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A spherical capsule (radius R) is suspended in a viscous liquid (viscosity μ) and exposed
to a uniaxial extensional flow of strain rate E . The elasticity of the membrane surrounding
the capsule is described by the Skalak constitutive law, expressed in terms of a surface
shear modulus G and an area dilatation modulus K . Dimensional arguments imply that the
slenderness ε of the deformed capsule depends only upon K/G and the elastic capillary
number Ca = μRE/G. We address the coupled flow–deformation problem in the limit of
strong flow, Ca � 1, where large deformation allows for the use of approximation methods
in the limit ε � 1. The key conceptual challenge, encountered at the very formulation of
the problem, is in describing the Lagrangian mapping from the spherical reference state
in a manner compatible with hydrodynamic slender-body formulation. Scaling analysis
reveals that ε is proportional to Ca−2/3, with the hydrodynamic problem introducing a
dependence of the proportionality prefactor upon ln ε. Going beyond scaling arguments,
we employ asymptotic methods to obtain a reduced formulation, consisting of a differential
equation governing a mapping field and an integral equation governing the axial tension
distribution. The leading-order deformation is independent of the ratio K/G; in particular,
we find the approximation ε2/3Ca ≈ 0.2753 ln(2/ε2) for the relation between ε and Ca. A
scaling analysis for the neo-Hookean constitutive law reveals the impossibility of a steady
slender shape, in agreement with existing numerical simulations. More generally, the
present asymptotic paradigm allows us to rigorously discriminate between strain-softening
and strain-hardening models.
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1. Introduction
Capsules, consisting of a liquid core surrounded by a membrane, are common in
both nature (e.g. cells) and bioengineering applications (Pozrikidis 2003b). Since the
membrane is elastic, it deforms under flow. Due to the possibility of breakup, there
is interest in mechanical modelling of deformation (Barthés-Biesel 2016). In particular,
the desire to characterise the mechanical properties of cell membranes has led to the
development of deformability cytometry (Mietke et al. 2015; Otto et al. 2015; Rosendahl
et al. 2018), where cells are subject to shearing flow in microfluidic devices, with their
deformation being recorded by high-speed cameras.

It is common to model the thin membrane by a two-dimensional surface with an elastic
constitutive law that introduces resistance to shear and area dilatation, but not to bending.
The canonical problem involves the specification of simple shear flow, under which the
membrane deforms. More generally, other types of linear flows have been considered,
in particular two-dimensional elongational flow and axially symmetric hyperbolic flow.
In these flows, the capsule shape can reach a steady state (which is unattainable under
simple shear). For that reason, such flows are convenient for experimental observations
and possibly for characterising material response (Chang & Olbricht 1993). With a steady
state, moreover, the internal liquid is stationary, so its viscosity does not play a role.

The deformed shape of the membrane is determined by static equilibrium, where the
hydrodynamic tractions are balanced by the (surface divergence of the) elastic stresses.
There is a fundamental difference in determining the hydrodynamic and elastic forces.
The hydrodynamic problem, and in particular the resulting traction, is determined by
the deformed shape alone. The elastic stresses are set by the deformation from a given
reference (typically spherical) shape to the present shape. The theoretical calculation of
capsule deformation falls under the broader framework of fluid–structure interactions
(Dowell & Hall 2001). Given the typical small size of capsules (e.g. approximately 10 µm
for a red blood cell), inertia is typically negligible; the flow is therefore governed by the
Stokes equations.

Modelling the elastic response to deformation requires a constitutive law for the stresses.
The neo-Hookean law, a particular case of the Mooney–Rivlin law, constitutes the thin
limit of an incompressible solid; it appropriately describes rubber-like materials. Another
common model is the Skalak law (Skalak et al. 1973), an isotropic two-dimensional model
with independent surface shear and area dilatation moduli that was specifically designed
to model red blood cells. Both constitutive descriptions are nonlinear. With the deformed
shape itself being unknown, the equilibrium problem is inherently nonlinear.

The key parameter governing the dimensionless problem is the elastic capillary number
Ca, representing the characteristic ratio of viscous stresses to elastic stresses. Initial
investigations (Barthés-Biesel 1980; Barthés-Biesel & Rallison 1981) considered the
stiff limit Ca � 1, where the membrane deforms only slightly. Given the interest in
significant deformations, these were later supplemented by numerical simulations at finite
values of Ca (Li, Barthés-Biesel & Helmy 1988; Pozrikidis 1990, 2003a; Dodson III
& Dimitrakopoulos 2008, 2009). The ultimate goal of the theoretical analysis is the
calculation of the capsule deformation; representing it by appropriate lumped scalar
measures, it is desirable to understand how they vary as a function of Ca.

At large Ca the capsule undergoes large deformation whose nature, as observed
numerically, depends critically on the elastic behaviour. For certain constitutive laws,
the most notable being neo-Hookean, there exists a critical capillary number beyond
which no steady shape is attained under elongation (Li et al. 1988). For that reason the
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neo-Hookean law is classified as ‘strain softening’. For ‘strain hardening’ laws, such as the
Skalak description, the capsule does attain a steady slender shape for large Ca (Li et al.
1988; Barthès-Biesel et al. 2002; Walter et al. 2010). In fact, numerical computations
(Dodson III & Dimitrakopoulos 2008, 2009) reveal slender shapes even at moderately
large capillary numbers, Ca ≈ 2.5.

Motivated by the interest in large deformation (Eggleton & Popel 1998; Navot 1998;
Ramanujan & Pozrikidis 1998) we conduct here an asymptotic investigation in the limit
Ca � 1. Our key goal is to determine the asymptotic dependence of the slenderness ε upon
Ca. For simplicity we consider uniaxial extensional flow, where the problem is axially
symmetric, and seek the steady shape attained by the capsule.

