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Abstract

The optimality of dualities on a quasivariety #/, generated by a finite algebra M, has been introduced by
Davey and Priestley in the 1990s. Since every optimal duality is determined by a transversal of a certain
family of subsets of Q, where Q is a given set of relations yielding a duality on &/, an understanding
of the structures of these subsets—known as globally minimal failsets—was required. A complete
description of globally minimal failsets which do not contain partial endomorphisms has recently been
given by the author and H. A. Priestley. Here we are concerned with globally minimal failsets containing
endomorphisms. We aim to explain what seems to be a pattern in the way endomorphisms belong to
these failsets. This paper also gives a complete description of globally minimal failsets whose minimal
elements are automorphisms, when M is a subdirectly irreducible lattice-structured algebra.
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1. Introduction

A general theory of natural dualities started to emerge within universal algebra in the
mid 1970s and since then it has been rapidly developed. The primary aim of this
theory is to obtain a representation of the algebras in a quasivariety &/ generated by
an algebra M, as algebras of continuous structure-preserving maps into a convenient
structure M on the underlying set M of M. A natural duality for si gives us a uniform
method to get such a representation for each one of the elements of s/, in which case
we say that the structure M dualises M. (We refer to [1] for developments and basic
facts of the theory.) The optimality of dualities on a quasivariety s/ = ISP(M),
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270 M. J. Saramago [2]

where M is a finite algebra, has firstly been investigated by Davey and Priestley (see
[3,4]). Relative to a given set J2 of relations yielding a duality, they characterized the
optimal dualities as the dualities determined by the transversals of a certain family of
subsets of £2. However the structure of these subsets—known as globally minimal
failsets—remained to be understood. The development of the theory presented in [4]
progressed, symbiotically, alongside computer calculations of the globally minimal
failsets relative to §(M2) for particular distributive-lattice-ordered algebras M. In
spite of the limitations on the size of examples that can be handled, the computer-
generated results suggest some common characteristics of these failsets. Somehow
this has showed us which direction to take in order to get a structural description of
globally minimal failsets in the case that §(M2) dualises M, as it does whenever M has
a definable lattice structure. To concentrate on analysing the globally minimal failsets
that do not contain any partial endomorphism of M—called pe-free globally minimal
failsets— seemed to be a natural first step. In [9] a complete description of pe-free
globally minimal failsets is given, for the special cases where condition (H) holds. This
condition states that the elements of the duals D(r), with r e §(M2), are composites
of the restrictions p, to r of the projection maps with partial endomorphisms of M.
Following the work presented in [9], now we focus on globally minimal failsets that
contain partial endomorphisms. Among the examples we know, there are globally
minimal failsets whose minimal elements are exclusively endomorphisms and the
converses of their graphs. This makes us think that we should start to understand
first the structure of these particular ones. In certain cases the endomorphisms are
automorphisms living outside the same maximal subgroup of the group AutM of
automorphisms of M. The structure of these failsets is described here in Section 3.
In case M is a subdirectly irreducible lattice-structured algebra, as it happens to be
in many of the examples we know, we prove that the set of minimal elements of
any globally minimal failset, whose minimal elements are automorphisms, is the
complement of a maximal proper subgroup of Aut M; conversely, the complement of
each maximal proper subgroup of AutM is the set of minimal elements of one such
globally minimal failset. In Section 4, under the assumption that M is a subdirectly
irreducible lattice-structured algebra, we prove that these globally minimal failsets
are exactly those that contain automorphisms among their minimal elements. So we
concentrate on aut-free globally minimal failsets, that is, globally minimal failsets that
do not intersect Aut M but whose minimal elements are endomorphisms and converses
of their graphs. As expected, their structure is not so easy to describe as the structure
of globally minimal failsets described in [9]; it depends on the covers [a, b]K of the
intersection of the kernels of endomorphisms of M outside AutM. We show that the
aut-free globally minimal failsets are unions of sets, each of them depending on one
of the endomorphisms that separate a and b and belong to a given generating set of
the monoid End M of endomorphisms of M.
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2. Preliminaries

Throughout the paper we assume that M is a given finite algebra of type F, and we
take si = 0SP(M) to be the quasi variety generated by M; in the examples we refer
to, si = D§P(M) is often a variety.

An n-ary relation s on M is called algebraic if s is a subalgebra of the direct
power M"; we write s when we want to think of s as a member of si. For a given
set R of algebraic relations on M, define M := (M;R, x) to be the topological
relational structure on the underlying set M of M in which r is the discrete topology.
Let 5E = 0§cP(M) be the category in which objects are all isomorphic copies of
closed substructures of powers of M and in which morphisms are the continuous
R-preserving maps. Then we consider the horn functors D = &/(—, M) : si —> 3C
and E = &(-, M) : SC ->• si. The dual space D(A) of each A e si belongs to
X = D§ciP(M), and therefore its topology is induced by the topology of M and its
structure is given by the set of the pointwise-defined relations on D(A): if r e R is an
n-ary relation, then (xu . . . ,xn) e r on D(A) if and only if (x\(a),... ,xn(a)) e r,
for all a e A. We say that M (or, alternatively, R) yields a (natural) duality on M (or
dualises M) if every A e s/ is isomorphic to its second dual ED (A). This setting
is less general than that treated in [5], where operations (total or partial) are included
in the dualising structure as well relations. Here we encompass n-ary operations
by including in R their graphs (which are subalgebras of Mn+1); this is admissible
because we consider dualities, rather than strong dualities (see [1, pages 40-41, 63]).
It allows us, in particular, to treat as interchangeable any partial endomorphism n of
M and the associated binary relation graph h.

In this work we are concerned only with cases where a duality is known to exist.
This occurs in particular if M has a (k + l)-ary near-unanimity term, with k ^ 2,
and then M = (M; §(M*), x) yields a duality on s/. This very useful result, the
NU-Duality Theorem, is due to Davey and Werner (see [1, 5]); it applies in particular
whenever M has an underlying lattice structure and in that case asserts that §(M2)
dualises M. The NU-Duality Theorem is a valuable existence theorem for dualities.
However, even when k = 2 and M is small, it supplies dualities which, except in
the simplest cases, contain extremely large numbers of relations, and such dualities
are obviously of little practical use. It is therefore natural to ask how a duality based
on some given dualising set fi might be simplified by deleting superfluous relations.
In fact, we would like to know how to get a subset R of Q that yields an optimal
duality on M, in the sense that R yields a duality on M but no proper subset of R
does so. The characterization of all the subsets of a given dualising set which yield
optimal dualities on M is one of central problems in the natural duality theory. The
solution of this problem relies on the analysis of entailment: a subset R of (Jn>i §(M")
entails a relation r (in symbols, R h r) if, for every A e s/, every continuous map
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<p : £>(A) -» M which preserves every relation in R also preserves r. Locally, for a
fixed s € &/, we say that R entails r (on D(s)) if every continuous /?-preserving map
<p : D(s) -> M also preserves r. If R dualises M and r e R is entailed by R\{r], then
we may delete r from R and we still have a duality on M, given by R\[r}. Hence it
was important for the relations entailed by R to be described intrinsically. This was
achieved by Davey, Haviar and Priestley in [2]. A key tool in this work is the Test
Algebra Lemma, which shows that entailment is a local matter.

LEMMA 2.1 (Test Algebra Lemma, [4, 2.4]). Let £2 = \Jn>l §(M"). For every
R C Q and s e Q, we have that R entails s if and only if R entails s on D(s).

Let Q c | J B > I §(M") be a fixed set of algebraic relations on M. For every r e Q
and every map u : D(r) -> M, define

U = Failr(«) := {s e £2 | u fails to preserve 5};

the set U is called a failset of r (within Q.) if it contains r and it is called a failset
whenever it is a failset of some s e U.

Let R c Q and r e Q. Observe that if R entails r and U is a failset of r then
U is a failset of some s e R. The map R h-> 7? := [r e £2 | /? h r} is a closure
operator, referred to as entailment closure. From the definition, it is immediate that
the complement of Failr(M) is closed in Q, for every map u : D(r) -> M [4, 3.1].
There are various ways of building relations which are entailed by a given subset R
of Q. Next we list the constructs we need for this work. They are particular cases of
some of the available constructs presented in [2], with n = 2.

Trivial relations. Construct two trivial relations AM:— {(c, c) \ c e M} and M2.

Converse. From a binary relation r construct r~ = {(c, d) e M2 | (d, c) e r}.

Intersection. From binary relations r and s, construct r D s.

Product. From NX,N2^M construct iVi xJV2.

