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Sobolev trace-type inequalities via
time-space fractional heat equations

Yongrui Tang, Pengtao Li, Rui Hu®, and Zhichun Zhai

Abstract. 'This article aims to establish fractional Sobolev trace inequalities, logarithmic Sobolev
trace inequalities, and Hardy trace inequalities associated with time-space fractional heat equations.
The key steps involve establishing dedicated estimates for the fractional heat kernel, regularity
estimates for the solution of the time-space fractional equations, and characterizing the norm
of WPV/ *(R™) in terms of the solution u(x, t). Additionally, fractional logarithmic Gagliardo-
Nirenberg inequalities are proven, leading to L?-logarithmic Sobolev inequalities for W; 2 (R™).

As a byproduct, Sobolev affine trace-type inequalities for H~*/2(R") and local Sobolev-type trace
inequalities for Q,/, (R") are established.

1 Introduction

Analytic inequalities, including Sobolev inequalities, logarithmic Sobolev inequalities,
Hardy inequalities, and their fractional counterparts, play crucial roles in harmonic
analysis, mathematical physics, and partial differential equations (PDEs). Interested
readers can explore the works of Beckner and Pearson [4], Cotsiolis and Tavoularis
[9], Talenti [36], Xiao and Zhai [42], and the references therein for further insights
into Sobolev-type inequalities.

Trace inequalities of Sobolev type, logarithmic Sobolev type, and Hardy type,
particularly in the context of operators and equations, have also been extensively
studied. Xiao established sharp fractional Sobolev trace inequalities linked to the
Poisson equation in [39]. Einav and Loss [15] proved Sobolev trace inequalities
involving the projector ;. More recently, Li, Hu, and Zhai [27] contributed to the field
by establishing fractional Sobolev, logarithmic Sobolev, and Hardy trace inequalities
associated with fractional harmonic extensions.

In this article, our objective is to establish Sobolev, logarithmic Sobolev, and
Hardy trace-type inequalities associated with the solution of the following time-space
fractional equations:

u(x, t) + (~0)u(x,t) =0, (x,t) e R,

@) u(x,0) = f(x), x e R,

Received by the editors August 4, 2023; revised February 3, 2024; accepted March 18, 2024.

Published online on Cambridge Core March 25, 2024.

The research was partly supported by the National Natural Science Foundation of China (Grant No.
12071272) and the Shandong Natural Science Foundation of China (Grant No. ZR2020MA004).

AMS subject classification: 26D10, 46E35, 30H25.

Keywords: Sobolev inequality, logarithmic Sobolev inequality, Hardy inequality, heat kernel.

https://doi.org/10.4153/50008414X24000269 Published online by Cambridge University Press


http://dx.doi.org/10.4153/S0008414X24000269
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0371-0166
https://orcid.org/0000-0002-6639-8870
https://doi.org/10.4153/S0008414X24000269

2 Y. Tang, P. Li, R. Hu, and Z. Zhai

where a > n and f3 € (0,1]. Here, the Caputo fractional derivative, denoted by af , is
defined as

B _ 1 t d?’
atu(x,t)_mfo () g BEOD).

Additionally, the fractional Laplace operator (-A,)%? in R” is defined on the
Schwartz class through the Fourier transform:

1 —ix- _ 'y
[ e Godx = 18 TE):

[(_Ax)a/zf](f) = |£|0¢ (27_[)”

When f3 =1, the equations (1.1) become fractional diffusion equations:

(1.2) {a’”(x’ )+ (~A0)Yu(x,t) =0, (x,t) e R,

u(x,0) = f(x), x eR",

The Carleson embedding associated with (1.2) has been extensively studied in various
works, including Adams and Hedberg [1], Chang and Xiao [8], Liu, Wu, Xiao, and
Yuan [29], Xiao [38], Xiao and Zhai [42], and Zhai [46]. These studies have contributed
to the understanding of the Carleson embedding properties related to the fractional
diffusion equations. When =1 and « = 2, the equation (1.1) corresponds to the
classical heat equation, a fundamental equation with widespread applications in
various fields, including mathematics, physics, fluid dynamics, and engineering.

If $=1and « € (0,2), the equations (1.1) transform into the spatial fractional
heat equation. This equation has found applications in the study of fluid dynamics,
contributing to the understanding of heat transfer processes.

When S € (0,1) and a =2, the equations (1.1) become the so-called “time frac-
tional” heat equations:

(13) {BE”(X’ )+ (-A)u(x,t) =0, (x,t) eRIY,

u(x,0) = f(x), xeR".

The equations (1.3) exhibit sub-diffusive behavior and are associated with anomalous
diftusion or diffusion in non-homogeneous media with random fractal structures.

The introduction of the time-fractional derivative Bf by Caputo in [7] marked a
significant development for investigating the analytic expression of a linear dissipative
mechanism. In mathematical physics and engineering, Caputo fractional derivatives
and their generalizations have become instrumental in addressing unconventional
physical phenomena, capturing the attention of numerous researchers. For further
exploration of generalizations of Caputo derivatives, readers can refer to works by
Bernardis, Martin-Reyes, Stinga, and Torrea [5], Gorenflo, Luchko, and Yamamoto
[18], Kilbas, Srivastava, and Trujillo [25], and Li and Liu [26].

Fractional derivatives offer distinct advantages compared to integer-order deriva-
tives. They capture the history-dependent development of a system function more
accurately due to global correlation. The fractional derivative model also addresses
the limitations of classical differential model theory, providing better agreement with
experimental results. Additionally, in describing complex physical and mechanical
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problems, fractional-order models often offer clarity and conciseness compared
to nonlinear models. Leveraging these advantages, time-fractional calculus finds
widespread application in various scientific branches, including statistical mechanics,
theoretical physics, theoretical neuroscience, the theory of complex chemical reac-
tions, fluid dynamics, hydrology, and mathematical finance. For an extensive list of
references, readers can consult Khoshnevisan [24].

In Section 2.2, we utilize the subordinative formula to estimate the higher-order
derivatives of the integral kernels associated with the fractional heat semigroups

et B for g > 0, denoted by K ¢ (+) (refer to Lemmas 2.2 and 2.8). The time-space

fractional heat kernel, denoted by Gf"ﬁ (+), is introduced as the fundamental solution
to equations (1.1). Through the representation (2.1), we establish that for m € Z,, the
following estimates hold:

tOt
S e

am ta/ﬁ (‘x)
ot

tu/[S (x)
ox!"

1

a>n+m&pPe(0,1].

These estimates are detailed in Propositions 2.10 and 2.11.

Let Cg° (R™) represents the space of infinitely differentiable functions on R” with
compact support. For v € (0,1) and p € (1, n/v), the homogeneous Sobolev space
WI;“ (R™) is defined as the completion of Cg° (R") with respect to the norm

1/p
g = ([, f, TSN by

|x y|n+pv
Specially, when p = 2, W, (R") is also denoted by H”(R"). Moreover, WP’,”(R”) is
the dual of W; (R™). In Section 3, considering f in the homogeneous Sobolev space

HY?(R"), and utilizing the Fourier transform of Gf"ﬁ (), we establish equivalent
characterizations of the norm of H"/2(R") as follows:

‘/1;1-#1

Here, ¥V = (95,05, ..., 0% ) (refer to (3.4)). Building upon this result, we establish
fractlonal Sobolev, logarithmic Sobolev, and Hardy trace-type inequalities. For any

fe H"/Z(R”) and u(x,t) = G‘:’ﬁ * f(x), the fractional Sobolev trace inequality is
given by

(n—v)/n
(1.4) ( Ji |f(x)|2"/("*v)dx) s [ [Frute el en - azan,
R# R#

This result is detailed in Theorem 3.1. Furthermore, when || f|| ;2 (r») = 1, the following
fractional logarithmic Sobolev inequality and the fractional Hardy inequality (or the
Kato inequality) are established:

exp (> [ |f(x)|21n(|f(x)|2)dx)$ [ e e e axds
SRS 5 [Tt e

TG *f(x)‘z 2Vt n fR NGRS

1.5)
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These results are detailed in Theorem 3.1. Xiao [39] established inequalities akin to
(1.4) and the first inequality of (1.5) for the Poisson extension. Li, Hu, and Zhai in [27]
investigated corresponding inequalities related to the Caffarelli-Silvestre extensions.
Inequalities similar to the second inequality of (1.5) have been examined in [4, 14, 21,
23, 34, 42, 43]. We will demonstrate that the right-hand side of (1.4) and (1.5) can be

replaced by
_/1%14-1

(see Theorem 3.3). Via a change of variable, inequalities similar to (1.4) and (L.5) in
Theorems 3.1 and 3.3 can be proven for f € H"/2(R") with v € (0, min {2m, n}) and
u(x,t) = Gf"ﬁ * f(x) (see Theorems 3.2 and 3.4).

Moreover, Theorems 3.1 and 3.3 imply the following Sobolev-type trace inequali-
ties:

1-v/n 2
2n/(n—v)d) <f fmm ttx/ﬁ
(L rr o)™ s [ e

for f € HY/2(R™) with v € (0, min {2m, n}) and u(x, t) = G*F % f(x). Via a change
of variable, for f € H"/>(R") with v € (0, min {2m,n}) and u(x,t) = Gf’ﬁ * f(x),
the following equivalent version:

2

amu(x’ ta/ﬁ) t2m—l—vdxdt

ot

t

m " u(x, 1P r} dxdt

otm H+v

(1.6)
1-v/n _
( LG dx) < [ n+1{|tﬁm/“v;"u(x, D) +

can be deduced from Theorems 3.2 and 3.4 immediately.

