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We consider subspaces of a vector space Up, which is countably infinite
dimensional over a recursively enumerable field F with recursive operations,
where the operations in Uy are also recursive, and where, of course, F and Uy
are sets of natural numbers. It is the object of this paper to investigate recursive
equivalence types of such vector spaces and the ways in which their properties
are analogous to and depend on properties of recursive equivalence types of sets.

1. Introduction

The reader is referred to Dekker [2] for details of the construction of Ug.
For the sake of convenience we shall write addition and scalar multiplication
of vectors in Uy in the usual way, namely v, + v, and xv, (for x € F), although
of course these operations are not the same as addition and multiplication of
natural numbers. There will be no confusion. Let N denote the set of natural
numbers. If ¥ and W are subspaces of Uy and V is a subspace of W, we write
V < W. It will be useful to pick out one recursively enumerable basis of Ug.
We shall call it the standard basis and denote it {p;: i < w}.

The following is a brief exposition of the results from Dekker [2] and
Hamilton [4] that we shall need. The reader is assumed to be familiar with re-
cursive equivalence types, as in, say, Dekker and Myhill [3].

DeFmNiTION 1.1. If V < U and A is a basis of V, then A is an a-basis of V
if 4 is contained in a r.e. linearly independent subset of Uy.
Let D be the set of all subspaces of Uy which have an a-basis.

LemMA 1.2. (i) An r.e. basis is an a-basis.

(ii) If A is an a-basis of V then there is a uniform effective procedure for
obtaining, given veV, the (finite) linear combination of vectors of A which is
equal to v.

If A is a subset of Uy, then the subspace generated by 4 will be denoted
by V(A). One of the principal results of [4] is:
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THEOREM 1.3. If V < Uy and A and B are two a-bases of V, then A and B
are recursively equivalent.

This enables us to make the following definition.

DerNITION 1.4, If Ve D, then the a-dimension of V (written dim,V) is
RET(A) where A is any a-basis of V.

DEerFINITION 1.5. If V and W are subspaces of Uy (not necessarily members
of D), then Vis a-isomorphic to W (written V >~ W) if there is a one-one partial
recursive function p such that

(i) ép and pp are subspaces of Ug. (dp and pp are the domain and range
of p),

(ii) Vg ép,

(ii)) p(V) = W,

(iv) p is a classical isomorphism between ép and pp.

It is easy to show that ~ is an equivalence relation. We call the equivalence
classes V-R.E.T.s.

THEOREM 1.6. If V,WeD, then V ~ W if and only if dim,V = dim,W.
Let Q, = {V-RET(V): Ve D}.

DeFNITION 1.7, If TeQ,, then the a-dimension of T (written dim,T) is
dim,V, where V is any element of T.

Let Ay = {TeQ,:dim, T e A}.

From Theorem 1.6 we immediately deduce:

CoROLLARY 1.8. If T}, T, €Qy, then T, = T, if and only if dim,T, =dim,T, .

Finally, it is not difficult to show that for any R.E.T. X there is an element
T of Q, such that dim, T = X .

2, Operations

We define addition of subspaces of Uy analogously to the separable sum
of subsets of N, in order that the sum may be well-defined on space-types.

Define functions q,,q,: Up — Ug as follows: If v = (vy, -+, ;) relative to
the standard r.e. basis {p;}, let

ql(v) = (00’0301’0""’01{)’
and

q2(v) = (0’0090’01""’0:0k)-

Now if ¥V and W are subspaces of Uy then ¢,(V) N q,(W) = {0}, and the sets
q,(V) — {0} and q,(W) — {0} are recursively separable.

DEerINITION 2.1. (i) If ¥V and W are subspaces of U, let
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V+ W = {v+wiveq,(V)&weq,(W)}.

(@) If VveUg, let V.1 =V, and for n>1,let V.n=V.(n-1) + V.
Note that this addition is neither commutative nor associative, but we are
principally interested in the addition induced on V-R.E.T.s, which is both.

LemMMA 22. If Vi~ V, and W, ~ W,, then Vi + W, ~ V, + W,.

Proor. Suppose that p: ¥V, ~ V, and q: W; ~ W,. Then let

’

p = 41°P°‘1;13 q:,(V)) = q(V3),
and

7

q = ‘1204011;13 q2(W1) = q,(W,).

Given ueV,+ W,, i.e. u = v+ w for some ve V; and we W,, this expression
is unique and we can effectively obtain v and w. Let

Hu) = p'(v) +q'(w)

for such u.
It is not difficult to verify that r is an a-isomorphism between V, + W,
and V, +W,.

