
COMPLETELY INDECOMPOSABLE MODULES 

ERNST SNAPPER 

Introduction and summary. The purpose of this paper is to investigate 
completely indecomposable modules. A completely indecomposable module 
is an additive abelian group 23 with a ring A as operator domain, where the 
following four conditions are satisfied. 

1-1. A is a commutative ring and has a unit element which is unit operator 
for 23. 

1-2. The submodules of 23 satisfy the ascending chain condition. (Sub-
module will always mean invariant submodule.) 

1-3. The submodules of 23 satisfy the descending chain condition. 
1-4. Every submodule of 23 (23 itself included) is indecomposable. 
Properties 1-1 and 1-2 are equivalent with saying that 23 is a Noetherian 

module. (See [1] and [2] for Noetherian modules; square brackets refer to the 
references.) Property 1-4 says that if SB is a submodule of 23, then SB is not 
decomposable in a direct sum SB = 2Bi+ SB2, where SBi and SB2 are sub-
modules of SB. (The symbol + will always denote a direct sum.) It is easily 
shown that 1-4 is equivalent with saying that 23 has a unique minimal sub-
module (see remark 1.1). 

The notion of a completely indecomposable module arises in a natural way 
from the study of the classical elementary divisor theory. As is shown in 
sec. 6, every indecomposable module which occurs in the classical elementary 
divisor theory and whose annihilating ideal is not the zero ideal (i.e., for whose 
submodules the descending chain condition holds) is completely indecom
posable. 

The main result of this paper is Theorem 5.1. It states that two completely 
indecomposable modules are isomorphic (isomorphic will always mean operator-
isomorphic) if and only if they have the same annihilating ideal. In the language 
of ring-representations this means : two faithful representations of a commutative 
ring with unit element 1, whose respective representation spaces have composition 
sequences and unique minimal sub-s paces y while 1 is unit operator, are equivalent. 
(See remark 5.1.) Theorem 5.1 can immediately be extended to Theorem 5.2 
on regular modules (i.e., modules which are direct sums of completely inde
composable modules; see definition 5.1.) Thus we obtain a generalization to 
regular modules of that part of the classical elementary divisor theory which 
is concerned with modules in which the descending chain condition is satisfied 
(see sec. 6). 

Sec. 1 contains that part of the theory of a completely indecomposable 
module 23 which follows from the theory of Noetherian modules. Sec. 2 con-
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tains the part of the theory of 33 which is obtained by extending Grobner's 
theory of irreducible ideals (see [3]) to completely indecomposable modules. 
Sec. 3 contains the proof that the operator-endomorphism ring of 33 consists of 
the multiplications of the elements of 33 with the elements of the operator 
domain A. This does not imply that 33 is necessarily cyclic (see remark 3.1). 
Lemma 3.1, which is concerned with the extension of operator-isomorphisms, 
holds for abelian groups with arbitrary rings, not necessarily commutative, as 
operator domain. Sec. 4 contains two known lemmas of ring-representation 
theory which are needed for sees. 5 and 6. Sec. 5 contains the proof of the 
main theorem 5.1. In sec. 6, it is shown how that part of the classical elemen
tary divisor theory which is concerned with modules in which the descending 
chain condition is satisfied, Steinitz theory of algebraic integers included, can 
be obtained from the theory of completely indecomposable modules. Here, the 
main lemma is lemma 6.1, which states that an indecomposable module which 
satisfies conditions 1-1, 1-2 and 1-3 and whose annihilating ideal is intersection-
irreducible is completely indecomposable and cyclic. Sec. 7 contains examples 
of completely indecomposable modules. The unsolved problems to which this 
paper gives rise are stated in remarks 6.2 and 7.2. 

It is pointed out in remark 7.1 that the theory of completely indecom
posable modules gives rise to the question "does every commutative, com
pletely primary ring have a faithful, completely indecomposable representation 
space?" This question is answered in the affirmative by corollary 9.4 of sec. 9. 
In order to prove this corollary it was necessary to introduce in sec. 8 a new 
composition of operator modules, called interlacing of modules, which is a 
generalization of the direct sum. Sec. 8 is self-contained and demonstrates that 
interlacing can be used equally well for non-commutative as for commutative oper
ator domains. The author believes that many other uses can be made of the notion 
of interlacing. Finally remark 9.2 shows how, as a consequence of corollary 9.4, 
we can define a "dual vector space" for any commutative ring A with unit 
element whose ideals satisfy both chain conditions. This dual vector space is 
a generalization of the dual space defined in [8], p. 558, for the case where A 
is an algebra of finite rank with respect to a field. 

The author is indebted to Professors R. Brauer and R. M. Thrall for valuable 
help in the writing of this paper. (See sees. 4 and 6 and example 7.3 and 
remark 7.2.) 

1. Properties of completely indecomposable modules obtained from the 
theory of Noetherian modules. Let 93 be a completely indecomposable 
module with the ring A as right-operator domain. Hence the conditions 1-1, 
1-2, 1-3 and 1-4 of the introduction are satisfied. The elements of 33 will be 
denoted by capital Latin letters and the submodules of 33 by capital German 
letters. The elements of A will be denoted by lower case Greek letters, and 
the ideals of A by lower case German letters. 

Since 33 is a Noetherian module (see [2], sec. 2.1, for the definition of Noe-
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therian module; in [2] the term Noetherian vector space is used) which has a 
composition series of finite length (this follows from 1-2 and 1-3), the associated 
primes of the zero-module 0 of 33 are maximal prime ideals of A. (For the 
definition of associated primes of a module, see [2], Theorem 2.21. The fact 
that the associated primes of 0 have to be maximal is stated in Theorem 24 
of [1].) Since 33 is itself indecomposable, 0 can have only one associated 
prime p, namely the radical of the annihilating ideal q of 33. (Since all the 
associated primes of 0 are maximal, S3 would be decomposable if 0 had more 
than one associated prime; this follows immediately from Theorem 19 of [1].) 
Consequently, 0 is a primary submodule of 33 whose fundamental ideal is the 
annihilating ideal q of 33 and whose radical is the maximal ideal p. (See sec. 
2.1 of [2] for the definitions of primary module, fundamental ideal and radical.) 
This implies that q is primary (see Theorem 2.11 of [2]) and that if Va = 0, 
where Ve 33 and V ^ 0 and a eA, then a € p (see definition 2.12 of [2]). 

Now, let 0 = 33oC 33iC . • . C 33z_iC 33z = 35 be a composition series of 33. 
(The symbol C will be used exclusively for proper inclusion). Since the funda
mental ideal of 0 is primary and has maximal radical, the difference module 
33— 33;_i is operator-isomorphic with A — p; hence the quotient 33;-i: SB* = p 
for i = 1, . . . , l. (The quotient 33»_i: 33 i is defined as the ideal which consists 
of all a e A, such that Va e 33*_i for all V e 33r, see sec. 2.1 of [2]. The fact that 
the difference module 33;— 33;_i is isomorphic with A — p is stated in Theorem 
2.41 of [2].) In particular, 33ip = 0, which implies that 33iC 0: p. (See sec. 
2.1 of [2] for the definitions of the product of a module with an ideal and of the 
quotient of a module by an ideal.) However, if 0 : p were not a minimal module 
of 33 (that is, a module which contains 0 as only proper submodule), then 0 : p 
would be decomposable in a direct sum of cyclic submodules (see [1], sec. 16). 
Consequently, property 1-4 implies that 33i= 0 : p, which, since 33i is an arbi
trary minimal submodule of 33, proves the following lemma. 

LEMMA 1.1. A completely indecomposable module 33 has a unique minimal 
submodule, namely 0 : p. 

REMARK 1.1. If 33 satisfies properties 1-1, 1-2 and 1-3, then 1-4 is obviously 
equivalent with the existence of a unique minimal submodule in 33. In the 
first place, if 33i and 332 were two distinct minimal submodules, the submodule 
SB = 33i+ 332 would be decomposable. Conversely, if 33i is a unique minimal 
submodule of 33, then 33i is contained in every submodule of 33, which implies 
that 33 is completely indecomposable. The main content of lemma 1.1 is the 
fact that this unique submodule is 0 : p. 

REMARK 1.2. It is important for sees. 2, 5 and 6 to observe that property 
1-4 is also equivalent with saying that 0 is an intersection-irreducible module 
(i.e., a module which is not the intersection of two proper divisors). In the first 
place, if 0 = SBi C\ 3B2, where 0 C 2Bi and 0 C 2B2, then the sum (9£i, 3B2) 
of SBi and 2B2 is decomposable, (3Bi, 2B2) = 32Bi+ 2B2, and hence 33 is then not 
completely indecomposable. Conversely, if 33 is not completely indecom-
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posable, 33 contains a decomposable module SB = 3Bi+ $82, where 0 C SBi 
and 0 C 3B2- Then 0 = 9BiC3B2 and hence 0 is then not intersection-
irreducible. 

2. Properties of completely indecomposable modules obtained from 
Grobner's theory of irreducible ideals. Grôbner investigated in [3] the theory 
of an intersection-irreducible ideal q of a commutative ring A, where the ideals 
of A satisfy the ascending chain condition. Since an ideal is intersection-
irreducible if it is not the intersection of two proper divisors, the zero module 
of the difference module A — q (difference modules are always considered as 
modules with A as operator domain) is also intersection-irreducible. Since the 
zero module of a completely indecomposable module is intersection-irreducible 
(see remark 1.2), Grobner's theory, as was shown by Grundy in [1], sec. 16, 
can be extended to completely indecomposable modules. The following lemmas 
2.1 and 2.2, which will be used in sees. 3 and 5, are proved in [1], sec. 16. 