In classical slender-body analyses about rigid bodies (Batchelor 1970; Cox 1970) the
slenderness ε � 1 is prescribed in the problem formulation. A key challenge in the
present problem is that the slenderness is unknown to begin with, and is in fact a
part of the problem. In that sense, our problem is reminiscent of bubble deformation
(Buckmaster 1972, 1973; Acrivos & Lo 1978; Sherwood 1981). It is, however, significantly
more complicated. The free surface in the bubble problem is characterised by a uniform
surface tension; consequently, its mechanical model is expressed via an internal force that
acts normal to the surface. The membrane of a capsule is described by more elaborate
mechanics that result in both normal and tangential internal forces. In that aspect, the
present problem is closer to that describing a bubble whose boundary is contaminated
by surfactants (Booty & Siegel 2005). Another challenge we face, which seems new in
slender-body analyses, has to do with the conflict between the ‘Lagrangian’ description
required for the calculation of the elastic stress and the ‘Eulerian’ description required for
the hydrodynamic formulation.

In analysing the deformation problem at large Ca it is necessary to allow for
cusped ends. The transition from spindled-to-cusped edges was originally observed in
experiments (Barthés-Biesel 1991) using a four-roller apparatus (e.g. Bentley & Leal
1986). In fact, the inability of ‘state of the art’ computation schemes (at that time) to reach
large capillary numbers, beyond that transition, motivated the use of spectral boundary-
element algorithms (Wang & Dimitrakopoulos 2006; Dodson III & Dimitrakopoulos
2008) that do predict cusped ends. In our asymptotic analysis, we allow for pointed ends
at the very outset. This affects the boundary conditions governing the deformed shape.

Following the numerical classification of strain softening and strain hardening materials,
we employ here the Skalak model which was numerically observed to result in steady-
state large deformation. Indeed, it seems that the Skalak model has become the de facto
constitutive description for capsules in the literature (Dodson III & Dimitrakopoulos
2008, 2009). We also briefly discuss the strain softening neo-Hookean model, which was
numerically observed to burst under strong flows.

2. Problem formulation

2.1. Physical problem
A capsule is made of a liquid core and an elastic encapsulating membrane, whose reference
shape is spherical, say of radius R. The thin membrane is described by an effective two-
dimensional elasticity which represents resistance to shear (captured by the modulus G)
and area dilatation (captured by the modulus K ), but no resistance to bending. The two
material coefficients have the dimensions of surface tension, i.e. force per unit length.

The capsule is suspended in a viscous liquid of viscosity μ and is exposed to a uniaxial
extensional flow of extension rate E . The capsule reaches a steady shape whose symmetry
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ê2

R

z

r
n̂

D

a

L−L

ɛL
φ φ

Figure 1. Schematic of the reference (a) and deformed (b) geometries.

axis is aligned with the axis of extension. The capsule length along that axis is denoted
by 2L; its ‘waist’ radius in the midway symmetry plane is denoted by εL . Our interest
is in the evaluation of the geometric parameters ε and L/R, which quantify the overall
deformation. By dimensional arguments, these parameters can only depend upon the
two dimensionless parameters of the problem, namely K/G and the elastic capillary
number

Ca = μRE

G
, (2.1)

which expresses the relative magnitude of viscous and elastic stresses. Once the capsule
reaches a steady shape, its core liquid is stationary. The ratio of the core viscosity to
the external-liquid viscosity – a third dimensionless parameter which affects the transient
problem – is accordingly irrelevant.

2.2. Geometry
We employ cylindrical (r, φ, z) coordinates with the z-axis coinciding with axis of
symmetry and z = 0 coinciding with the symmetry plane of the extensional flow. We write
the shape of the deformed membrane D as

r = a(z), (2.2)

see figure 1. Since the deformed shape is symmetric about the plane z = 0, a is an even
function: a(−z) = a(z). By definition,

a(±L) = 0. (2.3)

Given the definition of ε, the shape function also satisfies

a(0) = εL . (2.4)

Since the capsule core is incompressible, volume conservation gives the constraint∫ L

−L
a2(z) dz = 4

3
R3. (2.5)

Using z and φ for parametrisation, the position vector pointing to the deformed
membrane D is

r(z, φ) = a(z) êr + z êz . (2.6)
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By differentiating (2.6) we obtain

∂ r
∂φ

= h1 ê1,
∂ r
∂z

= h2 ê2, (2.7a,b)

where the associated basis vectors and corresponding scale factors are

ê1 = êφ, ê2 = êz + êr da/dz

h2
, (2.8a,b)

and

h1 = a, h2 =
√

1 +
(

da

dz

)2

. (2.9a,b)

The (outward-pointing) unit normal is therefore given by

n̂ = ê1 × ê2 = êr − êz da/dz

h2
, (2.10)

see figure 1.

2.3. Deformation
In principle, the prescription of the deformation from the reference shape R to the
deformed shape D requires: (i) parametrisation of R using two variables and (ii) mapping
each point on R to a point in D. Due to the axial symmetry this requires two functions,
providing the axial and radial coordinates of the mapped point. Recalling that R is a sphere
of radius R, each point on it is parametrised using its azimuthal coordinate φ and its
z-coordinate, say RZ (Z ∈ [−1, 1]). The two aforementioned functions, which depend
only upon Z , are represented by the mappings

Z �→ z, Z �→ r. (2.11a,b)

While this procedure may be suitable to numerical solutions, it does not merge with the
eventual need to perform an asymptotic analysis in the slender limit. For example, in
analysing the flow problem the natural parametrisation is expressed in the context of the
deformed shape.

This incompatibility is resolved using a parametrisation in D in conjunction with the
inverse of (2.11a). To that end, we denote the preimage of z as Z(z). The function a(z),
introduced in the previous subsection, is formally constructed by the composition of Z(z)
with (2.11b).

