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Abstract. The study of area preserving maps of manifolds has an extensive history
in the theory of dynamical systems. One interest has been in the behaviour of such
maps near an isolated fixed point. In 1974 Carl Simon proved the existence of an
upper bound for the index of an isolated fixed point for Ck area preserving
diffeomorphisms of a surface. We extend his result to homeomorphisms of an
orientable two manifold. The proof utilizes the notion of free modification, developed
by Morton Brown, and enlarges the scope of the problem to the consideration of
'nice' measures, i.e. uniformly equivalent to Lebesgue measure on compact sets. By
suitably modifying the homeomorphism and the measure, we obtain the following
theorem.

THEOREM. Let h : M2-» M2 be an orientation preserving homeomorphism of a smooth
orientable two manifold which preserves area. If p is an isolated fixed point of h, then
the index of p is < +1.

0. Introduction
What restrictions does the hypothesis that a homeomorphism be area-preserving
place on the dynamics of the map? In this paper we present a result about the
possible dynamics of such a map in the neighbourhood of an isolated fixed point:
the index of the point must be less than 2.

This result may be viewed as a generalization of Simon's theorem [6], which is
concerned with Ck diffeomorphisms. Our method of proof is necessarily completely
different from his, and appears to be applicable in a wide variety of situations. The
method involves a procedure by which an area preserving homeomorphism is
modified to produce a new homeomorphism which has the same fixed points, which
preserves an equivalent measure, and which has a special canonical form. This
procedure has its roots in the Brouwer Translation Arc Lemma, and employs the
idea of a free modification of a homeomorphism developed by Brown [3], [4], and
by Schmitt [5]. It should be noted that, although we are primarily concerned with
homeomorphisms, the techniques we use work equally well in the setting of Ck

diffeomorphisms.
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Some of the applications of the results presented here derive from the fact that
our theorem is a generalization of Simon's. In [6] Simon gives a number of
applications of his theorem to mechanical (Hamiltonian) systems. In these applica-
tions a diffeomorphism of a surface is obtained from the flow in such a way that
fixed points correspond to time periodic motions of the system. Simon then applies
his result to conclude that the motions are nondegenerate, deducing, on topological
grounds, the existence of other, independent, periodic motions.

As a result of theorem I below, his conclusions are true under the less restrictive
assumption that the Hamiltonian governing the system is piecewise differentiable
in such a way that a continuous, but not necessarily smooth flow is obtained.
Piecewise smooth Hamiltonian systems, which are frequently easier to investigate
numerically than their smooth analogues, have been receiving considerable attention
in the physical literature.

In addition to their physical significance, area-preserving homeomorphisms have
an intrinsic interest of their own. As an illustration of the usefulness of our theorem
I in answering global versions of the question with which this section began, we
mention a corollary to theorem I due to K. Boucher [1]:

COROLLARY. Let h : S1 -» Sl be a homeomorphism which has at least n attracting (and
therefore at least n repelling) fixed points. Then any extension of h to an orientation
preserving, area-preserving homeomorphism of the disc D has at least Greatest integer
(n /2+ 1) fixed points in the interior of D.

S. Pelikan was partially supported by the National Science Foundation. E. E.
Slaminka was partially supported as a Charles P. Taft Postdoctoral Fellow, Univer-
sity of Cincinnati.

1. Definitions and notation
Let U2 denote the 2-plane with the standard norm || ||.
A disc D c R 2 i s a homeomorph of the unit ball {xeR2 | | |x | |< 1}.
For X c |R2 let int (X), bd (X), X, Xc denote the interior, boundary, closure and

complement of X respectively.
If h is a homeomorphism of R2, let Fix (h) denote the fixed point set of h.
By a nice measure /x on a 2-manifold we mean a measure which is absolutely

continuous with respect to Lebesgue measure, zero on points and with Radon
Nikodym derivative d/x/dx bounded above and below from 0 by constants on
compact sets. For our purposes this last condition is equivalent to the existence of
positive constants Kx, K2 such that Kim(A)s fi(A)s K2m(A) where A is a
Lebesgue measurable set contained in some compact set and m is Lebesgue measure.