Let 33 again be a completely indecomposable module with A as operator 
domain and q as annihilating ideal; and let p again be the radical of 0. Since 
q is a primary ideal of A with maximal radical p (see sec. 1), every divisor of q, 
different from A, is a primary ideal with p as radical. Furthermore, according 
to [2], Theorem 2.41, there exists a composition series q = q0C qiC- • -C qz'-i 
C qz'= A from q to A, where the difference module q* — qz_i is operator iso
morphic with A — p and where q*_i: q* = p for i = 1, . . . , V. 

LEMMA 2.1. If q = qoC qiC- . . C qz'-iC (\v — A is a composition series 
from q to A, then 0 C 0 : q^_iC- . . C O : qiC33 is a composition series of 33. 
Conversely, ifOQ 33iC- • . C 33z-iC S3 is a composition series of 33, then q C 0: 
33z-iC. . . C O : 33iC A is a composition series from q to A. Consequently, the 
length V of the difference module A — q is equal to the length I of 33. 

LEMMA 2.2. If a is an ideal of A which contains q, then 0 : (0 : a) = a; i.e., 
the annihilating ideal of the module 0 : a is a. In the same way, if SB is a sub-
module of 33, then 0 : (0 : SB) = SB. 

It follows from lemma 2.2 that a submodule SB of 33 is uniquely determined 
by its annihilating ideal a = 0 : SB, since SB = 0 : a. Consequently, different 
submodules of 33 have different annihilating ideals. Furthermore, if SBi and 
SB2 are two submodules of 33 with the annihilating ideals cti and ct2 respectively, 
then the annihilating ideal of SB3= SBiPl SB2 is equal to the sum (cti, a^) of 0.1 
and ct2. In the first place, if ct3 is the annihilating ideal of 3B3, then ct3 = 0 : SB3, 
while 0 : (ab a2) = (0 : ai)H (0 : a2) = SBiH SB2= SB3, according to lemma 2.2. 
Hence, (cti, (X2) = 0 : (0 : (cti, ct2)) = 0 : SB3 = CI3, which proves the following 
lemma. 

LEMMA 2.3. A submodule SB of 33 is uniquely determined by its annihilating 
ideal. If SBi and SB2 are two submodules of 33 with respectively the annihilating 
ideals <u and 02, then the annihilating ideal of SBiPiSB2 is (cu, 02). 
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Let a be a divisor of q. Then there exists a composition series from q to A 
which passes through a, say q = q0C q i O . . C.ct = q^C Cfo+iQ • -Cqz= 4 . 
Hence, the length of the difference module A — a is Z — A. Since, according 
to lemma 2.1, 0 C 0 : qz- iO . -C 0 : a C- • • CO : qiC 35 is a composition 
series of 33, the length of the module 0 : a is I — h. This proves lemma 2.4, 
which will be used in sec. 5 and which is the analogue of Theorem 6 of [3]. 

LEMMA 2.4. If a is a divisor of q, the length of the difference module A — a 
is equal to the length of the submodule 0 : a of 33. In the same way, if 2Qis a sub-
module of 33, the length of 328 is equal to the length of the difference module A — 
(0 : SB). (0 : SB is the annihilating ideal of 338.) 

REMARK 2.1. It is obvious that a submodule SB of a completely indecom
posable module is itself completely indecomposable. Since the annihilating 
ideal of 328 is 0 : 328, it follows from lemma 2.1 that the length of 328 is equal to 
the length of the difference module A — (0 : 328), which gives another proof of 
lemma 2.4. 

3. The endomorphism ring of a completely indecomposable module. The 
purpose of this section is to prove the following theorem. 

THEOREM 3.1. The operator-endomorphism ring E of a completely indecom
posable module 33 with A as operator domain consists of the multiplications of the 
elements of 33 with the elements of A. Hence, if q is the annihilating ideal of 33, 
then E is ring-isomorphic with the factor ring A/q. 

Proof. We shall consider E not as a ring, but as a module with A as right-
operator domain, according to the following definitions. 

V(Mi+ M2) = VMi+ VM2, where F € 33 and Mu M2eE] 

V(Ma) = (VM)a, where V e 33, M e E and a e A. 

To any a e A, there corresponds the endomorphism M(a), defined by VM(a) = 
Va for all F e 33. (These endomorphisms M(a) are the multiplications men
tioned in Theorem 3.1. Endomorphism and homomorphism will always mean 
operator-endomorphism and operator-homomorphism.) The correspondence 
a —> M(a) is clearly an operator-homomorphism from A into E> where both 
A and E are considered as ^.-modules. Since the kernel of this homomorphism 
is q, E contains a submodule E' which is operator isomorphic with the difference 
module A — q. All we have to show is that E''= E. However, E' is an A-
module of finite length ; namely, the length of E' is equal to the length of A — q 
and hence, according to lemma 2.1, is equal to the length I of 33. Consequently, 
all we have to prove is that the ^.-module E has a composition series of length /. 
Hereto, let 0 = 33oC 33iC . . • C 33z_iC 33z= 33 be a composition series of 33. 
Let Ei, for i = 0, . . . , /, be the submodule of E which consists of those endo
morphisms which annihilate 33»; i.e., VM = 0 for all V €33» and MeEi. 
Then, obviously EQ= E and E\ is the zero-endomorphism Œ, while E = E o 3 
E\Oi . . . 2 -Ez-i2 Ei= 0. We will prove that this series is a composition 
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series of E. It will be enough to show that, for any fixed integer i, where 
1 < i < I, the difference module E»_i — Ei is operator-isomorphic with the 
difference module A — p, where p is the radical of 0 (p is a maximal ideal of A 
according to sec. 1). Let ikf e JE»_i, then 33»M is a submodule of 33 which is 
homomorphic with 33». Since 33»-iikf = 0, the length of 33» Af is at most 1. 
Consequently, since 331 is the only submodule of 33 of length 1, 33»Af C 33i. 
Now, let Vi be a fixed non-zero element of 331 and let F» be a fixed element of 
33» where F» not € 33»_i. Then, 331 is a cyclic module with V\ as generator and 
33» = (33»_i, Vi). (This means that 33» is generated by 33»_i and F»; i.e., an 
element of 33» can always be written as Wi-i + Via where Wi—i e 33»_i and 
a e A.) It follows that there exists an a eA such that ViM = Fia. Let à 
denote the coset of a modulo p. Then, since p is the annihilating ideal of Fi, 
the correspondence M —» a is an operator-homomorphism H from JE»_i into 
i i — p. The kernel of i ï is clearly £»• and hence the difference module £»_i — 
Ei is operator-isomorphic with a submodule of 4̂ — p. Since the only sub-
modules of A — p are the zero-module and A — p itself, all that remains to be 
shown is that JE»_I—£»• is not the zero-module, i.e., that Ei—iD £». However, 
it follows from lemma 2.1 that 0 : 33»C 0 : 33»-1 and consequently, there exists 
an element a of A such that a e 0 : 33»_i and a not e 0 : 33». The endomorphism 
VM(a) = Fa, for all F € 33, is clearly an element of E»_i which is not con
tained in Ei] hence Theorem 3.1 is proved. 

REMARK 3.1. Any cyclic module 33 which has a ring A as operator domain 
and which satisfies property 1-1 is operator-isomorphic with the difference 
module A — a, where a is the annihilating ideal of 33. As is well known, the 
operator-endomorphisms of A — a are just the multiplications of the elements 
of A — a with the elements of A (see, for instance, [4], sec. 120) and hence 
the operator-endomorphism ring of A — a is ring-isomorphic with the factor 
ring A/a. In other words, Theorem 3.1 always holds for a cyclic module. As 
is shown by example 7.3, a completely indecomposable module is not neces
sarily cyclic. 

I t follows immediately from Theorem 3.1 that if 33 is a completely indecom-
sable module with A as operator domain, 0 as zero-module and p as radical 
of 0, then the automorphism-group of 33 consists of the multiplications of 
elements of 33 with elements a eA, where a not e p. The elements of p give 
rise to the endomorphisms of 33 with non-zero kernel. 

COROLLARY 3.1. Let 33 be a completely indecomposable module and let SB be 
a submodule of 33. Then, every operator-endomorphism M* of 2B can be extended 
to an operator-endomorphism M of 33. If M * is an automorphism of SB ^ 0, 
M is an automorphism of 33. 

Proof. Let A be the operator domain of 33. Then SB, as a submodule of a 
completely indecomposable module, is itself completely indecomposable and 
has A as operator domain. Hence, it follows from Theorem 3.1 that if M* is 
an endomorphism of SB, there exists an aeA, such that Fikf*= Va for all 
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V e SB. The endomorphism VM = Va for all V e 33 is clearly an extension 
of M* to an endomorphism M of 33. If M* is an automorphism of SB 7^ 0, 
a not € p*, where p* is the radical of the zero-module 0 of SB. Hence, p* is the 
radical of the annihilating ideal q* of SB (see sec. 1). If q is the annihilating 
ideal of S3 and p is the radical of q, then q C q*C A and hence p C p*C -4-
Since p and p* are maximal prime ideals of A, p = p* and hence a not e p, which 
implies that M is an automorphism of S3. 