0" u(x,t)

t
ot

2 dxdt
1+pv/a

To generalize the Sobolev-type trace inequalities in Theorem 3.1 to W; /2 (R™), in

Theorem 3.10, we characterize W; /2 (R™) as follows:

1/p
Sm a/B\|p pm—pv/2-1 ~ )
(o Bty ) 1
and

0" u(x, t*/P)

p
o g

1/p
pm—pv/2-1 ~
dth) ~ ”f” W;/Z(Rn)

(L.

withp>1, ve (0,2)andu(x, t) = Gf"ﬁ * f(x). Moreover, we establish fractional log-
arithmic Gagliardo-Nirenberg inequalities which imply the L?-logarithmic Sobolev
inequalities for W; /2 (R™).

A direct computation indicates that the inequality (1.6) is invariant under the
transform ¢(x) = Ax + xo for A > 0 and xy € R", i.e.,

(L ieperea) ™ [

"™ (uo ¢)(x, t8) |
otm

2717 dxdt.
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However, both the Lebesgue space L2"/("=*) (R") with

< 00

(n-v)/(2n)
Hf||L2"/(n—v) = (v[Rn |f(x)|2n/(n_v) dx)

and the Sobolev space H"/2(R™") with
2 (Rn) ¥ ( /R
¥ ( ‘/RIH

are not invariant under the transform ¢. In [39], using the characterization of
Q-type space Q,.(R"), Xiao obtained a revised conformal invariant Sobolev-type
trace inequality (see [39, Theorem 4.1]). In Theorem 5.4, following the idea of [39],
we prove the local versions of (1.4) for f € Q,/,(R") with v € (0,min{2,n}) and

u(x,t) =GP« f(x):

| f1

1/2
Viu(x, t“/ﬂ)|2t2mlvdxdt)

" u(x,
otm

2 1/2
tzm_l_"dxdt) < 00

2nf(n=v) (n=v)/(2n)
a7 sup( o 1= 0 ax)

< i /
(xoe]R" re(O oo) ly=xol<r

am
8

tm

1/2
2m—1—vdxdt)

and

sy .\
(1.8) Sl}P(m flf( )~ fil dx)

1/2
r ~ 2
s sup " f f [V u(x, P 2"V dxde |
x0€R",re(0,00) 0 |y—xo|<r

Notations: In this paper, A S B means A < CB for a positive constant C. A ~ B means
that AS B and B S A. Let k € N. Here, N denotes the set of natural numbers. The
symbol CK(R™) denotes the class of all functions f : R" — R with k continuous partial
derivatives. Denote by f * g the convolution of functions fand g, i.e.,

frg)= [ fx=ngdy= [ (»)glx=y)dy.

2 Preliminaries
2.1 Basic lemmas

First, we investigate the integrability of the Fourier transform of the time-space
fractional heat kernel G2 (.).
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Definition 2.1 Leta > n/2and f3 € (0,1]. We say G‘:’ﬁ (+) is the time-space fractional
heat kernel if for (x, ) € R” x (0, 00),

() G @) = [ Ko (0)gp(w)d

where gg(+) is the density function of D; and is infinitely differentiable on the entire
real line with gg(u) = 0 for u <0 ( cf. [17]) and K, ;(-) denotes the fractional heat
kernel defined as

Iz;(f) - e—tlf\a/z '

It follows from [17, (2.5)] that, when u — oo, there holds

00

Following [17, p. 8], the Fourier transform of the kernel Gf’ﬁ () can be represented as

GPP(8) = Ep(-|g*tF),

where
oo £k
(2.2) Eg(t)=> — .
#0= L )
Here, the symbol I'(-) denotes the Gamma function and Eg(-) is Mittag-Leffler
function.

Remark 2.2 In [17], the time-space fractional heat kernel G‘:’ﬁ (+) is defined by
GEP ()= [ p(es) fi(s)ds,
where p(-,5) (&) = eI = K, (&) and

So(s) = s WP gy(157F).

By the change of variable: u = ts™/F we have
G ()= [ =p(r.s)gp(ts )15
= [ p (e gp(w)du
~ [ Ky (gp(0)du

Thus, we use (¢/u)P as the subscript in (2.1). Such a representation of Gf’ﬁ (-) was also
used by Foondun and Nane [17]. Precisely,

G () = [ ple (1)) gp ()

(see [17, p. 502, line 10]).
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For a = 2 and f8 = 1, Foondun and Nane [17, p. 501, (2.12)] pointed out that when
n = 1, the kernel G>'(-) becomes

[x[?
o' - |

WL
b kP
wn | (ant)i2

The cases n > 2 are similar. In fact, by (2.2), we have

0o k

u
Ei(u) = — =¢"
! kz:;) I(1+k)
Then for n > 2, we can obtain
1 )
G2,l _ / 1x»EE _ Zt d
t (X) (27_[)” R e 1( |E| ) E

1 ix-E &t
d
(2m)" fR ette g
Iﬁli[meixjij (_fzt)d{
j=1 271 J-o0o ! j J
oL kPran,
(4mt)n/?
which indicates that G (-) becomes the classical heat kernel.

Remark 2.3 Let £ be the Laplace transform, i.e.,
L@E) = [ ety
0
After applying the Fourier transform and the Laplace transform to Gf"ﬁ (), we have
c (G;"’ﬁ ) (§5)=uy [ [ esirint ( |7 Kaw®) fEt(w)dw) dxdt
0 " 0
= [T ( [T fEt(w)dt) dw.
0 0
By [32, p. 3, (2.9) and (2.10)], the Laplace transform ¢ — s of fg,(w) is

£ (fE,)(W, S) = Sﬁ—le—ws’}.

Then

_ oo p-1
wp _ B —w(PE") g S
L(Gt )(f,s) s fo e dw S

Thus, by the inverse Laplace transform, we can get

G (8) = Eg(-|E°tF).
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Remark 2.4  Applying the Laplace transform to 8? u(x,t), we have

L(afu) (x,8) = /;ooe’”afu(x, t)dt
1 © g ¢ dr
:71‘(1_[;)/; e (fo aru(x,r)(t_r)ﬁ)dt
1 o o _ dt
= Wf 0, u(x,r) (/ e (t—r)ﬁ)dr

F(l—ﬁ) e "o, u(x, r)(/;ooe’mmfﬁdm) dr
=L (u) (x,s)—s u(x,0).

After applying the Fourier transform and the Laplace transform to (1.1), we can get

SPL(@) (&5) - PF(E) + 18" Ls (W) (&,5) = 0,

which indicates that
$B-1

L@ (65 =70 e

Applying the inverse Laplace transform, we obtain
(&, 1) = FOEp(—|E*tF).
We can use the inverse Fourier transform to deduce that
(23) u(x,t) =GP+ f(x) = [Rn Gy P (x - ) f(7)dy.
Thus, the solution to equations (1.1) can be represented as (2.3).

Lemma 2.5 LetmeZ,, a>n+mandpe(0,1].
(i) It holds

I |Eg(—t)*t0dt < oo, “1<6<1,
(2.4) o N d™Er(—p) 12
J7 || fdt <o, —1<8<amt

(ii) If 8 € (1,2 — 1), there exists a constant M(n, «, 3, 8) such that

[T Gl tdr = mna.p )l

(iii) If e 2m -1,2m +2a —1), m € Z, and o > m, then

f tu/ﬁ(f)

ot™
Proof It follows from (17, (2.7)] that for ¢ > 0,

Eﬂ(—t) <

6 dt ~ |§|2m75—1.

1

1+r(1 Bt~ 1+T(1+p)1t
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Assume that -1 < § < 1. Then

oo 1 oo
[ |Eﬁ(—t)|2t6dt:/ |Eﬁ(—t)|2t5dt+f |Eg(~t)2edt
0 0 1

1 oo t5
s [ todt f ———————dt<oo.
fo Thoarrasp ettt

Following Haubold, Mathai, and Saxena [22], as t — oo, for M € N,, we have

M 1 1 1
(2.5) Ep(-1) :_; T(1-BI) (-t)! +O[(—f)M”]'

1

There exists a constant Ay for ¢ in a neighborhood of 0 such that

Then

d"Eg(~t)
dim

1 1
p ri=p0 (|

I=1

d™Eg(~t D*k(k-1)...(k—-m)tk—™
oo [P |5 0
e ()R (k4 m) (ke m-1). . (K + 1)k
- ,;, T(1+p(k+m))
& DM ke m-1). L (k+ 1)
) ;Z;) BI(B + Bk)
< (k+m-1)...(k+1)

Sl 2 TR ’

which indicates that when -1 < § < 2m +1,

d"Eg(-t)
2 dt
T
:fl dm}iﬁ(_t)ztsdt+f°° wzt‘sdt
0 dem 1 dem
M 1 1

! oo 1
< J i [t e © | | <

(ii) For & € (-1, 2a — 1), by the change of variable u = |&|*¢%, we can obtain

= e [ PN 2
[T leshf war= [T msge) dar
=“_l|f|_6_1/w|El;(—u)|2 uH=ala gy
0
- M(n 08, 8)|& .
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(iii) Notice that

m oL 2
f ta/ﬁ(E) sdt:fm 0" Ep(-[€]"t") 0 dt
0 ot™ 0 at™m
oo | m . o' Eg(~ u)
~ | §]2m—0-1 (8+1-a+2ia-2m)/(2a) B
1 [o ;u ou!

For§ e (2m—-1,2a +2m —1) and m € Z,, (2.4) implies

/oo i u(t§+1—a+2ia—2m)/(2a) B’E,;(—u) |0’ Eﬁ( u) (5+1—a+2ia—2m)/adu<oo.
o | ou! oul
Then
f t“/ﬁ (E) 6 dt =~ ‘f|2m—6—1
0 at™m
This proves (2.5). [

Denote by M the Hardy-Littlewood maximal operator, i.e.,

1
Mf(x) :=su
fx) = sup B(x, 7| Jaen)

lf(»)ldy.