It is evident that Z(z) is an odd function that satisfies

Z(±L) = ±1. (2.12)

It is tempting to add a condition representing the extrema attained by (2.11a) at the two
‘ends’ of the capsule. In terms of the mapping Z(z), this gives

lim|z|↗L

√
1 − Z

dZ/dz
= 0. (2.13)

However, given the anticipation of a cusped-end, we avoid that ‘spindle-end’ condition
which only holds for smooth ends. We will provide later the appropriate condition
replacing (2.13).
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Consider now the deformation of a line element corresponding to infinitesimal
increments (dφ, dz). The deformation displaces a point with ‘initial’ position

R(z, φ) = êr R
√

1 − Z2(z) + êz RZ(z) (2.14)

to the ‘new’ position (2.6). Upon differentiating (2.14) we find that

dR = êφ R
√

1 − Z2 dφ +
(

êz − Z√
1 − Z2

êr

)
R

dZ

dz
dz. (2.15)

Noting that the two basis vectors in R are (see figure 1)

d̂1 = êφ, d̂2 = êz

√
1 − Z2 − êr Z , (2.16)

we find that

dR = d̂1 R
√

1 − Z2 dφ + d̂2
R dZ/dz√

1 − Z2
dz. (2.17)

Since (2.7) gives

dr = ê1h1 dφ + ê2h2 dz, (2.18)

we can read off the principal stretches, namely

λ1 = a

R
√

1 − Z2
, λ2 = h2

√
1 − Z2

R dZ/dz
. (2.19a,b)

Note that λ1 is the ratio of the deformed radius a(z) to the reference radius at Z(z),
see (2.14).

2.4. Flow
Consider now the flow field in the membrane exterior, where the velocity field is denoted
by u and the associated stress tensor by σ . The flow is governed by the continuity and
Stokes equations,

∇ · u = 0, ∇ · σ = 0. (2.20a,b)

At the deformed membrane it satisfies the no-slip condition,

u = 0 for r = a(z), (2.21)

while at large distances it approaches the imposed flow

u ∼ E
(

z êz − r

2
êr

)
as r2 + z2 → ∞. (2.22)

As this is the same problem governing the flow outside a rigid body, the flow is uniquely
determined by the shape of the deformed capsule, as provided by the distribution a(z).
Since the interior fluid is stationary, the stress there is isotropic, say −P I .

For an incompressible flow, the pressure field is generally defined to within an
arbitrary additive constant; since the pressure difference across the membrane is physically
meaningful, this arbitrariness may only be exploited once, either in the membrane interior
or its exterior. With no loss of generality, we set the pressure at infinity to zero, The
constant P thereby represents the difference between the uniform interior pressure and
the far-field pressure in the exterior region. With that choice, the magnitude of both σ and
P is proportional to μE ; in particular, P may be interpreted as a ‘dynamic’ pressure.

Due to axial symmetry, the velocity must be of the form

u = êr u + êzw, (2.23)
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where u and w are functions of r and z, but not of φ. Consequently, the Newtonian stress
must be of the form

σ = êr êrσrr + êz êzσzz + (êr êz + êz êr )σr z, (2.24)

where σrr , σzz and σr z are functions of r and z.

2.5. Static equilibrium
The shape D of the deformed membrane is governed by the force balance

∇s · Ts + n̂ · σ + n̂P = 0 at r = a(z), (2.25)

applying for −L < z < L , where ∇s is the surface-gradient operator and Ts the surface
stress. By forming the dot product of (2.25) with ê2 we obtain the meridional balance

ê2 · (∇s · Ts) + n̂ · σ · ê2 = 0. (2.26)

Similarly, by forming the dot product of (2.25) with n̂ we obtain the normal balance

n̂ · (∇s · Ts) + n̂ · σ · n̂ + P = 0. (2.27)

It is evident from the problem symmetry that the principal directions of the Cauchy
tension Ts are provided by the unit vectors (2.8). We therefore write the Cauchy tension in
the form

Ts = τ1 ê1 ê1 + τ2 ê2 ê2. (2.28)

The component of ∇s · Ts in the meridional direction is

ê2 · (∇s · Ts) = dτ2

ds
+ 1

a

da

ds
(τ2 − τ1), (2.29)

wherein s is the arclength in the meridional plane, increasing in the direction of ê2; making
use of (2.7b) yields

ê2 · (∇s · Ts) = 1
h2

(
dτ2

dz
+ da

dz

τ2 − τ1

a

)
. (2.30)

The component of ∇s · Ts in the normal direction is

n̂ · (∇s · Ts) = κ1τ1 + κ2τ2, (2.31)

where the principal curvatures are given by

κ1 = − 1
h2a

, κ2 = 1
h3

2

d2a

dz2 . (2.32a,b)

Last, making use of (2.8) and (2.10) we find from (2.24) that

n̂ · σ · ê2 =
[
1 − (da/dz)2] σr z + (da/dz) (σrr − σzz)

h2
2

, (2.33a)

n̂ · σ · n̂ = σrr − 2 (da/dz) σr z + (da/dz)2 σzz

h2
2

. (2.33b)
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2.6. Axial balance
Substituting expressions (2.30) and (2.33a) into the meridional balance (2.26) yields[

1 − (da/dz)2] σr z + (da/dz) (σrr − σzz)

h2
2

+ 1
h2

(
dτ2

dz
+ da

dz

τ2 − τ1

a

)
= 0. (2.34)

Similarly, substituting (2.31) and (2.33b) into the normal balance (2.27) yields

σrr − 2 (da/dz) σr z + (da/dz)2 σzz

h2
2

+ κ1τ1 + κ2τ2 + P = 0. (2.35)

Note that (2.34)–(2.35) can be combined to get the axial stress balance

d
dz

(
T − πa2 P

)
= 2πa

(
da

dz
σzz − σr z

)
, (2.36)

where

T = 2πaτ2

h2
(2.37)

is the net axial elastic tension.
For a cusped shape we replace (2.13) by the requirement of zero axial tension at the ends

of the capsule,

T (±L) = 0. (2.38)

This condition eliminates the possibility of point singularities at the tips, thus selecting the
least-singular solution (Van Dyke 1964). Note that (2.38) is trivially satisfied for rounded
ends, where a → 0 and |h2| → ∞ (recall (2.7b)).