Domains. From a partial endomorphism e : N —> M, construct the domain, dom e,
of e.

Action by partial endomorphisms. From r c M2 and a partial endomorphism
e : N —> M, with N < M, construct

e • r := {(c,, c2) € A/2 | c, e N and (e(c,), c2) e r).

If r is the graph of an endomorphism, then e • r is the composition of e and r qua
maps, with e done first, that is r o c. In case r is unary we define the action of e on r
to be the natural analogue of this, namely

e - ' ( r ) := { c e N I e(c) 6 r}.
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In case r is binary and e, f are partial endomorphisms, note that

( e x / ) " ' ( r ) := {(c, d) e d o m e x d o m / | {e{c),f{d)) e r]

is (f • ((e • r)~))~ and so it is an available construct. In particular, if e, f e AutM
then (e x /)(/•) = (e~x x Z"1)"1^) is a n available construct. We often denote by
ker(e,/) the set (e xfyl(AM) and by e{r) the set (e x e)(r), where e e AutM.

For a given dualising set Q of algebraic relations on M, let R c £2 yield an optimal
duality on M. For every r e R, we have that R\{r] does not entail r, that is, by
the Test Algebra Lemma, R\[r} does not entail r on D(r), and so there exists a map
u : D(r) ->• M such that the set Failr(«) contains r but does not intersect /?\{r}.
Hence, for every r e R, there exists a minimal failset Failr(«) of r such that r is the
unique element of R in Failr(M>. Let U c £2 be a failset. We say that £/ is a minimal
failset of r if U is a minimal element of the set of all failsets of r. If U is also a
minimal element of the set of all failsets, then U is called a globally minimal failset.
(Subsets of £2 are always ordered by inclusion.)

The following results are Corollary 3.6 and part of Theorem 3.14 of [4].

PROPOSITION 2.2. Let s e SI. Let U = Failr(w) be a failset containing s. Then
there is a minimal failset Us ofs with Us C (/.

THEOREM 2.3. Let0 ^ U ££l. Then the following are equivalent:

(a) U is a globally minimal failset;
(b) U is a minimal failset of r for all r € U.

In [4], Davey and Priestley demonstrated how optimal dualities are obtained from
the globally minimal failsets. Let <S be the family of all globally minimal failsets
within Q and let T be a subset of £2. The set T is called a transversal of & if T
intersects each U € & but no proper subset of T does. The next theorem is part of
Theorem 4.4 (the Optimal Duality Theorem) of [4].

THEOREM 2.4. Assume that Q is finite and yields a duality on 0SP(M). Then the
following are equivalent:

(a) R C Q yields an optimal duality on M;
(b) R is a transversal of the globally minimal failsets in £2.

Thus, when Q is finite and yields a duality on M, in order to obtain the optimal
dualities on #/ we start by determining the globally minimal failsets and then take the
transversals of <S. For further details see [4] and [1].

Onwards we assume that Q = §(M2) yields a duality on M. Given a failset U, we
denote by Umn the set of minimal elements of U.
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3. Globally minimal failsets with automorphisms as minimal elements

In the examples of globally minimal failsets within §(M2) that we already know, we
almost always find globally minimal failsets for which the set of minimal elements
is the complement of a maximal proper subgroup of AutM. That is the case of
M = Pm n, the distributive double p-algebra given by the ordinal sum of the m-atom
Boolean lattice and the n-atom Boolean lattice, presented in [7], or of M being the
four-element generating algebra of the variety of de Morgan algebras, presented in [9,
Section 6], or even of the non-distributive cases presented in [10, Chapter 2], such as
the diamond M3 and the modular ortholattice MO4. In this section we present some
general results that explain these particular cases.

The first result we present gives us a necessary condition on a map u : EndM —>• M
for Failg(«) to be a failset of g e Aut M whose minimal elements are automorphisms.
Observe that the relations r in such a failset must contain the graph of some automor-
phism and r e Fai\g(u) must be witnessed by a pair of automorphisms of M. So they
are neither graphs of proper partial endomorphisms of M nor graphs of endomorphisms
in EndM\ AutM.

In case End M ^ Aut M, we denote by K the following congruence relation on M

p|(ker/ | / e EndM\ AutM).

PROPOSITION 3.1. Let u : EndM -> M be a map such that Fai\g(u) is a failset of
g e AutM whose minimal elements are automorphisms ofM. If EndM ^ AutM
then, for every x, y e AutM, (u(x), y^iuiy ox)) e K; consequently K

PROOF. Take x,y e AutM and let / € EndM\AutM. Since / , / o y"1 i
i/), we have that/ (u(x)) = u(f ox) = u(f oy~] oyox) = (f oy~')(M(y ox)),

and so (u(x),y~i(u(y ox)) e ker / . In particular, for y = gand* € AutMsuchthat
(x, g ox) witnesses g e Fail^(«), we have that (u(x), g~l(u(g ox))) e K\ A M . •

Now take U to be a globally minimal failset and suppose that the set UmiB of minimal
elements of U is a set of automorphisms of M.

Let [a, b] denote the subalgebra of M2 generated by AM U{(a, b)}, where (a, b) e
M2. Recall that, given x e AutM, we denote (x x x)([a, b\) by x([a, b]).

PROPOSITION 3.2. There exists a map u : EndM -> M such that U = Failg(u),for
some g e U, and for every x, y e Aut M

u(y)^(yox-l)(u(x)) => [*-'(«(*)), y~\u(y))] >AM .

PROOF. Take g e Umin and take u : EndM —> M to be a map such that U =
Fail^u). Let x, y e AutM satisfy (u(x), u(y)) £ g', where g' := y o r ' . Take

https://doi.org/10.1017/S1446788700013628 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013628


[7] The role of endomorphisms 275

a' = x-l(u(x)) and V = y~\u(y)). Note that [a1, b'] >AM because y(a') 56 y{b').
Suppose that [a',b'] does not cover A^- There exists (a*,b*) e M2 such that
[a',b'] > [a',b*] >AM. Since (a*,b*) e [a',b'] there exist an m-ary term t of
type F and (au b\), ... (am, bm) e M2, with either a, = bt or (a,-, bt) = (a', b'), for
1 € ( 1 , . . . , m), such that

(a*, b') = tM\(au b{),..., (am, bm)) = {tM(ax am), tM(bu . . . , bm)).

Define a map a : M -> M by a(c) = tM(cu ... , cm), where

I a, if a, = be,

c otherwise.

Now define a map u : End M ->• M as follows

v(z) = lz(a(c)) otherwise, where c = z («(z)).

Note that (v(x), v(y)) = (x(a(a')), y(a(b'))) = (x(a*), y(b*)) i g'. Hence Fallow)
is a failset of g'. Observe that for every z e Aut M and every / e End M\ Aut M, we
have that/ ozox~l,f ^ (/and then

u(f oz) = (f oz «- ' )(««) = (f o

and u(f o z) — /(«(z))- Hence (c, a') € ker(/ o z), where c = z"'("(z))- So
(a(c), a(a')) e ker(/ o z) and consequently

v(f oZ) = (f oZ)(a(a')) = (f oz)(a(c)) =/(u(z)).

ThusFailg-(u)nEndM c AutM. Now let i e Failg'(i)). We want to prove that s e U.
There exists', y' e AutM such that (x', y') e s and (v(x'), v(y')) <£ s. Observe that

= (x'(tM(cu . . . , cm)), y'(tM(du . . . , dm)))

- (rM(^'(c,) x ' { c m ) ) , tM{y'{d,), . . . . y

= tM\(x'(Cl), y'(d,)), . . . , (x'(cm), y'(rfm)))

with x'(c) = M(JC') and y'(d) = u(y') and either c, = d, = a, = bt or (c,, d,-) —
(c,d). Since (V(A;'), v(y')) i •*, we must have (x'(Q), y'(dt)) £ s, for some
i ' e ( l m). Note also that (JC', y') e 5 implies that (JC'(C,), y'(rf,-)) e s when-
ever c, = dt. Thus we have (JC'(C), y'{d)) i s, that is, (M(^'), «(y')) ^ *• Now, by the
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minimality of U as a failset of g', we have that U = Fail^Cu). Moreover, for every
z,w e AutM, we have that

and consequently, if [z~'(«(z))> w~l(u(w))] >hM then either

or

We may go on constructing maps v until we get [x~l(v(x)), y'^viy))] vAw for
every x, y e AutM such that v(y) ^ (y ox'^ivix)). D

COROLLARY 3.3. There exist a map u : EndM -* M and g e U such that
U = Failg(M), u(g) ^ g{u(\AM)) and for every x, y € AutM

u(y) * (y o*-')(«(*)) = > [jc-'d*^)), v-'(M(y))] >AW .

