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We consider subspaces of a vector space UF, which is countably infinite
dimensional over a recursively enumerable field F with recursive operations,
where the operations in UF are also recursive, and where, of course, F and UF

are sets of natural numbers. It is the object of this paper to investigate recursive
equivalence types of such vector spaces and the ways in which their properties
are analogous to and depend on properties of recursive equivalence types of sets.

1. Introduction

The reader is referred to Dekker [2] for details of the construction of UF.
For the sake of convenience we shall write addition and scalar multiplication
of vectors in UF in the usual way, namely vt + v2 and xvx (for xeF), although
of course these operations are not the same as addition and multiplication of
natural numbers. There will be no confusion. Let N denote the set of natural
numbers. If V and W are subspaces of UF and V is a subspace of W, we write
V c w. It will be useful to pick out one recursively enumerable basis of UF.
We shall call it the standard basis and denote it {p;: i < a>}.

The following is a brief exposition of the results from Dekker [2] and
Hamilton [4] that we shall need. The reader is assumed to be familiar with re-
cursive equivalence types, as in, say, Dekker and Myhill [3].

DEFINITION 1.1. If V s UF and A is a basis of V, then A is an tx-basis of V
if A is contained in a r.e. linearly independent subset of UF.

Let D be the set of all subspaces of UF which have an a-basis.

LEMMA 1.2. (i) An r.e. basis is an cc-basis.

(ii) If A is an oc-basis of V then there is a uniform effective procedure for
obtaining, given veV, the (finite) linear combination of vectors of A which is
equal to v.

If A is a subset of UF, then the subspace generated by A will be denoted
by V(A). One of the principal results of [4] is:
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[2] Equivalence types of vector spaces 377

THEOREM 1.3. / / V £ UF and A and B are two a-bases of V, then A and B
are recursively equivalent.

This enables us to make the following definition.

DEFINITION 1.4. If VeD, then the ^.-dimension of V (written dimaF) is
RET(A) where A is any a-basis of V.

DEFINITION 1.5. If Fand Ware subspaces of UF (not necessarily members
of D), then Fis x-isomorphic to W (written V zt W) if there is a one-one partial
recursive function p such that

(i) dp and pp are subspaces of UF. (Sp and pp are the domain and range
of P),

(ii) Vs Sp,
(iii) p{V) = W,
(iv) p is a classical isomorphism between dp and pp.

It is easy to show that ^ is an equivalence relation. We call the equivalence
classes V-R.E.T.s.

THEOREM 1.6. / / V,WeD, then V ~ W if and only if diraaV = dimJV.
Let Qv = {V-RET{V): VeD}.

DEFINITION 1.7. If TeQ K , then the x-dimension of T (written dim a r) is
dim^F, where V is any element of T.

Let \ v = { T e £ V d i m a r e A } .
From Theorem 1.6 we immediately deduce:

COROLLARY 1.8. IfTu T2eClv, then 7\ = T2 ifandonly (/dimar1=dimoir2.

Finally, it is not difficult to show that for any R.E.T. X there is an element
T of QK such that dim^T = X.

2. Operations

We define addition of subspaces of UF analogously to the separable sum
of subsets of N, in order that the sum may be well-defined on space-types.

Define functions quq2: UF -» UF as follows: If v = (vo,---,vk) relative to
the standard r.e. basis {p,}, let

= (vo,0,vu0,--;vk),
and

q2(v) = (0,vo,0,vv---,0,vk).

Now if Kand Ware subspaces of UF then qi(V) r> q2(W) = {0}, and the sets
qi(V) — {0} and q2(W) — {0} are recursively separable.

DEFINITION 2.1. (i) If V and Ware subspaces of UF, let
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V+W = {v + w:veq1(V)&.weq2(W)}.

(ii) If F £ UF, let VA = V, and for n > 1, let V.n = F.(n- l ) + F.
Note that this addition is neither commutative nor associative, but we are

principally interested in the addition induced on V-R.E.T.s, which is both.

LEMMA 2.2. / / Ft ~ V2 and Wt ~ W2, then Vl+Wl~ V2 + W2.

PROOF. Suppose that p : F , ~ V2 and q:W1~ W2. Then let

P' = liopoq'i1

and
q'^QioqoqZ1: QiW) * q2(W2).

Given u e Vt + Wt, i.e. u = i> + w for some y 6 Fj and w e VK,, this expression
is unique and we can effectively obtain v and w. Let

r(u) = p'(v)+q'(w)

for such u.
It is not difficult to verify that r is an a-isomorphism between Vt + Wx

and V2+W2.

COROLLARY 2.3. + and .n for each neN induce well defined operations
on V-R.E.T.s.