2.7. Elasticity
The evaluation of the Cauchy elastic tension Ts requires consideration of the elastic
deformation. The principal values of Ts , τ1,2, are functions of the principal extensional
stretches (4.8). Dimensional arguments for the state of stretch imply that

τ1,2/G = functions of λ1, λ2, K/G. (2.39)

Hereafter, we assume the Skalak model (Skalak et al. 1973), where

τ1

G
= λ1

(
λ2

1 − 1
)

λ2
+ Cλ1λ2

(
λ2

1λ
2
2 − 1

)
,

τ2

G
= λ2

(
λ2

2 − 1
)

λ1
+ Cλ1λ2

(
λ2

1λ
2
2 − 1

)
.

(2.40a,b)

The dimensionless parameter,

C = K/G − 1
2

, (2.41)

is associated with resistance to area dilatation (Barthès-Biesel et al. 2002).

3. Strong flow: scaling
Henceforth, we focus upon the case of strong flow,

Ca � 1. (3.1)
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In this asymptotic limit, we expect ε to be small,

ε � 1. (3.2)

Our interest is in the dependence of ε and L/R upon Ca in the limit (3.1). It is preferable
to temporarily adopt a mathematically equivalent approach where ε and L are considered
as known, the former satisfying (3.2). The capillary number Ca and the reference radius
R are then effectively considered as functions of ε and L .

Prior to carrying an approximate scheme in the limit (3.2), we perform a scaling
analysis. In what follows, we employ � to imply ‘of order’. In that context, the key
estimates are

z � L , a � εL . (3.3a,b)

It is evident from (2.5) and (3.3) that

R � Lε2/3. (3.4)

We consider first the elastic stresses. Formulae (2.19) for the principal stretches in
conjunction with (3.3) imply that λ1 � εL/R and λ2 � L/R. Using (3.4) we find

λ1 � ε1/3, λ2 � ε−2/3 (3.5a,b)

and, consequently, λ1λ2 � ε−1/3. Substitution into (2.40) gives

τ1 � Gε−1, τ2 � Gε−7/3, (3.6a,b)

so that

τ2 � τ1, (3.7)

as would be expected under strong elongation.
It is evident from (2.32) that

κ1 � 1
εL

, κ2 � ε

L
, (3.8a,b)

whereby

κ1τ1 � GL−1ε−2, κ2τ2 � GL−1ε−4/3, (3.9a,b)

so, despite (3.7),

κ1τ1 � κ2τ2. (3.10)

Consider now the divergence of Ts . It is evident from (2.30) and (3.7) that

ê2 · (∇s · Ts) � τ2/L . (3.11)

It also follows from (2.31) and (3.10) that

n̂ · (∇s · Ts) � κ1τ1. (3.12)

Substituting (3.6) and (3.9a) into (3.11) and (3.12) yields

ê2 · (∇s · Ts) � GL−1ε−7/3, n̂ · (∇s · Ts) � GL−1ε−2. (3.13a,b)

With the azimuthal component subdominant, the scaling relation between Ca and ε

is determined by the meridional balance (2.26). (In that sense, the present problem is
fundamentally different from the classical problem of a deforming bubble.) To determine
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that relation we need to estimate the hydrodynamic stress. We first recall that σ scales as
μE . For small ε the shear-stress magnitude is amplified by 1/ε, so

n̂ · σ · ê2 � μE

ε
. (3.14)

Making use of (3.13a) and (3.14), the meridional balance (2.26) gives

G

Lε7/3 � μE

ε
. (3.15)

Making use of (2.1) and (3.4) we obtain the requisite scaling

Ca � ε−2/3. (3.16)

For future reference we note from (3.13) that the ratio of n̂ · (∇s · Ts) to ê2 · (∇s · Ts) is
� ε1/3.

4. Analysis
We now go beyond scaling, carrying out a systematic approximation scheme. We retain
our ‘inverted’ approach where ε and L are considered as given.

4.1. Dimensionless variables
At this stage we find it useful to introduce the dimensionless axial coordinate (recall
(3.3a)),

ζ = z/L . (4.1)

This induces the definition of the dimensionless mapping Ψ (ζ ),

Z(z) = Ψ (ζ ), (4.2)

and the dimensionless shape function Φ(ζ) (recall (3.3b))

a(z) = εLΦ(ζ). (4.3)

We note that Φ(ζ) is an even function while Ψ (ζ ) is an odd function.
In dimensionless form, conditions (2.3) and (2.12) are

Φ(±1) = 0, Ψ (±1) = ±1, (4.4a,b)

while the waist condition (2.4) becomes

Φ(0) = 1. (4.5)

Following (3.4) we define

R = Lε2/3χ, (4.6)

The volume constraint (2.5) thus becomes∫ 1

−1
Φ2(ζ ) dζ = 4χ3

3
. (4.7)

The principal stretches (2.19) become, in terms of Φ and Ψ ,

λ1 = εL

R

Φ√
1 − Ψ 2

, λ2 = L

R

h2
√

1 − Ψ 2

dΨ /dζ
. (4.8a,b)
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4.2. Approximations for elastic stresses
We proceed with a leading-order analysis. In what follows, the symbol ‘∼’ implies
‘asymptotic to,’ with the understanding that the associated error is ‘algebraically small’
(i.e. asymptotically smaller than some positive power of ε).

We begin with the geometric quantities. Using (4.1) and (4.3), we see that the scale
factors introduced in (2.9) are given by

h1 = εLΦ, h2 ∼ 1, (4.9a,b)

while the principal curvatures (2.32) become

κ1 ∼ − 1
εLΦ

, κ2 ∼ εΦ

L
. (4.10a,b)

Upon making use of (4.6) and (4.9b), the principal stretches (4.8) simplify to

λ1 = ε1/3

χ

Φ√
1 − Ψ 2

, λ2 ∼ 1
ε2/3χ

√
1 − Ψ 2

dΨ /dζ
. (4.11a,b)

Consider now the elastic constitutive relations (2.40). Making use of (3.5), we find that
they are approximated by

τ1

G
∼ Cλ3

1λ
3
2,

τ2

G
∼ λ

3
2
λ1

. (4.12a,b)

Substituting (4.11) thus gives

τ1

G
∼ C

χ6ε

Φ3

(dΨ /dζ )3 ,
τ2

G
∼ 1

χ2ε7/3

(
1 − Ψ 2)2

Φ (dΨ /dζ )3 . (4.13a,b)