Lemma 2.6 For meZ,, o >1/2 and 8 € (0,1], there exists a constant C depending
only on n, a and  such that for x, y € R" and f € Cg°(R"),

G« f = ) < C(1+ /) M ().

Proof Let f,q5(x) := f(t#/*x). For any ball B c R" centered at x5 with radius rg,
define By o5 as By,q,p = B(t#/*xp, t#/*rp). If x € B, then t#/%x € B, , 5. Hence, it is
easy to see that

1
7 Mg € s e [ Oy <),

X€Bya,p

We only need to prove

(2.8) GPF s+ f(x = )] S (14 [7)"Mf ().
In fact, if (2.8) holds, (2.7) and the change of variable z = t*/By give

P
re (tP/e 4 |x — y — z|)n+e
-nf/a 1 Bla np/a
/nt e _u|)n+zxf(t u)t"F%du
t «
S (Ut 91/ 1) " M f o (/1))
S (U I/ eP7) " Mf ().

GEF o+ f(x =yl =

f(z)dz

N
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Below, we prove (2.8). If |x| < |y], it is obvious that Gf"ﬁ (x — y) <1. On the other
hand, for |x| > |y|, it can be deduced from the triangle inequality that
1
=yp)mre

Set the decreasing radial majorant function of G, ok (x—y)as

a,f _ <
KRR (R ("

1
yoB () = | T K=
’ Lo <Dl

With a slight abuse of notation, let us write 5 (x) = w3 (r) if x| = r. We can get

a,f 1
R L Y o P QL

a,f _
s [P -2l @)z
. S @ _
-3 R - DI

< Z 2n(k+1)w;al§(2k)[ 2_"(k+1)|f(z)|dz,

ke—oo |x—z|<2k+

which, together with the inequality:

S 2@z < (),
x—z|<2k+!

implies that

G« fx - y) s Mf(x) D i (2k)2nten

k=—o00

oo 2k
SMx) X vt [t
k=—o0

M5 o gn)-

It follows from a direct computation that

ap I ~ / 1d / %d
1 Rn ~ X + *
Iy Ny i<l lzlyl (1+ |x| = [y])+e

Then we use the change of variable: |x| - |y| = r to deduce that

* (r+ )" dr
(1+r)r+e

=k -k [ r
e St [T
|y| ];) n l|y| 0 (1+7’)n+‘x r

5P I s 11" +
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Here, Ck_, denotes the number of combinations of choosing k many objects from
a group of n —1 many objects. Notice that k <n —-1and n+a — k > a +1> 1. There

exists A > 0 such that
oo T’k
sup {/ dr} <A,
o<k<n—1 (Jo (1+71)nte

which makes

[y P sy S+ 3 Chalyl"™ s (L [y m
k=—o00

Lemma 2.7 Let meZ,, a>1/2 and f € (0,1]. There exists a constant C depending
only on n, a and  such that for x, y € R" and f € Cg°(R"),

G+ fx - p)| < 1+ y1/t) Mf ().

Proof Let f;(x) := f(tx). For any ball B c R” centered at xp with radius rp, denote
by B; the ball B(txp, trg). If x € B, then tx € B;. Hence, it is easy to see that

@9) WA/ < sup o [ 1F )y < M)

xX€B;
By (2.8) and (2.9), we can obtain

th

Ga’ﬁ - ~
| ta/ﬁ*f(x )’)| Rr (t+|x—y—z|)

e f(2)dz

~

~ /,. t_"%f(tu)t”du

A+ - u)e
S (L4 /D™ (/1)
S (L4 /D™ (),

which indicates Lemma 2.7. [ ]

2.2 Regularity of time-space fractional heat kernels

For m € Z., define

0" f(x) 9"f(x) a'”f(x)).

m ’ m o m
ox] 0xJ ox!t

2 =
Lemma 2.8 Leta>1/2, meZ,, xecR"andt>0.

BmK(x,t(x)

ox™
j

t
S
(8% + |x|

tm/a

)t’l+0t °
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Proof The subordinative formula [19, (5.31)] indicates that K, .(-) can be
expressed as

0" Ky, (x) /“"’ 0" K, (x)
> _ o ds,
ax;n ’71‘ (S) ax;n S

where K;(-) denotes the integral kernel of the heat semigroup {e~*(-2+)} .. Here,
the nonnegative continuous function #¢ () satisfies

1 (s) = (/) (s/220%),
ne(s) < t/s"? ¥, t>0,
[y sTpE(s)ds <00, y>0,
ne(s) mt)sH?2 Vs> 250,

(2.10)

When m is odd, we can get

m m(—n/2 —|x*/s m— 2i+1
" K(x)| _|? (S ¢ ) N S—n/Ze—\x\z/s( 21:)/2 o
ax;n ax]m Z s(m=1)/2+1+i | ©
Then
m m— 2i+1
0" K,(x) w112 g5 (mD2 % ‘
ax]r'n = 5(m—1)/2+1+1
(m-1)/2 .
< g~ (mem)/2 olxlfs 5 ‘(|x|2/s)(2’+1)/2
i=0
< S—(m+n)/26—cm|x|2/s,
where ¢, is a constant depending on m.
When m is even, we have
m m 2i
0" K,(x) w 112 gl s f x5!
ax;n - prt gmf2+i”

For this case, we can obtain

‘M() § s Omm/2gcnliPls

ox™
j

Then letting m € Z,., we can get

2
< S—(n+m)/26—cm|x| /s.

) ’aKU

m
axj
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14 Y. Tang, P. Li, R. Hu, and Z. Zhai

Bys= t2/%h, (2.10) and (2.11) imply

0"K, o 0" K
I Raa)] | [ () R g
ox” 0 ox’
j j
oS} m
S/ t 0"Ks(x) s
o |[st*te  ox™
j
< f T (rem)f2 el s ds
0 sl+a ct2lon

0 t 202/
< —cm|x[*/(£7%h) 2]a
S fo (tZ/ah)1+a/2+(n+m)/Ze t%dh

_ [ 1 ~culxP/(2/7h)
‘fo Hnrm) 2 a2+ (nem) ]2 € dh.

Let y = t*/*h/|x|?. It holds

‘amKa,t(x)

oo e—cm/y|x|2
I S / Grimya (ole2 [l rafar ey
x] ot (ylx[2/e2/*) t

- t ! 1 ~eml¥ g4 4 * 1 ~tmly g
- ‘x|¢x+n+m 0 y1+a/2+(n+m)/le y 1 y1+a/2+(n+m)/ze y

t ! 1 Lta/2+(ntm)/2 o 1
S efeenem (fo yieaarCnimy2” dy+f1 mdy

t

~ ‘x|a+n+m :

On the other hand, the fact 7% (s) = (1/t%) % (s/t**) implies

0" Ky, (x) © 1 . f s 1
' e EO A (ﬂ/a)swm)/zds
j
1 > nyi(h)
S t(n+m)/a [0 h(n+m)/2dh'
By (2.10), we get
= 1y (h)
fo h(n+m)/2dh<oo’
which gives
amKa,t(x) 1
ax}n ~ t(n+m)/<x'
Thus, it indicates that
m
8 Ka,,(x) Smln t : 1 '
ax]l_ﬂ |x|0¢+n+m t(n+m)/tx
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Sobolev trace-type inequalities 15
Case 1: 0 < t/% < |x|. We have

¢ tm/oc tl—m/tx tl—m/(x

amKa)t(x) < <
ax]m ~ 2|x|a+n+m ~ |x|m ‘x|a+n + t(nta)/a ™ (tl/“ +|x|)n+a-

Case 2: |x| < £1/*_ It can be deduced that

1 tl—m/oc

lamKa,t(x) .
ox}’ ~ t(nrm)/a ™ GE +|x|)”+"‘

which gives

tm/(x amKa,t(x) < t

ax;n ~ (tl/a+|x|)n+(x.

Lemma 2.9 FormeZ,, a>1/2, € (0,1] and t > 0, there holds

a Kﬂt t(x)
ot™

t
(e

)H+(X *

Proof By (2.10), we get

s/t x oo
Keal) = [~ IO g [ i (K ().

tZ/a

Then

BmK,x am oo o oo i a Kza
T;nt(x) T om (_/0 M (h)KtZ/ah(x)dh) = —/0 (h)#(x)dh

By (2.2) and the higher-order derivative formula of composite functions, we can obtain

m

zamzaKx
Z/ i (h)t 2/ h E)sf)

« ny (h)
<
~ /(; tm(t2/¢xh)n/zec|x|z/(tz/"‘h) dh.

Letting s = t¥%h/|x|* and y = t*/*h/|x|?, we can get

‘a K‘x t(x

dh‘
s=t2/ep

_mf°° (/1)
0 tn/zx(y|x|2/t2/zx)n/2+1+a/266/y y

_ Ly bt t
st (‘/0 |x|oc+n d)/+fl |x|zx+nyn/2+1+o¢/2 d)/)

~ tm—1|x|a+n :

amK(x’t(x) <
otm N
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16 Y. Tang, P. Li, R. Hu, and Z. Zhai

On the other hand, the fact [~ #(h)h™"/2dh < co implies

amK(x,t(x) < fm ﬂix(h) dh
otm 0 tm(t2/¢xh)n/zec|x|2/(t2/"‘h)
< t—(m+n/<x)/ nf‘(h)/h”/zdh
0
< t—(m+n/tx).
Thus, we can get
g 0" Ky, (x) < t t < t
otm ~ min (tl/a)n+a’ |x|oc+n ~ (tl/a + |x|)n+a' u

Below, we estimate the regularity of the time-space fractional heat kernel G P ()-
Proposition 2.10 Let o > n+m, m € Z, and B € (0,1]. Then

" (Guh(x) .

x| e

Proof By Lemma 2.8, we know

o™ (Gt«’/ljz (x))

ox!"