Corollary 3.1 can be used to characterize completely indecomposable mo
dules. Precisely, an indecomposable module S3 with a ring A as operator domain, 
where conditions 1-1, 1-2, and 1-3 are satisfied, is completely indecomposable if 
and only if every operator-endomorphism of any submodule SB of 33 can be extended 
to an operator-endomorphism of S3. The "only if part" is proved by corollary 
3.1. Now suppose that 33 is indecomposable, that conditions 1-1, 1-2, 1-3 are 
satisfied and that, if SB is any submodule of 33, every operator-endomorphism 
of SB can be extended to an operator-endomorphism of 33. Then, if SB is 
decomposable, say SB = SBi+ SB2, the projection P* of SB on SBi is an operator-
endomorphism of SB. (If PFeSB, then W = Wi+ W2, and WT*= Wi.) 
This P * could not be extended to an operator-endomorphism P of 33, since P 
would then be a not-nilpotent endomorphism of 33 with non-zero kernel which, 
according to Fitting's lemma (see [5], p. 11) is not possible since 33 is inde
composable. Hence every submodule of 33 is indecomposable, which means 
that 33 is completely indecomposable. 

Corollary 3.1 and the following lemma on arbitrary operator groups will be 
used in the proof of Theorem 5.1. 

LEMMA 3.1. Let 33 and SB be two additive abelian groups with the same ring 
A as operator domain. {A is not necessarily commutative and none of the properties 
1-1 through 1-4 are assumed.) Let 33i and 332 be two submodules of 33 and let SBi 
and SB2 be two submodules of SB. Let 7i be an operator-isomorphism between 33i 
and SBi and let I2 be an operator-isomorphism between 332 and SB2. (33i, 332, SBi 
and 3B2 all have A as operator domain.) Let I\ map 333 = 33i Pi 332 isomorphically 
onto SB3= SBiH SB2Î i-e., Ii induces an operator-isomorphism I*i between 333 and 
SB3. In the same way, let I2 map 333 isomorphically onto 3B3Î i^., I2 induces an 
operator-isomorphism J*2 between 333 and SB3. Finally, let I*\ = I*2 = 1%. Then, 
there exists an operator-isomorphism I between (331, 332) and (SBi, SB 2) which is 
simultaneously an extension of Ii, I2 and Ii. 

Proof. Let Fe(33i, 332); hence V = Vi+ V2 where Fie35i and F2€332. 
((33i, 332) denotes the submodule generated by 33i and 332.) We define VI = 
V1I1+ V2I2 and assert that I is an operator-isomorphism between (33i, 332) 
and (SBi, SB2). In the first place, we show that VI does not depend on the choice 
of Vi and V2. Let V = V\+ Vf

2 where F'i€33i and F'2e332î then 7 i -
V\= V2- V2 is an element of 353 and hence ( 7 i - V'i)Ii = (V'2- V2) I2, which 
implies that V1I1- V\Ii= V2I2- V2I2 and hence that VI = V1I1+ V2I2 = 
V\h+ V'2I2. In the second place, VI e (SBi, SB2) since VJi e SBi and 72/2 e 
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SB2. One can prove immediately that (V + V')I = VI + VI and (Fa)I = 
(F7)a, where F and V are elements of (331, 932) and where a eA, and also 
that I maps (93i, 932) onto (SBi, 882). We now show that the kernel of 7 is the 
zero-element 0 of 93. Hereto, let VI = 0', where Ve (93i, 932) and where 0' 
is the zero element of SB. Then V = Vi+ V2, where Vi e 93i and V2 e 932, 
and VI = Vih+ V2I2 = 0' and hence Vih= -V2I2. Since Vih e SBi and 
— F2/2 € 2B2, F1/1 and — F272 are both elements of 9B3. Since 7i maps 93i 
isomorphically onto SBi and, at the same time, 933 isomorphically onto £83, 
Vi e 933 and, in the same way, — V2 e 933. Consequently, Fi7i = Fi73 and 
-V2I2= -V2h and hence VJi + V2I2 = Fi73 + V2IZ = (Vi+ V2)h = 0' 
which implies, since 73 is an isomorphism, that 0 = Vi+ V2— V. Finally, I 
is an extension of 7i, since if Ve 93i, then VI = VIi+ 072 = VI\ and, in the 
same way, I is an extension of I2 and 73. 

Let 93, 93i, 932, 933, 28, 2Bi, 9B2, SB3 have the same meaning as in lemma 3.1. 
Another way of formulating lemma 3.1 is as follows. 

If there exist an operator-isomorphism 73 between 933 and SB 3, an operator-
isomorphism I\ between 931 and SBi, and an operator-isomorphism I2 between 932 
and 9B2, where 7i awcZ I2 are extensions of 73, then 7i, 72 an^ 73 caw fo extended 
simultaneously to an operator-isomorphism I between (931, 932) #wd (953i, 9B2). 

4. Two lemmas of ring-representation theory. The following lemmas 4.1 
and 4.2, which will be used in sees. 5 and 6, are immediate corollaries of two 
lemmas proved by Professor R. Brauer in a course on group theory, given 
during the summer of 1947 at the University of Michigan. The proofs of 
lemmas 4.1 and 4.2, which are added here for the sake of completeness, can be 
derived immediately from Professor Brauer^ proofs of the more general 
lemmas. 

LEMMA 4.1. Let 93 be an additive abelian group with a ring A as operator 
domain where property 1-1 is satisfied and where 93 has a unique maximal sub-
module SB. Let a be the annihilating ideal of 93. Then, 93 is operator isomorphic 
with A — a. 

Proof. Since 9S is a unique maximal submodule of 93, SB C 93 and SB con
tains every proper submodule of 93. Let V e 93, where V not e SB. The sub-
module VA of 93 is not contained in SB since V.l = V not e SB. Hence, VA = 93 
which implies that 93 is cyclic and hence operator isomorphic with A — a, 
where a is the annihilating ideal of 93. 

LEMMA 4.2. Let 93 be an additive abelian group with a ring A as operator 
domain where property l-l is satisfied. Let a be the annihilating ideal of 93 and 
suppose that 93 has a submodule SB such that 93 — SB is operator isomorphic with 
A — a. Then, 93 is decomposable in a direct sum, 93 = SB + 931 where 931 is 
operator-isomorphic with A — a. 

Proof. Let T denote the natural homomorphism from 93 onto 93 — SB; i.e., 
for any F € 93, VT is the coset of V modulo SB. Let Q denote the isomorphism 
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between 33 — SB and A — a, whose existence is stated in lemma 4.2. Then 
P = TQ (first T, then Q) is an operator-homomorphism from 33 ontoji —fa 
with kernel SB. Let Fi be an element of S3 such that V\P = 1, where 1 is the 
coset of the unit element 1 of A modulo a. We claim that we can take V\A for 
the 231 of lemma 4.2. (ViA is the submodule of S3 which consists of the ele
ments Via, where a e A.) In the first place, P maps ViA isomorphically onto 
A — a, since (Via)P = (ViP)a = ï a = â for any a eA (bars denote cosets 
modulo a). This proves already that V\A is operator-isomorphic with A —fa 
and that SB Pi V\A = 0, where 0 is the zero-element of 33. In the second place, 
for any V e S3, we can find an a eA such that VP =(Via)P and hence such 
that V — Via = W, where W liés in the kernel SB of P. Consequently, 
V = W + Vxa which proves that 33 = SB + 33i. 

5. Criterion of isomorphism of completely indecomposable modules. We 
can now prove the following criterion that two completely indecomposable 
modules be isomorphic. 

THEOREM 5.1. Two completely indecomposable modules with the same operator 
domain are operator-isomorphic if and only if they have the same annihilating 
ideals. 

Proof. Let 33 and SB be two completely indecomposable modules with the 
same operator domain A. Hence, properties 1-1, 1-2, 1-3 and 1-4 are satisfied. 
It is obvious that if 33 and SB are operator-isomorphic, they have the same 
annihilating ideal. Hence we assume that 33 and SB have the same annihi
lating ideal q and prove that then 33 and SB are operator-isomorphic. 

Since the lengths of 33 and of SB are both equal to the length of the difference 
module A — q (see lemma 2.1), let I be the common length of 33, SB and A — q. 
If I = 1, both 33 and SB are cyclic and hence operator-isomorphic with A — q 
and hence isomorphic with each other. Consequently, we assume that / > 1 
and we make the induction hypothesis that Theorem 5.1 has been proved for 
Z = 1 , 2 , . . . , Z — 1. There are two cases to be considered. 

Case 1. One of the two modules, say 33, has only one maximal submodule. 
Since 33 has a unique maximal submodule, it follows from lemma 4.1 that 33 
is operator-isomorphic with A — q. This implies in particular that A — q is 
completely indecomposable and hence that A — q has a unique minimal sub-
module. Consequently, there exists only one ideal qi such that q C qi and 
where the length of the difference module A — qi is I — 1. If 0' is the zero-
module of SB, the length of SBz-i= 0': qi is I — 1 (see lemma 2.4) and hence 
SBz-i is a maximal submodule of SB. We assert that SBz-i is the only maximal 
submodule of SB. Let SB'z-i be any maximal submodule of SB where q'i is the 
annihilating ideal of SB^-i. Then the length of SB'z-i is Z — 1 and hence the 
length of A — q'i is also / — 1 (see lemma 2.4); consequently, q'i= qi and, 
according to lemma 2.2, SB'z-i = 0': q\ = 0': qi = 3Bz_i, which proves the 
assertion. Lemma 4.1 then implies that SB is also operator-isomorphic with 
A — q and hence that 33 and SB are isomorphic. 
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Case 2. Both modules 33 and SB have at least two different maximal sub-
modules. Let 3Si and 332 be two different maximal submodules of 33, which 
implies that 33 = (331, 332). The length of both 33i and 332 is I — 1. If qi and 
q2 are the annihilating ideals of respectively 33i and 332, then qi= 0 : 33i and 
q2= 0 : 332, where 0 is the zero-module of 33. Furthermore, q i ^ q2 according 
to lemma 2.3, and the length of both the difference modules A — qi and A — q2 