PROOF. By the previous proposition, we may take a map u : EndM -> M and
g e U to satisfy U = Fail?(w) and for every x, y € AutM

If u(g) = ^(w(idw) then we define a map v : EndM —> M by u(x) = M(J: O Z), where
zisafixedautomorphismofMsatisfying«(^oz) 9̂  g(u(z))- Then u(^)
and U = Failg(u). Moreover, we still have that for every J:, y G AutM

because z([a, fc]) ̂ A w whenever [a, fe] ̂ Aw. •

Let u : EndM —> M be a map and let g e Umn such that the conditions of
Corollary 3.3 hold.

If the algebra M has a definable lattice structure then the covers of AM in §(M2),
and in particular the covers [X~'(M(A;)), y~\u(y))], are of the form [c, c~] or [c~, c],
for c 6 ^f(M), where ^/(M.) is the set of join-irreducible elements of (M; v, A) and
c~ denotes the unique element in M covered by c (see [6], Proposition 1.6). Next we
see how this lemma allows us to restrict the possible choices of u.

Suppose that M is a lattice-structured algebra. By Lemma 1.5 of [6], there exists
c e ^ ( M ) such that ((H(idM), £-'(«(£))) A (c, c)) v (c~, c~) 6 {(c, c~), (c", c)}
and so [M(idw), g~l(u(g))] e {[c, c~], [c~, c]}.
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[9] The role of endomorphisms 277

Define a map u' : EndM —> M by u'(x) = (u(x) Ax(c)) V x(c~). We claim that

f/ = Failg(M')- Note that

(u'(idM), u'(g)) = ((u(idM) A c) v c~, (u(g) A g(c)) v g ( O )

= ((«(idM) A c) V c~, g((£-'(w(s)) A c) V c-))

e {(c, g(c~)), (<T, g(c))}

and hence u'(g) ^ g(«'(idM))- Then Failg(w') is a failset of #. Take J 6 Failg(u').
There exists, y e EndM such that (x, y) e s and (u'(x), u'(y)) £ s. Since

' ' A (x(c), y(c))) V (x (O

and (jr(c), y(c)), (J : (C") , y(c")) 6 J , we must have that (u(x), u(y)) £ s and so
s e U. Thus Fail^(«') c U and, by the minimality of U, we get U = Failg(w')-

Letj: e AutM. Then either

x~\u(x)) A c = c and so u'(x) = x((x~\u(x)) A c) V c~) — x(c), or

x~l(u(x)) Ac ^ c~ and so M'(JC) ^ ^ ( ( ^ " ' ( M C X ) ) A C) V c~) = AC(C~).

Moreover, note that u(x) = ;c(H(idM)) implies u'(x) — X{
Also observe that in case EndM ^ AutM, we must impose (c, c~) 6 K, by

Proposition 3.1.
Thus we have just proved the following result.

PROPOSITION 3.4. Let U be a globally minimal failset whose minimal elements
are automorphisms. / / M is a lattice-structured algebra, then there exist a map
u : EndM -> M and a,b e M such that the following conditions hold:

(a) U = Failg(u), for some g e £/„„„;
(b) «(idM) = a, u(g) = g{b);
(c) Wxe Un,n,u(x)e{x(a),x(b)};
(d) (a, b) 6 K, [a, b] >AM and either a € ^ / (M) , with b = a', or b € ^ / ( M ) ,

with a = b~~'.

Take a map M : EndM —• M and a,b e M to satisfy the conditions of Proposi-
tion 3.4, and define a map v : EndM -> M by u(x) = M(JC O g). Observe that U is
Failgi (u) and the following conditions hold:

(a) v(idtf) = g( i) and u(g->) = a = g-l(g(a));

(b) [a, &] ̂ A M 4 te(a), «(*)] >AM;
(c) g preserves join-irreducible elements of M and (g(c))~ = g(c~), for every

(d) g preserves K .
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We may now reformulate Proposition 3.4 as presented below.

PROPOSITION 3.5. Let U be a globally minimal failset whose minimal elements
are automorphisms. If M is a lattice-structured algebra, then there exist a map
u : EndM —> M and a e Jf(M) such that the following conditions hold:

(a) U = Failj(w), for some g e Umai
(b) u(idM) = a, u(g) = a~;
(c) Vx e 6U, u(x) e {x(a),x(a-)};
(d) (a, a~) € K and [a, a~] >-A«.

The next result tells us that the failsets Fail^(«) only depend on the set of automor-
phisms x of M on which u does not take the value x(u(idM)), and on the cover [a, b]
of AM we choose; it does not depend on the pair (a', b') we take among those that
generate [a, b].

PROPOSITION 3.6. Let u : EndM -+ M be a map such that Failg(«) is a failset of
g e Aut M and suppose that there exist a, b e M such that u(x) e {x(a),x(b)},for
every x € EndM. For every a', V € M, if [a', V] = [a, b] then Fail?(u) = Fail^u'),
where u' : End M —> M is the map defined by

\x(a') ifu(x)=x(a);

[(&') otherwise.

PROOF. Let s be a binary algebraic relation on M. For every x, y e EndM, we
have that

(x,y) 6 sA(x(a),y(b)) i s

A M c (x x yy
l(s) A (a, b)t(xx y)-'(5)

AWC (X x v)-'(5) A [a1, b'] = [a, b] <£ (x x yy
l(s)

A w c (x x v)"1^) A (a1, b') i(xx y)-\s)

(x,y)esA(x(a'),y(b'))ts.

Therefore, (x, y) witnesses s 6 Failx(«) if and only if (x, y) witnesses s € Failj(«')-
Thus Failg(«) = Fail^w')- •

The number of atoms in the lattice of congruences on M, Con M, is equal to the
number of sets [[a, a~], [a~, a]}, where a e ^/(M) and [a, a~] >AM in §(M2) (see
[6, Proposition 1.9]). Thus, the number of choices of maps u is as big as the number of
atoms of Con M contained in K if End M ^ Aut M, and the number of atoms of Con M
otherwise. Naturally, the simplest situation we may consider is when the congruence
lattice has only one atom, that is, when M is subdirectly irreducible. Besides, this is
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also the case for many of the globally minimal failsets we know, among which there
are those we mention at the beginning of this section.

Henceforward we consider that M is a subdirectly irreducible lattice-structured
algebra. Consequently, the trivial relation Aw has at most two covers [a, a~], [a~, a]
in §(M2), given by a non-zero join-irreducible element a of M. We also assume that, in
case EndM ^ AutM, the congruence K is not AM since this is a necessary condition
for having a globally minimal failset whose minimal elements are automorphisms,
according to Proposition 3.1.

We show that every maximal proper subgroup of AutM determines a globally
minimal failset and, besides these, there are no other globally minimal failsets whose
minimal elements are automorphisms.

The case [a, a~] = [a~, a]. We first consider that AM has a unique cover in §(M2),
that is, [a, a~] = [a~, a]. Therefore every automorphism g of M has a unique cover
[g U {(a, g(a~))}]. If, for every proper subgroup H of AutM, we could define a
failset Failg(w) whose minimal elements were the automorphisms not contained in
H, in such a way that their covers would be preserved by the map u, then we would
expect that the globally minimal failsets were exactly the complements in AutM of
the maximal proper subgroups of AutM.

PROPOSITION 3.7. Let H be a maximal proper subgroup of AutM. Then the set
AutM\// is a globally minimal failset.

PROOF. Define a map u : EndM —*• M by

I x(a) if x i AutM or x e H;

x{a ) otherwise.

Let g e AutM\//. The pair (idM, g) witnesses g e Failg(M). We claim that this
failset of g is AutM\//. Take s e Failg(u). Notice that if EndM ^ AutM then
f (a) = f (a~), for every / 6 EndM\ AutM. Hence there exist x, y e AutM such
that (x, y) e s and either (x(a), y(a~)) ^ j o r (x(a~), y(a)) ^ s. Then (a, a~) £
(x x y)"1^) since AMC (x x y)"'(j) and [a, a~] = [a~, a]. Consequently we must
have (x x y)~'(5) =AM and therefore s = y ox'1 £ H. Thus Fail^(«) = AutM\//
and, by the maximality of H as a proper subgroup of AutM, we have that the failset
AutM\// is indeed a globally minimal failset. •

PROPOSITION 3.8. Let U be a globally minimal failset whose minimal elements are
automorphisms. Then U = £/„„„ and the subgroup AutM\£/ is a maximal proper
subgroup of AutM.
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PROOF. Take H to be a maximal proper subgroup of Aut M containing the proper
subgroup AutM\ £/„„„. By the last result, A u t M \ / / is a globally minimal failset and,
since it is contained in {/„„„, we necessarily have that U = AutM\W = Umn- d

Thus the following theorem comes immediately.

