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APPROXIMATE CONVEXITY IN VECTOR OPTIMISATION

ANJANA GUPTA, APARNA MEHRA AND DAVINDER BHATIA

Approximate convex functions are characterised in terms of Clarke generalised
gradient. We apply this characterisation to derive optimality conditions for quasi
efficient solutions of nonsmooth vector optimisation problems. Two new classes of
generalised approximate convex functions are defined and mixed duality results are
obtained.

1. INTRODUCTION

There have been several studies in the past to demonstrate the key role played by
'duality' in Economics and Optimisation Theory. Many dual models have been proposed
for the constrained vector optimisation problems and corresponding duality results have
been investigated. Among them the two dual models namely Wolfe dual model and
Mond-Weir dual model have been widely studied both for smooth as well as nonsmooth
vector optimisation problems ([1, 2, 4, 6, 7, 8, 10] and references cited therein). Later,
combining the two dual models a mixed dual model was proposed and duality results
were obtained by Xu [12]. In order to have a deeper insight of the mixed dual model
Bector, Chandra and Abha ([1, 2]) defined the notion of incomplete Lagrange function
and observed that the Mond-Weir dual is connected to the incomplete Lagrange function
exactly in the same manner as the Wolfe dual is connected to the usual Lagrange function.
This inspired them to study mixed duality for various classes of nonlinear scalar-valued
programming problems. It is worth to note that the notions of convexity and generalised
convexity play a crucial role in establishing the primal-dual relationships. Moreover,
advances in nonsmooth analysis and nonsmooth subdifferenital calculus rules led various
authors to search for the class of nonconvex functions possessing properties that are
similar to convex functions and also satisfy the basic subdifferential calculus rules. In
this context, Ngai, Luc and Thera [9] defined a new class of approximate convex functions
and showed that functions belonging to this class enjoy many of the desired properties.

In this article we intend to use the notion of approximate convexity to develop mixed
duality results for nonsmooth vector optimisation problems. The structure of the paper
is as follows. In section 2 we present a characterisation of approximate convex function
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in terms of Clarke generalised gradient. This characterisation motivates us to further
introduce two new classes of generalised approximate convex functions. In section 3
necessary and sufficient optimality conditions are derived for quasi efficient solution of
the nonsmooth vector optimisation problem. Mixed duality results are established under
generalised approximate convexity assumptions in section 4. Finally the paper concludes
with some observations.

2. APPROXIMATE CONVEX FUNCTIONS

The locally Lipschitz condition and Clarke generalised gradient are frequently used
as the principal tools in analyzing nonsmooth vector optimisation problems. For the sake
of completeness we first recall these two definitions. In what follows we assume that X
is a nonempty subset of Rn and / : X —> K.

DEFINITION 1: / i s locally Lipschitz at x G X if there exist a positive constant L
and a neighbourhood U of x such that V xux2 G U

DEFINITION 2: ([5]) Let / be locally Lipschitz at x £ X. The Clarke generalised
directional derivative of / at x in the direction v G K" is given by

MO y-fi A

The locally Lipschitz condition on the function guarantees the existence and
finiteness of the above limit. Also, as a function of v, f°(x; v) is subadditive and positively
homogenous. These two properties together with the Hahn-Banach Theorem permit the
following definition.

DEFINITION 3: ([5]) The Clarke generalised gradient of / at x G X, denoted by
9/(x), is defined as

df(x) = {£ G R" : f°{x; v) 2 (*v, V v € R n } .

For instance, the function /(x) = ||x—xo|| is not differentiate at xo, its Clarke generalised
gradient at xo is a closed unit ball B[0,1] := B in R".

To start with, we state the relaxed notion of convexity namely approximate convexity
that has been used in this article.

DEFINITION 4: ([9]) / is said to be an approximate convex function at xo € X if
V c > 0 3<J>0(<$ depends on c and xo) such that

(1) /(Ax + (1 - A)y) ^ A/(x) + (1 - A)/(y) + cA(l - A)||x -
Vx,j/GB(xo,<J)nX,VAG(0,l).
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Functions belonging to this class possess many interesting properties similar to
that of convex functions. The main feature of this class is that it includes the classes
of convex functions, weakly convex functions, strongly convex functions of order m,
ro ^ 1, and strictly continuously differentiable functions. It is important to note
that a lower semicontinuous approximate convex function at x0 is locally Lipschitz at
x0. For additional details we refer the readers to [9]. Furthermore, there exist real-
valued functions which are approximate convex but not necessarily convex. For example,
consider the function / (x) = x3 — x2, x € R. / i s approximate convex at x0 = 0 as
V c > 0 3 0 < < J < (—1 + y/(l + 1.5c))/3 such that (1) holds but / is neither convex nor
concave at xo.