A homeomorphism h of IR2 is said to preserve the measure /x if n(A) = fi(h(A))
for all measurable sets A.

Definition. Given a simple closed curve C in U2 and a homeomorphism h:U2-*R2

with C n Fix (h) = 0 , the index of C with respect to h, denoted ind (h, C), is the
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degree (i.e. winding number) of the mapping H : C -» S1 where

We shall need the following two basic properties of the index:
(i) Let h and g be two homeomorphisms such that Fix (g) = Fix (h) and let C

be a simple closed curve such that C n F i x (/i) = 0 . If there exists an isotopy <t>,
between h and g such that Fix (h) = Fix (4>,) then ind (h, C) = ind (g, C).

(ii) If C is invariant under h then ind (h, C) = 1.

Definition. If p is an isolated fixed point for h, then let the index of p, denoted
ind (h,p), be ind (h,C) for a simple closed curve C which bounds a disc D
containing p, where D n Fix (h)= p. It follows easily that the index of a fixed point
is well-defined.

By the Brouwer fixed point theorem one proves that if ind (h, C) # 0 for some simple
closed curve C, then the disc D bounded by C contains a fixed point for h.

The relation between index of a curve and index of a point is as follows:

LEMMA. Let h be a homeomorphism of the plane with isolated fixed point set. If C is
a simple closed curve with C n Fix (h) = 0 , then £ ind (h, p) = ind (h, C) where the
sum is taken over those fixed points contained in the disc bounded by C.

2. The main theorem
This section presents a statement of the main theorem, a reduction of this theorem,
and introduces the notion of a free modification of a homeomorphism. Much of
this section depends on the following form of the Brouwer lemma, which is due to
Brown [2]:

BROUWER LEMMA. Let h:U2->U2 be an orientation preserving homeomorphism of the
plane, and let D be a disc with h(D) n D = 0. Ifh"(D) n D?± 0 for some n^O, then
there exists a simple closed curve C with C n Fix (h) •£ 0 such that the index of C is 1.

THEOREM I. Let h : M2-> M2 be an orientation preserving homeomorphism of a smooth
orientable 2 manifold M2 which preserves area. If p is an isolated fixed point of h,
then the index of h at p is less than or equal to 1.

Proof. Assume that there exists an isolated fixed point p of h with ind (h, p) = n > 1.
Let Fix (h) = F(j{p}. Since Fix (ft) is closed and p is isolated, F is a closed set.
Consider the connected component X of M2- F containing the point p. Since M2

is orientable it follows that the universal cover X of X is either IR2 or S2, and that
h lifts to a homeomorphism h:X^>X which fixes only the fiber ir~l(p), where
TT:X^>X is the covering projection. Since tr is a local homeomorphism, Tr~l(p)
consists of a countable collection of isolated points P\,P2, • • •, and ind (h,Pi) = n
for all i such that pt is fixed under h.

The case where the universal cover is S2 will be handled separately. Since X is
orientable X ~ S2. Hence the only fixed point for h is p with index 2. However, by
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using the Brouwer Translation Arc Lemma on S2—p~int (D), there exists at least
one other fixed point, a contradiction.

We will now define a measure fi. on U2 which is invariant under h. If A c R 2 is
such that tr is one to one on both A and h{A), set fj.{A) = area (TT(A)). Then fj. is
invariant because if A has the property that n is one to one on A and h(A), then

fi(h(A)) = area (irh(A)) = area (/ITT(A)) = area (TT(A)) = n(A).

The fact that fx is nice follows from the fact that vr can be chosen to be a smooth
map of U2 to X. Thus without loss of generality assume that there exists an orientation
preserving homeomorphism h:U2^U2 which preserves a nice measure /x and such
that:

(i) Fix-(/j) = {p\,p2, • • •} is isolated; and,
(ii) ind (h, pt) = n > 1 for all i.