0 B'"K,,, a/B/y ;;(x)
/; #gﬁ(u)du

ox!"

oo ‘x/ﬁ ﬁ(l—m/oc)
< / (77 [u) gp(u)
0 ((t"‘/ﬁ/u)ﬁ/“ + |x|)n+a
=I1+1I,
where
L 1 (t“/ﬁ/u)ﬂ(lfm/a)g (u)
I:= [, Wdu,
oo (P [u)PUTm) gp(u)
= [ gy 4

For the term I, by Definition 2.1, since lirr(l) gp(u) =0, we can get
u—

1 pa=my~p(1-m/a)
I< du
o ((r¥/Blu)ble +|x|))m+e

Since « > 0,

a—m 1 a—m
1<t f yBa-mia) g, o 1
0

~ |x|n+a ~ |x|n+o¢
and

[<nm fl uﬁ(ern)/txdu <pnm,
0
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Sobolev trace-type inequalities

When u - oo and m < «, we know gg(u) » u™P1. Then

_B
ra-p Y

e [T
((to/BJu)Ble + |x|)n+e

We can obtain
t(X—m ta—m

IIs e [ u Pmla)-1g,, < R when a > m/2
x 1 x

and
g™ foo yBrBCnrm) el g < y=n=m  hen o > n + m.
1

Leta>n+m.If x| < t,

( tw(X)) < min

t* t* < t* < t*
ox™ ~ |x|n+rx’ gnra [ Y ognta ¥ (t+ |x|)n+a'

1

On the other hand, if |x| > ¢,

(GEh)| (e e o o
t"———— " <min <

< .
axim |x|n+a’ pnva [ ¥ 2|x|n+tx ~ (t+ |x|)n+tx

Then
L(G@)] e

oxj" ([

t

which proves Proposition 2.10.
Similarly, we can obtain the following result.
Proposition 2.11 Form € Z,, a >n+m, € (0,1] and t > 0, there holds

N A |

otm Tt + x|

Proof At first, (2.1) implies

gp(u)du

PG | - gt

ot ot™
S fm m
o %

Then it follows from Proposition 2.10 that

/Ky s(x)
0s/

ufj[i tjtx—m amKOC,S(x)
os™

s=(t"‘//3/u)/3)gﬁ(u)

st

~ (sl/oc + |x|)n+a ’
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18 Y. Tang, P. Li, R. Hu, and Z. Zhai

which yields
o (Guf(x) om (o alf /) (-8
( te/B ) sf Z(u_]ﬁt]u—m( (t /u) )gﬁ(u)du
o I

otm (ttx/ﬁ/u)ﬁ/a + ‘x|)n+tx

. a,mf‘” gs(w)/uf

St ——————au
o (t/uPle+|x|)n+e

ST+11,

where

o sa-m [l g (u)/”l}
I:=t .[O wﬂidu,

uﬁ/a+|x|)n+o¢

_ga-m [ g (”)/“ﬂ
Il:=t _/1 (t/uﬁ/uwdu.
According to [17, (2.4) and (2.5)], we have
lim gg(u) = u P,
lim g5 (u) = 0.
Noting that « > n and f(n + a)/a < 23, we can obtain
1
I< fmen f uﬂn/{xdu < gnm
0
and

st m™rn foo u—Zﬁ—l+ﬁ(n+¢x)/adu < pmon,
1

On the other hand, since

" Gaa’ﬁ X a—m oo a-m 1 a—m
( i )) <! [ w2y + ! f uPdu g !
1 0

om x|t x|+ x|’
we get
o (G (x) - { e g } e e
o ~ x[rre” T [ 7 (e x|mre) T (4 [x]) e
The proof of Proposition 2.11 is completed. ]

3 Fractional trace inequalities via the time-space fractional
extension

. . ogs . . = B"‘u(x,t"‘/ﬁ)
3.1 Fractional trace inequalities involving V" u(x, t*/?) and g

Theorem 3. Let meZ, a>n+m, Pe(0,1], feH"?(R") with ve

(0, min {2m,n}). For (x,t) e R" x (0,00), denote by u(x,t) = G‘:’ﬁ * f(x) the
time-space fractional extension of f.
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Sobolev trace-type inequalities 19

(i) There holds

1-v/n
(3.1) ( [P dx) s [ Trute oA dxdr,
(i) If || fllz2(mny = 1, there holds
(3.2)

X 2 2 < om a/B\(22m-1-v
exp(n fRn If ()P In(|f(x)] )dx) < /Ri“ [V u(x, t9P) Pt dxdt.
(iii) There holds

(33) L. Ol

Proof In order to prove (i) of Theorem 3.1, we need to establish the following result:
for v € (0, min {2m, n}),

(3.4 [Tt e e axdes [ g0 )P,

d _
* < f 7 u(x, /8P 271 dxdt.
x|v ]R51r+1

In fact, notice that u(x, t) = Gf"‘B + f(x). It holds
fRi“ [ u(x, /PP dxdt = /R:H ™™ (xR PRI dxdy
s [T P e e g
. fR ( fo M(Eﬁ(—w))zw“’"‘”‘“”“dw) " F )P de.
In (2.4) of Lemma 2.5, take v € (0, min{2m, n}) and m < a. We get
/;M(Eﬁ(—w))zw(zm’v’“)/“dw < 0.
Hence
STt ey P s [ ([ ()0 dw) 0 0
« [ lIF@Pa
We know that
[ IFC@PdE = 1T s e

= [[(=8x) "7 fllL2 )
= ||(—Ax)v/4f||L2(]Rn)-

It follows from the well-known fractional Sobolev inequality:

[ £llzzncrs ny < B, W)I(=A0)"* fllz2 ny
for v € (0, n) and some constant B(#, v) that (3.1) holds.
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20 Y. Tang, P. Li, R. Hu, and Z. Zhai

Now, we want to prove (ii) of Theorem 3.1. Let p = n(r —2)/v,2<r < 2n/(n—-v)
and v € (0, min{n, 2m}). The Holder inequality implies that

(3.5)

N L \pe/en)
= J PGP < IV oy ( [, £GPl .

If | f|| 2 (rny = 1, it can be deduced from (3.5) that

(Lseoriseras) =([oyeora) " <11

The inequality (3.1) implies that for a positive constant A(#, s, v),

(Liseoriseoras)”

n/(2v)
< (A(n,s,v) fRM V™ u(x, t“/”)|2t2’”‘1‘”dxdt) ,
which yields

o ( n(r2t 2) ln( fR If(x)|’2|f(x)|2dx))

n/(2v)
S(A(n,s,v) f |§g1u(x,t“/ﬁ)|2t2m”dxdt) .
]R:'H

Since | f||z2(rny = 1 du(x) := | f(x)[*dx can be treated as a probability measure on
R". Thus (3.2) can be obtained by letting » — 2. In fact,

lingexp (2)1 (L, If(x)l"zf(x)lzdx))

exp ( v Joe [FGOP In((f()) )

n [ |f (x)2dx
—exp (2 [ P In(f()P)dx),

which implies (3.2).
At last, the inequality (3.3) follows from (3.4) and the fractional Hardy inequality.

/0
BEG

<H[(-Ax)"* fll 2y
L2(R")

which is a special case of [42, (3.1) in Theorem 3.1]
As an immediate corollary of Theorem 3.1, we can obtain the following result.

Theorem 3.2 Let meZ, a>n+m, pe(0,1], feH"'>(R") and ve
(0, min {2m,n}). For (x,t) e R" x (0,00), denote by u(x,t) = G‘:’ﬁ * f(x) the
time-space fractional extension of f. Then, the following statements are true.
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(i) There holds
( fR fPre dx)l_V/n S fR (P gy,
(ii) IF[|fllz2 gy = L there holds
exp(: /Rn |f(x)|2ln(|f(x)|2)dx) S /ﬂ;{m V™M u(x, t)[FPCm= gyt

(iii) There holds

[l = s [T e PG dxar,
R» R-’:—“

<~

Proof By the change of variable: t = w*/#, we have

| T, PECn I dxdr = % [T @) et dxda
Ri+l R:ﬂ

LGRS

Similarly to the proof of Theorem 3.1, we can prove Theorem 3.2. [ ]

Theorem 3.3 Let meZ, a>n+m, Pe(0,1], feH">(R") with ve
(0,min{2a,n}). For (x,t) €eR" x(0,00), denote by u(x,t)= G?’ﬁ * f(x) the
time-space fractional extension of f.

(i) There holds

B 1-v/n amu(x t(x/ﬁ) 2
36 /) g ) s [ e,
6o ([l ) E Lo x
(i) If[| fll 2 (mny = 1, there holds
(3.7)
2
v 2 2 9" u(x, ta/ﬁ) 2m-1-v
— 1 d sf —|t dxdt.
p( [P eoP) ) M x
(iii) There holds
dx 0™ u(x, t*F) 2
3.8 2 f 2 Akt
69 [ICFEE L] x

Proof In order to prove (3.6), we need to prove that for v € (0, min {2a, n}), there
exists a constant a(n, «, 8, v) such that

-[R:+l

2

3" 1) | ot it = ans B v) RGIRS

ot
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22 Y. Tang, P. Li, R. Hu, and Z. Zhai
In fact, noting that u(x, t*/) = Gt,,/ﬂ * f(x), we can apply (2.5) to deduce that

A:ﬁl

0™ u(x, t*/P ?

ot™

Y e dt

0™ u(x, t*/F) ?