THEOREM 3.9. If AM has a unique cover in §(M2), then there are globally min-
imal failsets whose minimal elements are automorphisms and they are precisely the
complements in Aut M of maximal proper subgroups of Aut M.

The case [a, a"] ^ [a~, a]. Next we consider the case [a, a~] ^ [a~, a]. Notice
that two situations may occur. Either [a,a~\ is preserved by every x e AutM, or
x([a, a~]) = [a~, a], for some x e AutM.

Denote by Saa- the set of subalgebras of M2 whose intersection with [a, a~] is AM

and denote by Sa-a the set of subalgebras of M2 whose intersection with [a', a] i
AM. Note that Sa-a is precisely the set of algebras s~, where s e Sflfl-, and Aw i
the smallest subalgebra of M2 in Saa- U Sa-a. It follows from the proposition belo'
that idM is the unique automorphism whose graph is contained in a subalgebra (

PROPOSITION 3.10. Let s be a subalgebra ofM2 and suppose that AWC s but
(a, a~) £ s. Then idw is the unique automorphism whose graph is contained in s.

PROOF. Let / e AutM and suppose that graph/ c s. Note that / = idw if
/ (c) = c, for every c e , / (M) . Let c € , / (M)- If / (c) ^ c then c and / (c) are
non-comparable (see [6, Propositions 1.1-1.2]). But then we have (c,f (c) A c) =
(c,/(c))A(c, c) e sand(c, <r) = (C, /(C)AC)V(C~, C~) e s(recallthat/(c)Ac < c
implies/ (c) A C ̂  c~). Similarly, we also have that (c~, c) e 5 since c and/"'(c)
are non-comparable and (f~l(c), c) e s. Observe that both [c, c~], [c~, c] properly
contain AM and they are both contained in s. Also (a,a~) e [c, c~] if and only if
(a", a) € [c~, c]. Then (a, a~) e s and we get a contradiction. •

For every proper subgroup H of AutM, denote by U™ the set

((x x y)(r), ((x x y)(r)) ~ (x e H A y € AutM\f/A r e Saa- /,

and by Ufi~" the set

[{x x y)(r), {{x x y)(r)y \x e H A y e AutM\H A r € Sa-a).

Next we prove that the sets U™~ and Ufi" are failsets of its minimal elements: the
automorphisms that do not belong to H.
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PROPOSITION 3.11. Let H be a proper subgroup o/AutM and let g e AutM\//.
Then the sets U™ and U^ " are respectively the failsets of g: Fail4(«„„-), where
uaa- : EndM -*• M is the map defined by

\x(a~) if x e AutM\tf;
Uaa-(X) = \

\x(a) otherwise,

andFailg(ua-a), where ua-a : EndM -> M is the map defined by

t x ix(a) if x eAutM\H;

\x(a ) otherwise.

PROOF. Clearly Fails(«aa-) is a failset of g. Take r e Saa- and take x e H and
y € AutM\//. Then {x, y) witnesses (x x y)(r) e Fai\g(uaa-) because (a, a~) £ r.
Recall that a failset contains a relation s if and only if it contains 5", and there-
fore (JC x y)(r), ((x x y)(r))^ € FaU,(«„-)• Thus Ua

H
a~ c Failx(M(Jfl-). Now

take 5 € Fail?(«„„-)• Then there exist x.y e EndM such that (x,y) e s and
(«fla-(x), MOfl-(y)) i s. Since s € f/°fl" if and only if s~ e t/^fl", we may as-
sume that (uaa-(x),uaa-(y)) = (x(a), y(a~)). Then x e H , y e AutM\//
(recall that (a, a") e /c in case EndM ^ AutM) and (a, a~) ^ (x x y)"1^)-
Since (x x y)"'(s) e 5aa-, we have s - (x x y)((x x y)"1^)) € t/^" • T h u s

Iff = Faa,(«M-)- Q

PROPOSITION 3.12. Lef H be a proper subgroup of AutM. // £/ is a globally
minimal failset contained in one of the failsets U™ and £/# ", then U^n is a subset
of AutM\H; in case H is a maximal proper subgroup of AutM, we have that
Unit = AutM\//.

PROOF. Let U be a globally minimal failset and suppose U c U™~. Take x e H,
y e AutM\// and r e 5ao- such that (x x y)(r) e (/. By Proposition 3.10, idw is the
unique automorphism whose graph is contained in r. But then r ̂  £/£" and thereby
r ^ (/. It follows that y e U because x £ U. Hence graph(y o JC"1) c (x x y)(r)
andy o r 1 e U. Therefore U^B c AutM. So [/min C AutMn f/̂ fl~ = AutM\//.
For the rest of the proof, only notice that AutM\ Um{n is a proper subgroup of AutM
that contains H. •

Note that

(x x y)(r) = (idM '

and

((idM xy)W)"
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for every x, y € Au tM and r e Saa- U Sa-a. If x, y € AutM satisfy J:([a, a~]) =
[a, a~] and y([a, a~]) = [a, a~], then

(A: x x)(r) e Saa- ^ = > r e 5a a- < = • r~ e 5a-a <=» (y x y)(r~) e 5fl-fl.

Hence suppose that A:([a, a~]) = [a, a~], for every x e AutM. We have

Ua
H

a~ = {(idM xx) ( r ) , ((id,, xjc)(r))^ | * e Au tM\ t f A r e Saa-}

= {(idw xjt)(r) | * e A u t M \ # A r e 5flfl- U 5fl-a}

= {(idM xx) ( r ) , ((id* x x ) ( r ) r I * 6 A u t M \ / / A r e 5a-a}

for every proper subgroup H of Aut M. So we simply denote Uf,"' by f/w. We show
that the globally minimal failsets whose minimal elements are automorphisms of M
are exactly the sets UH, where H is a maximal proper subgroup of AutM.

PROPOSITION 3.13. Let U be a globally minimal failset whose minimal elements
are automorphisms. Ifx([a, a~]) = [a, a~], for every x e AutM, then U = UH,
where H = Aut M\ U^n-

PROOF. Recall that UH is a failset of every g e (/min, by Proposition 3.11. Since
U is a minimal failset of every g e (/min, we only need to prove that UH Q U.
By Propositions 3.5 and 3.6, there exist g e UmiB and a map u : EndM —> M
such that U = Fail^w) and u(x) e [x(a),x(a~)}, for every x e EndM. Take
r e Saa- and / e U^a- There is x e AutM such that u(f o x) ^ f(u(x)).
If («(*), uif ox)) i (idM x / ) ( r ) then (id* x / ) ( r ) g (/. If (H(JC), «(/ OJC)) g
(idM x / ) ( r ) then (M(X), M(/ O J ) ) = (;c(a~), (/" ox)(a)), or otherwise

(a, a~) 6 [x(a),x(a-)] = [u(x),f-\u(f ox))} C r.

Since M(X) = x(a"), there must exist k ^ 2 such that M(/* ox) = (fk ox)(a~).
Moreover, we may take k to satisfy u(fk~l ox) = (/"*"' ox)(a) too. Then we get

(«</*-' OJC), Ki / ' ox) ) = ((/•*-' o*)(a), V* o*)(a-)) ^ (id* x/ ) ( r )

because [(/ *"' oj;)(a), (fk~l o x)(a~)] = [a, a~] and (a, a~) £ r.
Thus( id M x/ ) ( r )e U. D

THEOREM 3.14. L^/ [a, a~] and [a~, a] be the unique two covers of AM in §(M2)
and suppose that x([a, a"]) = [a, a~], for every x € AutM. Then a subset U of
§(M2) is a globally minimal failset whose minimal elements are automorphisms if
and only if U = UH, for some maximal proper subgroup H of Aut M.
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PROOF. Note that £/w< c UH whenever H and H' are proper subgroups of AutM
such that H c / / ' . Hence, if U is a globally minimal failset with U^a <= AutM, it
is immediate that U = UH and H = Aut M \ U^n is a maximal proper subgroup of
AutM, by applying Propositions 3.11 and 3.13. Now take H to be a maximal proper
subgroup of AutM. Recall that Proposition 3.11 tell us that UH is a failset of each
of its automorphisms. If U is a globally minimal failset contained in UH, then , by
Proposition 3.12, £/„„„ = A u t M \ / / . Now, from the previous proposition, it follows
that UH — Uisa. globally minimal failset. •

As an application, take the example M = P m n studied in [7]. We have that
9(d2, d\) = id is the unique atom of Con Pm,n, [d2, d\\ = (id^)~ and S^ , = {id, id^}.
Also EndPm „ = AutP m n and x([d2, di]) = [d2, dx}, for every x e AutP m n . Hence
we may apply Theorem 3.14 and, as we expected, the globally minimal failsets UH

are the sets WH = K U {g<, (g<)~ \ g e K), where K = AutPm,n\H.