The proof of Theorem I then reduces to the following theorem.

THEOREM II. Let h : U2 -» U2 be an orientation preserving homeomorphism of the plane
which preserves a nice measure. If Fix (h) = {px, p2,...} where each /?, is isolated and
ind (/], Pi) = n for all i, then n < 1.

We prove this theorem by contradiction, assuming that n > 1. It will be necessary
to consider free modifications of the given homeomorphism h. Each free modification
hf of h has the same fixed point set as h and any simple closed curve C with
C n Fix (h) = 0 has ind (h, C) = ind {hf, C).

We will show that under suitable conditions one can modify a homeomorphism
to one which, though it does not preserve the original measure, nevertheless,
preserves another nice measure. The following discussion concerning free
modifications and reduction to canonical form is due to Brown [2], [3] and
Schmitt [5].

Definition ([2]). Two homeomorphisms h and g of U2 are said to be strongly equivalent
provided there exists a disc D<=R2 such that h(D)r\ D = 0 and g~xh is supported
on D (i.e. g~xh{x) = x for all x e D). We say that h is freely equivalent to g if there
exists a finite sequence of homeomorphisms h0,..., hn such that h = h0, g = hn and
ht is strongly equivalent to hi+1. One observes that if h is freely equivalent to g,
then Fix(/j) = Fix(g).

Given a homeomorphism h of R2 we will construct a freely equivalent homeomorph-
ism by a finite sequence of free modifications.

Definition. A homeomorphism / of U2 is a free modification of h provided that there
exists a disc D in M2 such that h(D) n D = 0 and / is supported on int (D).

By Alexander's Isotopy Theorem / is isotopic to the identity by an isotopy 3>, such
that <t>,(x) = x for xiint(D). We see that ind (h, C) = ind {hf C) for any simple
closed curve C with C n Fix {h) = 0.

When a homeomorphism is modified, however, one does not know a priori that
there exists a nice measure which this new homeomorphism preserves. The construc-
tion of such a measure is possible under the hypotheses of theorem II.
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PROPOSITION. Let h be an orientation preserving homeomorphism of U2 preserving a
nice measure /x and let Fix (h) be isolated with ind (h, p) = n > 1 for each p e Fix (h).
Suppose that h is strongly equivalent to hf by a free modification f on a disc D, and
that f is a C2 diffeomorphism. Then there exists a nice measure v preserved by hf.

Proof. For a measurable set A c R 2 define A, = h~'{D) n A for j = 0,1, 2 , . . . and set
AC = A — [_)jAj. Then A = AcuUyA/- We claim that we have expressed A as the
disjoint union of subsets. If this were not the case, then by the Brouwer Lemma
there would exist a simple closed curve C with index equal to 1. However, the
index of each simple closed curve in K2 is either 0 or a positive integral multiple
of n. Define the measure v as follows:

In order to show that v is a nice measure, it suffices to obtain bounds on v(Aj) in
terms of the Lebesgue measure w(A7) which are uniform. Note that

n((hf)J+l(Aj)) = p(hfh>(Aj))

since h preserves /x.
Using the change of variables formula for integrals,

j)) = J Xf*HAj)(x) ^ ( x ) dx = J

= J AV(A,,(") ^ ( / ( « )

^(x) dx

, , ( " ) ^ ( / ( « ) ) | d e t Df(u)\ du.

Using the fact that dp/dx and |det Df(u))\ are bounded from zero and above by
some constant on the compact set h(D) shows that

K, Lebesgue (A,) < v{A}) < K2 Lebesgue (A,) (*)

for constants Kx and K2 independent of j and Ah and hence that the measure v is
also a nice measure.

The above condition that / be C2 is not necessary. One could require only that
/ be L-bi-Lipschitzian, that is

(\/L)\x-y\<\f(x)-f(y)\<L\x-y\

for some constant L > 1. Then one can also obtain the inequality (*).