= [T pmae dédt
L s | 8
0™E £t
f f 2m 1-v ﬁé’L| ) |f(f)|2dfdt
n t
Denote
i OMEg(—|El*t) |* ~
I:: f / tszlfv ﬁ( |£| ) |f(£)|2d£dt
» Jo oatm
Let u = |€]*t*. Then
amEﬁ(_|f|at‘x) lOt in— maEﬁ( ) |£|2m Z i— m/aaEﬁ( )
ot et ou’
We get
IEp(-u) |’

- i-m/a
Zu ou!

i=1

I Rn(fow
AT

By Lemma 2.5, for v € (0, min{2a, n}) and a > m, we can obtain -1 < 2i —1-v/a <

u(zm—v—oc)/a|f|vdu) |}_\(f)|2df

z i-1/2— V/Z()ta ﬁ( u)
i=1 ou’

) &7 (&) PdE.

2i+1and
im o2
f yri-l-vle M du < oo.
0 ou’
Then
oo I Es(-u) |’ I Es(-u) |
i-1/2-v/2a ¢ BB\TH) du < f 21 1-v/a B d
./0 Zl u Zl u’ oo

which indicates

amu(x th/ ) 2m-1- T 2
2m=l=vgrds o f v dE.
[ L= arw [ IO
Theorem 3.3 can be proved in a way similar to that of Theorem 3.1. ™

Theorem 3.4 Let meZ, a>n+m, fe(0,1], feH>(R") with ve
(0, min{2a, n}). For (x,t) e R" x(0,00), denote by u(x,t)= G;x’ﬁ * f(x) the
time-space fractional extension of f. Then the following statements are true.
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(i) There holds

(LGP dx)IV/ns S Fulnt) iy,
(ii) If||fllz2(rny = 1, there holds
eXP(Z fR If(x)lzln(lf(x)lz)dx) < fR % ztz”’_l‘ﬁv/"‘dxdt.
(iii) There holds
0" u(x,t) 2

2B/ gy dt.

dx
26X f
/R" f ()] x|V~ Jren

Proof The proof of this theorem is similar to that of Theorem 3.3. Notice that

ot

amu(x t) 2m 1-Bv/a _ 2m 1-va/p amEﬁ( ‘gldtﬁ) 2
A:ﬂ e dxdt = f f = F(E)Paédt.
Letting u = |£|*t#, we can get
m a 2 i 2 m
9 Eﬁ(_|€| tﬁ) ~ “m© Eﬁ(_u) ~ |£|2ma/,8 Zui—m/ﬁa Eﬁ( Ll)

ot™ ou’ = ou'
Then

[ amu(x t) 2m—1—ﬁv/adxdt

R7+ atm

mo iR (~u) |
i-mja B
2.1 ou'

i=1

mo O Es(~u) | _
Zu"”z‘”/z“igii u)’ du)lflvlf(f)lzdf.
i=1

u(zm—v—a)/“|f|"du) |f(f)|2d‘f

JATe
L

By Lemma 2.5, for v € (0, min{2a, n}) and « > m, we can obtain -1 <2i —1-v/a <

2i +1and
in N2

/ uZiflfv/‘x M du < 00.

0 Jul
Then

; 2
fw Z i-1/2- WMM <§:fwu2i‘l‘v/“ M du < oo,
o |3 ou’ TS Jo u!

which indicates
"u(x,t) 2

'/l;:-ﬂ atm

The rest of the proof is similar to that of Theorem 3.3 and so is omitted. [ ]

p2m=1=pvfe 3. 14 o ‘/]1;,. |.f|"|f(§)|2df
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Fractional trace inequalities involving (~A, )¥?u(x, t*/#)

Theorem 3.5 Let meZ,, a>n, e (0,1], feH">(R") with ve (0,n) and
se(v/2,a+v/[2). For (x,t) eR" x(0,00), denote by u(x,t)= Gf"ﬁ * f(x) the
extension of f via the time-space fractional heat kernel. Then the following statements
are true.

(i) There holds

1-v/n
2n/(n-v)
d p f
()17 )

(ii) If||fllz2(mry = 1, there holds
v 2 2
(2 [ 1P (s )Pdx) s [
(iii) There holds

L RS s [ A0 (e o) 2t
Rn R_r:_+l

<~

(=A)2u(x, ) 25" dxdt.

(=) u(x, /) 257 dxdt.

Proof We only need to prove
_ s/2 al/p 2 25-v-1 ~ vy 2
CONE | e P 7 IRGGIR
By (2.4), we have
_ s/2 a/p 2 2s—y-1 o e 25|~ a/By2 2s—v-1
[R:“ (-0 u(z, 7)1 dxdtho [an (E, /B P dEdr
o 7N e )Y T @) P ar
o [ (L7 Eawr e du) 1 T Pag

0
« [ leriorde

Following the procedure of the proof of Theorem 3.1, we can prove Theorem 3.5 by
using (3.9). We omit the details. ]

Theorem 3.6 Let meZ,, a>n, fe(0,1], feH"*(R") with ve (0,n) and
se(v/2,a+v[2). For (x,t) €eR" x(0,00), denote by u(x,t)= Gf"ﬁ * f(x) the
extension of f via the time-space fractional heat kernel. Then the following statements
are true.

(i) There holds

1-v/n
2n/(n—v)d ) </
(L lreoreas) s [
(ii) If || fllz2(rny = 1, there holds

(2 [ P (P s [

(-A2)*u(x, t)|2tﬁ(25_v)/“_1dxdt.

(=) u(x, t)|2tﬁ<2“”)/“‘1dxdt.
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(iii) There holds

LRGP S s [ a0 ue of e tazat,
an PO * Jage

Proof Similarly to Theorem 3.5, we only need to prove
fmﬂ (=A)ux, ) PO i o fR 117 (&) P dE.
It follows from (2.4) that
fmﬂ (=) u(x, ) O e fowfR EP[a(E, 1) PP 1 g ggy
o [ R IO g
o [ (7 Epwretr i) g 7o) Pag
« [ IePIFEPas, .

3.3 The general case p >1

In Theorem 3.1, we consider the scope of (p,v) when p =2 and v € (0, min{n,2}).
We can generalize inequalities in Theorem 3.1 to the general case p € (1, o).
To obtain the Sobolev-type trace inequalities for the general index p, we need a

characterization of the Sobolev spaces W; / 2(]R”) via the time-space fractional heat
kernel.

Definition 3.7 For 7=(11,72,...,74) €N", denote |7]=%7,7; and

0" =0 ...0p".

(C1) (Cancellation) Let ® € C"*"*[Al(R”\{0}) such that for every |z| < n + 1+ [A],
we have

" ® = 0(|¢ M) as|g —o.

(C2) For every & eS"!, there exist ar,a; € R (depending on &) with 0 < 2a; < a,
such that for every a; <t < a,, |®(£§)[ > 0.
(C3) Take @ € C"*IAI(R™\{0}) such that for every |7] < n + 1+ [A], we have

"D = O(|§™")  as|f - co.

Lemma 3.8 [6, Theorem 1.1(i)] LetveR, 0< p < oo and { >0 with { >v/2—n/p.
Assume that (1+|-|)°® € L'(R") and @ satisfies (CI) and (C3) for A = n/p, r > v/2

and b>A-v[2. If f e W;/Z(R”), there exists a polynomial g such that f - g is a
distribution of growth { and we have inequalities

1/p
(Z(W ;< (f - g) |L»<Rn>>f’) S 1oy

JEZ
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Lemma 3.9 [6, Theorem 53] Let 0<p<oo and veR. Let A>0 and by > A -
v/2. Assume (1+]|-|)™Cf € L™ with { > 0. Suppose € L'(R") satisfies the (C2) with
(1+]-DS®(-) € L'Y(R™). Furthermore, assume that ® ¢ C"+max{[¢LIAL R\ {0})
with

OT®(§) = O(|g" %) as[¢] - oo
for|t| < max{[A],[{]} + L If A = n/p, then
1/p
i camy & (jezzefv/z |, *f|Lp<Rn>>P) .