DEFINITION 2.4. If Tx and T2 are V-R.E.T.s, then 7\ + T2 is defined to be
V-RET{VX + V2), where Fj e Tt and V2e T2. As before, also, if T is a V-R.E.T,
define T.l = T and, for n > 1, T.n = T.(n-l) + T.

THEOREM 2.5. Addition of V-R.E.T.s is commutative and associative.

THEOREM 2.6. / / VuV2eD and V = Vl + V2, then VeD and dimaF =
dim^Fj + dimaF2.

PROOF. Suppose that At and A2 are a-bases of Vx and F2 respectively. Then
qi(Aj) and q2(A2) are recursively separable, and q^A^) (Jq2(A2) is an a-basis
of F. Therefore Fe D. Now

dim,F =

a i + dimaF2.

COROLLARY 2.7. / / T^Qy and nteN for 1 ^ i ^ k, and T = 'Lk
i=lTi.ni,

then TeClv and dim^T = L^tCdim^TJ.n,.

Now we consider the order relation ^ on spaces and space types. Note
that our use of the symbol g here is different from Dekker's use in [2].
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DEFINITION 2.8. If Tu T2eilv, define T^T2 to mean (3 L/eQK)(T1 + U = T2).

THEOREM 2.9. IfTuT2e£lv, then Tx ^ T2 if and only i / d i m ^ g d i m ^ .

PROOF. Suppose that Tt ^ T2. Then Tt + U = T2 for some Ue€lv. Thus
^T, + dima[/ = dimaT2, by Corollary 2.7, and therefore d i m ^ ^ d i m ^ .
Now suppose that dim,,^ ^ dimnT2. Then there is l e f i such that

^Ti + X = dimaT2. Now X is equal to dimJJ for some Ueilv, by the re-
mark after Corollary 1.8, and so dimaTi + dim^U = d i m ^ . By Corollaries
2.7 and 1.8, then, 7\ +U = T2, i.e. Tt ^ T2.

This theorem gives the reason why we had the restriction to Qv in Definition
2.8. If we had said 7\ g T2 if there exists U such that 7\ + [/ = T2 for any Tt

and T2, then there would have been no guarantee that if Tt and T2 were members
of Cly then the U given by the definition would also be. We have not been able to
discount the possibility that dima Tt and dima(Ti+ U) be defined, but that
dim^U be not defined.

DEFINITION 2.10. If V1,V2eD, then define Vx ^ V2 to mean there exists
VeD such that Vt 4- V = V2, and Ft — {0} is recursively separable from V— {0}.
(Here + is the standard algebraic linear sum operation.)

THEOREM 2.11. If VuV2eD, then Vt ^ V2 implies
(i) dim^Fi ^ dimaK2, and
(ii) V-RET(Vt) ̂  V-RET(V2).
Finally in this section we prove:

THEOREM 2.12. / / TuT2eQ.v, TY ^ T2 and T2-^TX, then TV = T2.

PROOF. By Theorem 2.9, we have dim,^ <; dimaT2 and dimar2 ^ dim,,^.
We can apply the Myhill-Cantor-Bernstein theorem (for R.E.T.s X and Y, if
Z ^ 7 and Y^X, then X = Y), to get dimaTi = dim^Tj. It follows that
T, = T2, by Corollary 1.8.

We shall see later how other theorems of this nature hold in Qv as a con-
sequence of their holding in Q.

3. Isolic spaces
Dekker [2] has given many of the properties of isolic spaces. Here 1 want

mainly to point out analogies with the properties of isolated sets and isols. First
note that in general an isolic space (one with an isolated oe-basis) is not itself an
isolated set, for if the field F is infinite and if veV— {0}, then the set
{xv.xeF— {0}} is an infinite r.e. subset of V.

Let £»A = {K6Z):dimaFeA}.

THEOREM 3.1. The following conditions are equivalent (assuming that
VeD).
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(i) VeDA,
(ii) V has no infinite dimensional r.e. subspace,
(iii) W<= V and WeD imply WeDA,
(iv) W <^V, WeD, W'S Wand W'^ W together imply W' = W,
(v) W <=k V and aeUF-{0} imply W$W+V({a}), and
(vi) W £ VandW+Wy ~ W+W2, where W, Wu W2eD, imply Wy = W2.

PROOF, (i) => (ii) was proved by Dekker in [2].

(ii) => (iii) is trivial.
(iii) => (iv) is Lemma 3.2 below.
(iv) => (i): Suppose that (iv) holds and that (i) does not. Then V has an

ce-basis A which is not isolated. There is a partial recursive function q such
that q: A m Alt where Ay £ A properly. Obviously Ay is an a-basis for V(Ay),
and it can be shown easily that for such a q, the restriction of q to A extends
to a partial recursive isomorphism q': V(A) ~ V(Ay). Now V(Ay) £ V properly,
contradicting (iv). Thus (i) • • • (iv) are equivalent.