CoRrOLLARY 2.3. + and .n for each ne N induce well defined operations
on V-R.E.T.s. ‘

DerFINITION 2.4. If Ty and T, are V-R.E.T.s, then T; + T, is defined to be
V-RET(V; + V,), where V, e T, and V, e T,. As before, also, if T is a V-R.E.T,
define T1 = T and, for n>1, T.n = T(n—1)+T.

THEOREM 2.5. Addition of V-R.E.T.s is commutative and associative.

THEOREM 2.6. If V|, V,eD and V=V, + V,, then VeD and dim,V =
dim,V; + dim,V,.

Proor. Suppose that A; and A, are a-bases of V; and V, respectively. Then
41(4,) and g,(A4,) are recursively separable, and q,(4;) U g,(4,) is an a-basis
of V. Therefore Ve D. Now

dim,V RET(q,(4,)V4q:(45))

RET(q(A)) + RET(q,(A,))

I

= dim,V, + dim,V,.

COROLLARY 2.7. If T,eQ, and n;eN for | £i <k, and T= X' T.n;,
then TeQ, and dim,T = X%, (dim,T)).n,.

Now we consider the order relation < on spaces and space types. Note
that our use of the symbol < here is different from Dekker’s use in [2].
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DEerFINITION 2.8. If Ty, T, €Qy, define T, = T, to mean (AU e Q) (T, + U=T)).
THEOREM 2.9. If T|, T, €Qy, then T; £ T, if and only if dim, T} < dim,T,.

ProoF. Suppose that T, < T,. Then T} + U = T, for some U eQy,. Thus
dim,T; + dim,U = dim,T,, by Corollary 2.7, and therefore dim,T; < dim,7,.

Now suppose that dim,T; < dim,T,. Then there is X eQ such that
dim,T; + X = dim,T,. Now X is equal to dim,U for some U e, by the re-
mark after Corollary 1.8, and so dim,T;, + dim, U = dim,T,. By Corollaries
2.7 and 1.8, then, T, +U = T,, ie. T; £ T5.

This theorem gives the reason why we had the restriction to Q, in Definition
2.8. If we had said T; < T, if there exists U such that T}, + U = T, for any T,
and T,, then there would have been no guarantee that if T; and T, were members
of Q, then the U given by the definition would also be. We have not been able to
discount the possibility that dim, 7y and dim, (T;+ U) be defined, but that
dim, U be not defined.

DEerFINITION 2.10. If Vi, V,€ D, then define V; < V, to mean there exists
Ve D such that V; 3 V = V,, and V; — {0} is recursively separable from V— {0}.
(Here 4 is the standard algebraic linear sum operation.)

THEOREM 2.11. If V,V,eD, then V; £V, implies
(i) dim,V; < dim,V,, and

(ii) V-RET(V;) £ V-RET(V,).

Finally in this section we prove:

THEOREM 2.12. If T}, T,eQy, T, £ T, and T, < Ty, then Ty = T,.

ProoF. By Theorem 2.9, we have dim,T; < dim,T, and dim,T, < dim,T,.
We can apply the Mpyhill-Cantor-Bernstein theorem (for R.E.-T.s X and Y, if
X=<Yand Y X, then X =Y), to get dim,7; = dim,7,. It follows that
T, = T,, by Corollary 1.8.

We shall see later how other theorems of this nature hold in Q, as a con-
sequence of their holding in Q.

3. Isolic spaces

Dekker [2] has given many of the properties of isolic spaces. Here 1 want
mainly to point out analogies with the properties of isolated sets and isols. First
note that in general an isolic space (one with an isolated a-basis) is not itself an
isolated set, for if the field F is infinite and if veV— {0}, then the set
{xv:xeF — {0}} is an infinite r.e. subset of V.

Let D, = {VeD:dim,V e A}.

THEOREM 3.1. The following conditions are equivalent (assuming that
VeD).
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() VeD,,

(i) V has no infinite dimensional r.e. subspace,

(iii) W < V and WeD imply We D,

(iv) WeV,WeD, W < Wand W' ~ W together imply W' = W,

V) Ws Vand ae Up — {0} imply W W + V({a}), and

vy We Vand W+ W, ~ W+ W,, where W,W,,W,e D, imply W, = W,.

PROOF. (i) = (ii) was proved by Dekker in [2].