Theorem 310 Let meZ,, a>n+m+nfp, f€(0,1], fe W;/Z(R”) with p > 1,
ve(0,2) and (1+]-))°f e L{(R™) with { > max{0,v/2-n/p}. For (x,t) e R" x
(0, 00), denote by u(x,t) = G;x’ﬁ * f(x) the time-space fractional extension of f. Then

1/p
Sm a/B\|p pm—pv/2-1 ~ )
(3-10) (fRi“ |Vx ”(x>t )l t dxdt) ~ ”f” W;/Z(Rn)
and
1/p
amu(‘x’ ta/ﬁ) ? pm-pv/2-1
(3.11) (jgyliﬁn, ¢ dxdt | # £l ony

Proof Denote

D;1(x) = 355’,.Gfa’ffs (x),
;1= &"Ep(—[E]%),

where @y ;(x) = t7"®;(x/t). Without loss of generality, for every 7| < n +1+ [y] and
all & € {&,&,..., &y}, we just prove that &/"Eg(—|¢|*) satisfies

alr\(f;"Eﬁ(*mﬂ)) _ O(|£|m/2+v/4—|r|) as |£| -0,

&l
(3.12) Afgma s |xa
(& angl 1)) _ O(|f|_”_"/p) as |&| > oo.
Casel:i # j.
(& (Bp(-1E1))) _ g 0" (B (-*)
ogl" ' ol
7| ([(7l=k)/2]+1 ~ B o (Eg(~u))
_gm |7] gl7|-2s| grka—2|7|+2s B
= g; (I;)( S;) Cs,kgj |£| ) auk u=\f\"‘
L im0 (Eg(-u))
N ka—|t|+m B
) 1;) 4 ouk  lu=jge’
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It follows from (2.6) that for |¢| in a neighborhood of 0, we know

90" (Ep(-u))
ouv”

< 00,
u=[gl*

Since a > n + n/p + m, we get

Irl(emEq (—|&* Il k
lim |€|\1\ m/2—v/4a (fx Eﬁ( ‘E' )) lEl ‘£‘|1| (Z |£|k¢x—|r|+m
k=0

=) ol

Then (2.5) and a > n + n/p + m imply

| |"+"/P Tl('f;nEﬁ(_MP)) kaa |7|+m+n+n/p
L I3 e e

Case 2: i = j. When m > |1|, we have

(& (Ep(-18%)))
a¢lr!

w9 (Ep(=1E%))

= Co&}"Eg(-[E") + Z Cu! S

-c5 TME (8%

et [ & (ORI B - oF(Eg(~u))
+ Z C f [+ (Z( Z ?:kg;/v 25|E|ka 2w+25) aﬁuk

s=0

9%

~ & B (—]E*) + Z Zlilk“ ke

oF(Ep(-u))

ouk

ouk

27

=0.
u=|¢|*

u=lgle

u=f|"‘)

w=0 k=0 ouk  lu=|ge
~ lzﬂ: |E|wrx—|‘r\+m aW(Eﬁ(_u)) )

B’ u" u=|¢le

Then we have
(& Eg(-18%))

li [7|-v/4- m/2+ wa+m—v/4-m/2 _
|E}m0 ‘E| af‘lﬂ ‘El"o z ‘E| auw :lf‘u
Since a > n+ m + n/p and (2.5), we get

| |n+n/p a"'(E,*”Eﬁ(—|5|“)) Z |f|w¢x |t|+m+n+n/p _ -
i 2l " 2 v lusjge
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On the other hand, when m < ||, we can obtain

ar(f,*”(aEg;—lfla))) _c. wé_m oo BW(E/;(E;KI“))
=C, W_lz;:_m E:ﬂ—lr|+w (kzvi:l ([(WSkZ:):Z]“ . f;vzs|€|ka2w+2s) ak(éﬁlf;”)) uzéla)
o -
~ W%ﬂnkJ glkeletem o (Eaﬁ u(k u)) »
7 W (Eg(-
N lerlz_m|£|wa|r+ma (];i(w u)) e

Moreover, we can get

ot B D) B a9 (B(-0)

lim |£| ~ & =
il aél |z|aow=%:_m| | o lu=fge
and
oIl (EMEg(~|E* I 0" (Eg(—
lim |ﬂn+n/P (& ﬁ( |£| ) ~ lim Z |£|wtx—\1\+m+n+n/11 ( ﬁ( u)) _
GESS aél &0, {7 ou" u=|ge

By (3.12), when r = m/2 + v/4,b = n/p and by = n/p, |®, ;| satisfies (C1), (C2), and
(C3) in Lemmas 3.8 and 3.9. Thus, we know

1/p
( [ Frut t“/ﬁ>|"rp'"“”/2*‘dxdr) =2 ( S
RY 1 RY

i=

» 1/p
Dy * f(x, tF )\ rP'"*P”/Z*‘dxdt)

~ ”fHW;;/Z(Rn)

Below, we prove (3.11). For @, ,(x) = t " ®,(x/t), we have

a™(G%F (x))
Dy, (x) = —0—,

®; = XL, Cial8 “Ef(-[E),

where Ek (-t)= :—:,. (Eg(~t)). Similarly to ®;, we just prove

ol D, B
@) _ ogmzesF) sl -0,

a\ﬂ(é}z)

S = OUE™™7) as i o,
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By a direct calculation, we can obtain

J(@y) o A= EL(-1E))

(3.13) m E
8Ej i=1 afj
m fld fw 8jEi(—u)
~ £1a+]a—|r\ﬁ7'
53 (e
m 1| wrRi (_
~ Z |£|(i-*—w)ot—|‘r|a Eﬁ( u) )
i=1 \w=1 ouv u=|g~

Then we can obtain

(D
Jim |§[l7-a 22(32) _ g

>

T
[€]—0 af‘j‘ _
lim |gr+n/p22(02) ¢
|€]—oc0 85']7'

Similarly, when r = m/2 + v/4, b = n/p and by = n/p, |D,] satisfies (C1), (C2), and
(C3) in Lemmas 3.8 and 3.9. Hence, we have

St Cial 8" ER(=[E]%) = O(Jg/2/4T) as|g] - o,
Sty Cial €' ER(=[8%) = O(|E|"/7)  as [¢] - co.

Similarly, by Lemmas 3.8 and 3.9, we know
(‘/]1;1*-1

For a compact set K c R”, the fractional-Sobolev capacity C¥ (K) is defined as

0™ (u(x, t*F))

P 1/p
pm—-pv/2-1 ~ )
Py t dxdt) ~|fl Wl ()

COK) = inf {IFI, gt f € CF(R") and £ > 1
P
and for any set E c R", one defines

CP(E):= inf sup {Cg(K)},

open O2E ¢ompact K<O

where 1g denotes the characteristic function of E. Let 1o denote the characteristic
function of the set O. In [28], Li, Hu, and Zhai obtained the following results.

Lemma 3.11 [28, Theorem 3.2] Let ve (0,2), 1< p<2n/v and f e CZ(R"). The
following statements are equivalent.

(i) The analytic inequality:

oo 1/p
(3.14) ( A <v<ot<f>))”"‘P”/“”dt") (v

where O;(f) == {x e R" : |[f(x)| > t} and V(Oy) := [. lo,dx.
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(ii) The fractional Sobolev inequality:

1/p
lf (x)[P
(3.15) ( SN dx S||f||W;/z(R").

(iii) The fractional Hardy inequality:

(n-pv/2)[np

np/(n-pv/2) _

e ([ 1wl dx) S Ifll sy

(iv) For any bounded domain O c R™ with C* boundary 00, the iso-capacitary
inequalities:
(3.17) (V(0))' e gl (0).

Moreover, (3.14), (3.15), (3.16), and (3.17) are all true.

Notice that the proof of (3.16) can be found in [13, 31]. For (3.15), readers can see
[31] and the references therein.

Similarly to the inequalities involving fractional Laplacian in [21, Theorem 2.5 and
Corollary 2.6], we will prove fractional logarithmic Gagliardo-Nirenberg inequalities

which imply the L?-logarithmic Sobolev inequalities for W; /2 (R™).

Theorem 3.12 Let1<g<o00,0<v<2n,1<p<2n/vand f ¢ W;/Z(R”) N L1(R")
with | f|Lacgny > 0. Then the following inequality holds.

ew| (Lt @I, [ el dx) 1y ey
p((‘1+2” )/R 11 2a ey (IfIILq(Rn) Mfle@ny

Proof Let

g(ny=nn( [ 1o "ax)),

where g(-) is a convex function. For & > h; > 0, we can obtain

o Ju ()M In | f (x)|dx D -
g0 =n( [ reophax) - n L2 ) , l0)g08)

Taking h =1/q, hy =1/p; and 0 < g < p; < oo, by [33, Lemma 1], we have

o e (@i )\ e Wi
P(/R T (Ifqu(Rn) )< Ty

For y > 0, Holder’s inequality implies

1/p1
fllingen = [ 1FGPFG) ™ dn
< Hf“”/Pl Hf”(pl*y)/pl

L}’P; (Rm) L(P1—J')/Pg (Rm)
= [ F120 g LAI B 0P
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where 1/p5 +1/p5 =1, p2:=yp5 and p3:=(p1—y)/ps. By (3.16), for 1/p+ (n—
v[2)/n =1+1/p,, we get

1 o ey % 1 gt o LR R

(Rn LP3 (]R”
Then we can choose p; = nq/(n — qv/2) € (g, o) for ps = g, y and p satisfying
y(1/p=v[/(2n)) + (pr-y)[ps =1.

Hence,

(”fH)'/ ! fH(pl(y)/Pl)
q q v/2 ,, LP3 (R”
JRECLEN TR P &)

w T\l ) % 21 a e

qy 1 Hf” V/z (]R"
If Hu(mn

When p=gq and |f|psn) =1, there holds the LP-logarithmic-type Sobolev
inequality.

7AN

We can get [ ]

- 1/q+v/(zn) 1/p

Corollary 3.13 Let0<v<2n,1<p<2nfv, f€ W;/Z(R”) with | f|Le(rny = 1. Then

xp (5 [ LI I (FGP) dx) £ 1]y

Let f € W;/Z(R") with v € (0,2) and (1+]-|)*f € L'(R"). Using (iii) of Lemma
3.11, we can obtain the following Sobolev-type trace inequality: for f € va /2 (R") with
p>landu(x,t) = G?’ﬁ * f(x) the time-space fractional extension of f,

1/p
=m o P m-—pv - .
fan/<n-pv/z>(Rn)S(/Rnﬂ|vxu(x,t B[ epmpet? ldxdt) , ve(0,min{2,2n/p}),

and

HfHan/(MV/Z)(Rn) s (jll;ii“

For s = t*/P and (3.10), we can obtain

1/p
atm(u(x t“/“))‘ "“’lpv/zdxdt) ., ve(0,min{2,2n/p}).