is Z — 1 (see lemma 2.4). Consider the submodules 3Bi = 0': qi and 3B2= 0': q2 

of SB, where 0' is the zero-module of 3B. According to lemma 2.3, SBi^ 3B2, 
and according to lemma 2.4 the length of both 2Bi and 2B2 is / — 1 ; i.e., 3Bi and 
3B2 are two distinct, maximal submodules of SB, which implies that SB = (SBi, 
3B2). Since 33i and SBi are completely indecomposable modules (a submodule 
of a completely indecomposable module is obviously completely indecom
posable) and have the same annihilating ideal qi, it follows from the induction 
hypothesis that 33i and SBi are operator-isomorphic. In the same way, 332 and 
SB2 are operator-isomorphic. Hence, let 7i be an operator-isomorphism which 
maps 33i onto SBi and let J2 be an operator-isomorphism which maps 332 onto 
SB2. We claim that 7i maps 333 = 33iPl 332 isomorphically onto SB3= SBiPl SB2 

and that 72 maps 333 isomorphically onto 3B3. In the first place, the annihi
lating ideal of 333 and SB3 is (qi, q2) according to lemma 2.3. In the second 
place, both 333̂ 1 and 9S3Z2 are submodules of SB which are operator-isomorphic 
with 333. Hence these modules have (qi, q2) as annihilating ideal, which implies, 
according to lemma 2.3, that 333/1= 333^2= SB3- Let 7*i and 7*2 be the oper
ator-isomorphisms which map 333 onto SB3 and which are induced respectively 
by I i and 72; i.e., if Fe333,then F7*i= F7ieSB3and F7*2 = F72€SB3. We can
not as yet apply lemma 3.1 since it may be that 7*i 9^ 7*2. However, we shall 
change 7i into a new operator-isomorphism Ji such that / * i = 7*2. Hereto, 
let (7*i)_1 be the inverse of 7*i; hence, (7*i)_1 maps SB3 operator-isomorph-
ically onto 333- Then, (I*i)~17*2 is clearly an operator-automorphism, say 77*, 
of SB3 onto itself. Since SB3^ SBi, it follows from corollary 3.1 that there 
exists an operator-automorphism H of SBi onto itself, where H is an extension 
of 77*; i.e., if We SB3, then WH = 1^77*. For / 1 we then take the operator-
isomorphism J i = 7i77 which clearly maps 33i onto SBi. Furthermore, if J*i 
is the operator-isomorphism between 333 and SB3, induced by Ji, then J*i = 7*2 

because, if Fe333 , then VJ\= VhH = VI*iH and, since F7*i e SB3, 
F7*i77= F7*ii7*= ¥1*^1*^1*2= F7*2= F72. We can then conclude 
from lemma 3.1 that there exists an operator-isomorphism between (33i, 332) = 33 
and (SBi, 3B2) = SB which proves Theorem 5.1. 

REMARK 5.1. The module 33 in Theorem 5.1 can be considered as a repre
sentation space of the representation a —> M (a) of A, where a e A and where 
M(a) is the operator-endomorphism VM(a) = Va of 33. This representation of 
A is faithful if and only if the annihilating ideal q of 33 is the zero-ideal. Further
more, according to Theorem 5.1, two completely indecomposable modules are 
operator-isomorphic if they have the same operator domain A and each has 
the zero-ideal as annihilating ideal. Consequently, as stated in the intro-
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duction, two faithful representations of A, both of which give rise to com
pletely indecomposable representation spaces, are equivalent. 

The following corollary of Theorem 5.1 will be used in sec. 6. 

COROLLARY 5.1. A completely indecomposable module is cyclic if and only if 
its annihilating ideal is intersection-irreducible. 

Proof. Let S3 be a completely indecomposable module with A as operator 
domain and q as annihilating ideal. If 93 is cyclic, 33 is operator-isomorphic 
with the difference module A — q, which implies that then A — q is com
pletely indecomposable and hence q is intersection-irreducible (see remark 1.2). 
Conversely, if q is intersection-irreducible, A — q is completely indecomposable. 
Consequently, 93 and A — q are then two completely indecomposable modules 
with the same annihilating ideal q. Theorem 5.1 then implies that 93 and A — q 
are operator-isomorphic and hence that 93 is then cyclic. 

DEFINITION 5.1. An additive abelian group 93 with a ring A as operator 
domain is called a regular module if property 1-1 is satisfied and if 93 is the direct 
sum of a finite number of completely indecomposable submodules. 

REMARK 5.2. The term "regular" is taken from [3], where regular rings 
are defined. A regular ring, considered as a module with itself as operator 
domain, is a regular module in the sense of definition 5.1. 

Let 93 be any additive abelian group with a ring A as operator domain, where 
conditions 1-1, 1-2 and 1-3 are satisfied. Then, 93 is a direct sum of indecom
posable submodules 93 = 93i+- • . + 33A, where 93* is an indecomposable mod
ule for i = 1 , . . . , h. If 93 = 93'i + . . . + 93V is another decomposition of 93 
into a direct sum of indecomposable submodules, h = h' and, after a suitable 
ordering, 93; is operator-isomorphic with 93'; for i = 1, . . . , h, according to 
the Krull-Schmidt theorem (see [5], p. 12). Consequently, the annihilating 
ideals of 93i, . . . , 9 3 A are completely determined by 93 and do not depend on 
the particular decomposition of 93 which is chosen. 

DEFINITION 5.2. Let 93 be an additive abelian group with a ring A as operator 
domain where conditions 1-1, 1-2 and 1-3 are satisfied. Let 93 = 93i+. . . + 93A 
be a decomposition of 93 into a direct sum of indecomposable submodules. Then, 
the annihilating ideals qi, . . . , q̂  respectively of 931, . . . , 93A are called the ele
mentary ideals of 93. 

REMARK 5.3. Since 93i, . . . , 93A are indecomposable modules with com
position sequences of finite length, the elementary ideals are always primary 
ideals of A with maximal associated primes (see sec. 1). The reason for calling 
qi» . • . > C[A the elementary ideals of 93, rather than the elementary divisors of 93, 
is that qi, . . . , qA correspond to the primary factors of the classical elementary 
divisors and not to the elementary divisors themselves (see remark 6.1). 

Since conditions 1-1, 1-2 and 1-3 are clearly satisfied in a regular module, the 
elementary ideals of a regular module are defined by definition 5.2. The fol
lowing theorem is an immediate corollary of Theorem 5.1 and constitutes an 
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extension of the classical theory of elementary divisors to regular modules 
(see sec. 6). 

THEOREM 5.2. Two regular modules with the same operator domain are 
operator-isomorphic if and only if they have the same elementary ideals. 

The following corollary is an immediate consequence of corollary 5.1. 

COROLLARY 5.2. A regular module 93 with A as operator domain and whose 
elementary ideals Qi, . . . , q& are intersection-irreducible ideals of A is a direct sum 
of cyclic submodules; namely, 93 is operator-isomorphic with the direct sum of the 
h cyclic modules A — qi, . . . , A — q .̂ 

Proof. 33 is a direct sum 33 = 93i-K • •+ 93 ,̂ where 93; is a completely inde
composable submodule of 93 with qt- as annihilating ideal for i = 1, . . . , h. 
Consequently, according to corollary 5.1, 93; is cyclic and operator-isomorphic 
with A — q», which proves corollary 5.2. 

6. The classical elementary divisors. We first derive the following lemma 
whose proof is modelled after Professor R. Brauer's lecture "The Normal Form 
of a Matrix," given during the summer of 1947 at the University of Michigan. 

LEMMA 6.1. Let 93 be an additive abelian group with a ring A as operator 
domain where conditions 1-1, 1-2 and 1-3 are satisfied. Furthermore, let 93 be an 
indecomposable module and let the annihilating ideal q of 93 be an intersection-
irreducible ideal of A. Then, 93 is a cyclic module and is consequently operator-
isomorphic with A — q, which implies that 93 is completely indecomposable. 

Proof. Since q is intersection-irreducible, the difference module A — q is 
completely indecomposable (see remark 1.2) ; hence all we have to show is that 
93 is cyclic. Hereto we show first that, independent of whether 93 is inde
composable or not, 93 contains a submodule 9B such that 93 — 9B is operator-
isomorphic with A — q. Let S be the collection of submodules of 93 whose 
fundamental ideals are equal to q; i.e., 9B' e S if and only if SB': 93 = q. Since 
S contains the zero-module of 93, 5 is not empty and hence 1-2 assures that S 
contains a maximal element 9B. We assert that 9B has the required property. 
We first show that SB is intersection-irreducible. Suppose that 9B = 2Bi Pi 9S52, 
where 355 C 9BiC 93 and SB C 2B2C 93. Then, if qi and q2 are the fundamental 
ideals respectively of 9Bi and 3^2, q = qifïq2 and, since 9B is maximal in S, 
q C qi and q C q2- This, however, is impossible since q is intersection-irre
ducible, which shows that 3B is intersection-irreducible. Hence the zero-
module of the difference module 93 — 353 is intersection-irreducible. Since 
conditions 1-1, 1-2 and 1-3 are clearly satisfied by 93 — 933, it follows from 
remark 1.2 that 93 — 3B is a completely indecomposable module. Since the 
annihilating ideal of 93 — 353 is 3B : 33 = q and q is intersection-irreducible, it 
follows from corollary 5.1 that 93 — 353 is cyclic and consequently operator-
isomorphic with A — q. We can now conclude from lemma 4.2 that 93 is 
decomposable in a direct sum 93 = 93i+ 932, where 93i is operator-isomorphic 

https://doi.org/10.4153/CJM-1949-013-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-013-3


COMPLETELY INDECOMPOSABLE MODULES 137 

with A — q. Hence, since 93 is assumed to be indecomposable, 93 = 931 and 93 
is operator-isomorphic with A — q which shows that 93 is cyclic. 