Consider now the divergence of Ts . Making use of (2.30) and noting that τ2 � τ1 we
obtain the meridional component

ê2 · (∇s · Ts) ∼ 1
a

d
dz

(aτ2). (4.14)

Upon substituting (4.1)–(4.3) and (4.13b) we obtain

ê2 · (∇s · Ts)

G/L
∼ 1

χ2ε7/3
1
Φ

d
dζ

[(
1 − Ψ 2)2

(dΨ /dζ )3

]
. (4.15)

Making use of (2.31) and (3.10) we obtain n̂ · (∇s · Ts) ∼ κ1τ1. Substitution of (4.10a)
and (4.13a) gives

n̂ · (∇s · Ts)

G/L
∼ − C

χ6ε2
Φ2

(dΨ /dζ )3 . (4.16)

The negative sign implies a surface-tension-like ‘inward’ contribution to the normal force
balance.

4.3. Flow
In the limit (3.2), the flow coincides with that about a slender rigid body (Batchelor 1970;
Cox 1970; Tillett 1970). In analysing flows about rigid bodies, interest typically lies in the
hydrodynamic force acting on the body (or, by extension, in the hydrodynamic couple or
the net stresslet strength). For these quantities, it suffices to determine the distribution of
Stokeslets that represent the body.
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In the present problem, however, we need the actual shear stress at the boundary of
the body. For that reason, it is desirable to employ an analysis in the spirit of matched
asymptotic expansions, where the Stokeslet distribution represents an approximation on
the ‘long’ scale of body length which is supplemented by a comparable approximation on
the ‘short’ cross-sectional scale ε.

Given our desire for an algebraically accurate approximation, we prefer to employ the
analysis of Keller & Rubinow (1976), which for the most part avoids an expansion in
inverse powers of ln ε. Adapting their analysis to the present notation, the long-scale flow
is written as a superposition of the ambient flow (2.22) and a collection of Stokeslets (of
strength μE LF per unit length) along the symmetry axis,

u
E L

∼ ζ êz − ρ

2
êr + 1

8π

∫ 1

−1
F(ξ)

{
êz[

ρ2 + (ζ − ξ)2
]1/2 + (ζ − ξ)

êrρ + êz(ζ − ξ)[
ρ2 + (ζ − ξ)2

]3/2

}
dξ,

(4.17)
wherein (cf. (4.1))

ρ = r/L . (4.18)

On the cross-sectional scale, where ρ = O(ε), the flow is primarily in the axial
direction. Thus, making use of the form (2.23), w/E L = O(1) while u/E L is O(ε). In
particular, imposing the no slip condition at ρ/ε = Φ and compatibility with (4.17) yields
(see equations (1), (2) and (9) in Keller & Rubinow (1976))

w

E L
∼ −F(ζ )

2π
ln

ρ

εΦ(ζ )
. (4.19)

The integral equation governing the Stokelet distribution F(ζ ) was determined by
Keller & Rubinow (1976) via matching between the long-scale and short-scale solutions
(see equation (12) in Keller & Rubinow (1976)). Adapting to the present notation, this
equation reads

4πζ + [ln(1 − ζ 2) − 1]F(ζ ) +
∫ 1

−1

F(ξ) −F(ζ )

|ξ − ζ | dξ = 2F(ζ ) ln
εΦ(ζ )

2
. (4.20)

Consistently with our approach (and, more generally, with established asymptotic practices
(Fraenkel 1969)), we retain terms that are logarithmically small in ε while neglecting
algebraically small corrections.

We can now calculate the hydrodynamic shear stress in terms of F . It is evident that
on the cross-sectional scale σr z ∼ μ ∂w/∂r . Substituting (4.18) and (4.19) we obtain the
O(ε−1) stress (cf. (3.14)),

σr z/μE ∼ − F(ζ )

2πεΦ(ζ )
at ρ = εΦ(ζ ). (4.21)

It is readily verified that both σrr/μE and σzz/μE are O(1) on the cross-sectional scale.
From (2.33) we then conclude that

n̂ · σ · ê2

μE
∼ − F(ζ )

2πεΦ(ζ )
,

n̂ · σ · n̂
μE

= O(1). (4.22a,b)
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4.4. Dominant balances
Requiring that the two terms in meridional equilibrium (2.26) balance, we find using (4.15)
and (4.22a) that

G/L

χ2ε7/3
d

dζ

[(
1 − Ψ 2)2

(dΨ /dζ )3

]
∼ μEF

2πε
(4.23)

Making use of (2.1) and (4.6) we obtain

2π
d

dζ

[(
1 − Ψ 2)2

(dΨ /dζ )3

]
∼ Ca χε2/3F . (4.24)

Thus, Ca scales as ε−2/3, as already anticipated in (3.16). Defining the rescaled capillary
number

C̃a = Ca χε2/3 (4.25)

we obtain
dΩ

dζ
∼ C̃a F(ζ ), (4.26)

wherein

Ω(ζ) = 2π

(
1 − Ψ 2)2

(dΨ /dζ )3 (4.27)

is a (leading-order) dimensionless version of the axial tension (2.37),

Ω = ε2χ3 T

G R
. (4.28)

Consider now the normal balance (2.27). It follows from (2.1), (4.6), (4.16) and (4.22b)
that the ratio of n̂ · σ · n̂ to n̂ · (∇s · Ts) is of order Ca ε4/3, or, using (3.16), of order ε2/3.
This was to be expected, we already saw from the scaling estimate (3.13) that the normal
component of ∇s · Ts is O(ε1/3) relative to meridional component. The hydrodynamic
considerations, on the other hand, have revealed that the ratio of the normal Newtonian
stress to the shear Newtonian stress is of order ε. It follows that the hydrodynamic traction
does not participate at the dominant balance of (2.27), which must therefore involve the
elastic force (4.16) and the core pressure. Defining the dimensionless pressure

Π = P

μE
, (4.29)

we therefore obtain

G

L

C

χ6ε2
Φ2

(dΨ /dζ )3 ∼ μEΠ. (4.30)

Making use of (2.1), (4.6) and (4.25) yields the dimensionless balance

Φ2

(dΨ /dζ )3 ∼ ε2/3 χ4C̃a

C
Π. (4.31)

It follows that Π scales as ε−2/3 – namely as the capillary number. Defining the rescaled
pressure,
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Π̃ = ε2/3 χ4C̃a

C
Π, (4.32)

we find that (4.31) is simplified to

Φ = Π̃1/2
(

dΨ

dζ

)3/2

, (4.33)

where we used the fact that both Φ and dΨ/dζ are non-negative.