Below we present a characterisation of approximate convex function in terms of the
Clarke generalised gradient.

THEOREM 1 . If f is a iower semi continuous approximate convex function at
x0 € X then V c > 0 38 > 0 such that

(2) f{y)>f{xo)+?{v-xo)-4v-*ol VyeB(xo,5)nx,V£edf(x0).

PROOF: Since / is a lower semicontinuous approximate convex function at xo hence
it is a locally Lipschitz function at xo- Moreover, V c > 0 3 < $ > 0 such that (1) holds.
Let y € B(xo, 6) n X. Choosing h > 0 sufficiently small so that x0 + h, y + h € B(xo, £)•
The Clarke generalised directional derivative of / at xo in the direction of (y — x0) is

/W ) li sup
t_t0+

= lim s u p
h*0

t
+ h) + (1 - t)(x0 + ft)) - /(XQ + h)

t
lim sup (f(y + h) - /(x0 + h) + c(l - t)\\y - xo\\)
A > O
lim sup (/(y) - /(xo) + L\h\ + L\h\ + c(l - t)\\y - xo\\)
h > o +

Thus f(y) 2 f{x0) + ?(y - x0) - c\\y - xo||, V £ e df(x0). D

Inspired by the previous result we introduce two useful classes of generalised
approximate convex functions for using them in deriving the duality results in the later
section.

DEFINITION 5: / i s said to be an approximate quasiconvex function at xo € X if
V c > 0 3 ( J > 0 such that whenever y € B{x0, S)nX and f(y) ^ f(x0) then

(3) € * ( y - * o ) - c | | y - x o | | ^ 0 , V£G3/(x 0 ) .

REMARK 1. (i) Approximate convex function at x0 is also an approximate
quasiconvex function at XQ. The converse need not follow. For example, consider the
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function

/<*)=p. -2"*;<0
I — sin i 0 < x < 2n

f is approximate quasiconvex but not approximate convex at x0 = 0 as for c G (0, 1) we
can not find a 6 > 0 such that (2) holds.

(ii) There is no relationship between approximate quasiconvexity and quasicon-
vexity (see reference [3, pp. 163]) of a function at x0. For example, f(x) = sini, x
G [—2TT, 27r], is approximate quasiconvex with 0 < S < n but not quasiconvex at x0 = 0.

Furthermore, it can be proved that

is quasiconvex but not approximate quasiconvex at XQ = 0 since for any c e (0, 1) jB 5
> 0 such that (3) holds.

DEFINITION 6: / is said to be an approximate pseudoconvex function at i 0 € X
i fVc>03<$>0 such that whenever

y G B(x0, S) D X and £'(y - x0) + c\\y - xo\\ ^ 0 for some £ G df(x0)

then

REMARK 2. (i) An approximate convex function at x0 is an approximate pseudocon-
vex function at XQ but the converse in general does not hold. For example, consider the
function

At xo = 0 / is approximate pseudoconvex but not approximate convex as for c G (0,1)
and for y sufficiently small condition (2) fails to hold.

(ii) It is important to observe that there is no relationship between an approximate
pseudoconvex function and a pseudoconvex function (see reference [3, pp. 163]), that is,
a function can be approximate pseudoconvex but not pseudoconvex or pseudoconvex but
not approximate pseudoconvex at some point XQ. These facts are illustrated below.
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Let

!

0 -Kx<lThen / is approximate pseudoconvex but not pseudoconvex at x0 = 0.
Define

It can easily be proved that / is pseudoconvex but not approximate pseudoconvex at
i o = O.

(iii) An approximate pseudoconvex function at x0 is in general not approximate
quasiconvex at x0. The following function justifies this assertion at x0 = 0.

x<0.

However it can easily be shown that a continuous approximate pseudoconvex function at
xQ is approximate quasiconvex at x0.