(ii) = (iii) is trivial.

(iii) = (iv) is Lemma 3.2 below.

(iv) = (i): Suppose that (iv) holds and that (i) does not. Then V has an
a-basis 4 which is not isolated. There is a partial recursive function g such
that g: A ~ A,, where A, < A properly. Obviously A4, is an a-basis for V(4,),
and it can be shown easily that for such a q, the restriction of g to 4 extends
to a partial recursive isomorphism ¢q’: V(4) ~ V(A4,). Now V(A4,) € V properly,
contradicting (iv). Thus (i)-.-(iv) are equivalent.

(iii) = (v): By (iii)) and Theorem 2.6, dim (W + V({a})) is an isol. By
Lemma 3.2, W+ V({a}) & W, since W+ V({a}) has a proper subspace which
is a-isomorphic to W.

(v) = (i): By (v), V & V+ V({a}) for any ae Up — {0}. But if dim,V exists,
then so does dim,(V + V({a})), and

dim(V+ V({a})) = dim,V+1.

So we have dim,V # dim,V 4+ 1. Hence dim,V is an isol.
(vi) = (v) is trivial.
(iii) = (vi): Suppose that W< V and W+ W, ~ W+ W,, where W, W,,
W, e D. Then we have
dim,W + dim, W, = dim,W + dim,W,.

By (iii), however, dim, W is an isol, so we can deduce dim, W, = dim, W, . In turn
this implies that W, ~ W,.
The next lemma completes the proof of the theorem.

LemMa 3.2, If VeD,, W< Vand p: V~ W, then W= V.

PrROOF. Let 4 = {a;: i < w} be an a-basis of V and let p:V ~ W, where
W < V. Consider a;e A. Construct an r.e. subset Cl(a;,) of A thus:

Cl(a;) = {a;e A: there is a chain a;,---,a; of elements of 4 such that
a,, = a, a; = a;, and in the expression for p(a;,) in terms of the basis 4, q;,,
appears with a nonzero coefficient, for 0 < / < n}.

A is isolated, so for each i, Cl(q;) is finite. It is easily seen also that
p(V(Cl(a))) = V(Cl(a,)) for each i, since V(Cl(a,)) is finite dimensional and p
is one-one. Now q; € V(Cl(a,)), so a; € pp for each i, and further, A4 is contained
in the image of V under p. It follows that p(V) = V, and so W= V.
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LemMma 3.3. If V,,V,eD,, then V, + V,eD,.

Lemma 3.4. (i) If V,eD, V,eD, and V, £ V,, then V,eD,.
(i) If T, eQ,, T,eAy and T, £ T,, then T e A,.

4. Relations

Here we deal with V-R.E.T.s and relations among them. Qur aim is the
following:

THEOREM 4.1. Suppose that ¢ is a(finite) formula involving +, £, varibales,
logical connectives and first order quantifiers. Then ¢ holds universally in
Q, (respectively in Ay) if and only if ¢ holds universally in Q (respectively
in A).

The remainder of the paper is devoted to proving this, but first some pre-
liminaries.

Nortation. If R € X*Q, i.. if R is a relation among R.E.T.s, let
Ry = {(Ty, -+, T) eX*Q,: (dim,Ty, ---,dim,T;) e R} .

If
R = {(X{,, X)eX"Q: ¢(X ..+, X))},

where ¢ is a formula as described in Theorem 4.1, let
R' = {(Tl,"'a T;‘)EX’(QV : d’(Tl, "t 7;:)} .

THEOREM 4.2. Suppose that R < X*Q. Then

(i) R =X'Q if and only if Ry = X*Q,, and

(ii) R = X*A if and only if R, = X*A,.

PrROOF. Suppose that R =X*Q. If (Ty,---, T,)eX*Q, then
(dim,Ty, -, dim,T;) e X*Q = R. Hence (T}, -, .)€ Ry .

Now suppose that R, = X*Q,. If (X,,---,X,)eX*Q then there exist
(T, -, T,)eX*Q, such that for 1 £ i £ k, dim,T; = X,. By the definition of
Ry, then, (dim,T}, -, dim,T,)eR, ie. (X, -, X,)eR. Hence R = X*Q.

Part (ii) is proved in the same way.

THEOREM 4.3. If S = X*Q,, then S = Ry, for some R = X*Q.

PrROOF. Let Sp = {(Xl,u-,Xk)eX"Q: there exists (T}, -, T) e X*Q, such
that for 1 £ i £ k, dim,T; = X, and (Ty,---, T;) e S}.