The following corollary extends corollary 5.2 from regular modules to arbi
trary modules which satisfy conditions 1-1, 1-2, 1-3. 

COROLLARY 6.1. Let 93 be an additive abelian group which has a ring A as 
operator domain and which satisfies conditions 1-1, 1-2 and 1-3. Suppose that 
the elementary ideals qi, . . . , q̂  of 93 are intersection-irreducible. Then 93 
is a direct sum of cyclic sub-modules. Namely, 93 is operator-isomorphic with the 
direct sum of the h cyclic modules A — qi, . . . , A — q .̂ 

Proof. 93 is a direct sum 93 = 9?i+. . . + 93A, where 93; is an indecomposable 
module with qr- as annihilating ideal for i = 1, . . . , h. Consequently, according 
to lemma 6.1, 93; is cyclic and operator-isomorphic with A — qt-, which proves 
corollary 6.1. 

In the classical elementary divisor theory one deals with additive abelian 
groups which satisfy conditions 1-1 and 1-2 and have a ring A as operator 
domain, where A is either a Euclidean domain (see [4], sec. 108), a principal 
ideal ring, or the ring of integers of an algebraic number field (see [6]). All 
these rings have the property that every non-zero primary ideal, i.e., every 
primary ideal whose associated prime is maximal, is intersection-irreducible. 
Consequently, the following corollary, which follows immediately from corol
lary 6.1, contains that part of the classical elementary divisor theory which 
deals with modules in which the descending chain condition is satisfied; that 
is with modules whose annihilating ideal is not the zero-ideal. 

COROLLARY 6.2. Let 93 be an additive abelian group with a ring A as operator 
domain where conditions 1-1,1-2 and 1-3 are satisfied. Suppose that every primary 
ideal of A whose associated prime ideal is maximal, is intersection-irreducible. 
Then 93 is a direct sum of cyclic modules. Namely, 93 is operator-isomorphic with 
the direct sum of the h cyclic modules A — c\i, . . . , A — (\h, where qi, . . . , q& are 
the elementary ideals of 93. 

REMARK 6.1. In the rings which occur in the classical elementary divisor 
theory, every primary ideal is a power of its associated prime ideal. Let A be 
such a ring. Then, if all the elementary ideals qi, . . . , q& of corollary 6.2 have 
the same associated prime ideal, qiÇ q2Ç . . . C qh after a suitable ordering. 
In other words, 93 is then the direct sum of cyclic submodules whose annihi
lating ideals divide each other, and the elementary ideals are then exactly the 
classical elementary divisors of 93. If among the associated prime ideals 
pi, . . . , ph of qi, . . . , qn different ones occur, then (p4-, p/) = A whenever p ^ py. 
As a result one can easily show how the cyclic modules of corollary 6.2 can 
then be combined to give again the classical statement that 93 is the direct sum 
of cyclic modules whose annihilating ideals ctiC . . . C ct& divide each other. 
These cti, . . . , ct& are then the classical elementary divisors and the qi, . . . , q̂  
are the primary factors of the elementary divisors. This implies in particular 
that the cti, . . . , ct& and the qi, . . . , q̂  determine each other completely, from 
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which it follows that two modules are operator-isomorphic if and only if they 
have the same elementary divisors. 

REMARK 6.2. Let 23 be a regular module with a ring A as operator domain 
and q as annihilating ideal. If, as in the case of the classical elementary divisor 
theory, 33 is the direct sum of cyclic submodules whose annihilating ideals 
divide each other, then the centre C of the operator-endomorphism ring of 23 
consists of the multiplications of the elements of 23 with the elements of A, 
and consequently C is ring-isomorphic with A/q. (This is the actual content 
of [7]. If A is the ring which consists of the scalar polynomials of a square 
matrix M, this statement is equivalent with saying that the matrices which 
commute with all matrices which commute with M, are the scalar polynomials 
of M.) The same statement about the centre C of the operator-endomorphism 
ring of 23 can obviously be made, according to Theorem 3.1, if 23 is a completely 
indecomposable module, that is a regular module which is indecomposable. 
Whether the same statement is also correct for the centre of the operator-
endomorphism ring of an arbitrary regular module is unsolved. 

7. Examples of completely indecomposable and regular modules. 

EXAMPLE 7.1. The classical case. Let A be a commutative principal ideal 
ring with unit element and without divisors of zero or let A be the ring of 
integers of an algebraic number field of finite degree. Let 21 be the m-dimen-
sional column vector space which consists of the columns of length m whose 
components are elements of A. Let 25 be a submodule of 31 of rank m. Then, 
the difference module 23 = §t — 23 is a regular module with A as operator 
domain. In the first place, it is well known that conditions 1-1 and 1-2 are 
satisfied in 23. In the second place, the annihilating ideal of 23 is not the zero-
ideal since the rank of 23 is m. This implies, since the non-zero associated prime 
ideals of A are maximal ideals, that condition 1-3 is also satisfied in 23. We can 
then conclude from corollary 6.2 that 23 is regular. In this classical case, 
according to the same corollary, 23 is indecomposable if and only if 23 is cyclic 
and hence operator-isomorphic with A — q where q is the annihilator of 23. 
Consequently, the completely indecomposable modules which occur in this 
case are all cyclic modules. 

EXAMPLE 7.2. Irreducible ideals. Let A be a commutative ring with unit 
element whose ideals satisfy the ascending chain condition. Let q be an 
intersection-irreducible ideal of A whose associated prime p is a maximal ideal 
(an intersection-irreducible ideal is necessarily primary). Then conditions 1-1, 
1-2 and 1-3 are satisfied in the difference module 23 =A — q and, according to 
remark 1.2, 23 is a completely indecomposable module with A as operator 
domain. If p is not maximal, a completely indecomposable module can be 
obtained by constructing the ring of quotients of the ring A/q, where the non-
divisors of zero of A/q are admitted as denominators (see [3], p. 215). 

Regular modules can of course be constructed at will by forming direct sums 
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of the modules of examples 7.1 and 7.2. All the completely indecomposable 
modules mentioned in the previous examples are cyclic modules. The author 
is indebted to Professor R. M. Thrall for the following example which enables 
us to construct non-cyclic completely indecomposable modules at will. 

EXAMPLE 7.3. Duals of vector spaces. Let A = K[xi, . . . , xn] be a poly
nomial domain in n variables x\, . . . , xn where K is a field. Let q be a primary 
ideal of A whose associated prime ideal p is maximal (i.e., p is a zero-dimensional 
prime ideal of A). Then, the difference module 21 = A — q is a (K, A)-module 
which, with respect to K, is a vector space of finite rank, say m. The dual 
vector space 33 of 21 consists, according to [8], p. 558, of the linear functionals 
from 21 into K where, if Ve 33 and a eA, the linear functional Va is defined 
by (Va)(x) = V(xa) for all x e 21. It follows that 33 is again a (K, 4)-module 
which, with respect to K, has finite rank m, while the annihilating ideal of 33 
is q. Since 33 is an ^4-module with finite i£-rank, conditions 1-1, 1-2 and 1-3 
are satisfied in 33. Furthermore, to every submodule 33 of 21, one can associate 
the submodule 2B(33) of 33 which consists of the functionals which vanish on 33. 
According to [8], this establishes a one to one correspondence between the 
submodules of 21 and the submodules of 33, such that 33 consists of all the 
elements of 21 which are annihilated by the functionals of SB (33) and such that 
93iC 332 implies 9B(33i)D 328 (332). It follows easily that, since the A -module 
21 has the unique maximal submodule 33o= p — q, the A -module 33 has the 
unique minimal submodule 2Bo= 3B(33o) and hence that 33 is a completely 
indecomposable A -module (see remark 1.1). Since 33 has q as annihilating 
ideal, 33 cannot be cyclic if we choose for q an ideal which is not intersection-
irreducible, according to corollary 5.1. For instance, if q is the ideal (x2, xy, y2) 
of the polynomial domain A = K [x, y], then the dual vector space of the 
vector space A — q is a non-cyclic, completely indecomposable, A -module. 

REMARK 7.1. Let q be a primary ideal with maximal associated prime of 
the polynomial ring A = K[xi, . . . , xn]. The factor ring A/q is then a "com
pletely primary" commutative ring. (See [9], p. 96, for the notion of a com
pletely primary ring.) At the same time, A/q is an algebra with finite rank 
with respect to the field K. Conversely, every commutative completely 
primary ring which is at the same time an algebra with finite rank with respect 
to a field K, can be obtained in this way. Furthermore, we have seen in 
example 7.3, that the dual vector space 33 of the vector space A — q is a com
pletely indecomposable A -module with q as annihilating ideal. Hence, if 33 is 
considered as a module with A/q as operator domain, then 33 is a faithful, 
completely indecomposable representation space of A/q. Consequently we see 
that every commutative, completely primary ring which is, at the same time, an 
algebra of finite rank with respect to afield K has a faithful, completely indecom
posable representation space. Conversely, it follows easily from sec. 1 that, if 
a ring A has a faithful, completely indecomposable representation space, then 
A is a commutative, completely primary ring. It will be shown in sec. 9 that 
every commutative, completely primary ring A has a faithful, completely 
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indecomposable representation space, even if A is not an algebra of finite rank 
with respect to a field. 

