
JFP 25, e21, 37 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000283

1

PhD abstracts

GRAHAM HUTTON

University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service

to the community, the Journal of Functional Programming publishes the abstracts

from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any

paywall. They do not require any transfer of copyright, merely a license from the

author. A dissertation is eligible for inclusion if parts of it have or could have

appeared in JFP, that is, if it is in the general area of functional programming. The

abstracts are not reviewed.

We are delighted to publish 25 abstracts from 2014/15 in this round and hope that

JFP readers will find many interesting dissertations in this collection that they may

not otherwise have seen. If a student or advisor would like to submit a dissertation

abstract for publication in this series, please contact the series editor for further

details.

Graham Hutton

PhD Abstract Editor

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


2 G. Hutton

The Nax language: Unifying functional programming and logical
reasoning in a language based on Mendler-style recursion schemes and

term-indexed types

KI YUNG AHN

Portland State University, USA

Date: December 2014; Advisor: Tim Sheard
URL: http://archives.pdx.edu/ds/psu/13198

Two major applications of typed lambda calculi in computer science are functional

programming languages and mechanized logical reasoning systems (a.k.a., proof

assistants, interactive theorem prover). This dissertation particularly focuses on

higher-order & polymorphically typed functional languages and dependently typed

reasoning systems for higher-order logic based on the Curry–Howard correspon-

dence. According to the well-known slogan of the Curry–Howard correspondence,

“propositions as types and proofs as programs”, it should be possible in principle

to design a unified language based on a typed lambda calculus for both logical

reasoning and programming. However, the different requirements of programming

languages and reasoning systems make it difficult to design such a unified language

that provides features to meet the needs of both. Programming languages usually

extend lambda calculi with programming-friendly features (e.g., recursive datatypes,

general recursion) for supporting the flexibility to model various computations, while

sacrificing logical consistency. Logical reasoning systems usually extend lambda

calculi with logic-friendly features (e.g., induction principles, dependent types) for

paradox-free reasoning over fine-grained properties, while being more restrictive in

modeling computations.

In this dissertation, we design and implement a language called Nax that embraces

benefits of both. The design of Nax is aimed at the sweet spot for unifying

programming and reasoning with the following four desirable characteristics:

A convenient programming style supported by the major constructs of modern func-

tional programming languages: parametric polymorphism, recursive datatypes,

recursive functions, and type inference,

An expressive logic that can specify fine-grained program properties using types, and

terms that witness the proofs of these properties (Curry–Howard correspondence),

A small theory based on a minimal foundational calculus that is expressive enough

to support programming features, expressive enough to embed propositions and

proofs about programs, and logically consistent to avoid paradoxical proofs in

the logic, and

A simple implementation that keeps the trusted base small. This is possible because

we designed Nax with type-based termination checking, which does not need to

implement a termination checker separately from the type system.

The key features of Nax listed below supports the four characteristics discussed

above:

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 3

All recursive datatypes including both positive and negative recursive occurrences

are supported in Nax, allowing the same flexibility of defining recursive datatypes

as in functional languages. Most dependently typed reasoning systems based on

the Curry–Howard correspondence only support strictly-positive datatypes, which

can be interpreted as sets, whereas functional languages support support recursive

types of arbitrary recursive occurrences. For instance, the recursive datatype

definition for the untyped higher-order abstract syntax data Exp = App Exp Exp

| Abs (Exp → Exp) in Haskell is not accepted as well-formed inductive datatype

definitions in Coq or Agda in order to avoid paradoxical proofs. Nax supports

such recursive types and yet maintains logical consistency.

A number of Mendler-style recursion schemes in Nax can express various kinds of

recursive computations and also guarantee termination. Logical reasoning systems

establish the Curry–Howard correspondence assuming normalization to ensure

logical consistency. One way to ensure termination of recursive computation is

to restrict the class of recursive datatypes where one can assign obvious set-

theoretic size measures over the values of the datatypes, interpreting types as

sets—this approach is taken by most of the contemporary reasoning systems. On

the contrary, Nax accepts all recursive datatypes but ensures termination by relying

on more carefully tailored recursion schemes that ensure termination in a type

based way—one such Mendler-style recursion scheme was first discovered by Nax

Mendler, hence, named as the Mendler style. Mendler-style recursion schemes

can ensure termination over recursive datatypes with negative occurrences. In

addition, they generalize naturally to non-regular datatypes including term-

indexed datatypes.

Term-indexed types in Nax supports specifications of fine-grained properties. In

addition to the datatypes that are indexed by types (e.g., type-indexed expression

datatype used for writing type-preserving evaluator with a static guarantee of

type preservation), Nax supports datatypes that are indexed by terms (e.g., length-

indexed list datatype). To support term-indices in a logically consistent manner,

we formulated new typed lambda calculi that conservatively extend polymorphic

lambda calculi, which are known to be logically consistent, with erasable term

indices.

A conservative extension of the Hindley–Milner type inference is supported in Nax

for programmer convenience. All programs that are type-inferable with the

Hindley–Milner type inference can also be type-inferred in Nax. Programs in-

volving indexed datatypes need type annotations at the elimination (i.e., pattern

matching in case expressions and Mendler-style recursion schemes) over the values

of indexed datatypes.

The theoretical contributions of this dissertation include theories for Mendler-style

recursion schemes and term-indexed types, which we developed to establish strong

normalization and logical consistency of Nax. The design and implementation of

Nax demonstrate that it is possible to support both programming and reasoning

in a unified language with a simple theory and implementation. Candidates that

can practically benefit from applying our approach are functional languages like

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


4 G. Hutton

Haskell, which have pragmatic support for lightweight program invariants using the

language type system but lacks the guarantee of logical consistency. By applying

our approach in Nax, high assurance of logical consistency, comparative to the level

of assurance provided in the mechanized reasoning systems, can be provided with

a relatively low cost, that is, relatively mild extensions to the language type system

without having to introduce full-dependent types found in proof assistants.

We hope to inspire practical programmer friendly mechanized reasoning systems,

which is also a programming language at the same time, by further work in line of

this thesis research. Here are some of the research problems for further work:

1. even more expressive term-indexed calculi (e.g., kind polymorphism, type

representations for datatype generic programming) while maintaining their

logical consistency,

2. establishing a unified termination argument when several different Mendler-

style recursion schemes are used altogether—some recursion schemes have

compatible semantic embeddings into a typed lambda calculus but for other

combinations of them yet needs further clarification, although each individual

recursion scheme has its termination property established, and, in addition,

3. further list of newly formulated Mendler-style recursion schemes whose ter-

mination properties are yet to be studied and to be compared with other

approaches to type-based termination.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 5

Digital circuits in CλaSH: Functional specifications and type-directed
synthesis

CHRISTIAAN BAAIJ

University of Twente, The Netherlands

Date: January 2015; Advisor: Gerard Smit and Jan Kuper
URL: http://dx.doi.org/10.3990/1.9789036538039

Over the last three decades, the number of transistors used in microchips has

increased by three orders of magnitude, from millions to billions. The productivity

of the designers, however, lags behind. Designing a chip that uses ever more

transistors is complex, but doable, and is achieved by massive replication of

functionality. Managing to implement complex algorithms, while keeping non-

functional properties, such as area and gate propagation latency, within desired

bounds, and thoroughly verifying the design against its specification, are the main

difficulties in circuit design.