It is easy to verify that (Sp), = S.

LemMA 4.4. Suppose that
R = {(Xl,""Xm+n)exm+"Q: Xl + -+ Xm =< Xm+l + e+ Xm+n}’

and that R' is as described above.
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Then R' = Ry,
Proor. Using Corollary 2.7 and Theorem 2.9,
Ry = {(Ty,+, Tpsn): (dim, Ty, -+, dim, T, ) € R}
= {(Ty, , Tp4n): dim, Ty +--- + dim,T;, < dim, 7,4 + --- + dimT,,, .}

{(Tla Tty Tm+n): dimu(Tl + ot Tm) é dimvx(Tm+1+ e Tm+n)}
= {(Tl""’ Tm+n): Tl + -+ Tm é Tm+1+ AR Tm+n}
= R’.

This is the base step of our inductive proof of Theorem 4.1, and now follow
the induction steps.

LeMMA 4.5. Suppose that ¢, and ¢, are formulas as described in Theo-
rem 4.1, and that
R; = {XeX'Q : ¢,(X)},

R2 - {XGX"Q :¢2(X)}.
Then if R{ = (R,)y and R5 = (R,)y, we have
(i) (X'Q—Ry) = (X'Q~Ryy,

(i) (R{ URy) (Ry YRy)y, and
(iii) (Ry N Ry)’ (Ry " Ryy.

PRrROOF. It is easily shown that
(xkg —Ryy = kuV = (Ryy
= X*Q, — R} by hypothesis,
= (X*Q~R,). -
The proofs of (ii) and (iii) are similar.

LeMMA 4.6 (i) Let ¢4, R, be as above, and let ¢ be the formula (Vx\)¢,(x,),
where x, is a variable which does not occur bound in ¢,. Now let

R = {(Xz -, X)eX* 71 (VX €Q) 4(Xy, -+, X))}

If R} = (Ry)y, then R’ = R,. _
(ii) As (i), but with an existential quantifier.

PROOF.
Ry = {(Ty, -, T): (dim,T5, ---,dim,T;) € R}

= {(TZ’ ) T;() (VXI EQ)¢1(X1’dimaT2’ ) dlmuTk)}
= {(TZa "y T;c) (VTI GQV)¢1(dimuTl, R dlma'I;c)} »
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by the final remark of Section 1,
= {(T, -, T): (¥T; e Q) (dim, T}, -+, dim, T) € R,)}
{(T3, -+, T): (VT e Q) (Ty, -+ Ty e (R}
{(T2, . T): (VT eQ)(Ty, -+, T e RV},
by our hypothesis,
{(T2, -+, T): (VT €Q)y(Ty, -+, T}
= R'.

Part (ii) follows from (i) and the previous lemma.
We combine the last three lemmas now into:

LEMMA 4.7. If ¢ is as described in Theorem 4.1, and R = {Xe X*Q : o(X)},
then R' = Ry.

Now we invoke Theorem 4.2 to obtain

(i) R =X*Q if and only if R’ = X*Q,, and

(i) R = X*A if and only if R’ = X*A,.
Theorem 4.1 is therefore proved.

Notes: (i) If ¢ is a closed formula, then to apply the above we may just
introduce a redundant free variable.

(ii) Because of Theorem 2.12, it was not necessary to include ‘““="" as one
of the symbols from which the admissible formulas ¢ were composed. However,
we could just as well have included ‘=" in the statement of Theorem 4.1.
Theorem 2.12 would then have been a corollary.

Finally, Theorem 4.1, along with results of Nerode [7] and Manaster and
Nerode [6], enable us to state the following.

THEOREM 4.8. (i) Universal sentences about the structure (Qy, +, <) are
decidable.
(ii) The first order theory of (Qy, +, =) is not decidable.

ProoF. Theorem 4.1 says that the first order theories of (Qy, +, <) and
(Q, +, <) are the same. In [7] itis proved that universal sentences about (Q, +, <)
are decidable, so (i) follows. In [6] it is shown that the first order theory of (€, +)
is not decidable, so (ii) follows.

Conclusion

The reason why vector spaces inherit properties of the kind discussed from
their a-bases is that vector spaces are ‘‘freely generated’’ from sets with no struc-
ture. Linear independence is really just an absence of structure. This suggests
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that results similar to the above may be obtained for free algebraic systems
more general than vector spaces. That is indeed the case, and some research in
this direction is described in [5].
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