REMARK 7.2. If in condition 1-1 we allow A to be a non-çommutative ring, 
then the conditions 1-1, 1-2, 1-3 and 1-4 define the notion of a completely inde
composable module with a not necessarily commutative ring A as operator 
domain. If A is a (not necessarily commutative) completely primary ring, 
which is at the same time an algebra with finite rank m with respect to a field 
K, Theorem 5.1 still holds; that is, two faithful, completely indecomposable 
representation spaces 33i and 932 of A are A -isomorphic. This can be shown 
easily by means of the construction of dual vector spaces, as was pointed out 
by Professor Thrall. In the first place, 331 and 332 are easily seen to be vector 
spaces of finite rank m with respect to K; hence we can construct the dual 
vector spaces 33*i and 33*2 of 33i and 332 respectively. Since 33i and 332 have 
unique minimal submodules, 33*i and 33*2 have unique maximal submodules; 
therefore 33*i and 33*2 are both ^-isomorphic with A, considered as an A-
module (lemma 4.1 holds also for non-commutative rings). Hence, 33*i and 
33*2 are A -isomorphic, which implies that 33i and 332 are A -isomorphic. It is 
not known whether Theorem 5.1 remains valid for non-commutative operator 
domains which are not algebras of finite rank with respect to a field. 

8. Interlacing of modules. This section is self-contained and describes a 
new composition of modules, called interlacing of modules, which will be used 
in the proof of Theorem 9.1. In order to stress the generality of this com
position, which is a generalization of the direct sum of modules, we describe 
it also for non-commutative operator domains. 

Let 331 and 332 be two A -modules, that is any two additive abelian groups 
with the ring A as right operator domain. We make no assumptions what
soever about chain conditions or about A ; in particular, we do not assume that 
A is commutative or has a unit element. Let 2Bi be a submodule of 33i and 
9ÏÏ2 a submodule of 332, where SBi and 3ÏÏ2 are isomorphic; let J" be an iso
morphism from 3Bi onto SB2. (Module, of course, always means A-module and 
isomorphism always means A-isomorphism.) We want to construct a new 
module 33 which, intuitively speaking, can be thought of as having been 
obtained by interlacing 331 and 332, where this interlacing is to be carried out 
by identifying the elements of 3Bi and 882 which correspond under / . Alge
braically, this means that we want 33 to have the following three properties. 

8.1 There exists an isomorphism I\ from 33i onto a submodule 33'i of 33 and 
an isomorphism 1\ from 332 onto a submodule 33 \ of 33. 

8.2 $ = (33'i, $ '2) . 

8.3 / / J\ is the contraction of I\ on 355i and J2 the contraction of I2 on 3B2, 
then 3Bi / i= aB2 /2= 3 3 ' i f W 2 and JxJrl= J-

(JiJ'T1 means first J\ and then Jf1. The term "contraction" is used in the 
usual sense; hence, if We 3Bi, then WJ\= WIi etc.) Observe that 8.3 says 
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that WiJi= W2J2, where Wi e 3381 and W2 e 3332, if and only if WiJ = W2, 
i.e., if and only if W\ and W2 correspond under J. Hence 8.3 states indeed 
that the interlacing of 3Si and 3S2 has been carried out by identifying the ele
ments of 338i and 33B2 which correspond under / . 

DEFINITION 8.1. Let 331 and 33 2 be two modules with respectively 3331 and 333 2 

as submodules and let J be an isomorphism from 3531 onto 333 2. Then, a module 33 
which satisfies conditions 8.1, 8.2 and 8.3 is said to have been obtained by inter
lacing 33i and 332. We call 3381 awd 3332 /&£ "laces'' and J the "lacing isomorphism1 ' 
and say that 331 and 33 2 were interlaced by lacing the laces 3331 and 333 2 together 
according to the lacing isomorphism J. 

We now prove the following theorem. 

THEOREM 8.1. Let 33i and 332 be two modules with respectively 33Bi and 3382 

as submodules and let J be an isomorphism from 3381 0ftfo 33B2. Then there always 
exists a module 33 which is obtained by interlacing 331 and 33 2, using 3331 awo7 333 2 

as Zaces awa7 J as lacing isomorphism. This 33 is unique except for isomorphisms. 
Conversely, if 33 is a module and 33'i and 33'2 are two submodules of 33 w&ere 
(33'i, 33'2) = 33, then 33 can always be obtained by interlacing any two modules 33i 
and 332 which are isomorphic with respectively 33'i and 33'2. 

Proof. We first prove the uniqueness of 33. Hereto, let 33i, 3381, 332, 33B2, / 
and 33 have the same meaning as in Theorem 8.1 and let Ji, 33'i, I2l 33'2, Ji and 
J2 have the same meaning as in conditions 8.1, 8.2 and 8.3. Then, since 
33 = (33'i, 33'2), every element F of 33 can be written a s F = 7 i i \ + V2I2, where 
Vi e 33i and 72 e 332. This representation of 7 is not unique, as the following 
statement indicates. 

STATEMENT 8.1. The equality V1I1+ V2I2= V1I1+ Vf
2I2, where Vi, V\e 

33i and V2, V2 e 332, is equivalent to the following two conditions: 

8.4 Vi- V'ie%&i and 7 ' 2 - 72eS332; 

8.5 (Vi- V\)J = 7 ' 2 - V2. 

We prove statement 8.1 by observing that 7 i l i + V2I2= V1I1+ V'2I2 is 
the same as (7 i — V\)Ii = (Vf

2— V2)I2. Since I i maps 33i onto 33\ and I2 

maps 332 onto 33'2, we conclude that ( 7 i - V\)h e JB'iO 33'2 and ( 7 ' 2 - V2)I2e 
33'in33'2. Consequently, it follows from 8.3, that 7 i - F'i € SESi and 7 ' 2 -
72e3332 which proves 8.4. We can then conclude that (7 i — 7'i)Ji = (7 i — 
V\)Ji and that ( 7 ' 2 - 7 2) / 2 = ( 7 ' 2 - V2)J2, which implies that ( 7 i - V'i)Ji = 
( 7 ' 2 - 7 2 ) / 2 and hence that ( 7 i - 7 ' i ) / i JV 1 = 7 ' 2 - V2. It then follows from 
condition 8.3 that (7i— V'i)J = 7 '2 — 72 which proves 8.5. Conversely, 
suppose that 8.4 and 8.5 are satisfied. We can then write for 8.5, (7i— 7'i)« 
/ ! / , - ! = 7 ' 2 - 72, hence ( 7 i - 7 ' i ) / i = ( 7 ' 2 - 7 2 ) / 2 , hence ( 7 i - F'i)Ji = 
( 7 ' 2 — 72)/2 , which shows that V\I\+ V2I2= V'\I\+ V2I2\ consequently, 
statement 8.1 is proved. 

The uniqueness of 33 now follows easily. Namely, suppose that 33* is also 
obtained by interlacing 33i and 332, using S38i and 33B2 as laces and J as lacing 
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isomorphism. Let I*i and J*2 have the same meaning for 33* as J i and I2 have 
for 33. We associate to the element V1I1+ V2I2 of S3, where Fi e 331 and 
F2e332 , the element Vil*i+ V2I*2 of 33* and we claim that this corres
pondence is an isomorphism from 33 onto 33*. In the first place, it is an imme
diate consequence of statement 8.1 that V1I1+ V2I2 = V1I1+ V'2I21 where 
Vh F ' i e33 iand V2l V2 e 332, if and only if Vil*i+ V2I*2 = V\I*i+V'iI*i; 
consequently, the correspondence is well defined and one-one. The fact that 
this correspondence is an isomorphism (A-isomorphism (!)) then follows triv
ially and hence the uniqueness of 33 is proved. 

We now prove the existence of 33. Hereto, let 33i, 3Bi, 332, 3B2 and J have 
the same meaning as in Theorem 8.1. We consider the pairs (Vu F2), where 
Vi € 331 and V2 € 332, and define the following equivalence relation for them. 

DEFINITION 8.2. Two pairs (Vu V2) and (V'u V'2), where Vu V\ e 33i and 
V2y Vf2 € 332, are equivalent if conditions 8.4 and 8.5 are satisfied: 

8.4 Vi- Vi e SBi and V2- V2 e 3B2. 

8.5 (Vi- V\)J = Vf
2- V2. 

(This definition of equivalence is indeed the natural one, as follows from state
ment 8.1 and the fact that the pair (Vu V2) corresponds to the element V1I1+ 
V2I2 of the module 33 which we are trying to construct.) It can be proved 
without the slightest difficulty that the equivalence relation of definition 8.2 
satisfies the conditions of reflexivity, symmetry and transitivity. The class of 
pairs which is equivalent to (Vu V2), where Vi e 33i and V2 e 332, is denoted 
by [Vu V2]; hence [Vu V2] = [V'u Vf

2] if and only if conditions 8.4 and 8.5 are 
satisfied. The elements of 33 are defined as these classes [Vu V2] of equivalent 
pairs. Addition of the elements [Vu V2] and [V'u Vf

2] of 33 and multiplication 
by elements a eA are defined by: 

8.6 [Vi, V2] + [V'u Vf
2] = [ F i + V'u V2+ V2]. 

8.7 [Vu V2]a = [Fio, Via]. 

The proof that definitions 8.6 and 8.7 do not depend on the representatives 
which are used for the classes [Vi, V2] and [V'u V'2] and that 33 is thus made 
into an A -module gives no difficulty whatsoever. We proceed to show that 33 
satisfies conditions 8.1, 8.2 and 8.3. Condition 8.1 is proved by observing that 
the mapping V\I\= [Vu 02], where Vi e 33i and 02 is the zero element of 332, is 
clearly an isomorphism from 33i onto a submodule 33'i of 33; in the same way 
V2I2= [Ou V2], where V2 e 332 and Oi is the zero element of 33i, is an isomor
phism from 332 onto a submodule 33'2 of 33. Condition 8.2 then follows from 
the fact that the arbitrary element [Vu V2] of 33 is the sum of V1I1 and V2I2: 

[Vu Vi] = [Vu O2] + [Oi, Vi] = V1I1+ Vili. 