It is difficult to measure design productivity quantitatively; transistors per hour

would not be a good measure, as high transistor counts can be achieved by

replication. As a motivation for our work, we make a qualitative analysis of the

tools available to circuit designers. Furthermore, we show how these tools manage

the complexity, and hence improve productivity. Here, we see that progress has

been slow, and that the same techniques have been used for over 20 years. Industry

standard languages, such as VHDL and (System)Verilog, do provide means for

abstractions, but they are distributed over separate language constructs and have ad

hoc limitations. What is desired is a single abstraction mechanism that can capture

most, if not all, common design patterns. Once we can abstract our common

patterns, we can reason about them with rigor. Rigorous analysis enables us

to develop correct-by-construction transformations that capture trade-offs in the

non-functional properties. These correct-by-construction transformations give us a

straightforward path to reaching the desired bounds on non-functional properties,

while significantly reducing the verification burden.

We claim that functional languages can be used to raise the abstraction level

in circuit design. Especially higher-order functional languages, where functions are

first-class and can be manipulated by other functions, offer a single abstraction

mechanism that can capture many design patterns. An additional property of

functional languages that make them a good candidate for circuit design is purity,

which means that functions have no side-effects. When functions are pure, we

can reason about their composition and decomposition locally, thus enabling us

to reason formally about transformations on these functions. Without side-effects,

synthesis can derive highly parallel circuits from a functional description because it

only has to respect the direct data dependencies.

In existing work, the functional language Haskell has been used as a host for

embedded hardware description languages. An embedded language is actually a set

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


6 G. Hutton

of data types and expressions described within the host language. These data types

and expressions then act like the keywords of the embedded language. Functions

in the host language are subsequently used to model functions in the embedded

language. Although many features of the host language can be used to model

equivalent behavior in the embedded language, this is not true for all features.

One of the most important features of the host language that cannot directly be

used in the embedded language, are features that model choice, such as pattern

matching.

This thesis explores the idea of using the functional language Haskell directly as

a hardware specification language, and move beyond the limitations of embedded

languages. Additionally, where applicable, we can use normal functions from existing

Haskell libraries to model the behavior of our circuits.

There are multiple ways to interpret a function as a circuit description. This thesis

makes the choice of interpreting a function definition as a structural composition

of components. This means that every function application is interpreted as the

component instantiation of the respective sub-circuit. Combinational circuits are

then described as functions manipulating algebraic data types. Synchronous sequen-

tial circuits are described as functions manipulating infinite streams of values. In

order to reduce the cognitive burden, and to guarantee synthesizable results, streams

cannot be manipulated directly by the designer. Instead, our system offers a limited

set of combinators that can safely manipulate streams, including combinators that

map combinational functions over streams. Additionally, the system offers streams

that are explicitly synchronized to a particular clock and thus enable the design of

multi-clock circuits. Proper synchronization between clock domains is checked by

the type system.

This thesis describes the inner workings of our CλaSH compiler, which translates

the aforementioned circuit descriptions written in Haskell to low-level descriptions

in VHDL. Because the compiler uses Haskell directly as a specification language,

synthesis of the description is based on (classic) static analysis. The challenge then

becomes the reduction of the higher-level abstractions in the descriptions to a form

where synthesis is feasible. This thesis describes a term rewrite system (with bound

variables) to achieve this reduction. We prove that this term rewrite system always

reduces a polymorphic, higher-order circuit description to a synthesizable variant.

The only restriction is that the root of the function hierarchy is not polymorphic

nor higher order. There are, however, no restrictions on the use of polymorphism

and higher-order functionality in the rest of the function hierarchy.

Even when descriptions use high-level abstractions, the CλaSH compiler can

synthesize efficient circuits. Case studies show that circuits designed in Haskell, and

synthesized with the CλaSH compiler, are on par with hand-written VHDL, in both

area and gate propagation delay. Even in the presence of contemporary Haskell

idioms and abstractions to write imperative code (for a control-oriented circuit),

does the CλaSH compiler create results with decent non-functional properties.

To emphasize that our approach enables correct-by-construction descriptions, we

demonstrate abstractions that allow us to automatically compose components that

use back-pressure as their synchronization method. Additionally, we show how cycle

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 7

delays can be encoded in the type-signatures of components, allowing us to catch

any synchronization error at compile-time.

This thesis thus shows the merits of using a modern functional language for circuit

design. The advanced type system and higher-order functions allow us to design

circuits that have the desired property of being correct-by-construction. Finally, our

synthesis approach enables us to derive efficient circuits from descriptions that use

high-level abstractions.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


8 G. Hutton

The productivity of polymorphic stream equations and the composition
of circular traversals

FLORENT BALESTRIERI

University of Nottingham, UK

Date: October 2015; Advisor: Venanzio Capretta
URL: http://eprints.nottingham.ac.uk/29745

This thesis explores two aspects of lazy functional programs. The first part is a

theoretical study of productivity for very restricted stream programs. The second

part is concerned with the elaboration of a recursive pattern for defining circular

traversals modularly.

Productivity is in general undecidable. By restricting ourselves to mutually re-

cursive polymorphic stream equations having only three basic operations, namely

head, tail, and cons, we aim to prove interesting properties about productiv-

ity. Still undecidable for this restricted class of programs, productivity of poly-

morphic stream functions is equivalent to the totality of their indexing func-

tions, which characterise their behavior in terms of operations on indices. We

prove that our equations generate all possible polymorphic stream functions,

and therefore their indexing functions are all the computable functions, whose

totality problem is indeed undecidable. We then further restrict our language

by reducing the numbers of equations and parameters, but despite those con-

straints the equations retain their expressiveness. In the end, we establish that even

two non-mutually recursive equations on unary stream functions are undecidable

with complexity Π0
2. However, the productivity of a single unary equation is

decidable.

Circular traversals have been used in the eighties as an optimization to combine

multiple traversals in a single traversal. In particular, they provide more opportunities

for applying deforestation techniques since it is the case that an intermediate

data structure can only be eliminated if it is consumed only once. Another use

of circular programs is in the implementation of attribute grammars in lazy

functional languages. There is a systematic transformation to define a circular

traversal equivalent to multiple traversals. Programming with this technique is not

modular since the individual traversals are merged together. Some tools exist to

transform programs automatically and attribute grammars have been suggested

as a way to describe the circular traversals modularly. Going to the root of the

problem, we identify a recursive pattern that allows us to define circular programs

modularly in a functional style. We give two successive implementations, the first

one is based on algebras and has limited scope: not all circular traversals can be

defined this way. We show that the recursive scheme underlying attribute grammars

computation rules is essential to combine circular programs. We implement a generic

recursive operation on a novel attribute grammar abstraction, using containers

as a parametric generic representation of recursive datatypes. The abstraction

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 9

makes attribute grammars first-class objects. Such a strongly typed implementation

is novel and makes it possible to implement a high-level embedded language

for defining attribute grammars, with many interesting new features promoting

modularity.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


10 G. Hutton

On the incremental evaluation of higher-order attribute grammars

JEROEN BRANSEN

Utrecht University, the Netherlands

Date: June 2015; Advisor: Doaitse Swierstra and Atze Dijkstra
URL: http://dspace.library.uu.nl/handle/1874/313166