5. Reduced problem
We now summarise the reduced problem governing the mapping Ψ and the tension
Ω introduced in (4.27). Relation (4.27) is rewritten as a first-order differential
equation,

dΨ

dζ
= (2π)1/3

(
1 − Ψ 2)2/3

Ω1/3 . (5.1)

The shape is obtained from (4.33) and (5.1)

Φ = (2πΠ̃)1/2 1 − Ψ 2

Ω1/2 . (5.2)

Substituting (4.26) and (5.2) into (4.20), we obtain

4πC̃a ζ +
[
ln(1 − ζ 2) − 1

]
Ω ′(ζ ) +

∫ 1

−1

Ω ′(ξ) − Ω ′(ζ )

|ξ − ζ | dξ = Ω ′(ζ ) ln
ε2πΠ̃(1 − Ψ 2)

2Ω
,

(5.3)
where the prime denotes differentiation. The deformation problem is therefore governed
by the set (5.1) and (5.3).

Since Ψ (ζ ) is an odd function, Ω(ζ) must be even: see (4.27). We therefore solve only
for ζ > 0, replacing (5.3) by

Ω ′(ζ ) ln
ε2πΠ̃(1 − Ψ 2)

2Ω
− 4πC̃a ζ

=
[
ln(1 − ζ 2) − 1

]
Ω ′(ζ ) +

∫ 1

0

Ω ′(ξ) − Ω ′(ζ )

|ξ − ζ | dξ −
∫ 1

0

Ω ′(ξ) + Ω ′(ζ )

|ξ + ζ | dξ,

(5.4)

and adding the symmetry conditions

Ω ′(0) = 0, Ψ (0) = 0. (5.5a,b)

These are supplemented by the end condition,

Ψ (1) = 1, (5.6)

which follows from (4.4) and (5.2); the waist condition

Ω(0) = 2πΠ̃, (5.7)

which follows from (4.5) and (5.2); and the tip condition,

Ω(1) = 0, (5.8)

which constitutes the dimensionless version of (2.38).
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We note that (5.5a) is trivially satisfied by (5.4). Thus, (5.1) and (5.4) together with the
four conditions (5.5b)–(5.8) presumably provide a closed system for Ω(ζ) and Ψ (ζ ), in
which the dimensionless parameters C̃a and Π̃ are determined as part of the solution.
Conveniently, the above problem is independent of χ . Once the problem is solved, χ may
be determined from the relation

πΠ̃

∫ 1

0

(1 − Ψ 2)2

Ω
dζ = χ3

3
, (5.9)

which follows from (4.7) in conjunction with (5.2). The dimensionless capsule length and
capillary number corresponding to the chosen value of ε are then recovered from (4.6) and
(4.25), respectively.

We note that the reduced problem is independent of C . Once the problem is solved and
Π̃ is calculated, the value of C affects the core pressure Π , see (4.32). Otherwise, C does
not affect the capsule shape at the present leading-order approximation scheme.

6. Logarithmic approximation
Let us derive a ‘logarithmically accurate’ approximation by considering ln(2/ε2) as
being asymptotically large. The associated leading-order balance in (5.4) then takes place
between the two terms on the left-hand side. We can therefore make the leading-order
approximation

dΩ

dζ
≈ − 4πC̃a ζ

ln
(
2/ε2

) , (6.1)

where the symbol ‘≈’ is used to represent the ‘logarithmic’ approximation.
We can immediately integrate (6.1) and apply the tip condition (5.8) to get the leading-

order tension

Ω(ζ) ≈ 2πC̃a
(
1 − ζ 2)

ln
(
2/ε2

) , (6.2)

whereby condition (5.7) yields

Π̃ ≈ C̃a

ln
(
2/ε2

) . (6.3)

From (5.1) we then obtain the separable equation

Π̃1/3(
1 − Ψ 2

)2/3
dΨ

dζ
≈ 1(

1 − ζ 2
)1/3 , (6.4)

which may be immediately integrated to give

Π̃1/3Ψ 2 F1

(
1
2
,

2
3
,

3
2
; Ψ 2

)
≈ ζ 2 F1

(
1
3
,

1
2
,

3
2
; ζ 2

)
, (6.5)

in which 2 F1 is a hypergeometric function, and the integration constant vanishes because
of condition (5.5b).

Application of (5.6) gives

Π̃ ≈
[

2 F1 (1/3, 1/2, 3/2; 1)

2 F1 (1/2, 2/3, 3/2; 1)

]3

= π3/2 [
Γ (5/6)

]3

54
[
Γ (7/6)

]6 . (6.6)
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Figure 2. Logarithmic approximation: (a) universal shape, Φ versus ζ ; (b) physical shape in the (r/R, z/R)

coordinates for Ca = 5.

By expanding (6.5) near ζ = 1 and Ψ = 1 we obtain, using (6.6),

Ψ (ζ ) ∼ 1 − π3/2 [
Γ (7/6)

]3

2
[
Γ (5/6)

]6 (1 − ζ )2 as ζ ↗ 1. (6.7)

Given (6.6), the implicit relation (6.5) provides Ψ as a function of ζ , independent of ε.
Substituting (6.2) and (6.3) into (5.2) yields the shape

Φ = 1 − Ψ 2

(1 − ζ 2)1/2 . (6.8)

Note that (6.7) and (6.8) implies that Φ behaves like (1 − ζ )3/2 as ζ ↗ 1, consistently with
the assumption of a cusp. The universal shape, as obtained from substitution of (6.5) and
(6.6) into (6.8), is shown in figure 2(a).

