NON-EXISTENCE OF ESTIMATES OF PRESCRIBED ACCURACY IN FIXED SAMPLE SIZE

Rajinder Singh

(received July 28, 1967)

1. Let X be a random variable whose density (or distribution if discrete) $f(x;\theta)$ depends on an unknown parameter θ , real or vector-valued. By making observations on X we want to know whether there exist estimates of prescribed accuracy for the real-valued parametric function $g(\theta)$. By an estimate of prescribed accuracy for $g(\theta)$ we mean a confidence interval of prescribed length and confidence coefficient or a point estimate with prescribed expected loss W. In the following our loss functions W will always satisfy the requirement that $W(\delta,\theta)=V(\left|\delta-\theta\right|)$, where V is a strictly increasing function of its argument. The class of such loss functions includes among others the squared error loss.

In this note we prove the non-existence of estimates of prescribed accuracy in fixed sample size procedures for

- (A) σ^s , where $s \ge 1$ is real and σ is the scale parameter in a density function of the form $(1/\sigma)$ $f(x/\sigma)$.
- (B) λ^{s} , where $s \ge 1$ is real and λ is the Poisson parameter.
- (C) the parametric function $g(\theta) = \psi(\mu, \sigma)$ where μ, σ are respectively the location and scale parameters in a given density function f of the form $(1/\sigma)$ f($(x \mu)/\sigma$). The function ψ is real-valued and, for a given σ , is not bounded in μ . The result of Zacks [4] is a special case of ours when f is the normal density with mean μ and variance σ^2 and $\psi(\mu, \sigma) = \mu + \varphi(\sigma)$, φ real-valued.
- (D) the parametric function $g(\theta) = \psi(\mu, \sigma)$ where $-\infty < \mu < \infty$ and $\sigma > 0$ are the parameters in the log-normal density and ψ is as defined in (C) above.

Canad. Math. Bull. vol. 11, no. 1, 1968

For other examples of interest see [1].

In [1] it is shown that if $g(\theta)$ has a bounded length confidence interval based on one-stage [m-stage or sequential] sampling plans then g is uniformly continuous [continuous] on the metric space (\mathbb{P} , d) where $\mathbb{P} = \{f(x;\theta): \theta \in \Omega \ ,$ the parameter space} and d is the usual absolute variational distance on \mathbb{P} defined by

$$d(f_{\theta_1}, f_{\theta_2}) = \frac{1}{2} \int |f_{\theta_1} - f_{\theta_2}| dx, \qquad \theta_1, \theta_2 \in \Omega.$$

In view of this result, to prove the non-existence of bounded length confidence intervals for $g(\theta)$ based on one-stage sampling plans, it is enough to show that g is not uniformly continuous on (\mathbb{C} , d). That this in turn implies the non-existence of estimates of prescribed accuracy for $g(\theta)$ in one-stage sampling plans follows from a simple application of Chebichev's inequality.

2. In this section we consider the examples listed above individually to show that in each case the parametric function $g(\theta)$ is not uniformly continuous on the corresponding metric space ($\mathcal{C}P$, d).

A. Let $P = \{P_{\sigma} = \frac{1}{\sigma} f(\frac{x}{\sigma}); \sigma > 0, x > 0\}$ be the class of all density functions involving a scale parameter σ for a given f and let $g(P_{\sigma}) = \sigma^{S}$, $s \ge 1$ or $s \le -1$ being real. On setting $y = \log x$, $\theta = \log \sigma$, $y - \theta_{1} = z$ and $e^{Z} f(e^{Z}) = \psi(z)$ we find that

$$d(P_{\sigma_1}, P_{\sigma_2}) = \frac{1}{2} \int_0^\infty \left| \frac{1}{\sigma_1} f(\frac{x}{\sigma_1}) - \frac{1}{\sigma_2} f(\frac{x}{\sigma_2}) \right| dx$$

$$= \frac{1}{2} \int_{-\infty}^\infty \left| \psi(z) - \psi(z - (\theta_2 - \theta_1)) \right| dz,$$

which, by Scheffe's theorem [2], tends to zero as $\theta_2 - \theta_1 \to 0$. It follows, therefore, that $d(P_{\theta_1}, P_{\theta_2})$ can be made arbitrarily small by choosing σ_1, σ_2 so that $\theta_2 - \theta_1 = \log (\sigma_2/\sigma_1) \to 0$ or equivalently $\frac{\sigma_2}{\sigma_4} \rightarrow 1$.

Let $\sigma_2 = \sigma_1 + 1$ so that $\frac{\sigma_2}{\sigma_1} \to 1$ as $\sigma_1 \to \infty$. It is then easily seen that for $s \ge 1$, $|\sigma_2^s - \sigma_1^s| \ge 1$ proving thereby that the parametric function $g(P_\sigma) = \sigma^s$, $s \ge 1$, is not uniformly continuous on (P, d). That this is also the case when $s \le -1$ can be seen by taking $\sigma_2 = \sigma_1 + \sigma_1^2$. This establishes the non-existence of estimates of prescribed accuracy in fixed sample size for σ^s , $s \ge 1$ or $s \le -1$ being any real number.