Compilers, amongst other programs, often work with data that (slowly) changes

over time. When the changes between subsequent runs of the compiler are small,

one would hope the compiler to incrementally update its results, resulting in much

lower running time. However, the manual construction of an incremental compiler

is hard and error prone and therefore usually not an option. Attribute grammars

provide an attractive way of constructing compilers, as they are compositional in

nature and allow for aspect-oriented programming. This thesis describes the auto-

matic generation of incremental attribute grammar evaluators, with the purpose of

(semi-)automatically generating an incremental compiler from the regular attribute

grammar definition. In particular, this approach supports incremental evaluation of

higher order attributes, a well-known extension to the classical attribute grammars

that is used in many ways in compiler construction, for example to model different

compiler phases.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 11

Semantic methods for functional hybrid modeling

JOHN CAPPER

University of Nottingham, UK

Date: December 2014; Advisor: Henrik Nilsson
URL: http://eprints.nottingham.ac.uk/27759/

Equation-based modeling languages have become a vital tool in many areas

of science and engineering. Functional Hybrid Modeling (FHM) is an approach

to equation-based modeling that allows the behavior of a physical system to be

expressed as a modular hierarchy of undirected equations. FHM supports a variety

of advanced language features—such as higher-order models and variable system

structure—that sets it apart from the majority of other modeling languages. However,

the inception of these new features has not been accompanied by the semantic tools

required to effectively use and understand them. Specifically, there is a lack of static

safety assurances for dynamic models and the semantics of the aforementioned

language features are poorly understood.

Static safety guarantees are highly desirable as they allow problems that may cause

an equation system to become unsolvable to be detected early, during compilation.

As a result, the use of static analysis techniques to enforce structural invariants

(e.g., that there are the same number of equations as unknowns) is now in use in

main-stream equation-based languages like Modelica. Unfortunately, the techniques

employed by these languages are somewhat limited, both in their capacity to deal

with advanced language features and also by the spectrum of invariants they are

able to enforce.

Formalizing the semantics of equation-based languages is also important. Seman-

tics allow us to better understand what a program is doing during execution, and

to prove that this behavior meets with our expectation. They also allow different

implementations of a language to agree with one another, and can be used to

demonstrate the correctness of a compiler or interpreter. However, current attempts

to formalize such semantics typically fall short of describing advanced features, are

not compositional, and/or fail to show correctness.

This thesis provides two major contributions to equation-based languages. First,

we develop a refined type system for FHM capable of capturing a larger number

of structural anomalies than is currently possible with existing methods. Second, we

construct a compositional semantics for the discrete aspects of FHM, and prove a

number of key correctness properties.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


12 G. Hutton

Variational typing and its applications

SHENG CHEN

Oregon State University, USA

Date: July 2015; Advisor: Martin Erwig
URL: https://ir.library.oregonstate.edu/xmlui/handle/1957/56350

The study of variational typing originated from the problem of type inference for

variational programs, which encode numerous different but related plain programs.

In this dissertation, I present a sound and complete type inference algorithm for

inferring types of all plain programs encoded in variational programs. The proposed

algorithm runs exponentially faster than the strategy of generating all plain programs

and applying type inference to them separately. I also present an error-tolerant

version of variational type inference to deliver better feedback in the presence of ill-

typed plain programs. All presented algorithms require various kinds of variational

unification. I prove that all these problems are decidable and unitary, and I develop

sound and complete unification algorithms. The idea of variational typing has many

applications. As one example, I present how variational typing can be employed to

improve the diagnosis of type errors in functional programs, a problem that has

been extensively studied.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 13

HERMIT: Mechanized reasoning during compilation in the Glasgow
Haskell compiler

ANDREW FARMER

University of Kansas, USA

Date: April 2015; Advisor: Andy Gill
URL: http://andrewfarmer.name/papers/dissertation.pdf

It is difficult to write programs which are both correct and fast. A promising

approach, functional programming, is based on the idea of using pure, mathematical

functions to construct programs. With effort, it is possible to establish a connection

between a specification written in a functional language, which has been proven

correct, and a fast implementation, via program transformation.

When practiced in the functional programming community, this style of reasoning

is still typically performed by hand, by either modifying the source code or

using pen-and-paper. Unfortunately, performing such semi-formal reasoning by

directly modifying the source code often obfuscates the program, and pen-and-

paper reasoning becomes outdated as the program changes over time. Even so, this

semi-formal reasoning prevails because formal reasoning is time-consuming, and

requires considerable expertise. Formal reasoning tools often only work for a subset

of the target language, or require programs to be implemented in a custom language

for reasoning.

This dissertation investigates a solution, called HERMIT, which mechanizes

reasoning during compilation. HERMIT can be used to prove properties about

programs written in the Haskell functional programming language, or transform

them to improve their performance. Reasoning in HERMIT proceeds in a style

familiar to practitioners of pen-and-paper reasoning, and mechanization allows

these techniques to be applied to real-world programs with greater confidence.

HERMIT can also re-check recorded reasoning steps on subsequent compilations,

enforcing a connection with the program as the program is developed.

HERMIT is the first system capable of directly reasoning about the full Haskell

language. The design and implementation of HERMIT, motivated both by typical

reasoning tasks and HERMITs place in the Haskell ecosystem, is presented in detail.

Three case studies investigate HERMITs capability to reason in practice. These case

studies demonstrate that semi-formal reasoning with HERMIT lowers the barrier

to writing programs which are both correct and fast.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


14 G. Hutton

Application of property-based automated testing techniques to different
levels of software testing

MIGUEL ÁNGEL FRANCISCO FERNÁNDEZ

Universidade da Coruña, Spain

Date: July 2015; Advisor: Laura M. Castro
URL: http://hdl.handle.net/2183/14814

Testing is one of the key activities in the software development process. In

particular, testing activities help to detect defects that otherwise would go unnoticed

until the software is deployed. However, unlike other stages in the software

development life cycle, such as analysis, design, or implementation, for which there

are well defined and widely accepted methodologies and techniques, as well as

tools that allow to carry out these tasks, there is a lack of good and complete

methodologies, techniques and tools that can be used to conduct software testing in

an efficient and effective way.

Hence, companies tend to minimize this stage, underestimating its benefits, due to

its intrinsic complexity and the considerable amount of time and resources it usually

requires to be performed properly. Therefore, testing activities are often omitted

or performed without the necessary rigor. The poor quality of efforts and low

quantity of achievements during testing usually has severe consequences. Normally,

maintenance is the longest period in the life cycle of a software product. Therefore,

reducing the amount of resources dedicated to this task will clearly improve a

company’s outcome, and also the user experience. The only way of achieving that is

to deploy software products which are as free of defects as possible, i.e., that have

been exhaustively tested before being put into a production environment.