Finally consider that x([a, a"]) = [a~, a], for some x e AutM. Observe that
Ha.a- '•= [x 6 AutM | x([a,a~]) — [a,a~]} is a proper subgroup of AutM.
Moreover, Haa- is a maximal proper subgroup of AutM:

Take H to be a proper subgroup of AutM such that Haa- c H. Take y £ H.
For every x e H, we have y, y o x £ H and then y,y ox £ Haa-. Hence we have
y([a, a~]) = [a~, a] = (y o x)([a, a~]) which implies x([a, a~]) = [a, a~] and so
x 6 Haa-.

From Proposition 3.11 it follows that the sets UH" and U^" are failsets of their
automorphisms. Now, for every y e AutM\/ / a f l - and r 6 Saa- U Sa-a, we have that

r e Saa- <=> r " 6 Sa-a *=$• (y x y)(r") e Saa-.

Hence
U™]_ = {(idM xx)(r) | x e AutM\/ / a , a - A r e SOfl-} and

xjc)(r) | x e AutM\//a ,B- A r e S0-fl}.

PROPOSITION 3.15. The intersection of U™^ and UH~^ is Aut M\//„,„-.

PROOF. Let * e A u t M \ / / a a - and let r G 5,,,,-. Suppose that (idM xx)(r) =
(idw xy)(s), for some y e Au\.M\Haa- and s e Sa-0. Since idM is the unique
automorphism whose graph is contained in r, we must have that x = y and therefore
r = s. Thus r G Saa- D 5fl-fl = {AM}. •

Now take U to be a globally minimal failset contained in UH" _. By Proposi-
tion 3.12, the set U^n is AutM\//<,,„- and, by Proposition 3.15, (idw xg)([a, a~]) £
U, for every g e t/min- This suggests that we should analyse a more general case,
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where U is a globally minimal failset whose minimal elements are automorphisms and
such that either (idw xg)([a,a~]) £ Uor(iAM xg)([a~,a]) i £/,forsomeg e £/„„„.

Hence, take U to be a globally minimal failset such that £/„„„ c Aut M and suppose
that there exists g € £/„„„ such that (idw xg)([a,a~]) £ U. Consider the map
u : EndM - • M defined as follows

(x(a) if (idM xx)([a, a']) e Uorx i U;
u(x) — \

\x(a ) otherwise.

LEMMA 3.16. The globally minimal failset U is Failg(u).

PROOF. By Propositions 3.4 and 3.6, there exist a map v : EndM -> M and
/ € f/min such that U = Fail/(v) and v(x) € {x(a),x(a~)}, for every x e EndM.
Note that g € Failg(w) is witnessed by (idM, g). Since U is a minimal failset of g, we
only need to prove that Fail^(«) c U. Take s e Failg(w). We may assume that there
existx, y € AutM such that y ox'1 c s and (u(x), u(y)) = (x(a), y(a~)) £ s. We
are going to consider two situations.

(i) Suppose that x ^ U. Then we have

(x x y)([a, a~]) = (x x ictoXOd* xy)([a, a"])) ^ [/

because (idw xy)([a, a~]) ^ U. Since y ox" ' € U, there exists z e AutM such that
(v(z), v(y ox"1 o z)) £ y ox"1. But we have

, v(yox-loZ)) € (x x y)([a,a-]) = (id* x f y o x ^

Consequently [u(z), (y o x " 1 ) " ^ ^ ^ ox"1 o z))] = [x(a),x(a~)]. We also have
(x(a),x(a~)) £ (idM x(y ox" ' ) ) ' ' ( i ) because (x(a), y(a~)) £ s, and so

(w(z), (y o jc-')-'(w(y o JC-1 oz))) ^ (idM x(y ox"1))"1^).

Hence J e i/ is witnessed by (z, y o x"1 o z).
(ii) Suppose that x e U and (idw xx)([a, a"]) e U. On the one hand, we

may take z e AutM to be such that (v(z), v(x o z)) <£ (idw xx)([a, a~]) and then
[v(z),x-l(v(xoz))] = [a~, a]. On the other hand, (v(z), v(yoZ)) e (idMxy)([a, a"])
because (idw xy)([a, a~]) £ U, and thus

either v(y o z) = y(v(z)) or [v(z),y~\v(y oz))] = [a,a~].

o z) = y(u(z)) then

[a, a~] = [*-'(«(* o z)), v(z)] = [x-'(v(x o z)), y-'(v(y o z))].
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Note that (a, a~) $ (x x y)~'CO and AMc. (x x y)"1^)- Therefore

which implies (v(x o z), v(y o z)) & s.
If [v(z), y~l(v(y o z))] = [a, a~] then we have

v(x o z) = x o z(a) -£=> v(z) = z(a~) «=>• v(y o z) = y o z(a)

because [v(z),x~1(v(x oz))] = [a~, a], and so

[a~, a] = [v(z),x-\v(x o z))] = [v(z), y-\v(y o z))] = [a, a').

Thus s e U. D

LEMMA 3.17. For every x € AutM, condition u(x) = x(a~) holds if and only if
x{[a, a"]) = [a", a] andx e U.

PROOF. First we prove that for any x e Aut M, if u(x) = x (a~), then x ([a, a~]) =
[a~,a]. Let* 6 AutM and suppose that u(x) =x(a~). Then (idw xx)([a, a~]) £ U
and x e U. Since u(idM) = a, there exists k ^ 1 such that u(xk) = xk{a~)
and MC**"1"1) = xk+l(a). But since (^^(a"),**"1"1^)) € (idM xx)([a, a"]), we have
(xk(a~),xk(a)) € [a, a"], and so x'([a", a]) = [a, a"]- Therefore, x([a, a"]) =
[a~, a].

Conversely, take x e U to satisfy x([a, a"]) = [a~, a]. For every y e AutM, we
have that (x o y)([a, a~]) = y([a~, a]). Hence, when u(x o y) ^ x(u(y)), either
M(V) = y (a"), and therefore y([a, a"]) = [a", a], by the first part of the proof, which
implies [u(y),x~\u(x o y))] = [y(a~),y(a)] = [a, a~], or u(x o y) = (x oy)(a~),
and therefore (x o y)([a, a~]) = [a~, a], by the first part of the proof, which implies

[u(y),x-\u(x oy))] = [y(a),y(a-)] = [(* oy)(fl-). (»y)(f l)] = [a, a"].

Then (idM xx)([a, a"]) ^ (/ and thus u(x) = jc(a"). •

Thus we may redefine the map u as follows,

/ s \x(a) if x([a,a-]) = [a,a-]orxtU;

\x(a ) otherwise

and as we prove next the automorphisms in U are exactly those that do not preserve
[a, a'].

PROPOSITION 3.18. The set of minimal elements of U is AutM\//an-. Moreover
U is the failset Ua

H
a~ .
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PROOF. By the previous lemma, u(x) = x(a~) if and only if x([a, a~]) = [a~, a]
and x e U. Recall that u(g) = g(a~). Then g([a, a~]) = [a~, a]. Let x <= AutM
and suppose that x £ U. Then u(x o g) = *(«(#)) = (x o #)(a~) which implies
that (* o g)([a, a~]) = [a~, a] , and hence x([a~, a]) = [a~, a]. Thus AutM\ £/„,;„ c
Ha,a-- Conversely, for every x e Haa- and v € AutM, we have that

u(y) = y(a~) <=> y([a, a']) = [a~, a]

(x o y)([a, a"]) = [a~,a]

u(x o y) = (x o y)(a~)

and so u(x o y ) = x(u(y)). Hence Haa- c AutM\ (/„„„. Note that we get that
u(x) = x (a~) if and only if * 6 Aut M\Haa-. The rest of the proof is now immediate
by applying Proposition 3.11. •

We have just proved that £/£"" is the unique globally minimal failset U that does
not contain (idw xg)([a, a~]), for some g e {/mm- By using the same arguments, we
get the corresponding result for U^'"_.

