, z, t) stored from the simulation.
The second algorithm solves the eigenvalues problem in the y-vorticity–Laplacian of v

formulation discretised with first-order finite differences in a collocated grid. We have
referred to the real part of the eigenvalues computed by the first solver as λj. Let us denote
the eigenvalues computed by the second solver as λ̆j. Figure 34 shows the history of the
real part of the two most unstable eigenvalues λ1 and λ2, and λ̆1 and λ̆2. On average,
the error |λj − λ̆j|/|λj| for all unstable eigenvalues is of the order of 0.1 %. These small
differences are expected, as the numerical details of the two solvers differ. Yet, the errors
are small enough to provide confidence in the calculation of the modal instabilities. An
additional validation is presented in appendix F.

Appendix E. Approximate calculation of L̃(U) using linear forcing

The exponential instabilities in L(U) were rigorously removed to obtain L̃(U) via
eigendecomposition (see 4.2). This approach might obscure the interpretation of L̃(U)

and, at the same time, it entails a rather costly procedure. In this appendix we present an
alternative approach to suppress exponential instabilities, which aids the interpretation of
the stabilisation of L(U) and is computationally more affordable.
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Figure 34. The history of the real part of the two most unstable eigenvalues (a) λ1, λ̆1 and (b) λ2, λ̆2 of
L(U) computed on-the-fly by the solver which integrates the equations of motion for the fluctuating velocities
(− ◦ −) and computed a posteriori by a second independent solver (− × −, red).

In general, the operator L is stabilised by subtracting the eigenspaces that correspond to
eigenvalues with positive real part λj > 0, j = 1, . . . , N,

L̃ = L −
N∑

j=1

aλj U jV†
j , (E1)

where a is a real coefficient a > 1, U j is the j-th eigenmode of L and V j is the j-th
eigenmode of the adjoint operator L†, appropriately normalised so that V†

i U j = δij.
Hence, the approach to project out the manifolds associated with a particular eigenvector
from an operator whose eigenbasis is not orthogonal involves the biorthogonal eigenbasis
of its adjoint operator.

If L was normal, its eigenvectors and those of its adjoint would coincide. Therefore,
stabilisation would be simplified as

L̂ = L −
N∑

j=1

aλj U jU†
j (E2)

for λj > 0, j = 1, . . . , N. Under the assumption that the most unstable eigenspace of L can
be suppressed considering L as normal, then we can use the approximation

L̃(U) ≈ L̂(U) = L(U) −
N∑

j=1

2λjU jU†
j , (E3)

where we have chosen a = 2. It is well known that the operator L from the Navier–Stokes
equations is highly non-normal and an approximation like (E3) is not guaranteed to
stabilise L. Nonetheless, we show here that it works reasonably well. Figure 35 compares
the real part of the three most unstable eigenvalues of the properly stabilised L̃(U)

(denoted by λi) and those of L̂(U) (denoted by λ̂i). The approximate method L̂(U)

succeeds in stabilising L(U) with the largest eigenvalues (now stable) obtained within
to more than 0.1 % accuracy when compared to L̃(U).

In addition to providing an intuitive interpretation of the stabilisation, the approximate
approach is also included here given its easier implementation using the power method.
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Figure 35. The history of the real part of the three most unstable eigenvalues (a) λ1, λ̂1, (b) λ2, λ̂2, (c) λ3, λ̂3

of L̃(U) (− ◦ −) and L̂(U) (− × −, red).

The power method solves the linearised Navier–Stokes equations rescaling the velocity
field amplitude at each time step to track the most unstable mode. The process can be
repeated iteratively to obtain approximations of the first, second, third,. . . most unstable
modes and eigenvalues. The advantage of the power method is that it does not require
constructing L explicitly nor performing the eigendecomposition of the operator, which
might be beneficial in those cases where computing L(U) is numerically impractical.
We repeated cases NF-SEI180 and R-SEI180 using L̂(U) and tested that our conclusions
remain the same.

Appendix F. Linear analysis of channel flow with modally stable base flow

We consider the governing equations for the linear channel flow with modally stable frozen
base flow

∂u′

∂t
= L̃(U)u′, (F1a)

U = (U( y, z, t0), 0, 0) from case R180, (F1b)

where we have disposed of the nonlinear term N(u′). We repeat the simulations in § 6.3
using the same set-up. As an example, the evolution of the turbulent kinetic energy for ten
cases is shown in figure 36(a). Given that L̃(U) is modally stable, the turbulent kinetic
energy decays without exception. We verified that this was the case for all the simulations
considered in § 6.3 once N(u′) is set to zero. Conversely, if we consider the system

∂u′

∂t
= L(U) u′, (F2a)

U = (U( y, z, t0), 0, 0) from case R180, (F2b)

in which modal instabilities are allowed, the turbulent kinetic energy grows exponentially
as seen in figure 36(b) given that the ten cases considered are all such that L(U) is
modally unstable. It was also verified that the growth rate obtained by integrating (F2)
coincides with the growth rate λ1 of the most unstable mode as predicted by the eigenvalue
analysis of L(U). The present appendix serves as validation of the successful suppression
of modal instabilities in L(U), and complements the results in figure 14 and the analysis
in appendix D.
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Figure 36. The history of the domain-averaged turbulent kinetic energy of the fluctuations 〈E〉xyz. Different
colours are for cases for (a) a modally stable system (F1) and (b) a modally unstable system (F2). Here t0 is
initial time to integrate the system.

Finally, we consider the governing equations for the linear channel flow with modally
stable time-varying base flow

∂u′

∂t
= L̃(U)u′, (F3a)

U = (U( y, z, t), 0, 0) from case R180, (F3b)

where base flow is now allowed to change in time. The system (F3) is supported by
transient growth potentially assisted by parametric instabilities. Thus, turbulence could
survive even if L̃(U) is modally stable at all instances. However, we found that this is not
the case and (F3) is unable to sustain turbulence: u′ decays after a few eddy turnover times.
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