This thesis presents a purely functional approach, which uses properties to perform

software testing, that attempts to alleviate these problems. To do this, new testing

methodologies and techniques, integrated in the software development process, have

been designed with the aim of improving the efficiency (spending less time in

testing) and effectiveness (finding more defects as soon as possible) of software

testing. These methodologies and techniques have been adapted to apply to different

levels of software testing. Thus, they can be used to perform unit and component

testing, checking that each individual component behaves as expected, integration

testing, where the interactions between the components that take part in a software

system are checked, and system testing, checking the behavior of a software system

as a whole.

In addition, a common test specification language has been used, specifically,

the programming language Erlang, a functional programming language designed

by Ericsson to support distributed, fault-tolerant, and real-time applications. The

main reason for using Erlang as a test specification language is its functional nature

and its declarative syntax, which makes it a good specification language for writing

properties as well as readable and concise models. Moreover, all the new developed

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 15

testing methodologies and techniques, which can be used to test software systems

using a property-based testing approach using Erlang as a test specification language,

have been designed to test software systems, regardless of the structure of the specific

system under test or the programming language in which that software system to

test is implemented.

Finally, the use of all these new testing methodologies and techniques has been

illustrated through a real-world case study, in particular, the VoDKATV system.

This software system, currently installed in several hotels and telecommunication

environments around the world, provides access to multimedia services (TV channels,

video on demand, applications, games, etc.) through different types of devices, such

as televisions, computers, tablets, or smart phones. Regarding its architecture, the

VoDKATV system is composed of multiple integrated components implemented

with different technologies (Java, Erlang, C, etc.). The complexity of this software

system has allowed to illustrate how to put into practice each of the new testing

methodologies and techniques with a real, complex, and industrial case study.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


16 G. Hutton

Distributing abstract machines

OLLE FREDRIKSSON

University of Birmingham, UK

Date: April 2015; Advisor: Dan Razvan Ghica
URL: http://etheses.bham.ac.uk/6196/

Today’s distributed programs are often written using either explicit message

passing or Remote Procedure Calls that are not natively integrated in the language.

It is difficult to establish the correctness of programs written this way compared to

programs written for a single computer.

We propose a generalization of Remote Procedure Calls that are natively inte-

grated in a functional programming language meaning e.g., that they have support

for higher-order calls across node boundaries. There are already several languages

that provide this feature, but there is a lack of details on how they can be compiled

correctly and efficiently, which is what this thesis focusses on.

We present four different solutions, given as readily implementable abstract

machines. Two of them are based on interaction semantics—the Geometry of

Interaction and game semantics—and two of them are moderate extensions of

conventional abstract machines—the Krivine machine and the SECD machine. To

target general distributed systems, our solutions additionally support higher-order

Remote Procedure Calls without sending actual code, since this is not generally

possible when running on heterogeneous systems in a statically compiled setting.

We prove the correctness of the abstract machines with respect to their single-

node execution, and show their viability for use as the basis for compilation by

implementing prototype compilers based on them. In the case of the machines based

on conventional machines, we additionally show that they enable efficient programs

and that single-node performance is not lost when they are used.

Our intention is that these abstract machines can form the foundation for future

programming languages that use the idea of higher-order Remote Procedure Calls.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 17

Parsing with regular expressions & extensions to Kleene algebra

NIELS BJØRN BUGGE GRATHWOHL

University of Copenhagen, Denmark

Date: November 2015; Advisor: Fritz Henglein
URL: http://tinyurl.com/o7ro6u3

In the first part of this thesis, we investigate methods for regular expression

parsing.

We present an O(mn) two-pass algorithm for greedy regular expression parsing

in a semi-streaming fashion for expressions of size m and input of size n. Pass one

outputs a log of k bits per input symbol, where k is the number of alternatives and

Kleene stars in the expression. This log is used in the second pass to produce a full

parse tree.

The two-pass algorithm is extended to an O(2 m log m +mn)-time optimally stream-

ing parsing algorithm: parts of the parse tree are output as soon as it is semantically

possible to do so. To be optimal, the algorithm performs a PSPACE-complete

preprocessing step; for a fixed RE the running time is linear in the input size.

Finally, we present and implement a determinization procedure, omitting the

preprocessing step, and a surface language, Kleenex, for expressing general string

transductions. We have implemented a compiler that translates Kleenex programs

into efficient C code. The resulting programs are essentially optimally streaming, run

in worst-case linear time in the input size, and show consistent high performance in

the 1 Gbps range on various use cases.

In the second part of this thesis, we study two extensions to Kleene algebra.

Chomsky algebra is an algebra with a structure similar to Kleene algebra, but

with a generalized mu-operator for recursion instead of the Kleene star. We show

that the axioms of idempotent semirings along with continuity of the mu-operator

completely axiomatizes the equational theory of the context-free languages.

KAT+B! is an extension to Kleene algebra with tests (KAT) that adds mutable

state. We describe a test algebra B! for mutable tests and give a commutative

coproduct between KATs. Combining the axioms of B! with those of KAT and

some commutativity conditions completely axiomatizes the equational theory of an

arbitrary KAT enriched with mutable state.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


18 G. Hutton

Truncation levels in homotopy type theory

NICOLAI KRAUS

University of Nottingham, UK

Date: July 2015; Advisor: Thorsten Altenkirch
URL: http://eprints.nottingham.ac.uk/id/eprint/28986

Homotopy type theory (HoTT) is a branch of mathematics that combines

and benefits from a variety of fields, most importantly homotopy theory, higher-

dimensional category theory, and, of course, type theory. We present several original

results in HoTT which are related to the truncation level of types, a concept due to

Voevodsky.

To begin, we give a few simple criteria for determining whether a type is 0-

truncated (a set), inspired by a well-known theorem by Hedberg, and these criteria

are then generalized to arbitrary n. This naturally leads to a discussion of functions

that are weakly constant, i.e., map any two inputs to equal outputs. A weakly

constant function does in general not factor through the propositional truncation

of its domain, something that one could expect if the function really did not

depend on its input. However, the factorization is always possible for weakly

constant endofunctions, which makes it possible to define a propositional notion

of anonymous existence. We additionally find a few other non-trivial special cases in

which the factorization works. Further, we present a couple of constructions which

are only possible with the judgmental computation rule for the truncation. Among

these is an invertibility puzzle that seemingly inverts the canonical map from Nat to

the truncation of Nat, which is perhaps surprising as the latter type is equivalent to

the unit type.

A further result is the construction of strict n-types in Martin-Lof type theory

with a hierarchy of univalent universes (and without higher inductive types), and a

proof that the universe U(n) is not n-truncated. This solves a hitherto open problem

of the 2012/13 special year program on Univalent Foundations at the Institute for

Advanced Study (Princeton).

The main result of this thesis is a generalized universal property of the propo-

sitional truncation, using a construction of coherently constant functions. We show

that the type of such coherently constant functions between types A and B, which

can be seen as the type of natural transformations between two diagrams over

the simplex category without degeneracies (i.e., finite non-empty sets and strictly

increasing functions), is equivalent to the type of functions with the truncation of

A as domain and B as codomain. In the general case, the definition of natural

transformations between such diagrams requires an infinite tower of conditions,

which exists if the type theory has Reedy limits of diagrams over the ordinal omega.