Remark To ensure that the measure v is non-atomic it is essential that a bound be
placed on the Jacobian as the following example shows:

Let h{x,y) = {x/2,2y) and D be the disc {(x,y)\\x\<^, \y~l\^k}- L e t / : D ^ D
be the free modification defined such that the vertical lines x = ±2~", n = 1, 2 , . . .
are mapped as shown in figure 1. Now extend / so that / restricted to the boundary
of D is the identity.
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D

FIGURE 1

Let E = {(x,y)\\x\<^, \y\<^}. Then Fn-h"{h
\y-\\^\}. See figure 2. After modifying h b y / we have that

v{E)> */(tJ F J =X ^(fn)=Z m(fFn)>I. l/« = c 0-
Thus any neighbourhood of the origin will have infinite measure, and hence the
measure v will be atomic.

D

- 2

"I

FIGURE 2

In reducing h to canonical form free modifications will be made on maps which
preserve a nice measure. Each modification will be constructed using only maps
which are C2 diffeomorphisms with Jacobian bounded above and below from 0 (or
L-bi-Lipschitzian maps). Thus, each of these modifications will result in a new
homeomorphism which preserves a new (but nice) measure.
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3. Canonical form and the proof of Theorem II
The index of a curve C with respect to an orientation preserving homeomorphism
h can be calculated by considering the rotation of the vector h(x)-x as x passes
through two consecutive points on C whose images also lie on C. If the rotation is
approximately -n or 77, one counts a contribution of+ 1 or -1 to the index. Summing
over such pairs of points, and adding 1 for the total rotation of C yields the index
of C. Some pairs of points which contribute 0 to the index are illustrated in figure
3. An arc on C with endpoints a and b having the property that h(a) and h(b) are

h(b)

FIGURE 3

also on C and that the arc on C from h(a) to h{b) contains the arc from a to b
(see figure 4a) is called an elliptic arc. Elliptic arcs contribute +1 to the index of
C. If the arc from h(a) to h(b) is contained in the arc from a to b, the arc is called
hyperbolic (see figure 4b). Hyperbolic arcs contribute -1 to the index of C. We can

index = 4

(a)

F I G U R E 4
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then compute that ind (h, C) = 1 + e — h, where e is the number of elliptic arcs on
C, and h the number of hyperbolic arcs.

Definition. A homeomorphism / freely equivalent to h is a canonical form of h on
the curve C if the number of intersections of C with f(C) is exactly \2(n — 1)|,
where n = ind (h, C).

Thus, if ind (h, C) = 4, a canonical form of h on C would have exactly 3 elliptic arcs.
In § 4 it will be shown that, under the hypotheses of theorem II, every homeo-

morphism has a canonical form which preserves a nice measure. Using this fact,
we first prove theorem II.

Proof of Theorem II. Assume that n >2 , and let C be a simple closed curve disjoint
from Fix(fc) and with the property that if D is the disc bounded by C, then
Dn Fix (h) = {pi\. Without loss of generality, we may assume that h is in canonical
form on C. Since ind (h, C) = n > 1, h(C) consists of n — 1 elliptic arcs a, with
endpoints at, h, such that the arc a,fo,<= Cnh(D). Let £, be the disc bounded by

Let x e int (a,) . We will construct an arc J lying in D such that / is a subset of
an invariant line through x, and / intersects C at two points, h~l(x) and y. Then
we will consider the simple closed curve J u K where K <= C is an arc with endpoints
h~1(x) and y. A simple computation will show that 1 <ind (h, Ju K)< n — 1, which
will be a contradiction and complete the proof.