1/p
(3.18) ([RHI W;”u(x,s)Psﬁpm/a—ﬁpv/(Za)—1dxds) ~ ”f” W;/Z(Rn)'

Notice that

amu(x)tlx/ﬂ) m _ aiu(xls) m Pl u(x S)
3.19 2" N e/fem Z 20 i-mp/a O UAL3)
G ot™ 12:; os' 28 Osi

i=1
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Then

P 1/p
S—l—ﬂPV/(Z“)dde ~
R:+1 Riﬂ

By (3.11), we can obtain

(3.20) ( i .

Moreover, based on Corollary 3.13 and (ii) of Lemma 3.11, applying (3.10) and (3.11),
we can establish the logarithmic Sobolev trace inequalities for || f|| 1 (gn = I:

(3.21)

1/p
eXp(% fRn f )P In(|f(x)IF) dx) S (fmﬂ |V u(x, t“/ﬁ)|Pth—pv/2—1dxdt) ,
(3.22)

1/p
Y om mfa—Bpv/(2a)—
exp (5 [ |f(x)|P1n(|f(X)|")dx)s( [ sy it /<2>1dxds) |

and the Hardy-type trace inequalities:

dx 1/p 8 ; 1/p
p_"" om o ppm—pv/2-1
(3.23) (fR () MMZ) S(/Riﬂwxu(x,t )Pt dxdt) ,

dx 1/p _ 1/p
(3:24) ( fR |f(x)|”|x|pv/2) 5( fRMIV?u(x,s)|Psﬁpm/“-ﬁpv/<2“>*dxds) :

Furthermore, the right-hand side of (3.21) and (3.23) can be replaced by
P 1/p
(/ 0" u(x, t'x/ﬁ)‘ tpm—pv/z—ldxdt) .
R:+l

otm
The right-hand side of (3.22) and (3.24) can be replaced by

(L.

Therefore, Theorems 3.1 and 3.3 can be generalized to p > 1.
As a direct consequence of Lemma 3.11 and Corollary 3.13, we can use (3.10) and
(3.11) to deduce the following results.

isia u(x,s)

purt 0s?

P 1/p
amu(ai;nt“/ﬁ) ‘ tpm_pv/2—1dxdt) )

m Aiu(x,s)|f
2.8 ost

i=1

1/p
-1-Bpv/(2a) ~
s dxds) ~|f] Wl ()

i X d'u(x,s)
st

i=1

P 1/p
s_l_ﬂp"/(z"‘)dxds) .

Corollary 3.14 LetmeZ,, a>n+m+n/p, f€(0,1], ve (0,2), 1< p<2n/vand
feCP(R™). For (x,t) € R" x (0, 00), denote by u(x, t) = G;x’ﬁ * f(x) the time-space
fractional extension of f. The following statements are equivalent.
(i) The analytic inequality:
(3.25)

oo 1/p 1/p
([T ounmerenar) ™ < ( e t“/ﬁ)|pt"m?v/21dxdt) .
0 R+
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(ii) The fractional Sobolev trace inequality:

(3.26)
(n=pv/2)/np 1/p
(f |f(x)‘np/(n_pv/2)dx) S (/ V3 u(x, t“/ﬁ)|ptpm_’”/2_ldxdt) .
R” Riﬂ

(iii) The fractional Hardy inequality:

1/p
dx ~
p m a/By|p gpm—pv/2-1
(3.27) (fm £ |x|pv/2) s([m“wxu(x,t |7t dxdt)

(iv) For any bounded domain O c R" with C* boundary 00O, the iso-capacitary
inequalities:

1/p

(v(0)) e gt (0).

Moreover, (3.25), (3.26), and (3.27) are all true, and the right-hand side of (3.25),
(3.26), and (3.27) can be replaced by

(L.

Proof If f € C°(R™), we know (1+|-])*f € L'(R"). By (3.10) and (3.11), we have

p
(f |§Jr‘nu(x, tu/p)|Pth—PV/2—ldxdt) ~ (/
RKH ]Riﬂ

N ”f”w;’/z(]Rn)

0" u(x, t/P)
otm

P 1/p
tpm=pv2-1g g t) .

o™ u(x, t*/P)

P 1/p
e tf””“’”/z“dxdt)

Then Corollary 3.14 follows from Lemma 3.11 and Corollary 3.13. [ ]

Corollary 315 LetmeZ,, a >n+m+n/p, Be(0,1], ve (0,2),1< p<2n/v and
feCP(R"). For (x,t) e R" x (0, 00), denote by u(x, t) = Gf"ﬁ * f(x) the time-space
fractional extension of f. The following statements are equivalent.

(i) The analytic inequality:
(3.28)

oo 1/p ~
(f (V(ot(f)))“”*f’”)/(z”)dtp) < (f l|v;"u(x,s)|Psf’1""/“*1’f‘"/(2“>*ldxds)
0 RA*

(ii) The fractional Sobolev inequality:
(3.29)

(n=pv/2)[np _ /p
([ |f(x)‘np/(nfpv/2)dx) s (f " |Vflu(x,s)|Psﬁpm/“7pﬁ"/(2“)71dxds) .
RrR? ]Ri

(iii) The fractional Hardy inequality:
(3.30)

dx p _ 1/p
(-[R" |f(X)|p|x|"”'/2) s (]H;M |V;"M(X,S)|P5ﬁpm/“pﬁv/(z“)ldxds) )

1/p
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(iv) For any bounded domain O c R™ with C* boundary 00, the iso-capacitary
inequalities:

(V(O))I—PV/(Zn) < C€/2(6)‘

Moreover, (3.28), (3.29), and (3.30) are all true, and the right-hand side of (3.28),
(3.29), and (3.30) can be replaced by

(L.

Proof By (3.18) and (3.20), we have

(/..

mo9'u(x,s)
2.5 os'

i=1

p
N

1/p
_l_ﬁp"/(z‘x)dxds) )

mo9tu(x,s)
> Osi

i=1

P 1/p 1p
S—l*ﬁPV/(Za)dde) o (/ H|§;"u(x’S)‘Psﬁpm/afpﬂv/(Za)fldxds)
R

® Hf” W;/Z(R")'

Then Lemma 3.11 and Corollary 3.13 imply Corollary 3.15. [ ]

4 Sobolev affine trace inequalities

Definition 4.1 Assume that g: R?*' - R, is a positive measurable function. Denote
by L?(R"*!, o) the weighted Lebesgue space of all measurable functions f : R**! - R
with

1/p
A1l 1o e,y = (/R’1+1 [f(x,t)|Po(x, t)dxdt) < o0.

Define

-1/n
Op(f,0) = Anp| | IVeflipmmgndé)
§n-1 ( + )

where A, , is a constant depending on #, p.
The following affine Sobolev-type inequality was obtained in Haddad, Jiménez, and
Montenegro [20].

Theorem 4.2 [20, Theorem 1.1]  Define a function 0 on R"*! as o(x,t) := t'V (x,t) €
R Lety>0,1<p<n+y+landp;=p(n+y+1)/(n+y+1-p). Thereexists a
sharp constant J(n, p,y) such that

(y+1)/(n+y+1)

d
N n/(n+y+1) || 98 ¢ .
(A0 186 5 g gy T (227 (€5(8,0)™ 7D || 22()

Lr(R",q)

Moreover, in (4.1), the equality holds if

£ p>1
g(x t) o (1+|Axt|(1+l/p)+‘A(x_x0)|(l+l/p))(1+n+}’—P)/P’ 5
> T

cle(Axt,A(x—xo)), P:L
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where (¢, |Ax|, x0,A) € R xRy x R" x GL,,. and 1+ is the characteristic function of
the unit ball in R™' and GL,, denotes the set of all invertible real n x n-matrices.

Motivated by Lombardi and Xiao [30], we establish the following affine trace
inequality.

Theorem 4.3 Letm € Z,, a>n, f € (0,1], f € C°(R") and its time-space fractional
extension u(x,t) := G;x’ﬁ * f(x) V (x,t) e R"™ when v> 1. For p= % and
v > 1-2m, there holds

i 5 (0 (ot )|
- S\ O | 5o

om+ly, v/(n+v+2m)

atm+1

()

L (Riﬂ’ tv+2m—1)

Proof From (ii) and (iii) of Lemma 2.5, we know

/R,, &7 2MFEPAE ~ () 2 gmn, oy

when2m-1<y<2m+2a -1 Lety=v+2m—1¢€ (2m—1,2m + 2a —1). By Theo-
rem 4.2, we can obtain ¢ := t” = t"*2"™~! and

1 £l gvrz ey = (=27 fll 2y
S MENGIR

om ) 2
~ || —u(-,-
at"’ LZ(RTH,H')
om n/(n+v+2m) gm+1 v/(n+v+2m)
S (@P (—u tv””"l)) 7?(.,.)
at’" atm+ LP(RTI,tV”""l)

Theorem 4.3 suggests
£y~ NG t5F) Lo ),
which can be generalized as follows.
Theorem 4.4 LetmeZ,, a>n+m+n/p, p>1, fe(0,1], t>0, fe WQV/Z(R”)
with ve(0,2) and (1+]-|)°feL(R") with {>max{0,v/2-n/p}. For

(x,t) e R" x (0, 00), denote by u(x,t)= Gf’ﬁ * f(x) the extension of f via the
time-space fractional heat kernel. Then

1/p
a/By|ps2p/v-1 ~ )
(4.2) ( fR o e PP dxdt) o ey
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Proof Let
©3,() = Gpofy () and B3(8) = Eg(-[]"),

@3, (x) = t7"®D3(x/t). Similarly to the proof of Theorem 3.10, for every ;e
{&, &, ..., &}, we just prove

7 (®

ZE - o) aslé o,
7|

SE) o) as]é] - oo

By (3.13), we can obtain

a|7| (@3) ( w ([(W—kz):/2]+1 ka &—w—25|£|k(x—2w+25)
S,k>j

IIM

u—lf"‘)

a&'l"'l s=0 auk
I7| ([(7l-k)/2]+1 [7] gl7l-2s| g1ka—2|7|+2s ' _
= CT ; : Cuk
kzzl Z(:) jimty ouk  lu-jge
7]

o Sgren 20
k=1 u:|&"°t

Using (2.6), for |¢] in a neighborhood of 0, we know
ak
auk u=

< 00.