If B is an n-type for some given finite n, (non-trivial) Reedy limits are unnecessary,

allowing us to construct functions from the truncation of A to B in HoTT without

further assumptions. To obtain these results, we develop some theory on equality

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 19

diagrams, especially equality semi-simplicial types. In particular, we show that the

semi-simplicial equality type over any type satisfies the Kan condition, which can be

seen as the simplicial version of the fundamental result by Lumsdaine, and by van

den Berg and Garner, that types are weak omega-groupoids.

Finally, we present some results related to formalizations of infinite structures

that seem to be impossible to express internally. To give an example, we show how

the simplex category can be implemented so that the categorical laws hold strictly.

In the presence of very dependent types, we speculate that this makes the Reedy

approach for the famous open problem of defining semi-simplicial types work.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


20 G. Hutton

Quotient types in type theory

NUO LI

University of Nottingham, UK

Date: July 2015; Advisor: Thorsten Altenkirch
URL: http://eprints.nottingham.ac.uk/28941/

Martin-Lof’s intuitionistic type theory (Type Theory) is a formal system that serves

not only as a foundation of constructive mathematics but also as a dependently

typed programming language. Dependent types are types that depend on values

of other types. Type Theory is based on the Curry–Howard isomorphism which

relates computer programs with mathematical proofs so that we can do computer-

aided formal reasoning and write certified programs in programming languages like

Agda, Epigram, etc. Martin Lof proposed two variants of Type Theory which are

differentiated by the treatment of equality. In Intensional Type Theory, propositional

equality defined by identity types does not imply definitional equality, and type

checking is decidable. In Extensional Type Theory, propositional equality is identified

with definitional equality which makes type checking undecidable. Because of the

good computational properties, Intensional Type Theory is more popular, however

it lacks some important extensional concepts such as functional extensionality and

quotient types.

This thesis is about quotient types. A quotient type is a new type whose equality

is redefined by a given equivalence relation. However, in the usual formulation of

Intensional Type Theory, there is no type former to create a quotient. We also lose

canonicity if we add quotient types into Intensional Type Theory as axioms. In

this thesis, we first investigate the expected syntax of quotient types and explain

it with categorical notions. For quotients which can be represented as a setoid

as well as defined as a set without a quotient type former, we propose to define

an algebraic structure of quotients called definable quotients. It relates the setoid

interpretation and the set definition via a normalization function which returns

a normal form (canonical choice) for each equivalence class. It can be seen as a

simulation of quotient types and it helps theorem proving because we can benefit

from both representations. However, this approach cannot be used for all quotients.

It seems that we cannot define a normalization function for some quotients in Type

Theory, e.g., Cauchy reals and finite multisets. Quotient types are indeed essential

for formalization of mathematics and reasoning of programs. Then, we consider

some models of Type Theory where types are interpreted as structured objects such

as setoids, groupoids, or weak omega-groupoids. In these models, equalities are

internalized into types which means that it is possible to redefine equalities. We

present an implementation of Altenkirch’s setoid model and show that quotient

types can be defined within this model. We also describe a new extension of Martin-

Lof type theory called Homotopy Type Theory where types are interpreted as weak

omega-groupoids. It can be seen as a generalization of the groupoid model which

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 21

makes extensional concepts including quotient types available. We also introduce

a syntactic encoding of weak omega-groupoids which can be seen as a first step

towards building a weak omega-groupoids model in Intensional Type Theory. All

of these implementations were performed in the dependently typed programming

language Agda which is based on intensional Martin-Lof type theory.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


22 G. Hutton

Reduction spaces in non-sequential and infinitary rewriting systems

CARLOS ALBERTO LOMBARDI

Universidad de Buenos Aires, Argentina and Université Paris 7, France

Date: November 2014; Advisor: Delia Nora Kesner,
Alejandro Norberto Rı́os and Eduardo Augusto Bonelli

URL: http://tinyurl.com/qeqly6r

We study different aspects related to the reduction spaces of diverse rewriting

systems. These systems include features which make the study of their reduction

spaces a far from trivial task. The main contributions of this thesis are:

1. we define a multistep reduction strategy for the Pure Pattern Calculus, a

non-sequential higher-order term rewriting system, and we prove that the

defined strategy is normalizing;

2. we propose a formalization of the concept of standard reduction for the Linear

Substitution Calculus, a calculus of explicit substitutions whose reductions are

considered modulo an equivalence relation defined on the set of terms, and

we obtain a result of uniqueness of standard reductions for this formalization;

and finally,

3. we characterise the equivalence of reductions for the infinitary, first-order,

left-linear term rewriting systems, and we use this characterization to develop

an alternative proof of the compression result.

We remark that we use generic models of rewriting systems: a version of the notion

of Abstract Rewriting Systems is used for the study of the Pure Pattern Calculus

and the Linear Substitution Calculus, while a model based on the concept of proof

terms is used for the study of infinitary rewriting. We include extensions of both

used generic models; these extensions can be considered as additional contributions

of this thesis.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 23

Extensible proof engineering in intensional type theory

GREGORY MICHAEL MALECHA

Harvard University, USA

Date: November 2014; Advisor: Greg Morrisett and Adam Chlipala
URL: http://dash.harvard.edu/handle/1/17467172

We increasingly rely on large, complex systems in our daily lives—from the

computers that park our cars to the medical devices that regulate insulin levels to

the servers that store our personal information in the cloud. As these systems grow,

they become too complex for a person to understand, yet it is essential that they

are correct. Proof assistants are tools that let us specify properties about complex

systems and build, maintain, and check proofs of these properties in a rigorous way.

Proof assistants achieve this level of rigor for a wide range of properties by requiring

detailed certificates (proofs) that can be easily checked.

In this dissertation, I describe a technique for compositionally building extensible

automation within a foundational proof assistant for intensional type theory. My

technique builds on computational reflection—where properties are checked by

verified programs—which effectively bridges the gap between the low-level reasoning

that is native to the proof assistant and the interesting, high-level properties of

real systems. Building automation within a proof assistant provides a rigorous

foundation that makes it possible to compose and extend the automation with

other tools (including humans). However, previous approaches require using low-

level proofs to compose different automation which limits scalability. My techniques

allow for reasoning at a higher level about composing automation, which enables

more scalable reflective reasoning. I demonstrate these techniques through a series

of case studies centered around tasks in program verification.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


24 G. Hutton

Tools for reasoning about effectful declarative programs

STEFAN MEHNER

Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

Date: October 2015; Advisor: Janis Voigtländer
URL: http://hss.ulb.uni-bonn.de/2015/4178/4178.htm

In the pure functional language Haskell, nearly all side effects that a function can

produce have to be noted in its type. This includes input/output, propagation of

a state, and non-determinism. If no side-effects are noted, such a function acts like

a mathematical function, i.e., mapping arguments to unique results. In that case,

expressions in a program can be reasoned about like mathematical expressions. In

addition to this so-called equational reasoning, the type system also enables type

based reasoning. One example are free theorems—equations between expressions

that are true only due to the types of the expressions involved. Some such statements

serve as formal justification for optimization strategies in compilers.