(iii)=>(v): By (iii) and Theorem 2.6, dimJ^W + V({a})) is an isol. By
Lemma 3.2, W+ V({a}) 4* W, since W+ V({a}) has a proper subspace which
is a-isomorphic to W.

(v) => (i): By (v), V + V+ V({a}) for any ae UF - {0}. But if dim^F exists,
then so does dimo(F+ V({a})), and

So we have dimaF # dimaF + 1. Hence dim^F is an isol.
(vi) ^- (v) is trivial.
(iii) => (vi): Suppose that W^ V and W+ Wy ^ W+ W2, where W, Wu

W2eD. Then we have

By (iii), however, dimaWis an isol, so we can deduce d i m ^ j = dimaVF2. In turn
this implies that Wt ^W2.

The next lemma completes the proof of the theorem.

LEMMA 3.2. / / FeD A , W ^ V and p: V ^ W, then W = V.

PROOF. Let A = {at: i < co} be an a-basis of V and let p: V ~ W, where
W^ v. Consider ateA. Construct an r.e. subset Cl(a,) of A thus:

Cl(a,) = {Oj-eA: there is a chain aio, •••,ain of elements of A such that
aio — a, ain = aj, and in the expression for p(atl) in terms of the basis A, ail + 1

appears with a nonzero coefficient, for 0 ^ / < n}.
A is isolated, so for each i, Cl(a,) is finite. It is easily seen also that

p(K(Cl(a,.))) = F(Cl(fl;)) for each i, since F(Cl(a;)) is finite dimensional and p
is one-one. Now at e F(Cl(af)), so at e pp for each i, and further, A is contained
in the image of V under p. It follows that p{V) = V, and so W = V.

https://doi.org/10.1017/S1446788700022953 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022953


[6] Equivalence types of vector spaces 381

LEMMA 3.3. / / VuV2eDx, then Vl + V2eDx.

LEMMA 3.4. (i) / / V^D, V2eDA and Vt g V2, then V^D^.
(ii) / / T i E ^ , T2eAv and Ty^T2, then TteAv.

4. Relations

Here we deal with V-R.E.T.s and relations among them. Our aim is the
following:

THEOREM 4.1. Suppose that (f> is a(finite) formula involving +, ;£, varibales,
logical connectives and first order quantifiers. Then <j> holds universally in
Cly (respectively in Av) if and only if (j> holds universally in Q (respectively
in A).

The remainder of the paper is devoted to proving this, but first some pre-
liminaries.

NOTATION. If R C XkQ, i.e. if A is a relation among R.E.T.s, let

Rv = {(T1,-,Tk)eXkQr:(dimuT1,-,dimaTk)eR}.
If

R = {(Xu-,Xk)eXk£l: 4>(Xu,-,Xk)},

where <f> is a formula as described in Theorem 4.1, let

R' = {(Tu-,Tk)eXk£lr :^(Tu-,Tk)}.

THEOREM 4.2. Suppose that R S X*fi. Then
(i) R = X*fi if and only if Rr = X*QK, and
(ii) R = X*A if and only if Rv = XkAv.

PROOF. Suppose that R=X.kQ. If (T1,--;Tk)eXkQ.v then
(dimar1,---,dimtt7;)eX''Q = R. Hence (Tu •••,Tk)eRv.

Now suppose that Rv=X.kQv. If (X1,---,Xk)eXkQ then there exist
(Tu-;Tk)eX"ilv such that for 1 ^ i ^ k, dim,,^ = Xt. By the definition of
Rv, then, (dimBT1, •••,dimaTk)eR, i.e. (Xu--,Xk)eR. Hence R = X * Q .

Part (ii) is proved in the same way.

THEOREM 4.3. If S Z XkQ.v, then S = Rv for some R s XkQ.

PROOF. Let SD = {(Xu---,Xk)eXkQ: there exists (Tu •••, Tk)eXkQ.v such
that for 1 ^ i ^ k, d i m ^ = Xt and (Tu---, Tk)eS}.

It is easy to verify that (SB)V = S.

LEMMA 4.4. Suppose that

R = { (X 1 , - ,X m + n )eX" I + ' 'Q: Xt + - + Xm g Xm+1 + - + Xm+n},

and that R' is as described above.
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Then R' = Rv.