Thus we have the following result.

PROPOSITION 3.19. The unique globally minimal failsets U whose minimal ele-
ments are automorphisms and that do not contain one of the covers (idw x g) ([a, a~])
and (idM xg)([a~, a]) of g, for some g € U^B, are £/f£_ and Ua

H^ .

We still need to know if there are any other globally minimal failsets U whose
minimal elements are automorphisms. If so, they must contain both (idw xg)([a, a~])
and (idw xg)([a~, a]), for each one of their automorphisms g.

PROPOSITION 3.20. Let Ubea globally minimal failset whose minimal elements are
automorphisms. Suppose that (idw xg)([a, a~]), (idw xg)([a~, a]) e U, for every
g e LLn- Then

U = Ua
H

a~ = U"H" = {(idM xjc)(r) I x e A u t M \ « A r e Saa- U Sa-a},

where H = AutM\(/min.

PROOF. By Propositions 3.4 and 3.6, there exist a map u : EndM -> M and
/ € (/„,;„ such that U = Failf(u) and u{x) e {x(a),x(a~)}, for every x e
EndM. By Proposition 3.11, the set £/™~ is a failset of every g e AutM\H.
We claim that U^"~£ U. Let x € H, y e A u t M \ / / and r e Saa-. By hypothesis,
(idw xy)([a~, a]) e U since y 6 Umia. Then we may take z e AutM to be such that
(M(Z), u(yoz)) i (idw xy)([a~, a]), and hence [u(z), y~\u(y oz))] = [a, a~]. This
implies (K(Z), y~l(u(y o z))) £ r because [a, a~] D r =A M . But now we have
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and, since x £ U, we also have

(u(x o z), (u(y o z))) = (JC(M(Z)), («(y o z))) £ (x x y)(r).

Thus (JC x y)(r) 6 {/. Similarly we prove that Uf c [/. Then, by the minimality
of U, we get Ua

H
a~ = U = Ua

H
a. Finally, observe that for every x e H, y e Umin

and r e 5aa- U 5a-fl, we have that (x x y)(r) = (idw x ( j OJ" ' ) ) ( (A : X x)(r)), with
yox" 1 € Uma and (x x x)(r) also in Saa- U 50-0. Thus

U = {(idw xx)(r) | x e U^Are Saa- U Sa-a}. D

From the next result, it follows that every maximal proper subgroup of AutM
different from Haa- is the complement in AutM of the set of minimal elements of a
unique globally minimal failset.

PROPOSITION 3.21. Let H be a maximal proper subgroup of AutM and suppose
that H ^ Haa-. Then U™ is a globally minimal failset whose set of minimal elements
wAutM\//. Moreover,

Ua
H

a~ = Ua
H

a = { ( i d w xx)(r) | x e A u t M \ / / A r e Saa- U S a - a ) .

PROOF. By Proposition 3.11, U™~ is a failset of every g e A\xtM\H. Let U
be a globally minimal failset contained in U™~. By Proposition 3.12, the set f/min
is AutM\/ / . Since H ^ Haa-, and therefore U ^ C/^_, f/^°_, we must have
that (idM xg)([fl ,a1), (idM xg)([a-,a]) e U, for every g e U^, by applying
Proposition 3.19. Finally

U = U°a~ = Ua
H

a = {(idM xx)(r) \x e U^Are Saa- U 50-fl},

by Proposition 3.20. •

COROLLARY 3.22. Let H be a proper subgroup of A u t M and suppose that H ^

Ha,a- IfU= {(idw xx)(r) | x e A u t M \ / / A r e Saa- U 5a-fl} is a globally minimal

failset, then H is a maximal proper subgroup of Aut M.

PROOF. Take H' to be a maximal proper subgroup of AutM such that H c / / ' . It
follows from the last proposition that

Uff = {(idw xx)(r) | x e AutM\ / / ' A r e Sfll7- U Sa-fl)

is a globally minimal failset. Clearly U™~ c (/ and so t/™" = f/ which implies that
AutM\/ / ' = AutM\/ / . D
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Now we combine the last corollary and the previous three propositions and we
obtain the theorem below.

THEOREM 3.23. Let [a, a~] and [a~, a] be the unique two covers of AM in §(M2)
and suppose that x([a, a~]) = [a~, a], for some x e AutM. The globally mini-
mal failsets whose minimal elements are automorphisms are exactly the following
sets:

(a) UJ»-_ = {(idM xg)(r), ((id* xg)(r)r I g e AutM\fla.fl- A r e Saa-);

(b) ty»"«. = {(idM X | ) ( r ) , ((id* xg)(r)r I * € AutM\tfB>8- A r e 5fl-a};

(c) U«f: = Ua
H

a = {(idM xg)(r) \ g e A u t M \ # A r e Saa- U 5a-a), Wtene H is a

maximal proper subgroup o/AutM, distinct from Haa-.

When the globally minimal failsets U that satisfy U^a ^ AutM are determined by
the maximal proper subgroups H of AutM in a way that U^ — AutM\//, a given
set of automorphisms of M is a transversal of the family of globally minimal failsets,
whose minimal elements are automorphisms of M, if and only if it is a minimal
generating set of Aut M. Thus, the subdirect irreducibility of M allows us to take any
minimal generating set of Aut M as a transversal of the globally minimal failsets we
have been describing here.

4. Aut-free globally minimal failsets

In the preceding section we considered the globally minimal failsets whose mini-
mal elements are automorphisms. Their description was given in case the generating
algebra M of the quasivariety si is a finite subdirectly irreducible algebra with a
definable lattice-structure. Now we aim to describe the globally minimal failsets
whose minimal elements are either endomorphisms of M or the converses of their
graphs. We first prove that such a failset cannot intersect AutM if it contains an
endomorphism in EndM\ AutM. Therefore, here we only consider aut-free globally
minimal failsets, which we define to be globally minimal failsets whose minimal
elements belong to the set

{graph/, (graph/)" \f e EndM\AutM}.

Throughout this section we assume that the quasivariety si = 0§P(M) is generated
by a finite lattice-structured algebra M.

PROPOSITION 4.1. Let U be a globally minimal failset whose minimal elements are
either endomorphisms o/M or converses of graphs of endomorphisms o/M. If the
algebra M is subdirectly irreducible, then either U contains no automorphisms o/M
or every minimal element of U is an automorphism o/M.

https://doi.org/10.1017/S1446788700013628 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013628


[21] The role of endomorphisms 289

PROOF. Suppose that U n AutM ^ 0. Then take g e U D AutM. By [9,
Proposition 3.1.1], there exists a map M : EndM -> M such that {/ = Failg(w) and
u(g) = g(c), u(idM) = d, with c ^ d. There exists a e ^/(M) s u c n that either
a ^ c and a ^ J, or a ^ c and a ^ d. Now take a', b' e M such that [a', &'] >-A«
and [a', b'] c [a, a"]. Define a map u : EndM -> M by

fjc(a') if *(a) ^ «(JC);
u(x) = \

[x(b') otherwise.

For every / € EndM \ AutM, we have that 6(a', b') c ker/ because 9{a!, b') is
the atom of ConM (see [6, Proposition 1.8]). Then, for every x e EndM, we have
if o x)(a') = If o x)(b') which implies that v(f o x) = f (v(x)). Consequently,
Failg(v) does not intersect EndM\AutM and also (/i n / 2 ) := {( / I (*) , / 2 ( JC)) |
x e M} i U, for every fuf2 e EndM\AutM. We claim that U = F&i\g(v),
and therefore every minimal element of U is an automorphism of M. Observe
that either g(a) ^ g(c) = u(g) and a ^ d = u(idM), or a ^ d = M(idw) and
g(a) ^ g(c) = u(g). Therefore, v(g) ^ g(u(idM)) and so Fail^v) is a failset
of g. Now, by the minimality of U as a failset of g, we only need to prove that
Failg(u) c U. Take s e Fail^u). There exist x, y e EndM such that (x, y) e s
and (v(x), v(y)) <£ s. We may assume that (v(x), v(y)) = (x(a'),y(b')). Then
x{a) ^ u{x) and y(a) ^ u{y). Note that (a', fo') ̂  kery (otherwise (v(x), v(y)) =
(j:(a'), v(a')) 6 *)• Thus y e AutM, and so y(a~) ĉ y(a) and y(a) e ^ ( M ) (see
[6, Proposition 1.1]). Consequently, y(a~) = (y(a) A K(V)) V y(a~) and we have that

(x(a), y(a-)) = ((jc(fl) A II(JC)) V jc(a-), (y(a) A u(y)) V y(a~))

, y(a)) A («(*),

and (x(a), y(a")) £ i, or otherwise (x(a'). y(b')) & (x x y)([a, a~]) c s. Then we
must have (u(x), u(y)) £ s since (x(a), y(a)), (x(a~), y(a~)) € s. Thus s e U. •

Note that the binary relation 0 defined onEndMbyxfly if and only if* e (AutM)y
is an equivalence relation. Hence take /o, • • • , fn £ EndM to be such that f0 = idw

and/o/g,... ,/„/# are the equivalence classes modulo 9.
Let [/ be an aut-free globally minimal failset. Then U n AutM = 0 and thereby,

for each i e (1 , . . . ,«) , we have / , e U if and only if (AutM)/, is a subset
of t/min- Also observe that every map u : EndM -> M that satisfies f/ = Fail̂  («),
for some / 6 EndM, is completely determined by the values that it takes on each
endomorphism / , , with i 6 {0,... ,n}; moreover M(/,) e /,(M) for every i e
{0 n] since id/i(M) i U.