The thesis at hand investigates two generalizations of such methods for programs

not free of side-effects, i.e., effectful programs. First, effectful traversals of data

structures are being studied. The most important contribution in this part is that

a data structure can be lawfully traversed if, and only if, it is isomorphic to a

polynomial functor. This result links the widespread interface of traversing to a

clear intuition regarding the structure and behavior of the data type. Furthermore,

tools are presented facilitating convenient proofs about effectful traversals.

Second, free theorems for the functional-logic language Curry are derived. Due to

the close relationship between both languages, Curry can be understood as Haskell

with built-in non-determinism, i.e., a built-in side-effect. Equational and type based

reasoning can both be adapted to Curry to a certain degree. In particular, short cut

fusion—a very fertile runtime optimization—is enabled for Curry.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 25

Semantics-driven design and implementation of high-assurance
hardware

ADAM PROCTER

University of Missouri, USA

Date: December 2014; Advisor: William L. Harrison
URL: https://hdl.handle.net/10355/45775

Modularity, that is the division of complex systems into less complex and more

easily understood parts, is a pervasive concern in computer science, and hardware

design is no exception. Existing hardware design languages such as Verilog and

VHDL support modular design by enabling hardware designers to decompose

designs into structural features that may be developed independently and connected

together to form more complex devices. In the realm of high assurance for security,

however, this sort of modularity is often of limited utility. Security properties

are notoriously non-compositional, i.e., subsystems that independently satisfy some

security property cannot necessary be relied upon to maintain that property when

operating in tandem.

The aim of this research is to establish semantically modular techniques for

hardware design and implementation, in contrast to the conventional structural

notion of modularity. A semantically modular design is constructed by adding

“layers” of semantic features, such as state and reactivity, one at a time. From

the high assurance aspect, semantic modularity enables different layers of semantic

features to be reasoned about independently, greatly simplifying the structure of

correctness proofs and improving their reusability. The major contribution of this

work is a prototype compiler called ReWire which translates semantically modular

hardware specifications to efficient implementations on FPGAs. In this dissertation,

I present the design and implementation of the ReWire compiler, along with a

number of case studies illustrating both the practicality of the ReWire compiler and

the elegance of the semantically modular approach to hardware verification.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


26 G. Hutton

On the complexities of polymorphic stream equation systems,
isomorphism of finitary inductive types, and higher homotopies in

univalent universes

CHRISTIAN SATTLER

University of Nottingham, UK

Date: March 2015; Advisor: Venanzio Capretta
URL: http://eprints.nottingham.ac.uk/28111/

This thesis is composed of three separate chapters. Parts of these are based on

respective joint work with Florent Balestrieri and Nicolai Kraus.

The first chapter deals with definability and productivity issues of equational

systems defining polymorphic stream functions. The central construction is a novel

method for encoding arbitrary computable unary polymorphic stream functions

in terms of unary non-mutually corecursive polymorphic stream function equation

systems. This improves previous completeness and complexity theoretic results,

which crucially relied on the availability of so-called zipping (interleaving) non-

unary stream functions.

The second chapter deals with syntactic and semantic notions of isomorphism of

finitary inductive types and associated decidability issues. We show isomorphism of

so-called guarded types decidable in the set and syntactic model, verifying that the

answers coincide. The technique relies on finitiary comparison of power series by

exhibiting them as roots of polynomials over a field of fractions of polynomials.

In the process, we develop several independent tools, one of them being traversabil-

ity of regular functors in any bicartesian-closed category. Previous work either relied

on properties of regular functors specific to set-like models with sufficient colimits

or was restricted to traversals with respect to monads as opposed to applicative

functors.

The third chapter deals with homotopy levels of hierarchical univalent universes

in homotopy type theory, showing that the n-th universe of n-types has truncation

level strictly n + 1. The proof uses strategy an inductive argument involving higher

loops in appropriately truncated higher universes. Our arguments are formalized in

the experimental proof assistant Agda.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 27

Abstractions for software-defined networks

COLE SCHLESINGER

Princeton University, USA

Date: June 2015; Advisor: David Walker
URL: http://tinyurl.com/ol9a2j4

In a Software-Defined Network (SDN), a central, computationally powerful

controller manages a set of distributed, computationally simple switches. The

controller computes a policy describing how each switch should route packets and

populates packet-processing tables on each switch with rules to enact the routing

policy. As network conditions change, the controller continues to add and remove

rules from switches to adjust the policy as needed.

Recently, the SDN landscape has begun to change as several proposals for new,

reconfigurable switching architectures, such as RMT and FlexPipe, have emerged.

These platforms provide switch programmers with many flexible tables for storing

packet-processing rules, and they offer programmers control over the packet fields

that each table can analyze and act on. These reconfigurable switch architectures

support a richer SDN model in which a switch configuration phase precedes the

rule population phase. In the configuration phase, the controller sends the switch a

graph describing the layout and capabilities of the packet processing tables it will

require during the population phase. Armed with this foreknowledge, the switch can

allocate its hardware (or software) resources more efficiently.

This dissertation presents a new, typed language, called Concurrent NetCore,

for specifying routing policies and graphs of packet-processing tables. Concurrent

NetCore includes features for specifying sequential, conditional, and concurrent

control-flow between packet-processing tables. We develop a fine-grained opera-

tional model for the language and prove this model coincides with a higher-level

denotational model when programs are well-typed. We also prove several additional

properties of well-typed programs, including strong normalization and determinism.

To illustrate the utility of the language, we develop linguistic models of both the

RMT and FlexPipe architectures; give a multi-pass compilation algorithm that

translates graphs and routing policies to the RMT model; and evaluate a prototype

of the language and compiler on two benchmark applications, a learning switch and

a stateful firewall.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


28 G. Hutton

Reasoning about functional programs by combining interactive and
automatic proofs

ANDRÉS SICARD-RAMÍREZ

Universidad de la República, Uruguay

Date: July 2014; Advisor: Ana Bove and Peter Dybjer
URL: http://tinyurl.com/qcwkzol

We propose a new approach to computer-assisted verification of lazy functional

programs where functions can be defined by general recursion. We work in first-

order theories of functional programs which are obtained by translating Dybjer’s

programming logic (Dybjer, P. [1985]. Program Verification in a Logical Theory of

Constructions. In: Functional Programming Languages and Computer Architecture.

Ed. by Jouannaud, J.-P. Vol. 201. Lecture Notes in Computer Science, Springer,

pp. 334–349) into a first-order theory, and by extending this programming logic with

new (co-)inductive predicates. Rather than building a special purpose system, we

formalize our theories in Agda, a proof assistant for dependent type theory which can

be used as a generic theorem prover. Agda provides support for interactive reasoning

by representing first-order theories using the propositions-as-types principle. Further

support is provided by off-the-shelf automatic theorem provers for first-order-logic

called by a Haskell program that translates our Agda representations of first-

order formulae into the TPTP language understood by the provers. We show

some examples where we combine interactive and automatic reasoning, covering

both proofs by induction and co-induction. The examples include functions defined

by structural recursion, simple general recursion, nested recursion, higher-order

recursion, guarded, and unguarded co-recursion.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 29

Data layout types: A type-based approach to automatic data layout
transformations for improved SIMD vectorisation

ARTJOMS ŠINKAROVS

Heriot-Watt University, UK

Date: May 2015; Advisor: Sven-Bodo Scholz and Greg Michaelson
URL: http://tinyurl.com/ocvr2k5

The Church–Rosser property inherent to purely functional programming lan-

guages constitutes a big conceptual advantage when it comes to running programs

on parallel systems. It gives rise to a wide range of possibilities for mapping redices

to computing cores. This, in turn, gives a lot of freedom for a compiler or interpreter

to match the parallelism of any given hardware, which is typically significantly more

challenging in the imperative setting.