In order to prove 8.3, we observe that SBi/i consists of the elements [Wu 02], 
where Wi e SBi, and 3B2/2 of the elements [Oi, W2] where W2 e 3B2. Since 
[WuOi] = [Oi, WiJ] we conclude that S B i / i S 3B2J2, while [Oi, W2] = [W2J-\ 
02] shows that 3B2 /2Ç 3BiJi; hence 3Bi / i= 2B2J2. An element F of 33 lies in 
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SB'iOSS^ if and only if it can be written as V = [Vu 02] = [Oi, V2], where 
Fie33i and F2 e 332. This implies that V\ e 3Bi and hence that F e S B i / i ; 
consequently, 33'in 33'2Ç 3Bi/i. Conversely, if 7eSBi / i , then 7 = |Wi> 
O2] where T7i € 3381. This already proves that V e 33ri and hence that SBiJiÇ 
33V Since, furthermore, [Wu 02] = [Oi, WiJ] e 33V we conclude that 281/1 = 
SS'iPl 33'2 and hence that SB 1/1= 3B2/2 = SS'iO « V Finally, if flV € 3Bi, then 
WiJiJf1= [Wi,02]J2-1= [0i1WiJ]J2~

1= WiJ which proves that JJ^^J-
hence 8.3 is fully proved. In order to prove the last part of Theorem 8.1, let 33 
be a module which has two submodules 33\ and 33'2 such that 33 = (33V $$'2). 
Let 331 and 332 be two modules which are isomorphic with respectively 33'1 and 
33V Let I\ be an isomorphism from 331 onto 33'1 and 12 an isomorphism from 
332 onto 33V Let S38i be the submodule (33\n S ' ^ / r 1 of 33i and let 3B2 be , 
the submodule (33'in SS^)^""1 of 332. Let J i be the contraction of Ii on 333i 
and J2 the contraction of 12 on 3552. Since Ji and J2 map respectively 3381 and 
3B2 onto 33'iO 33V the isomorphism J = J i J 2

_ 1 is a well-defined isomorphism 
from 3381 onto 3B2. We claim that if we interlace 33i and 332, using 3381 and 3332 

as laces and J as lacing isomorphism, we obtain a module 33* which is iso
morphic with 33. We can consider the elements of 33*, as above, as the classes 
[Vi, V2] of equivalent pairs, where Vi e 331 and V2 € 332. If then we associate 
to the element [Vu V2] of 33* the element V1I1+ V2I2 of 33, we clearly obtain 
an isomorphism (A-isomorphism!) from 33* onto 33. This completes the proof 
of Theorem 8.1. 

REMARK 8.1. If we interlace two modules 33i and 332, using the zero 
modules of 33i and 332 as laces, we obtain the usual direct sum of 33i and 332. 
Hence the interlacing of modules can be considered as a generalization of the 
direct sum of modules. 

The following statement and lemma will be used in the next section. 

STATEMENT 8.2. Let 331 and 332 be two A-modules with respectively 3381 and 
3382 as submodules. Let 333i and 3382 be A-isomorphic and let J be an isomorphism 
from 3381 onto 338 2. Let 33 be obtained by interlacing 331 and 33 2, using 3331 and 338 2 
as laces and J as lacing isomorphism. Then, if Ilt iV 33'i and 33̂ 2 have the same 
meaning as in conditions 8.1, 8.2 and 8.3 and if V\ and V2 denote elements of 
respectively 33i and 332: 

8.8 F1/1+ V2I2 e 33'i if and only if V2 e 3B2; 
V1I1+ V2I2 e 33'2 if and only if Vi e S38i. 

8.9 V1I1+ V2I2 e 33'ifï 33'2 if and only if 

Vi e 338i and V2 e S332. 

Proof. If V1I1+ F2/2€33 ,i , then V1I1+ V2h= V\h+ 02/2 , where V\e 
33i and 02 is the zero element of 332. Statement 8.1 then implies that V2 e 3382. 
Conversely, if V2 e 3382, that same statement implies that V1I1+ F272 = (Vi+ 
F 2 / _ 1 ) ^ i+ 02/2 € 33\ and hence the first part of 8.8 is proved. The second 
part of 8.8 is proved in the same way while 8.9 is an immediate consequence 
of 8.8. 
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LEMMA 8.1. Let 231 and 332 be two A-modules with respectively cti and a 2 as 
annihilators. Let 281 be a submodule of 231 and SB 2 a submodule of 23 2, ^iWe 
SBi awrf 2S$2 are A-isomorphic. Let J be an isomorphism from SBi onto 2B2. r&e 
module 23, wfoVA is obtained by interlacing 251 and 232 wsiwg SBi awa* 2B2 as laces 
and J as lacing isomorphism, has a iO G2 as annihilating ideal. If furthermore 231 
and 232 feaz>e respective finite lengths fa and fa and hence $Bi and 2B2 have the common 
finite length, say X, then 23 has finite length I = / i + /2— X. 

Proof. (A module is said to have finite length if it has a composition series 
of finite length.) We know that 23 = (23'i, S?^) and hence that the annihilating 
ideal a of 23 is the intersection of the annihilating ideal ct'i of 23'i and ar2 of 23r2-
The fact that 23'i is isomorphic with 23i and 23r2 with 232 implies that a \ = cti 
and a;2= ct2 and hence that a = aiOct2. Now suppose that 23i and 232 have 
respective finite lengths fa and /2 and that the common length of SBi and 2B2 is X. 
Then 23'i and 23r2 have respective finite lengths fa and fa and, since property 
8.3 implies that SS'ifl S5'2 is isomorphic with 2Bi and 2B2, the module 2 3 \ n 23'2 

has finite length X. The difference module 23 — 23'i satisfies the relation 
23 - 23,i = (23'i, 23 ,

2 ) - 23\= 23 r
2 - 23,iH25,2, which implies that 23 has finite 

length I, where I — h= fa— \ and hence I = fa+ fa— X. This completes the 
proof of lemma 8.1. 

REMARK 8.2. It is interesting to note that lemma 8.1 implies that the 
annihilating ideal of the module 23, obtained by interlacing 23i and 232, does 
not depend on the laces and lacing isomorphism used ; it depends only on the 
annihilating ideals of 231 and 232- In particular, lacing always produces a 
faithful representation from two faithful representations. The length of 23 
depends on the length of the laces, but not on the lacing isomorphism. 

In the next section we investigate only those properties of interlacing which 
are needed for the proof of Theorem 9.1. The author believes, however, that 
a systematic investigation of interlacing would be worth while. 

9. The faithful, completely indecomposable representation space of a 
completely primary ring. We now return to the study of modules with 
commutative operator domains. All notations and conventions will be the 
same as in the first seven sections of this paper. Hence the term module will 
be used only for A -module where A is always a commutative ring with unit 
element and where condition 1-1 of the introduction is assumed to hold. 
Isomorphism always means 4-isomorphism and, as before, the radical of the 
annihilating ideal of a module is called the radical of the module. The following 
corollary is an immediate consequence of lemma 8.1 and the fact that the 
radical of the intersection of two ideals is the intersection of the radicals of 
these ideals. 

COROLLARY 9.1. Let 231 and 232 be two A-modules with respectively t i and X2 
as radicals. Then, if 23 is obtained by interlacing 23i and 232, no matter what 
laces and lacing isomorphism are used, the radical of 23 is tiPl V2. 
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Since the proof of Theorem 9.1 depends on interlacing by means of lacing 
isomorphisms which are not ''extendable," we discuss the notion of extendable 
isomorphisms in the following definition and lemma. We remind the reader 
of thef convention that the symbol C is used exclusively for proper inclusion. 

DEFINITION 9.1. Let 23i and 932 be two A-modules with respectively 22Bi and 
23B2 as submodules. Let 228i and SB2 be A-isomorphic and J an isomorphism from 
223i onto 282. Then J is called extendable if the following two conditions are 
satisfied. 

9.1 There exist submodules 23B'i and 223'2 of respectively 3Si and 3S2, where 
SBiC 2B'i and 22S2C SB's, 

9.2 J can be extended to an isomorphism J' from 223'i onto 223'2. 
It is clear that, if 331 and 332 are not-isomorphic ^4-modules with 3331 and 23B2 

as respective maximal submodules, then any isomorphism from 3331 onto 2332 
is not extendable. 

LEMMA 9.1. Let 231 and 232 be two A-modules with respectively 3331 and 3332 
as submodules. Let 333i and 3232 be A-isomorphic and J an isomorphism from 
2331 onto 2332. Then J is extendable if and only if there exist elements V\ e 231 
and V2 e 232, where: 

9.3 Vi not e 233i and V2 not e 2332. 

9.4 3331: F i = 3332: F2; we dewate this ideal by c. 

9.5 (Viy)J = Wyjfor a// 7 € c. 