(iv) Furthermore, an approximate quasiconvex function at x0 is not necessarily an
approximate pseudoconvex function at x0. For instance,

{ x2 x < 0

- x 2 - 2x x > 0.
is approximate quasiconvex but not approximate pseudoconvex at x0 = 0.

3. OPTIMALITY CONDITIONS

Using the notion of approximate convexity we derive the necessary and sufficient
optimality conditions for the quasi efficient solution of the following vector optimisation
problem (VP).

(VP)

subject to gj(x) < 0, j = 1 , . . . , m,

where ft, g}, : X -* R, i = l , . . . , p , j = l , . . . , m . Let SP = {x e X \ g^x) < 0,
j = 1 , . . . , m} be the feasible set of (VP).
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DEFINITION 7: x0 € Sp is said to be a local efficient solution of (VP) if there exists
a neighbourhood U of XQ such that for any x E SpHU the following can not hold

/«(x) g/«(*,), Vi = l , . . . ,p ,

/r(x) < /r(xo), for some r.

DEFINITION 8: xo € Sp is said to be a local quasi efficient solution (or quasi
efficient solution) of (VP) if there exist a € int (R%.) and a neighbourhood U of x0 such
that for any x € SpC\U (or x € Sp) the following can not hold

fi(x)^fi(x0)-ai\\x-x0\\, Vi = l , . . . ,p

fr(x) < fr{x0) - ar||z - xo||, for some r.

REMARK 3. An immediate consequence of the above definitions is that a local efficient
solution is local quasi efficient solution of (VP). The converse relation is in general not
true. To illustrate these facts we first consider the vector optimisation problem

min f(x) = (e1' + 1, -x3 + x)

subject to x ^ 0.

x0 = 0 is an efficient solution as well as quasi efficient solution for a = (1,1)'. However,
if we take another vector optimisation problem

min f(x) = (ln(z + 1) - x, x3 - x)

subject to x > 0,

then x0 = 0 is a local quasi efficient solution for a = (1,1)* but not a local efficient
solution.

The next two theorems provide the necessary and sufficient conditions for (VP) to
possess a quasi efficient solution.

THEOREM 2 . (Necessary Optimality Conditions) Suppose x0 is a quasi efficient
solution of (VP) and the functions fit i = 1 , . . . ,p, and g,, j = l,...,m are locally

Lipschitz at x0. Then there exist a € int (Rp
+), A G R+ and fj, € R™ such that

(4) 0 e
t=i >=i »=i

(5) I*j9j(xo) = 0 •

PROOF: It follows from the quasi efficiency of x0 that there exists a G int(R+) such
that the following system has no solution x E X

fi(x) ^ fi(xo) - oci\\x - zoll, t = 1 , . . . ,p,

fr(x) < fr(x0) - a r | | i - zo||, for some r,
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Consequently xo is an efficient solution of the auxiliary vector optimisation problem (VP')

involving locally Lipschitz functions.

(VF) min(/i(x) + ai\\x - xo| | , . . •, fp(x) + ap\\x - xo\\)

subject to gj(x) ^ 0, j = l,...,m.

Applying Fritz-John necessary optimality conditions on (VP') we get the existence of
scalars A*, i = 1, . . . ,p and /*,, j = 1,...,m such that

p m

(6) 0 G j ^ C f c + onWx - xo\\))(x0) +

Xi^O, M j ^ O , » = l , . . . , p , j = l,..

(6) can be rewritten as

P m

0 €

Hence the result. D

REMARK 4. The necessary optimality conditions developed above are of Fritz-John
Type. Under appropriate constraint qualifications or regularity conditions on the
functions we can easily derive the KKT type necessary optimality conditions. In that
case we can take A'e = 1. One such constraint qualification is Mangasarian Fromovitz
Constraint Qualification which states that

0 e J2 Nd9i{x0) => fij = 0, Vj 6 7(x0); /(x0) = {j | 5j(x0) = 0}.

Another weakened form of constraint qualification called basic regularity condition is
given as follows

p p

0 6 5 3 ^idfi(x°) + 5 3 ^ ^ ( x o ) + 5 3 A«a«B> for some r

i=l,«^r j€/(x0) «=l,»#r

=> A< = 0, Vi = 1 p,i?r, Hj = 0, V; G /(x0); /(x0) = {j \ 9j(x0) = 0}.