1€l

Take r = «. This indicates that

PUECHID) _ o1ty a0

|7l
afj
By (2.5), for M > 0, we know
dj(Eﬂ(_t)) ~ (- 1)l+]+lz 1 (_1)M+1+] [ 1 ]
dti «T(1- ﬁl) th+i tM+1+j |

So, for bg = b = n/p,

I(Eg(-[8*))
9E
If |[7] = 0, for r = —v/4 > —v/2 and b = by = n/p, we have

{Eﬁ<—|s|“> = 0(|g1), as|E >0,
Ep(-[E*) = 01 "),  as|§] - oo,

Hence, by Lemmas 3.8 and 3.9, we can obtain

1/p
o4 2p/v-1
(/]1;11“ |u(x, t4/P)|P 2P/ dxdt) N||f|\W;V/z(Rn). u

= 0| "P) as[g] - oo.
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Then (4.2) and Theorem 4.2 imply that

ou p*v/(2n+p*v)
ot

))Zn/(2n+p*v) (,)

o S (0, (g, 122
ey  (©5 (8

>
L (Riﬂ,ﬂ;*v—l)

where v € (2/p*,2n),1< p < n+ p*v/2 with p* satisfying p* > max {2/v,1} and
1/p=1/p* +2/(2n+p*v).
5 Local Sobolev-type trace inequalities

In this section, we prove (1.7) and (1.8) by the Carleson measure characterization of
Q-type spaces Q,;(R") introduced in [11].

Definition 5.1 For 0< k<1, Q,(R") is defined as the set of all locally integrable
functions f such that

1o = supte [ SO drgy o,

|x _ y|n+2n

where the symbol sup; denotes the supremum taken over all cubes I with the edge
length ¢(I) and the edges parallel to the coordinate axes in R”.

In the literature, Q-type spaces were introduced as a new class of function spaces
between W:"(R") and BMO(R"). In 1995, Aulaskari, Xiao, and Zhao [3] first
introduced a class of Mébius invariant analytic function space Q,(ID) for p € (0,1)
on the unit disk D of the complex plane. The class Q,(ID), p € (0,1) can be seen as
subspaces and subsets of BMOA and UBC on D and were investigated extensively (see
Aulaskari, Stegenga, and Xiao [2], Aulaskari, Xiao, and Zhao [3], Xiao [37, 40] and the
references therein). As a class of analytic function spaces, the boundary of Q,(ID) is
Q,(0D) which was introduced by Nicolau and Xiao in [35], where JID denotes the
boundary of D. Correspondingly, in the setting of Euclidean spaces, the real-variable
Q-type spaces Q,(R") were first introduced by Essén, Janson, Peng, and Xiao [16].
Since then, various characterizations of Q-type spaces have been established (see Cui
and Yang [10], Dafni and Xiao [11, 12], Yang and Yuan [44, 45] and the references
therein).

By the aid of Hausdorff capacities and tent spaces, Dafni and Xiao [11] proved the
following equivalent characterization of Q,,(R").

Theorem 5.2 [11, Theorems 3.3 and 70] Given a C* real-valued function v on R”
with

(5.0) yeL'(R"),  [y(x)| s (1+]x])~0Y, fR y(x)dx = 0.

Let yy(x) = t "y(x/t). Then f € Q,,(R") with v € (0,min{2, n}) if and only if

1/2
r
sup 1" f f e+ O 7 dxdt | < oo,
x0€R",re(0,00) 0 |y—xo|<r
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Remark 5.3 In [11], y is defined as a function satisfying

(1) suppwc{xeR": |x|<1};
(2) wis radial;
(3) y e C=(R");
(4) frnx"y(x)dx = 0,]p| <N, y e N", x? = x5 00", [y = pr+pa+ oo+ yms
(5) Jy° (@(t6))* 4, EeR™\{0}
(see [11, Lemma 3.1]). In fact, Theorem 5.2 also holds for the functions y which satisfy
(5.1) (see [41, p. 228]).

As an application of Theorem 5.2, we can obtain the following result.

Theorem 5.4 Let meZ,, a>n+m, Be(0,1], t>0, feQ,(R") and ve
(0,min{2,n}). For (x,t) € R" x (0, 00), denote by u(x,t) = Gf"ﬁ * f(x) the time-
space fractional extension of f. There hold the following local Sobolev-type trace inequal-
ities
(n=v)/(2n)
62 sup ( . f|f( )l dx)
1

9"u(x,tYF) to/P
(oL
xOER”,re(O,oo) [y=2xol<r

12
Zm—l—vd dt
otm *

and

1 2n/(nv) (n=v)/(2n)
(5.3) st;p(u| /I.|f(x) - fi dx)

1/2
S sup f / (x, t"‘/ﬁ)| 2" dxde | .
xoe]R",re(O,oo) ly- x0\<r

Proof Let

Yia(x) = (1) o= £ a’;‘i,f )

and C‘ m is a constant depend on i, a, m. It can be deduced from the Fourier
transform that

y1,:(8) :@(tlfl)

CAG)
B otm
R
ot™
L Eﬁ( u)
tE|m C pE|ia—m ,
| £| Z aﬁm| £| oul u=|tg
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which implies that

) = [ B©eE,
where
5.4 m =|&" C fo=m .
(5.4 RO =Y Chgnldl =52
By (5.4), we can get

/Rn yi(x)dx = 71(0) = 0.
It follows from Proposition 2.10 that for & > n + m,

”’G“ﬁ(x) £ 1 1
=" 1) = Gl < —
|1/’1,t(x)| |l[/1(X/ )| ot (t+ |x|)n+a S n (1+|x|/t)"+1

which gives |y (x)| S (1+|x])™" " and y; € L'(R"). Then Theorem 5.2 implies

1/2
|f|QV,2<Rn>w( wwp o [T f Zdexdt) .
xoeR",re(O,oo) |y—xol<r

Since Q,/>(IR") is a subspace of BMO(R"), we have | f| pmon) < [ flq,,rn)- We
can deduce from the equivalent norm:

(5.5)

Iflasocar) = st;p(“| SR ledX)—sup(m [ UG = AP

that

am

at"‘

)(n—V)/(Zn)

1 anf(nv) (n-v)/(2n)
n/(n—v
sup (57 150 = 710 )
1 \[| J1

SIflemony < |1 f

Q,/2(R")
o™ u(x, t9/F) "
s SLlp f f u\x, 2m—1—vdxdt ,
xOE]R",re(O,oo) [y=xol<r oat™

which proves (5.2).
Now, we prove (5.3). Denote

Ya.u(x) = "2 (x/1) = "V Gl ().

It can be deduced from the Fourier transform that
T2r(8) = B(ef]) = (TG (©)) = |8 (Bp(-111%)),

which implies that

AORN RAGE
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where

(5.6) ¥2(&) == [¢§]" Ep (=[£8]%).
By (5.6), it is easy to verify that

[ wa(x)dx = 7(0) .

Also, it follows from Proposition 2.11 that for a > n + m,

1 1
m

2l = v/ = [T GEA ()] < S

(l’+ |X| n+oc

which gives |y, (x)| S (1+ |x|)™" ! and y, € L'(R"). Theorem 5.2 implies

1/2
4 ~ 2
Qua(R) ® sup fvf"/ f [V ue, t*/B)[ 2" vdxdt |
x0€R",r€(0,00) 0 |y—xo|<r

Similarly, using (5.5), we have

1 n/(n—v
sup (55 150 = 0
1 \[| J1

S | flsmo@ny <1 fla, @

1/2
’ ~ 2
S sup P f f |v;nu(x, toc/ﬁ)| th—l—vdxdt ’
x0€R",re(0,00) 0 |y—xo|<r

which proves (5.3). [ |

| /1

)("—V)/(Zn)

Remark 5.5 let meZ,, a>n+m, Be(0,1], s>0, feQ,(R") and
ve (0,min{2,n}). For (x,t)€R" x(0,00), denote by u(x,t)= Gf"ﬁ * f(x)
the time-space fractional extension of f. There hold the local Sobolev-type trace
inequalities

sup (5 150 = 70

Jalp 12
S sup " f f W;"u(x,s)|25ﬁ(2m’v)/“*ldxds
x0€R”,r€(0,00) 0 [y—xo|<r

)(H—V)/(Zn)

and

20/ (n=s) (n=v)/(2n)
sup( JAERY ”d)
1\

a’u(x s)
S sup f f
xoeR",re(O,oo) |y—xo|<r

1/2
‘: 35 s Vﬁ/“dxds) .
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In fact, by s = t*/# and (3.19), we get

1/2
o to/B
sup [ f 9" u(x, t7) ) pm=lov gy
xoeR",re(O,oo) |y—xo|<r otm
9 2 1/2
~ su f f M S—l—vﬁ/adxds
xo€R", re(O oo) |y— x0|<r ost
and
1/2
r ~ 2
sup 7v_nf f [V u(x, t*B)[ 2"V dxdt
x0€R",re(0,00) 0 ly—xo|<r
1/2

= (B/a) sup / / ‘ (x, s)| pem=v)la=1gxds
|y—xo <r

xoeR",re(O,oo)
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