PROOF. Using Corollary 2.7 and Theorem 2.9,

Rv = {(T1,-,Tm+n):(dimaT1,--,dimarm+n)e/?}

= {(r 1 ) - ,T m + n ) :d im a r 1 +••• + dimaTm ^ dimaTm+i + -+dimTm+m}

= {(Tu - , Tm+n): dimo(Tt + ... + TJ g dim,(Tm+1+ - + Tm+n)}

= {(T1,-,Tm+n):Tl+- + Tm^ Tm+1+ - + Tm+n}

= R'-

This is the base step of our inductive proof of Theorem 4.1, and now follow
the induction steps.

LEMMA 4.5. Suppose that (f>i and c/>2 are formulas as described in Theo-
rem 4.1, and that

R2 = {

Then if R[ = (RJy and R'2 = (R2)r, vve have
(i) (X*Q -Rty= (X'Q-RJy,
(ii) (^UJlj)' = (RJUJRJV, and
(iii) (JJ,nR,)' = ftnRJf.

PROOF. It is easily shown that

= X*QK — R[ by hypothesis,

= ( X * Q - * ! ) ' .

The proofs of (ii) and (iii) are similar.

LEMMA 4.6 (i) Let $i,/?i be as above, and let (j> be the formula
w/rere xt is a variable which does not occur bound in $ t . Now let

R = {(X2,....XJeX*-1*!: (V^eQ)^^,- ,^)}.

/ / /?i = (RJv, then R' = Rv.
(ii) As (i), bwf wifh an existential quantifier.

PROOF.

KK = {{T2,-,Tk):{dim.T2,-,dimaTk)eR}

= {(T2, -,Tk): (VTX en K )^ 1 (d im B T 1 , • • • ,d im.T,)} ,
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by the final remark of Section 1,

= {(T2, •;Tk): (yT, efiF)((dim.^, • • • ,dim,r t )€Rt)}

= {(T2,.... 7;): (V7

= {(T2, - , Tk): (V7\

by our hypothesis,

= {(T2, - , Tt): (VT, eOyWiiTu-, Tk)}

= R'.

Part (ii) follows from (i) and the previous lemma.
We combine the last three lemmas now into:

LEMMA 4.7. If <p is as described in Theorem 4.1, and R = {Xe X*Q : <j)(X)},
then R' - Rv.

Now we invoke Theorem 4.2 to obtain
(i) R = Xkn if and only if R' = X*QK, and
(ii) R = XkA if and only if R' = X*AV.

Theorem 4.1 is therefore proved.

NOTES: (i) / / <f> is a closed formula, then to apply the above we may just
introduce a redundant free variable.

(ii) Because of Theorem 2.12, it was not necessary to include " = " as one
of the symbols from which the admissible formulas <f> were composed. However,
we could just as well have included " = " in the statement of Theorem 4.1.
Theorem 2.12 would then have been a corollary.

Finally, Theorem 4.1, along with results of Nerode [7] and Manaster and
Nerode [6], enable us to state the following.

THEOREM 4.8. (i) Universal sentences about the structure (fiy, +, ^ ) are
decidable.

(ii) The first order theory of (£ly, +, ^ ) is not decidable.

PROOF. Theorem 4.1 says that the first order theories of (fiv, + , ^ ) and
(Q, + , g ) are the same. In [7] it is proved that universal sentences about (Q, + , ;£)
are decidable, so (i) follows. In [6] it is shown that the first order theory of (Q, + )
is not decidable, so (ii) follows.

Conclusion

The reason why vector spaces inherit properties of the kind discussed from
their a-bases is that vector spaces are "freely generated" from sets with no struc-
ture. Linear independence is really just an absence of structure. This suggests
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that results similar to the above may be obtained for free algebraic systems
more general than vector spaces. That is indeed the case, and some research in
this direction is described in [5].

References

[1] J. C. E. Dekker: 'On certain vector spaces of isolic dimension, Part 1', Abstract./. Sytnb.
Logic 33 (1968), 642.

[2] J. C. E. Dekker, 'Countable vector spaces with recursive operations, Part 1', / . Symb.
Logic 34 (1969), 363-387.

[3] J. C. E. Dekker, and J. Myhill, 'Recursive equivalence types', Univ. Calif. Publs. in Math.
(New Series) 3, No. 3 (1960), 67-214.

[4] A. G. Hamilton, 'Bases and a-dimensions of countable vector spaces with recursive opera-
tions', J. Symb. Logic 35 (1970), 85-96.

[5] A. G. Hamilton, Mathematical structures and recursive equivalence. D. Phil, thesis, (Oxford
(1969)).

[6] A. B. Manaster, and A. Nerode, 'A universal embedding property of the RETs', / . Symb.
Logic 35 (1970), 51-59.

[7] A. Nerode, 'Additive relations among recursive equivalence types', Math. Annalen 159
(1965), 329-343.

Department of Mathematics
University of Stirling
Scotland

https://doi.org/10.1017/S1446788700022953 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022953