THEOREM 3 . (Sufficient Optimality Conditions) Let conditions (4) and (5) be

satisfied at xo € X along with A > Oand A'e = 1. Suppose fi, i = 1 , . . . ,p, and gj,

j = 1 , . . . , m are approximate convex functions at x0- Then x<) is a local quasi efficient

solution of (VP).
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P R O O F : From hypothesis it follows that for some & € dfi(xo), ft € d^-(xo), d e l

P "» P

(8) lj,jgj(xo)=0, j = l,...,m.

In lieu of Theorem 1 we have that V c > 0 3 ( S > 0 such that V x € B(x0,6)

/i(x) - fi(xo) ^ (£ ,x - x0) - c||x - xo||, V ( j 6 dfi(x0)

gj(x) — gj(xo) > (f t ,x — x<j) — c\\x — xo||, V ft € 9pj(x0).

The above two inequalities along with A > 0, \i ^ 0, relations (7) and (8) yield

p

A'/(x) — A'/(xo) + f/g(x) ^ — Y^ A,ai(6, x — xo) — 7||x — xo||,

7 = c(l + /i'e) > 0.
P

^> —̂ \ \ >/V- It 1* — Tn II — 'vll T* —̂ T**« II

^ / . A t " i | | X — X p | | — 7 | | X — Xp|[

t=l
P

= -7? | |X - X 0 | | , V =

Let x € SP D 5(x 0 , <J). Then

A'(/(x) - / (x 0 ) + r,e\\x - sod) ^ 0.

Thus V c > 0 3<J> Oandjfc = A'a + c(l + /i'e) > 0 such that Vx e SPnB(xo,S)

ft(x) g ^(xo) - tk\\x - xo||, V. = 1 , . . . ,p

/r(x) < / r (x0) - 77c||a; - xo||, for some r

is not possible, thereby implying that x0 is a local quasi efficient solution of (VP). D

4. DUALITY

The present section is devoted to develop the duality relationship between (VP) and
its mixed dual under generalised approximate convexity assumptions.

Let the index set M = { 1 , . . . , m} be partitioned into two disjoint subsets K and J
such that M = K U J. The mixed dual for (VP) is given by

(VD) max / (u) + Hjgj(u)e

subject to /ifc5*(u) ^ 0 , k e K

0 € dA'/(«) + dnlg(u) + (A,a)B

A ^ 0, A'e = 1, n ^ 0, a > 0,
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Let

SD = {(«, A, M, a) | M*fl*(«) ^ 0, A; G # , 0 e 9A7(u) + d^giu) + (A, a)B,

A ^ 0, A'e = 1, n ^ 0, a > 0}

denotes the feasible set of (VD). Recall that Sp was the feasible set of (VP).

THEOREM 4 . (Weak Duality) Let (u,A,/i,a) € SD and suppose £ /**&(•) is
k€K

approximately quasiconvex and ( £ A*/* + 53 Mj5i) (•) 1S approximate^ pseudoconvex
\t=l >€J /

at u. Tien V7 > 2A*a 3 57 > 0 such that t ie following does not hold

fi{x) < fi(u) + tugj(u) - y\\x - u||, Vi = 1,... ,p
where x = u + td, d € Rn, 0 < t < <$7, is such that x e 5 P .

PROOF: From the feasibility condition of (VD)

(9) o ^ ^ ^

for some ^ G 9A;/j(u), z = 1 , . . . , p , ^ € dnjgj(u), j = l,...,m and 6 e B.

Let x € Sp. Then as /xfc ^ 0, k € AT

(10) 5 3 Vk9k {x) ^ 5 3 A**̂  (u) •
k&K k£K

U s i n g t h e a p p r o x i m a t e q u a s i c o n v e x i t y o f J Z WfcfffcG) a t u , V c > 0 3 ( J > 0 s u c h t h a t
keK

whenever x € B(u, 6) D 5p and (10) holds then

Without loss of generality we can assume that ||d|| = 1. Choose x = u + td, 0 < t

< S, with a; € Sp. The above arguments along with (9) yields

«-) ( ) i i ii ^ 0.
<=i jeJ 1=1

-u\\ > 0, d=52^+00.