B. Let $\mathbb{P} = \{P_{\lambda} = e^{-\lambda} \lambda^{X}/x!\}$ be the class of all Poisson distributions with parameter λ . Here $g(P_{\lambda}) = \lambda^{S}$, $s \ge 1$ any real number. Suppose $\lambda_{2} = \lambda_{1} + c$ where c is a positive real number. Then

$$d(P_{\lambda_1}, P_{\lambda_2}) = \frac{1}{2} \sum_{x=0}^{\infty} |e^{-\lambda_1} \lambda_1^x - e^{-\lambda_2} \lambda_2^x|/x!$$
$$= F(x_0; \lambda_1) - F(x_0; \lambda_2)$$

where $f(x; \theta)$ is the Poisson cumulative distribution function with parameter θ and $x_0 = (\lambda_2 - \lambda_1)/(\log \lambda_2 - \log \lambda_1)$. Using Mean Value theorem it follows that

$$d(P_{\lambda_1}, P_{\lambda_2}) = c e^{-\lambda} \lambda^{\lambda *} / \lambda *!$$

for some λ , $\lambda *$ lying between λ_1 and λ_2 . On using Stirlings' formula for factorials, it is easily seen that $d(P_{\lambda_1}, P_{\lambda_2}) \to 0$ as $\lambda_1 \to \infty$. On the other hand $|\lambda_2^s - \lambda_1^s| \ge c^s$ for $s \ge 1$ proving thereby our assertion that g is not uniformly continuous on (P, d).

C. Let (P) be the class of distributions with density functions $(1/\sigma)$ $f((x - \mu)/\sigma)$, where μ is real, $\sigma > 0$ and f is a given density function. Here the density function f is known but the location and scale parameters are unknown. Let $\theta = (\mu, \sigma)$, and $g(\theta) = \psi(\mu, \sigma)$ where ψ is as defined above in section 1. If $\theta_i = (\mu_i, \sigma_i)$, i = 1, 2, then

(*)...
$$d(P_{\theta_1}, P_{\theta_2}) = \frac{1}{2} \int_{-\infty}^{\infty} |f(x; \theta_1) - f(x; \theta_2)| dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} |(1/\sigma_1) f((x - \mu_1)/\sigma_1) - (1/\sigma_2) f((x - \mu_2)/\sigma_2)| dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} |f(y) - (\sigma_1/\sigma_2) f[(\sigma_1/\sigma_2)y + (\mu_1 - \mu_2)/\sigma_2]| dy$$

where $y = (x - \mu_1)/\sigma_1$. If in (*) we let $\sigma_2 \to \infty$ such that $(\sigma_1/\sigma_2) \to 1$, it follows from Scheffe's theorem [2] that $d(P_{\theta_1}, P_{\theta_2}) \to 0$. On the other hand for $\sigma_1 = 1 + \sigma_2$, $(\sigma_1/\sigma_2) \to 1$ as $\sigma_2 \to \infty$, but

$$\begin{split} \left| \, \mathbf{g}(\boldsymbol{\theta}_2) \, - \, \mathbf{g}(\boldsymbol{\theta}_1) \, \right| &= \left| \, \boldsymbol{\psi} \left(\boldsymbol{\mu}_1, \boldsymbol{\sigma}_1 \right) \, - \, \boldsymbol{\psi}(\boldsymbol{\mu}_2, \, \boldsymbol{\sigma}_2) \, \right| \\ \\ &\geq \left| \, \left| \, \boldsymbol{\psi}(\boldsymbol{\mu}_1, \, \boldsymbol{1} \, + \boldsymbol{\sigma}_2) \, \right| \, - \, \left| \, \boldsymbol{\psi}(\boldsymbol{\mu}_2, \, \boldsymbol{\sigma}_2) \, \right| \, \right| \end{split}$$

where the R.H.S. is,according to the definition of ψ , unbounded. This proves our assertion about the non-uniform continuity of $g(\theta)$ on (\mathbb{P}, d) .

D. In the log-normal case where the density f is given by

$$f(\mathbf{x}; \ \mu, \ \sigma) = \frac{1}{\sqrt{2\pi}} \left[\log \mathbf{x} - \mu \right]^2$$

if x>0 and equal to zero otherwise, the d-distance between the two distributions with parameters $\theta_1=(\mu_1,\sigma_1)$ and $\theta_2=(\mu_2,\sigma_2)$ is

$$\begin{split} d(P_{\theta_{1}}, P_{\theta_{2}}) &= \frac{1}{2} \int_{0}^{\infty} |f(x; \theta_{1}) - f(x; \theta_{2})| dx \\ &= \frac{1}{2} \int_{-\infty}^{\infty} |(1/\sigma_{1}) n((y - \mu_{1})/\sigma_{1}) - (1/\sigma_{2}) n((y - \mu_{2})/\sigma_{2})| dy \\ &= \frac{1}{2} \int_{-\infty}^{\infty} |n(z) - (\sigma_{1}/\sigma_{2}) n[(\sigma_{1}/\sigma_{2}) z + (\mu_{1} - \mu_{2})/\sigma_{2}]| dz. \end{split}$$

Here n(x) is the standard normal (0,1) density, $y = \log x$ and $z = (y - \mu_1)/\sigma_1$. Proceeding as in (C) we prove that $g(\theta) = \psi(\mu, \sigma)$ is not uniformly continuous on (P,d). This, in particular, implies that the mean ν of the log normal density,

$$v = e^{\mu + \frac{1}{2}\sigma^2}$$

cannot have estimates of prescribed accuracy in fixed sample size procedures.

The author is grateful to Professor J.K. Ghosh with whom he had several discussions on this and related topics.

REFERENCES

- 1. R. Singh, (1963), Existence of bounded length confidence intervals. Ann. Math. Statist. 34, 1474-1485.
- 2. H. Scheffe, (1947), A useful convergence theorem for probability distributions. Ann. Math. Statist. 18, 434-438.
- 3. S. Zacks, (1966), Sequential estimation of the mean of a log-normal distribution having a prescribed proportional closeness. Ann. Math. Statist. 37, 1688-1696.
- 4. S. Zacks, (1967), On the non-existence of a fixed sample estimator of the mean of a log-normal distribution having a prescribed proportional closeness. Ann. Math. Statist. 38, 949.

University of Saskatchewan and S.R.I. Canadian Math. Congress Edmonton, Alberta