Whence take / e Umn and take a, 6 Af, with i e (0 , . . . , n] to satisfy U =
Fail/(u), where u : EndM -> M is defined by u(x o/ , ) = (x o/,)(a,), for each
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x e AutM and each i e { 0 , . . . , n). For i,j e ( 1 , . . . , n), note that

i nfj)(M)) = /,(M) C M and ft((/•,- nfj)(M)) = /,(M) C M.

Hence (/, n / ; ) ( M ) £ £/ because every r € £/„,!„ satisfies px(r) = M or ̂ W = A*-
T h e n / 6 £/must be witnessed by (x,f ox), for some A: € AutM. Let i € ( 1 , . . . , n)
and y e AutM such t h a t / ox = y o / , . It follows that

(y ofiHa,) = u(f ox) / / ( « ( * ) ) = / ( J C ( O O ) ) = (y <>/,•)(<*>)

and so [ao, a,]/, > ker / , , where [ao, a,]/, denotes the subalgebra of M2 generated by
ker / , U {(ao, ad).

The following result allows us to assume that [ao,«/]/, >- ker/ , , for every / €
( 1 , . . . , « ) such that [ao, a,-]/, > ker / , .

PROPOSITION 4.2. 77iere exwf a^, . . . ,a'n e M for which the following conditions
hold:

(a) For every i e (1 n), if(a^, aj) £ ker / , r/zen [a ,̂, aJ]/( >- ker/, .
(b) (/ = Fail/ (u), wAere u : EndM -» M w r/ie map defined by

Vi e {0 n} V* e (AutM)/ , («(*) = * (a,')).

PROOF. Let i0 be the least i e (1, . . . , « ) such that / , (a , ) ^ /,(ao) but [ao, a j / .
does not cover ker / , in §(M2). Let c,deM satisfy [c, J ] / ^ >- ker /^ and [c, d]/^ c
[ao. îol/,0 • There exists an m-ary term t of the same type as that of M such that

(c, rf) = r ^ ( ( c , , </,) (cm, dm)) = ( r M ( c , , . . . , cM), rM(J, dm)),

where either (ct , J t ) € ker /^ or (c*, 4 ) = (oo, a^). for /: e ( 1 , . . . , m). For every
/ e { 0 , . . . , n), take a\ = tM(c[,... , dm), where

I ck if (Q, dk) e ker/j^;
q = \

[ a, otherwise,

for k e ( 1 , . . . , m). For i e ( 1 , . . . , n), observe that (a^, a\) e [a^, a,]/, and hence
either (a'o, a\) e ker / , or [a'o, a'^f. > ker / , whenever [ao, a,]/. >- ker/ , . Now define
a map v : End M —» M by

Vi € { 0 , . . . , n] Vx e (AutM)/ , (v(x) = x(a,')).

Note that o£ = c and fk(.a'k) = tM(fh(c«),... , / f c(c*)) = / f c (d) since either c« =
a^ = dk or fh(c^) = /^(c*) = /<,(</*), for t e ( 1 , . . . , m). So
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Therefore, Fail^(u) is a failset of f^. We claim that Fail/^u) c U. Take s e
Fail/^u). There exist x, y e EndM such that (JC, y) e s and (v(x), v(y)) £ s. Let
i, j e (0 K) such that x e (Aut M)/, a°d y e (Aut M)/ , . Then

(v(x), v(y)) = ( x ( t M ( c \ , . . . , cj , ) ) , y ( r M ( c i , . . . , <£) ) )

^ ( c ( ) ) , . . . , (x(dm), y(clm)))

and for each k e (1,..., m), we have that either

(x(c'k), y(cj[)) = (x(ck), y(ct)) 6 s or

Then (u(x), uCy)) ^ s implies that (u(x), u(y)) £ s, and so s e U. Now recall that U
is a minimal failset of/^ and consequently [/ = Fail/^ (v).

If there is still some i 6 (1, . . . , n) such that/,(aj) ^ fi(a'o) and [aQ, a[]/( does
not cover ker/,, then we repeat the procedure until we get that (a'o, a't) e ker/, or
[a^, a't]f. > ker/,, for every i e ( 1 , . . . , n). Then we get elements a^, ... , â  in M
and a map u : EndM ->• Af under the conditions required. •

Hence we may assume that/ = f\ and M(/ ) ^ / (M(idM)). Therefore, [ao, a\]f >-
ker/.

Since/ (ao) ^ / (aO, there is a e ^ ( M ) s u c n mat (a, a') £ ker/ and

(if (flb),/ (fli)) A (/ (a),/ (a))) V (/• (a-) , / (a"))

(see [6, Lemma 1.5 and Proposition 1.3]). Thus we have

(f ((ao A a) V a'), f ((a, A a) V a")) 6 {(/ (a), f (a")), (/ (a"), / (a))}

and so (((ao A a) v or), (a, A a) V a") £ ker / . Since

A a) V a~, (a, A a) V a~) = ((a,,, «i) A (a, a)) V (a", a") e [ao, «i]/

we have [(ao A a) v a~, (ai A a) v a~]7 = [ao, a j / ^ ker / . Finally, observe that
((ao A a) V a~, (a\ A a) V a~) is either (a, a~) or (a", a).

Now define a map u : End M -*• M by

Vi 6 {0,... , n} V̂ : e (AutM)/, (W(JC) = Jc((a,- A a) V a")).

Observe that v(y) € {y(a),y(a~)}, for all y 6 EndM, because a e ^/(M) and
a > a~.
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LEMMA 4.3. The globally minimal failset U is Fail/ (v).

PROOF. Note that (v(f),f(v(idM)) is either (f (a),f(a~)) or (f (a~),f (a)), and
so v(f) 7̂  / (v(idM)). Hence Fail/ (u) is a failset of/. By the minimality of U as a
failset of/, we only need to show that Fail/ (u) C [/. Take s e Fail/ (u). There exist
*, y e EndM such that (x, y) e s and (v(x), u(y)) ^ s. Let i,j e {0,... , n] such
that* e (AutM)/, and y e (AutM)/;. Note that

, v(y)) = ((*(«,), y(aj)) A (*(a), y(a))) V

and (*(a), >>(a)), (x(a~), y(a~)) € 5. Consequently (u(x), u(y)) = (x(ai), y(aj)) i
s. Thus s e U. •

Let* e EndM and suppose that v(x) ^ x(v(idM)). Observe that [a, a~]x covers
ker*:

There exists / e (1, . . . , n) such that x e (AutM)/,. Note that ker* = ker/,
and so [a,a~]x = [a,a~]fl. If v(x) ^ x(v(idM)), that is, x((a, A a) V a~) ^
X((OQ A a) V a~), then *(a,) # *(ao) and so (ao, a,) ^ ker/, which implies that
[ao, a,-]/, >• ker/,. Finally, observe that ((aoAa)va", (a,Aa)Va~) 6 [ao. ail/,\ker/,
and ((ao A a) V a", (a, A a) V a~) is either (a, a~) or (a~, a). Then [a, a']fl is either
[ao, a,-]/, or [a,, aol/,- Therefore, [a, a"]/, v ker/,.

LEMMA 4.4. The following condition holds

Vx e EndM\AutM u(idw) — a <=>• v(x) =x(a~).