The volume constraint (5.9) reads here∫ 1

0

(
1 − Ψ 2)2

1 − ζ 2 dζ = 2χ3

3
, (6.9)

independently of ε. Evaluation using the universal function provided by (6.5) and (6.6)
yields

χ = 0.8448 . . . . (6.10)

The capsule length is obtained from (4.6) as

L/R ≈ 1.1837ε−2/3, (6.11)

while evaluation of (6.6) gives

Π̃ = 0.2326 . . . . (6.12)

The capillary number is obtained from (4.25), which upon using (6.3), (6.10) and (6.12)
gives

Ca ≈ 0.2753 ε−2/3 ln
2
ε2 (6.13)

With the universal shape Φ(ζ) available, we may employ (4.1), (4.3) and (6.11) to plot
the ‘physical shape’ of the capsule on the length scale R for a given capillary number,
with the slenderness ε determined from (6.13). In figure 2(b) we plot that physical shape
for Ca = 5. The reference spherical shape is also shown.
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2
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4

L/R

5

6

7

100 101

Ca

Present approximation

Dodson & Dimitrakopoulos [15]

Dupont & Barthès-Biesel [36]

Figure 3. Normalised capsule length L/R as a function of Ca: solid, logarithmic approximation, (6.11) and
(6.13); squares, data set from Dodson III & Dimitrakopoulos (2009); diamonds, data set from Dupont &
Barthés-Biesel (2024).

In comparing our approximation with the existing literature we employ two sets of data
points, both obtained for the Skalak law (2.40) with C = 1. The first is obtained from
the numerical simulations of Dodson III & Dimitrakopoulos (2009). While these authors
consider planar hyperbolic flow, it is plausible that these results are quantitatively similar
to those of uniaxial flow; indeed, Hinch & Acrivos (1979) analysed bubble deformation in
planar flow by viewing it as a perturbation of the axisymmetric case. By interpolating from
figure 16 in Dodson III & Dimitrakopoulos (2009), we obtained values of L/R for the Ca
values 1, 1.5, 2 and 2.5; in addition, Dodson III & Dimitrakopoulos (2009) cite the value
L/R = 3.6 for Ca = 3. The second set was kindly provided by Dupont & Barthés-Biesel
(2024) who recently performed numerical simulations of the present problem. We used
their results for the Ca values 2, 3, 4 and 5. Note that the physical shape in figure 2(b) has
been portrayed for their maximal value of Ca.

The comparison is shown in figure 3 where the theoretical approximation for L/R
as a function of Ca is obtained from (6.11) and (6.13). Given the crude nature of the
logarithmic approximation and the rather modest Ca-values which have been employed in
the simulations, the agreement is gratifying.

7. Neo-Hookean membranes
The preceding analysis was carried out for an elastic membrane governed by the Skalak
constitutive description. In principle, it can be carried out for other elastic models,
provided the membrane reaches a steady state under large deformation.

In fact, the very possibility of steady state can be inferred from a scaling analysis akin to
that carried out in § 3. As an illustration, consider the neo-Hookean model (Barthès-Biesel
et al. 2002) where (2.40) is replaced by

τ1

G
= λ1

λ2
− 1
λ3

1λ
3
2
,

τ2

G
= λ2

λ1
− 1
λ3

1λ
3
2
. (7.1a,b)
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Making use of (3.5), we find that the stress estimates (3.6) are replaced by

τ1 � Gε, τ2 � Gε−1, (7.2a,b)

while the estimates (3.9) are replaced by

κ1τ1, κ2τ2 � GL−1. (7.3)

Since (3.11) still holds, we find using (7.2b) that (3.13a) is replaced by

ê2 · (∇s · Ts) � GL−1ε−1. (7.4)

Also, from (2.31) and (7.3) it follows that (3.13b) is replaced by

n̂ · (∇s · Ts) � GL−1. (7.5)

Thus, just like in the Skalak model, ê2 · (∇s · Ts) � n̂ · (∇s · Ts). Balancing (7.4) with
(3.14), the meridional balance (2.26) gives (cf. (3.15))

G

Lε
� μE

ε
. (7.6)

Making use of (2.1) and (3.4) we obtain the scaling

Ca � ε2/3, (7.7)

which contradicts (3.2). This indicates the impossibility of a steady slender shape. Our
conclusion is compatible with the numerical simulations of Barthès-Biesel et al. (2002),
who observed that a neo-Hookean capsule stretches indefinitely in an elongational flow.

The key to a possible slender limit is the need for the elastic stresses to increase
sufficiently fast with diminishing ε so as to overcome the viscous stress that grows as ε−1,
see (3.14). For a given reference radius R, the meridional components of ∇s · Ts increases
with diminishing ε in both the Skalak and neo-Hookean models, but at quite different
rates. In the Skalak model, it scales as ε−5/3 (recall (3.4) and (3.13a)), thus giving rise to
the scaling relation (3.16) which is compatible with (3.2). In the neo-Hookean model, it
scales as ε−1/3 (see (3.4) and (7.4)); since the modest growth rate with diminishing ε does
not overcome that in (3.14), the resulting scaling (7.7) is incompatible with the slenderness
assumption (3.2).

The scaling analyses in the present paper thus provide a rigorous manner to discriminate
between strain-softening and strain-hardening models.

8. Discussion
Using slender-body approximations, we derived a reduced model governing the
deformation of an elastic capsule in a strong hyperbolic straining flow. The asymptotic
description consists of the integral equation (5.3) and the first-order differential equation
(5.1). The former may be considered as an equation governing the tension Ω; the latter
as an equation governing the mapping Ψ relating the reference and present membrane
geometries. Interpreting these equations as two first-order ordinary differential equations,
their solution introduces two integration constants. Since these equations also involve the
two unknown parameters C̃a and Π̃ , four auxiliary conditions are required. These are
provided by (5.5b)–(5.8). Of the original six conditions, (5.5a) is trivially satisfied while
the two conditions Φ(1) = 0 and Ψ (1) = 1 are not independent because of (5.2).