Despite this conceptual advantage, research over the last decades has shown

that it is non-trivial to compete with the performance of hand-optimized codes

from classical High-Performance Computing (HPC) domains. Works in the context

of functional programming languages like Data Parallel Haskell (DpH) or Single

Assignment C (SaC) have demonstrated that this is possible, but it requires advanced

compiler technology. One of the key challenges involved when aiming for HPC is

the fact that in a functional setting there is no notion of memory. Any data structure

is considered to be a mapping from accessors to values; any destructive update of

data, at least on a semantic level, is not permissible.

While such a lack of memory poses a challenge in the fist place, it also offers great

opportunities when programs are optimized for performance. As the connection

between data structures and memory has to be introduced from the underlying

execution machinery, this mapping from data to memory can be rather freely chosen.

In particular, in the context of HPC, the freedom of the data mapping constitutes

a very valuable asset. It is well known from classical HPC research that in many

applications non-intuitively chosen data-structures can have a very beneficial impact

on performance, specifically, when it comes to code vectorization.

This thesis taps into the optimization opportunities that stem from the conceptual

decoupling of data structures and their memory representation in the functional

context. We introduce the notion of data layouts to describe the mapping of data

structures into memory representations. At the example of SaC we add data layouts

transparently to the language semantics. Our main goal here is more efficient

vectorization, however, in general, the proposed approach makes it possible to use

data layouts as a new degree of freedom in program transformations.

The key idea of this thesis is to treat data layouts as types. Every expression in a

program conceptually gets a layout type assigned to it which prescribes the memory

mapping of the evaluated expression. By doing so, not only we can check that

layout types are sound across the program, but we can also automatically transform

original functions into functions with a specific layout-type signature. Finally, and

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


30 G. Hutton

this is the main insight of the thesis, we can run layout-type inference and obtain

a set of all the possible semantically preserving program transformations, that are

allowed by our layout type system. Note that we have a set of transformed programs,

and not just one program, mainly because it is possible to traverse a structure with

the modified data layout in its original order.

The contributions of this thesis lie in developing a type system for data layouts

that are oriented to improve applicability of SIMD operations. We develop the

inference algorithm that makes it possible to reconstruct data layouts according to

the type system. We introduce automatic high-level program transformations based

on the previously inferred layout types and prove that transformations preserve

the semantics of the original programs. We discuss how to chose the best possible

program transformation out of the produced set.

We implement the proposed inference, transformation, and generation of the

vectorized code in the context of the SaC compiler toolchain. When generating

vectorized code, we make sure that we do this in a performance portable fashion.

For that we have extended the C language with explicit vector operations which we

have implemented in the context of GNU GCC. Finally, we evaluate our approach

using a set of benchmarks which is known to be challenging to vectorize and

we demonstrate the effectiveness of our vectorization by comparing the runtimes

with automatically and manually vectorized C versions. We observe significant

performance improvements over all the mainstream C compilers that we have tried.

This thesis demonstrates that layout transformations, which are known to be

difficult and error-prone, can be automated by means of data-layout inference. The

functional framework has been the key enabling factor for this work. The lack of

stateful memory, pure functions, explicit information about concurrent parts of a

program, and the ability to run type inference are the basic factors that we have built

our solution on. Despite such strong ties with functional environment, we believe

that the transition of the proposed technique into imperative languages is possible

with a few restrictions and some additional analysis. This means that a wider range

of compilers can potentially benefit by adopting the proposed treatment of data

layouts.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 31

On the design of finite-state type systems

ALEXANDER IAN SMITH

University of Birmingham, UK

Date: December 2015; Advisor: Dan Razvan Ghica
URL: http://etheses.bham.ac.uk/6120/

Practical computers have only finite amounts of memory. However, the programs

that run on them are often written in languages that effectively assume (via providing

constructs such as general recursion) that infinite memory is available, meaning that

an implementation of those programs is necessarily an approximation.

The main focus of this thesis is on the use of contraction: the ability to use a

function parameter more than once in the body of that function (or more generally,

to mention a free variable more than once in a term). Unrestricted contraction is

a common reason for a language to require unbounded amounts of memory to

implement.

This thesis looks at a range of type systems, both existing and new, that restrict

the use of contraction so that they can be implemented with finite amounts of state,

identifying common themes, and explaining and suggesting solutions for common

deficiencies. In particular, different restrictions on contraction are seen to correspond

to different features of the languages implementation.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


32 G. Hutton

How to generate actionable advice about performance problems

VINCENT ST-AMOUR

Northeastern University, USA

Date: May 2015; Advisor: Matthias Felleisen
URL: http://www.ccs.neu.edu/racket/pubs/dissertation-st-amour.pdf

Performance engineering is an important activity regardless of application domain,

as critical for server software as for mobile applications. This activity, however,

demands advanced, specialized skills that require a significant time investment to

acquire, and are therefore absent from most programmers’ tool-boxes.

My thesis is that tool support can make performance engineering both acces-

sible and time-efficient for non-expert programmers. To support this claim, this

dissertation introduces two novel families of performance tools that are designed

specifically to provide actionable information to programmers: optimization coaches

and feature-specific profilers. This dissertation presents blueprints for building tools

in these families, and provides examples from tools that I have built.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 33

Two topics in rewriting: Combinators for pattern calculi and
Curry-Howard for the logic of proofs

GABRIELA STEREN

Universidad de Buenos Aires, Argentina

Date: December, 2014; Advisor: Eduardo A. Bonelli
URL: http://tinyurl.com/nsrcly9

Pattern matching is a basic building block on which functional programming

depends, where the computation mechanism is based on finding a correspondence

between the argument of a function and an expression called “pattern”. It has also

found its way into other programming paradigms and has proved convenient for

querying data in different formats, such as semi-structured data. In recognition of

this, a recent effort is observed in which pattern matching is studied in its purest

form, namely by means of pattern calculi. These are lambda calculi with sophisticated

forms of pattern matching. The first part of this two part thesis proposes to contribute

to this effort by developing a combinatory logic for one such pattern calculus, namely

λP. We seek to mimic the computational process of λP where arguments can be

matched against arbitrary terms, without the use of variables. Two challenges must be

met. On the one hand, dealing with bound variables in patterns. Indeed, an abstract

ion is a valid pattern in λP. Here, the standard combinatory logic will provide

guidance. The second is computing the counterpart, in the combinatory setting, of

the substitution that is obtained in a successful match. This requires devising rules

that pull applications apart, so to speak. We propose a combinatory logic that

serves this purpose and study its salient properties and extensions including typed

presentations and modeling data structures. In the second part, we are concerned

with the computational interpretation of a particular modal logic, the Logic of

Proofs or LP, via the Curry–Howard isomorphism. LP, introduced by Artemov in

1995, is a refinement of modal logic in which the modality �A is revisited as [[t]]A,

where t is an expression that bears witness to the validity of A. It enjoys arithmetical

soundness and completeness, can realize all S4 theorems and is capable of reflecting

its own proofs (� A implies � [[t]]A, for some t). Our main contribution is a well-

behaved Natural Deduction presentation, developed with the aim of unveiling the

computational metaphors which arise from the reflective capabilities of LP. This

is the first Natural Deduction formulation capable of proving all LP-theorems.