PROOF. Recall that (f(v(idM)), v(f)) e {(f (a),f (a~)), (f (aT),f (a))} and
f (a) ^ f(a~). Hence, if v(x) = x(a~), for every x e EndM\ AutM, and in
particular v(f) = f (a~), we must have v(idw) = a. Now suppose that u(idM) = a
and let* e End M\ AutM. Ifu(*) =x(a) ^x(a~), then there exists c e M such that
x(a) =jc(c)and/(a-) = / ( c ) because (*(fl),/(fl-)) = (u(*), v(/)) g (*n/)(M)
(recall that*, / $. AutM implies that (* n / ) ( M ) £ (/). But then we have that

x((a A c) va") = (*(a) A*(c)) v*(a~) =*(a) v*(a~) =*(a)

and this implies that a ^ c. Consequently,

/ (a ) = / ( f l AC) = / ( a ) A/(c) = / ( a ) A/ (a" ) = / («")

and we get a contradiction. D

Now the proposition below follows immediately.
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PROPOSITION 4.5. Let U be an aut-free globally minimal failset. Then U =
Fail/ (M), for some f € End M \ Aut M, where u : End M ->• M is the map defined by

, ^ \x{a) if x e AutM;
«(*) = { ... . . ~

x (b) otherwise,

for some a, b € M that satisfy the following conditions:

(a) Either a 6 , /(M) and b = a~, or b e , / (M) and a - b~.
(b) For every x 6 End M\ AutM, if (a, b) £ kerx then [a, b]x >- kerjc.

Let a e ^/(M) and let b = a~. The following are equivalent:

(i) (a, b) £ ker/ , for some / e EndM\AutM, and [a, b]x > ker A: whenever
x e EndM\ AutM and (a, b) £ kerx;

(ii) (a,b)$K and ker xv0(a,b) > ker x in Con M whenever x e End M\ AutM
and (a, b) £ ker*;

(iii) K v 0(a, b) > K in ConM;

where K = p|(ker/ | / e EndM\ AutM) as defined in Section 3 (see [6, Proposi-
tions 1.8 and 1.16]).

Hence, we may reformulate Proposition 4.5 by replacing condition (b) by the
condition below,

K V 0(a,b) is a cover of K in Con M.

At this stage we already know where to search for maps u that define aut-free
globally minimal failsets. Next we are going to describe the elements of these failsets.

Denote by ^K the set of all non-zero join-irreducible elements a for which K V
0(a, a~) is a cover of K in the congruence lattice ConM.

For every a e ^K, we denote by
Ia the set {i e { 1 , . . . , n] | (a, a~) £ ker/,};
S^- the set {r e S(M2) | (idw x/ , )- ' ( r) n [a, a~]fi = ker/,};
5i-a the set {r € S(M2) | (idM x/ , ) - ' ( r ) n [a~, a]fl = ker/,}.

For a e JK,i e Ia and r ^ M2, observe that

( id*, / , )€ / • A (c,Md))*r

ker/, C (id* x/ , ) - ' ( r ) A (c, d) i (id* x/ , ) - ' ( r )

x / , rV) n [c, d]/, = ker/, <=> r e 5^,

where c,deM and {c, d} = {a, a~}. Thus, 5^a- is the set of subalgebras r of M2 that
contain the graph of/, but do not contain (a, / , (a~)), and S'a-a is the set of subalgebras
r of M2 that contain the graph of/, but do not contain ( a~ , / , ( a ) ) .
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PROPOSITION 4.6. Let U be an aut-free globally minimal failset. Then the minimal
elements of U are the endomorphisms o /M that belong to the set

|J{(AutM)/,(AutM) | i e /„},

for some a € J?K, and the converses of their graphs.

PROOF. Take a and b to be elements of M under the conditions of Proposition 4.5.
Recall that U^a c End M \ AutM. Let* 6 End M \ AutM. Then* e U if and only
if there exists y e AutM such that u(x o y) ^ x(u(y)), that is, (a, b) £ ker* o y.
Hence,* e U if and only if there exist y,z 6 AutM and i e Ia such that * o y = z o / ,
or equivalently there exists / € Ia such that * € (AutM)/,(AutM). •

For every c,d e M, let ucd : EndM ->• M be the map defined by

|

*(c) if * e AutM;

* (d) otherwise.

LEMMA 4.7. Let a e ^K. If U = Fail/ (M^) , /or j o m e / e EndM and c,deM
such that {c, d) = [a, a~}, then

U = \ J { ( x x y ) ( r ) , ((x x y ) ( r ) ) " \ x , y e A u t M A r e 5 ^ d } .
/€/„

PROOF. For every s c A/2, we have that j e U if and only if there are x, y € AutM
and / 6 /„ such that

either (x, y o/ ,) e s and (x(c), (y oft)(d)) i s

or (x,yoft)es~ and (*(c), (v oft)(d)) i s~,

that is,

either ( id w , / , ) e (x x y)~\s) and (c,f((d)) i (x x y)~'(j)

or ( i d M , / , ) € ( * x y ) - ' ( O and (c,/,-(</)) ^ (JC x ^ ) - ' ( ^ ) .

For every i 6 /„, recall that (idM,fj) e r A (c,f,(d)) £ r o- r e 5^rf, for every
r ^ M2. Thus, j e t / i f and only if there exist x,y e AutM and i e la such that
either (x x>>)~'(s) e S^or(x xy ) " ' ( s " ) € S'cd, if and only if there exist x,y e AutM
and r e U , e / S'cd such that either s or 5" is of the form (x x y)(r). D

Finally we get the result below.
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PROPOSITION 4.8. Let U be an aut-free globally minimal failset. Then

U = F a i l / O i r f ) = \ J [ ( x x y ) ( r ) , ( ( * x y ) ( r ) r \ x , y e A u t M A r e S ' j ,
ie/,

for some f e EndM, w/iere c,d e M satisfy {c, d] = {a, a^}, for some a e ^K.

For every a e J?K, let

*/«,- : = \J{(x x y ) ( r ) , ((* x y ) ( r ) ) ^ | x , y € A u t M A r e Sjfl.} and

!/«-« : = | J { ( J C x y){r), ((x x y ) ( r ) ) ^ | x, y e A u t M A r e 5^_fl}.

Given a cover K V 0(a, a~) of K, with a € ^ ( M ) > n o t e t n a t ' for every c e
such that /c v 9(a, a~) = K V 0 (C , C~), we have that

ker / , v 0(a, a") = ker / , V /c V 9(a, a~) = ke r / , V K V 0 ( C , C~)

= ker / ( -V0(c , O , V i e { l «},

which implies that la = Ic, and either [a, a~]K = [c, c~]K or [a, a~]^ = [c~, c]K

(see [6, Lemma 1.7]). Thus we also have either [a, a~]/t = [c, c~]/t for every
i e [1,... ,n) or [a, a~]f. = [c~, c\f. for every i e { 1 , . . . , n}. Consequently, either
SL- = S L - f o r e v e r y ' e 7 « o r 5 L - = 5 c - c f o r e v e r y ' 6 7«-

Finally, we may observe that, for each cover 9 of K in Con M, we have at most two
candidates for aut-free globally minimal failsets that are Uaa- and £/„-„, where a is
any element of ^K that satisfies 9 = K v 9(a, a~). For applications we refer to [8,
Chapter 5, Example 3].

If M generates a congruence distributive variety and each of its subalgebras is
subdirectly irreducible, we get further. Denoting by Rmin the set of all binary relations
that are minimal elements of some pe-free globally minimal failset, we can prove
that an aut-free globally minimal failset must not intersect Rmin (see [8, pages 107
and 108]). Moreover we get

PROPOSITION 4.9 ([8, 4.2.10]). Let U be a subset of Q. Then U is an aut-free
globally minimal failset if and only if U is a minimal element of the set of all sets Ucd,
where c,d € M satisfy the following conditions:

(a) there exists a € ^K such that {c, d] — [a, a~}\

(b) Rni* does not intersect U i e / J r I r 6 s'cJ-

In case BSPflM) is a variety, the congruence K is the kernel of some endomor-

phism / in E n d M \ A u t M . Then, either R^n intersects L U / J r I r e ^L-) anc*
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U, e / J r | r e Sfl-J, or at least one of the sets Uaa- and Ua-a is an aut-free globally
minimal failset, with a e t/K. Thus, either there are no globally minimal failsets
whose sets of minimal elements intersect End M\ AutM, or, for each / G EndM
such that ker/ = K, the set {/} is a transversal of the set of aut-free globally minimal
failsets. Hence GU {/}, where G is a minimal generating set of AutM, is a transversal
of the set of all globally minimal failsets whose minimal elements are endomorphisms
of M or converses of their graphs.
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