Using approximate pseudoconvexity of ( £ Aj/i + 52 Miff;) (') a t u w e 8 e t the existence

of 1̂  > 0 such that whenever x G B(u, iJ*) and (11) holds then

p p

t=l j€J
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Set 7 = 2d and Sy = min{<S, #}. So for x = u + td, 0 < t < <57

A'(/(x) - f(u) - (*jgj(u)e + 7e||x - TI||) ^ 0,

implying that

fi(x) < fi(u) + tugj{u) - -i\\x - u\\, Vi = 1,... ,p

is not possible. Hence the result. D

DEFINITION 9: (UQ, AO, HQ, a0) € So is said to be a local weak quasi efficient
solution of (VD) if there exist 77 € int (RIJ.) and a neighbourhood U of (u0, Ao, /̂ o. "0)
such that for any (u, A, fx,a) G SDC\U the following can not hold

/i(«o) + Moj5y(«o) + ffcllu - "oil < /•(«) + VJ9J{U), V i = 1,. . . ,p.

We next prove a very important result namely the strong duality theorem. In fact
this result demonstrates the importance of duality in optimisation theory.

THEOREM 5 . (Strong Duality) Suppose x0 is a quasi efficient solution of (VP)
and an appropriate constraint qualification (like Mangasarian Fromovitz Constraint
Qualification) or regularity condition (like basic regularity condition) is satisGed at XQ.
Then there exist ao € intR^., Ao € R+, w e R ™ such tnat (x0, XQ,HO, oc0) is feasible
of (VD). Purtier if the conditions of weak duality hold with 7 > 2 max {a*} then

(xo, Ao, /xo, ao) is a local weak quasi efficient solution of (VD) and tie objective values of
(VP) and (VD) are equai.

PROOF: On account of Theorem 2 and Remark 4 there exist a € intR?j., Ao € R+,
Aoe = 1, rti 6 R™ such that (x0,Xo,no,ao) G SD. Moreover the objective values
of (VP) and (VD) are equal to f(x0). Invoking the weak duality between (VP)

p
and (VD) we have for every 7 > 2 ̂ 2 ^ia» t n e r e exists <J7 > 0 such that for any

»=i
u € B(xo,S7), xo = u + td,O<t<S^,de Rn, \\d\\ = 1,

/i(*o) = /<(« + td) < ft(u) + HJ9J(U) - 7||« - soil, V i = 1 . . . ,p

does not hold, implying that for any u € B{xo, <57)

fi(x0) + fijgj(x0) + 7||u - io|| < fi(u) + HJ9J(U), V t = 1. . . ,p

does not hold. Consequently (xo, Ao,/Jo,c*o) ^ a l°cal weak quasi efficient solution of
(VD). D

REMARK 5. In Theorem 5 and thereby in Theorem 4 if Ao > 0 then we can show that
(xo, Ao, fM)> ao) is a local quasi efficient solution of (VD).
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5. CONCLUDING REMARKS

Optimality conditions and duality results for vector optimisation problems have
been derived in the past under p convexity and generalised p convexity conditions (see
ref [3, 4, 6, 10, 11]). In all these studies the parameter p is assumed to be a fixed real
number. Our aim in the present paper is to study the consequences of the variations in
p. The concepts of approximate convexity and its two variants namely approximate
quasiconvexity and approximate pseudoconvexity introduced in the paper serve this
purpose. However these concepts are defined in a local sense, that is, for any given
positive constant c we can find a neighbourhood of a point under consideration depending
on c such that the corresponding inequalities are satisfied in that neighbourhood. It is
precisely because of this that the optimality conditions and the duality results obtained
here are local in nature. Moreover all the results are derived for a more general solution
concept namely quasi efficient solution. Such solution concept for vector optimisation
problem exists in literature but not much work has been reported on it.

Furthermore, while approximate convexity is defined by Ngai, Luc and Thera [9]
for the extended real-valued functions on a real Banach space, in this article, we have
restricted ourselves to the real-valued functions defined on a finite dimension subset X
of Rn. This is done for the sake of conceptual simplicity. One can attempt to extend
the results of this article to the functions over a real Banach space. Detailed study
about the two new families of functions and their applications in optimisation can also
be investigated in the future. It will be worth exploring some properties characterising
these classes of functions.
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