Let x be chosen as above, and F a disc in £, such that x, h~\x)e F. Note that
h~l(F)cD. Since int ( F ) n h"'(int (F)) = 0 , by the Brouwer Lemma int ( F ) n
h"(int (F)) = 0 for all n # 0. However, /x(F) > 0 and /u(D) < oo which implies that
there exists an N>0 such that h~N(F)n C 7^0. Choose the smallest such JV with
this property. Let /, be an arc from h~N (x) to some point ye C such that int (/])<=
i n t ( / j " N ( F ) n D ) . Let l2 be an arc from y to / r< N + 1 ) (x) such that int(/2)<=
int ( /TN(F)) and hul2 = y. (See figure 5.) The arc J'= M / , ) u l J ~ 2 h'(1^ h) lies
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in h(D) and J'nh(C) = {h(y), x}. Let J = h~\J') and let Kx, K2^ C be the arcs
with endpoints {y, h~'(x)}. Then J u K , is a simple closed curve for i — 1,2. (See
figure 6.)

c

FIGURE 6

LEMMA. 1 <ind (h, / u X,)< n-\ for i= 1, 2.

Proof. Either by direct computation, noting that the index is determined by the
number of elliptic arcs which intersect h(Kj), or by using free modifications to
eliminate all but one intersection of h(J) with J.

Remark. The above method works as well with n hyperbolic arcs. The index of h
on C is then 1 - n. The last lemma then would state that the index of / u Kt is
between 0 and —n. The arc J must then pass through C between a, and either a2

or «„. We then have that the simple closed curve J u X, has index 0 which presents
no contradiction. This is precisely the case for the smooth hyperbolic maps of the
plane. As an example consider the smooth map (x, y)-> (x/2, 2y).

4. Reduction to canonical form
The following procedure will remove pairs of intersection points which contribute
0 to the total index. These types are indicated in figure 3.

We first assume that h(C) intersects C transversely and only finitely often, and
that the disc bounded by C intersects its image in only one component. Let D be
the disc bounded by C, and consider the arcs a , , . . . , o m with U «•• = h(C)n Dc.
Let a, have endpoints a,, b, and aA be the arc on C such that ajbich(D)r\C.
(See figure 7.)
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FIGURE 7

Case I. Assume that h~\ai)naibi = 0. Since aibi-{ai,bi] lies entirely within
int (h(D)) we have that h~1(aibi—{ai, b,}) lies entirely within int (D). Thus we can
find a disc D(at) containing a, u a,b; such that h~\D(at))n D(at)) = 0 . We then
employ a free modification/ on h~1(D(ai)) such that hf(h~\aj))^ int (D). (See
figure 8.) With this modification hf(C) has two fewer points of intersection with C.

£>(<*,)

F I G U R E 8

Case II. Assume that h '(cO n a,b, 7̂  0 and precisely one of a, or b, lie in ft l(at).
Assume bt lies in h~l{a{). Since /) is orientation preserving h~x{ai)e afij (figure 9a).
Let d,•€ a, be a point near b, and a , c a, the arc from a, to df. Pick a disc D(a,)
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FIGURE 9(a).

D(a,)

FIGURE 9(b).

containing a, such that D(dj)r^ h ' (D^,)) = 0. Modify h on h \D{at)) by /such
that/( / i"1(a,))na,=0. (Figure 9b.) We now have that (fh)~\ai)naibi = 0 and
use Case I to eliminate two intersection points. Similarly if ft'^a,-) n a,b, ^ 0 and
both a, and fc, lie in ^"'(a,), but /i"'(«*) ^ a,fc,, use the above method to eliminate
two intersection points. (See figure 10.)
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Case III. We are now left with arcs a< such that either h ' ( " i ) ^ aA> flAc h i(ai)
o r / i ( C ) n C = 0 . Since h is orientation preserving and fixed point free on C, these
containments are proper. Call those a, such that h~l(ai)<^ a,fc, elliptic arcs and call
those a, such that a,fc, <= ^" '(a,) hyperbolic arcs.

Assume that an elliptic arc is adjacent to a hyperbolic arc along C. Let au bx,
a2, b2 be the four successive intersections of h(C) with C, where a^, fe, are the
endpoints of the elliptic arc and a2, b2 are the endpoints of the hyperbolic arc.
Consider the arc /3 along h(C) from fe, to a2. From the point of view of h~\ this
arc is in Case II, wherein we 'pull' (3 outside of D. We now have an arc with
endpoints au b2 which can be removed as in Case II. This procedure removes four
intersection points. (See figure 11.)

