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In the Euclidean theory of areas, where convex polygons alone
are considered, there is no question as to the sign of an area. The
element of area is the rectangle, and an area is signless, or always
positive.

When an extension of the notion of an area is sought which will
apply to any closed polygon noncrossed or crossed, a definition is
given which, naturally, must be such as to affect in no way the
meaning we have for a Euclidean area. The element of area is
usually a Euclidean triangle, but the convention is made that the
area of a triangle ABC is to be considered positive, if on tracing out
the perimeter with the vertices in that order the area lies always to
the left, but otherwise negative.

The area bounded by a closed broken line ABCD...KA is then
defined as the algebraic sum of the triangles OAB, OBC,...OKA,
O being any point in the plane.

It then follows that Area ABO... KA + Area AK... CBA is zero,
and that if the polygon be convex the area is positive when the
vertices are taken counterclockwise, and otherwise negative. I t
may also be proved that the position of O is immaterial.

In the Analytical Geometry we have the corresponding problem :
Given the coordinates of the vertices of a polygon taken in order,
can we express the area as a function of these coordinates 1 If O
be taken at the origin, then it is clear that we can express the area
provided we can determine the area of any triangle OPQ, where
P and Q are any two points (x,, y-^), (x2, y,).
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We then have the theorem that the area of the triangle OPQ is
- xg/j in magnitude and sign.

Several of the proofs of this most important fundamental theorem
in areas given in English text-books are singularly inadequate, and
furnish little more than verifications in very simple cases. In con-
tinental text-books the formula is often made to depend on the
trigonometrical expression of the area of a triangle in terms of its
two sides and the included angle, along with the Addition Theorem;
but the use of the Addition Theorem so early in the Analytical
Geometry which is itself the basis of Trigonometry appears objec-
tionable. (For a third proof due to Lucas, see Niewenglowski's
Giomdtrie Analylique.)

The following demonstration is elementary, and depends on the
analytical expression for the area of a rectangle of a very simple
kind. Moreover, the language employed applies in all possible
cases.

Theorem I. If P be any point (a;, y), M and N its projections on
the a;-axis and y-axis respectively, then the area of the rectangle
OMPN is equal to the product xy in magnitude and sign.

This result is easily verified, and is due to the positions of the
axes relative to each other.

Cor. Hence ONPM = - OMPN = - xy.

Theorem II . If P n P2 are the points (xlt yv), (x2, y2) respectively,
then the triangle OPJPJ = \(x$/t - x^) in magnitude and sign.

Construct the rectangle P J R P J S whose diagonal is PjPo, and
whose axes are parallel to the axes of reference. Join RO, (Fig. 1).
Then, by definition, with, say, R as origin of triangles of area,

= AROP, + ARP,P2 + ARP2O
, + R P ^ P , + RP2MSM,]
J + OM,RN2)

.N, + ON.SM, + OM2P2N2 + ON2RM,)

-ftON.SM. + OM.RN,), v O N ^ M , + OMjP.JT, = 0, etc.
= £( - ON,. OM2 + OM,. ON,)

https://doi.org/10.1017/S001309150003251X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003251X


Cor. 1. From this formula follows immediately an expression for
the area of any closed polygon P ^ P s . . . in terms of the coordinates
of the vertices, viz., 2OPjP2 = ;V2(a;1y2 —a^y,).

Cor. 2. The application to trigonometry is now pretty obvious.
If Pj be any point in the part OX of the a;-axis and Ps any other

point in the plane (Fig. 2), then the area of the triangle OP1P2 is
equal to J . OP,. M2P2 in magnitude and sign.

Hence if O P ^ n , OP2 = r2, and PjOP^fl, we deduce
M2P2 = r,sin0 in magnitude and sign, and .-. AOPiP2 = far^inO.
This result can not be affected by any rotation of the figure round O
through an angle 0,. If the Cartesian coordinates of P, and P2

then become (a^ ) , (x.g/.,), while their polar coordinates, with OX for
initial direction, are (r,, #,), (r2, 6.2), then AOPjP, = ^r1r;!sin(^2 - 0r)
in magnitude and sign.
Hence XJJ., - x,yx — r1r:!sin(6l

2 - 0{).

Replace the Cartesian coordinates by their equivalents in polars
and we obtain

rjCOsflj . r., sinftj - r, cosft2. r, sin^, = r ^ sin(^2 - 0^),
or, removing the common factors r, and ?-

2, we deduce the trigono-
metrical identity

sin(&, - 0j) = sin^2 cos^, - cos^2 sin^.
Since there is no restriction in the O's this formula is general,

and might be utilised as a, base for the addition theorem in trigono-
metry. Such a process would be as natural as the inverse process
which is usually adopted.
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