For that, we adopt Parigots Classical Natural Deduction and merge it with a

hypothetical reasoning which guide the construction of the inference schemes. As

an outcome we obtain a Natural Deduction presentation of propositional LP for

which a number of key properties are shown to hold. We then extend our analysis

to the first-order case, introducing FOHLP, a first-order extension of HLP. Our

point of departure is a recent first-order formulation of LP, called FOLP, which

enjoys arithmetical soundness and has an exact provability semantics (completeness

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


34 G. Hutton

is unattainable given that a complete FOLP is not finitely axiomatizable). We

provide a Natural Deduction presentation dubbed FOHLP, mappings to and from

FOLP, a term assignment (-calculus) and a proof of termination of normalization of

derivations.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 35

A transformation-based approach to hardware design using
higher-order functions

RINSE WESTER

University of Twente, Netherlands

Date: July 2015; Advisor: Gerard Smit and Jan Kuper
URL: http://doc.utwente.nl/96278/

The amount of resources available on reconfigurable logic devices like FPGAs

has seen a tremendous growth over the last 30 years. During this period, the amount

of programmable resources (CLBs and RAMs) has increased by more than three

orders of magnitude.

Programming these reconfigurable architectures has been dominated by the hard-

ware description languages VHDL and Verilog. However, it has become generally

accepted that these languages do not provide adequate abstraction mechanisms to

deliver the design productivity for designing more and more complex applications. To

raise the abstraction level, techniques to translate high-level languages to hardware

have been developed based on imperative languages like C.

Parallelism is achieved by parallelization of for-loops. Whether parallelization

of loops is possible, is determined using dependency analysis which is a very

hard problem. To mitigate this problem, other abstractions are needed to express

parallelism. In this thesis, parallelism is expressed using higher-order functions, an

abstraction commonly used in functional programming languages.

The main contribution of this thesis is a design methodology based on exploiting

regularity of higher-order functions. A mathematical formula, e.g., a DSP algorithm,

is first formulated using higher-order functions. Then, transformation rules are

applied to these higher-order functions to distribute computations over space and

time. Using these transformations, an optimal trade-off can be made between space

and time. Finally, hardware is generated using the CLaSH compiler by translating

the result of the transformation to VHDL.

In this thesis, we derive transformation rules for several higher-order functions

and prove that the transformations are meaning-preserving. After transformation,

a mathematically equivalent description is derived in which the computations are

distributed over space and time. The designer can control the amount of parallelism

using a parameter that is introduced by the transformation. Transformation rules

for both one-dimensional higher-order functions and two-dimensional higher- order

functions have been derived and applied to several case studies: a dot product, a

particle filter and stencil computations.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


36 G. Hutton

Effects, asynchrony, and choice in arrowized functional reactive
programming

DANIEL WINOGRAD-CORT

Yale University, USA

Date: December 2015; Advisor: Paul Hudak
URL: http://tinyurl.com/oyt45j7

Functional reactive programming facilitates programming with time-varying data

that can be perceived as streams flowing through time. Thus, one can think of FRP

as an inversion of flow control from the structure of the program to the structure of

the data itself. In a typical (say, imperative) program, the structure of the program

governs how the program will behave over time; as time moves forward, the program

sequentially executes its statements, and at any line of code, one can make a clear

distinction between code that has already been run (the past) and code that has

yet to be run (the future). However, in FRP, the program acts as a signal function,

and, as such, we are allowed to assume that the program executes continuously on

its time-varying inputs—essentially, it behaves as if it is running infinitely fast and

infinitely often. We consider this to be the core principle of the design and call it

the fundamental abstraction of FRP.

This work is specifically rooted in Arrowized FRP, where these signal functions

remain static as they process the dynamic signals they act upon. However, in

practice, it is often valuable to be able to dynamically alter the way that a signal

function behaves over time. Typically, this is achieved with “switching” or other

monadic features, but this significantly reduces the usefulness of the arrows. We

develop an extension to arrows to allow “predictably dynamic” behavior along with

a notion of settability, which together recover the desired dynamic power. We further

demonstrate that optimizations designed specifically for arrowized FRP and which

do not apply to monadic FRP, such as those for Causal Commutative Arrows, are

applicable to the system. Thus, it can be powerfully optimized.

In its purest form, functional reactive programming permits no side effects (e.g.,

mutation, state, interaction with the physical world), and as such, all effects must

be performed outside of the FRP scope. In practice, this means that FRP programs

must route input data streams to where they are internally used and likewise route

output streams back out to the edge of the FRP context. I call this the FRP I/O

bottleneck. This design inhibits modularity and also creates a security vulnerability

whereby parent signal functions have complete access to their children’s inputs and

outputs. Allowing signal functions themselves to perform effects would alleviate

this problem, but it can interfere with the fundamental abstraction. We present the

notion of resource types to address this issue and allow the fundamental abstraction

to hold in the presence of effects. Resource types are phantom type parameters that

are added to the type signatures of signal functions that indicate what effects those

signal functions are performing and leverage the type-checker to prevent resource

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283


PhD abstracts 37

usage that would break the abstraction. We show type judgments and operational

semantics for a resource-typed model as well as an implementation of the system in

Haskell.

FRP typically relies on a notion of synchrony, or the idea that all streams of

data are synchronized across time. In fact, this synchrony is a key component of

maintaining the fundamental abstraction as it ensures that two disparate portions of

the program will receive the same deterministically associated (synchronous) input

values and that their separate results will coordinate in the same output values.

However, in many applications, this synchrony is too strong. We discuss a notion of

treating time not as a global constant that governs the entire program uniformly,

but rather as relative to a given process. In one process, time will appear to progress

at one rate, but in another, time can proceed differently. Although we forfeit the

global impact of the fundamental abstraction, this allows us to retain its effects

on a per-process scale. That is, we can assume each process processes its inputs

continuously despite the whole network having different notions of time. To allow

communication between these asynchronous processes, we introduce wormholes,

which act as specialized connections that apply a sort of time dilation to information

passing through them. We additionally show that they can be used to subsume other

common FRP operations such as looping and causality.

We apply the concepts of all of these ideas into a functional reactive library for

graphical user interfaces called UISF. Thus, this work concludes with an overview

and examples of practically using our version of FRP.

https://doi.org/10.1017/S0956796815000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000283