It is important to emphasise, however, that all the original six conditions are required
when ε is not small. This is compatible with the effective reduction of order that
takes place in the limit ε → 0. Indeed, with κ2 algebraically small compared with κ1
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(recall (4.10)), the second derivative of Φ does not appear in the reduced problem. The
reduction of order suggests that the scale disparity (3.8) should fail in a neighbourhood
of the capsule tips, where the highest-derivative term in κ2 must come into play. For the
case of an inviscid bubble, Buckmaster (1972) speculates that slender-body theory breaks
down in a region near the tips that is exponentially small in ε, and the same may be true in
our case. It is also possible that our approximation becomes non-uniform near the equator,
where the assumption of strong flow breaks down (Acrivos & Lo 1978).

The end goal of our contribution has been the calculation of the capsule deformation,
and in particular its lumped description by the scalar quantities ε and L/R. Our analysis
has additionally provided asymptotic information on the elastic stress system created by the
imposed elongation. We here wish to address two aspects of that system, both associated
with the parameter C , as given by (2.41).

The first has to do with the possibility of buckling. If the azimuthal stress is compressive
(τ1 < 0) the axisymmetric shape may become unstable, resulting in a cross-sectional
buckling. This symmetry breaking cannot be captured by (numerical or asymptotic)
models that are predicated upon axial symmetry. In the present asymptotic description,
τ1 is given by (4.13a), representing a situation where the first term on the right-hand side
of (2.40a) is subdominant. While C is strictly > −1/2, it is universally considered non-
negative in the literature. (For example, Barthès-Biesel et al. (2002) considered the C
values 0, 1, 10 and 100.) With (4.13a) being non-negative for C � 0, our axisymmetric
profiles are stable. This observation agrees with the (fully three-dimensional) numerical
simulations of Dupont & Barthés-Biesel (2024), carried out for C = 1, which predict
buckling only for small values of Ca.

The second observation has to do with the limit of large C . The terms proportional to
C in (2.40) are associated with resistance to area dilatation. Indeed, nearly inextensible
membranes (e.g. lipid bilayers) have been analysed in the literature assuming C � 1
(Skalak et al. 1973). It may appear as though the limit C � 1 in the present description
merely results in a core pressure that is much larger than ε−2/3 (recall (4.32)). However,
the underlying approximation (4.12b) breaks down for C = O(ε−4/3), when the second
term on the right-hand side of (2.40b) is no longer subdominant.

9. Concluding remarks
We have addressed the deformation of a Skalak capsule under strong uniaxial elongation.
The desire to employ slender-body theory has been impeded by two obstacles. The first
is that the slender geometry, and in particular the slenderness ε, is unknown to begin
with. This obstacle is quite familiar from classical analyses of deformable bubbles in
such flows (Buckmaster 1972, 1973; Acrivos & Lo 1978; Sherwood 1981) as well as
comparable investigations of both hydrostatic (Sherwood 1991; Stone, Lister & Brenner
1999; Rhodes & Yariv 2010) and hydrodynamic (Dubash & Mestel 2007; Yariv & Rhodes
2013) deformations under an electric field. It is handled by temporarily considering the
shape to be known. The second obstacle, unique to membrane deformation, has to do
with the intrinsic conflict between Lagrangian and Eulerian descriptions. In the present
contribution, it was tackled via the use of the inverse of the standard mapping from the
reference state.

The slender-body ansatz allows us to obtain elementary approximations for the elastic
stresses in the membrane. Making use of the paradigm of Keller & Rubinow (1976), it
also provides closed-form approximations for the hydrodynamic stresses. This approach
eventually results in a reduced problem, consisting of (5.1) and (5.4) and conditions
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(5.5b)–(5.8), governing two functions of the axial coordinate. The first is the net cross-
sectional tension; the second is the above-mentioned inverse map. The asymptotic error in
the reduced problem is algebraically small in ε (and therefore also in Ca). In solving it,
however, we have eventually resorted to a ‘logarithmic’ approximation, neglecting terms
of order 1/ ln ε. The shape prediction of the resulting closed-form solution is in surprising
agreement with numerical results in the literature, obtained at rather mild values of the
capillary number.

It would be of interest to solve the reduced problem numerically (Tornberg & Shelley
2004) and compare the results, where the asymptotic error is ensured to be algebraically
small, to the logarithmic approximation derived herein. Another natural direction is
motivated by the experimental observation of capsule breakup in strong flows (Barthés-
Biesel 1991): for a given lytic tension, one could use the asymptotic results in the
present contribution as a basis for rupture prediction (Dodson III & Dimitrakopoulos
2009), possibly allowing the identification of a critical capillary number. Also, given the
instabilities that are encountered in numerical simulations, is is desirable to use the steady
shape identified in the present contribution as a basis for a stability calculation, possibly
allowing the identification of a critical capillary number.

Otherwise, future extensions of the present work fall into three categories. The first
involves the limit of large capillary numbers with nearly inextensible membranes. As
observed in § 8, our asymptotic analysis breaks down when C becomes comparable to
ε−4/3. Assuming that the scaling (3.16) is retained, this suggests the analysis of the
distinguished limit where Ca and C are large with C1/2/Ca fixed.

The second category entails the same flow problem with a more sophisticated membrane
model (Barthés-Biesel 2016). Perhaps the most important modification is the introduction
of a small resistance to bending which necessarily follows from the small but finite
membrane thickness. This modification is expected to be significant near the tips, where it
excludes the possibility of cusped ends.

The third category involves the consideration of different ambient flows. Perhaps the
most important direction in that category is the consideration of planar extensional flow.
This flow has been ubiquitous in theoretical analysis (Dodson III & Dimitrakopoulos
2009), perhaps because of the feasibility of simple experimental realisation via a four-
roller mill set-up (Bentley & Leal 1986). Since it results in a steady state, it is simpler
to analyse than, say, shear flow. Nonetheless, the resulting problem is more challenging
than the present one as it does not possess axial symmetry. In particular, the cross-
sectional shape is not circular. This requires a more sophisticated use of slender-body
theory (Batchelor 1970; Borker & Koch 2019).
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