C

FIGURE 11
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We are left with a curve C, after a finite number of free modifications, which is
either disjoint from its image, is composed of a finite number of elliptic arcs, or is
composed of a finite number of hyperbolic arcs. One computes the index as 1, 1 + e
orl-h, where e is the number of elliptic arcs and h is the number of hyperbolic arcs.

In the more general setting where h(C) n C consists of nontransverse intersections
we consider a Lebesgue number 8 for h restricted to C such that if / is any connected
arc on C with diameter less than 8, then h(I)n I = 0 . Pick a finite collection of
such arcs which cover C. For each such / we will modify h on a disc D(I) containing
/ in its interior which will replace the nontransverse intersection by a transverse
one on /. (See figure 12.) The dotted line represents the image of an open arc
containing / in D(I) under the free modification / Since C is covered by finitely
many such intervals, we need perform this operation only finitely many times.

FIGURE 12

In case h(C)nC consists of an infinite number of transverse intersections, cover
h(C) n C with a finite number of discs Dx, D2,..., Dk having the properties that
(1) h~l(Dj) r\ Dt = 0 for each i, and (2) h{C) n D, is connected for each i. Connect
the endpoints of Cnh~l(Dj) by a smooth arc a which lies in h~1(Di) and which
intersects h'\C n D,) a finite number of times. (This can be done by an arc having
at most one point of intersection.) Modify h on h~\Di) by a map which takes
C n /J~'(D,) into the arc a. After a finite number of such modifications we obtain
a map freely equivalent to h under which C intersects its image a finite number of
times. (Figure 13.)

h(C)

FIGURE 13
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Finally, consider the case where Dn/i(D) is not connected. By the above, we
can assume that Dnh(D) is the union of a finite number of components Kt,
i = 1,2,..., n, with px in K,. We will construct a simple closed curve C, bounding
a disc D, <= D with px in Dx and a modified homeomorphism h' so that h'{Dx) n D,
has fewer components. (See figure 14.)

h(b)

FIGURE 14

Pick a, be Dn(U ^i)c such that a, b are endpoints of an arc a i n D n ( U Kt)
c

and so that a n bd (D n h(D)c) = {a, b} and such that a separates K, from at least
one K{ in D. Since h(a) n a =0, we may assume that A(a) intersects C a finite
number of times. (Otherwise, a free modification of h on a disc containing a will
produce this condition.)
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Let /3, and f}2 <= C be the two arcs with endpoints a and b. If /i (a) n X, is connected
for each i, let D! be the disc bounded by a and either )3i or /32 - whichever is such
that Kx<^ Dx. Then Dxnh(Dx) has fewer than n components.

Thus we assume that h(a)n K{ is not connected for at least some i. (See figure
15.) Let x,, x 2 , . . . , xm be the intersection points of h(a) with C. Assume that the

FIGURE 15

subscripts give an order to these points which is inherited from a. Let x,x,+, <= h(a)
be the arc with endpoints x, and x,+1.

Consider only those arcs which lie in the complement of the interior of D. Since
h(D) is contractible there exists at least one such arc x,xJ+1 with endpoints lying in
bd (Kj) for some i.
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Pick Xj so that no other xk lies between x,- and x,+1 on C n b d (/£,), where xkxk+l

is another such arc. We will modify the homeomorphism h in such a way as to
move the arc x,x,+1 into the interior of D. Since we will focus upon this particular
arc, we will rename the arc xy, and the component K. (See figure 16.)

FIGURE 16

Let y be the arc on Cnbd(K) with endpoints x and y. We observe that
(yu xy)n h~\yuxy)^0. Hence, by using a disc E containing h'l(yuxy) in its
interior, we can modify h to h' where h'{h~xxy)) c int (D). We have pushed the arc
xy into the interior of D. Thus we can modify the map h to obtain a map h' so that
h'{a)r\ Ki is connected for all i.
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