Proof. (The quotient of modules is defined as before. The quotient 3331: V\ 
of a module 3331 by an element V\ is defined as the quotient of 2331 by the cyclic 
module generated by Vi. Consequently, Fry e 233i and F27 € 2332 for all 
7 € c, and hence condition 9.5 makes sense.) Let 23i, 3331, 232, 2332 and / have 
the same meaning as in lemma 9.1 where J is extendable. Let 233'i, 233'2 and J' 
have the same meaning as in definition 9.1. Then, because of condition 9.1, 
we can choose an element Vi e 23B;i where Vi not € 2231. We denote V\Jf by V2 
and claim that Vi and V% satisfy conditions 9.3, 9.4 and 9.5. In the first place 
J' is an extension of J and 23Bi/ = 2332; hence Vi not e 23Bi implies F2 not e 2332 
and 9.3 is satisfied. Secondly the module (3331, Fi), generated by 23Bi and Vi, is 
mapped isomorphically onto (2332, V2) by Jf while 23Bi/' = SBi/ = 23B2. This 
implies, since we are dealing with operator isomorphisms, that 228i:(23Bi, Vi) = 
23B2:(23B2, F2). This, however, is exactly condition 9.4 since 23Bi:(23Bi, Vi) = 
233i:23BiPl233i: 7 i = 23iPl23Bi: F i = 23Bi: Fiandinthesamewayrf2382:(2352, F2) = 
2332: V2. Finally, since J' is an operator isomorphism, (Fry)J7 = (ViJ')y = F27. 
If furthermore 7 € c = 23Bi: Fi, then F17 e 233i and hence (Viy)J' = (F17)/ , 
from which we conclude that (V\y)J = F27, which proves 9.5. Conversely, 
let 23i, 22Bi, 232, 2382 again have the same meaning as above where now / is any 
^4-isomorphism from 23Bi onto 23B2. We assume that there exist elements 
Vi € 93i and F2 e 232 which satisfy conditions 9.3, 9.4 and 9.5 and prove that 
then J is extendable. We choose 333'i= (323i, Vi) and 32B'2 = («Ba, V%) and con-
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sequently, as follows from 9.3, condition 9.1*is"satisfied. Furthermore, J can 
be extended to an isomorphism J' from SB'i onto 28'2 by defining: 

(Wi+ Via) J' = WiJ + V2a, for Wi e SBi and a e A. 
In order to show that this mapping Jf is well defined, let Wi+ Fia = W'i+ Fia', 
where Wi, TTie3Bi and a, a' eA. Then Wi- W\= F i ( a ' - a) and conse
quently a'— a e SBi: Vi= c. Condition 9.4 then gives that V2(a

f'— a) € 2B2 

and 9.5 that ( 7 i ( a ' - o))J = F 2 ( a ' - a). This proves that WiJ -W\J = 
( W i - W"i)/ = V2a'- V2a and hence that WiJ + V2a = W\J + F2a'; con
sequently, J' is well defined. It is trivial to show that J' is a homomorphism 
from SB'i onto 333'2. We now prove that the zero element Oi of 2B'i is the only 
element of 3B'i which is mapped by J' on the zero element 02 of $B'2. Hereto, 
let (Wx+ Via)J'= 02, where Wi€3Bi and aeA. Then WiJ + V2a = 02 

and hence WiJ = — V2a which shows that ae3B 2 : V2= c. It then follows 
from conditions 9.4 and 9.5 that Fia e 3Bi and (Via)J = F2a. We conclude 
that WiJ +(Via)J = (PFi+ Via) J = 02 and hence, since J is an isomorphism, 
that Wi-\- Via = Oi. This completes the proof of lemma 9.1. 

The usefulness of the notion of extendable isomorphism for interlacing is 
apparent from the following lemma and its corollaries. 

LEMMA 9.2. Let 331 and 332 be two A-modules with the same radical p, where p 
is a maximal prime ideal of A, Let Oi and 02 be the zero elements of 931 and 332 

and let 3Bi be a submodule of 331 and 3B2 a submodule of 332, where Oi: p C 3Bi 
awd 02: p C 3B2. L ^ J be a not-extendable isomorphism from SBi 0W/0 9B2 and 
let 33 6e obtained by interlacing 331 and 33 2, using 2Bi and 3B2 as /aces and J as 
lacing isomorphism. Then, if 0 is the zero element of 33 and if 33'i and 33'2 toe 
the customary meaning of definitions 8.1, 8.2 and 8.3: 

9.6 The radical of 33 is p. 

9.7 0 : p Ç 3 3 ' i n 2 5 V 
9.8 27ze //^£e modules 0 : p, Or. p and 02: p are isomorphic. 

Proof. It is always true, according to corollary 9.1, that, if two modules 
with the same radical p are interlaced, the resulting module has as radical 
pPlp = p; hence 9.6 is proved. Furthermore, since J is an operator iso
morphism and since Oi: p C SJBi and 02: p C 2B2, the module Oi: p is mapped 
by J onto 02: p and hence Oi: p is isomorphic with 02: p. In order to prove 9.7 
and to prove that Oi: p is isomorphic with 0 : p, let Ji, I2, Ji and J2 have the 
meaning of definitions 8.1, 8.2 and 8.3. Hence 33i/i= 33'i and 332/2= 33'2 and 
the elements of 33 can be written as V1I1+ V2I2l where Vi e 331 and V2 e 332. 
We now prove the following statement. 

STATEMENT 9.1. The element V1I1+ V2I2 of 33, where Vi e 331 and V2 e 332, 
belongs to 0 : p if and only if the following two conditions are satisfied: 

9.9 Vi e Sffii and V2 e 3B2. 

9.10 ViJ + F 2 e 0 2 : p . 
Suppose that conditions 9.9 and 9.10 are satisfied. Then, for any ir e p, cer-
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tainly Vnr e 2Bi and — F27r e 2B2 and ( F u r ) / = — F2TT. This is, according 
to statement 8.1, equivalent with (V1I1+ ^2/2)^ = O1J1+ 02i"2= 0 and hence 
V1I1+ F 2 /2€0 :p. Conversely, let Vih+ V2I2 e 0 :p ; i.e., for any T e p, 
(Fi7r)/i+(F27r)/2= O1/1+ O2/2. Again, this is equivalent with Fi7r e 2Bi and 
— F27r € 2B2 and (Fi7r)7 = — F27r for all 7r € p. Hence we have the following 
statement. 

STATEMENT 9.2. If V1I1+ V2I2 e 0 : p, then 

9.11 Fi€«Bi:p and F2€2B2 :p; 

9.12 ( F u r ) / = - F2TT jfor all TT e p. 

We first conclude that either condition 9.9 is satisfied or simultaneously Vi not € 
2Bi and F2 not e SB2. Hereto, let Fi e 2Bi which implies that ViJ is defined and 
hence that (VIT)J = (VIJ)T. Condition 9.12 then states that (ViJ + V2)T = 
02 for all T e p, i.e., that V\J + F2 e 02: p. Consequently, since 02: p C £82 
and V\J e 2B2, we see that F2 € 2B2. We show, in the same way, that if 
F2 e SB2 then V\ e SBi and hence the conclusion is proved. Secondly, we show 
that Vi not € 231 and F2 not e 232 contradicts the hypothesis that J is not 
extendable. If V% not € SBi, then SBuFi^ i l , while 9.11 implies that p C SBi:7i; 
hence, since p is maximal, p = 2Br.Fi. In the same way, F2 not e 2B2 implies 
that p = 2B2: F2. Consequently, if Vi not e 2Bi and F2 not e 2B2, conditions 9.3, 
9.4 and 9.5 are satisfied for 2Bi, 2B2, Fi, — F2 and / ; and / i s extendable. This 
proves that 9.9 is satisfied while, as was pointed out above, 9.12 becomes 9.10 
when 9.9 is satisfied. Hence statement 9.1 is completely proved. It then 
immediately follows from conditions 9.9 and 8.9 that 0 : p .C 33'iO 23V Hence 
9.7 is proved and all there remains to be shown is that 0i: p is isomorphic with 
0 : p. We prove this fact by showing that Ii maps 0i: p onto 0 : p; i.e., that 
(0i: p ) / i= 0 : p. If F e 0 : p, then F = V1I1+ V2I2 where 9.9 and 9.10 are 
satisfied. Then F ^ " 1 is defined and hence F1/1+ F 2 / 2 = ( F 1 + V2J-1)Ii+ 
O2I2. Condition 9.10 states that F i + F 2 / - 1 e 0 i : p and hence F e (On p)/i 
which proves that 0 : p C(0i : p)/i. Conversely, if F = VJi+ F 2 / 2 e (0i: p)Iu 

where Vi e 2Si and F2 e 252, then V1I1+ F272= F / i / i + 0 2 / 2 , where V\e 
0i:p. This implies that Vi~ F'i e 2Bi and - F2 e 2B2 and ( F i - V\)J = 

— F2. Since V'i e Oi: p C 2Bi, we see that V\ e 2Bi and 9.9 is proved. Further
more, ( F i - V\)J = -V2 implies that ViJ + F2 = F ' I J , while F ' ieOi ip 
implies that V\J e 02: p. Hence 9.10 is satisfied, which shows that (0i: p)IiQ 
0 : p and hence that (0i: p ) / i= 0 : p. This completes the proof of lemma 9.2. 

If 23 is an A -module of finite length with radical p and zero element 0, the 
length of 0 : p is usually referred to as the first Loewy invariant of 23. The 
importance of lemma 9.2 lies in the fact that it states a condition for the 
invariance of this Loewy invariant under interlacing. The following imme
diate corollary of lemma 9.2 formulates this invariance explicitly. 

COROLLARY 9.2. Let 23i and 232 be two A-modules of finite length. Let 23 
be obtained by interlacing 231 and 23 2 where the radicals of 231 and 23 2, the laces\ 
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and the lacing isomorphism satisfy the conditions of lemma 9.2. Then, 251, 232 
and 23 have the same first Loewy invariant and the same radical. 

We know that a module 23 of finite length is completely indecomposable if 
and only if its first Loewy invariant is equal to one. Furthermore, the radical 
p of a completely indecomposable module 23 is always a maximal ideal and 
every non-zero submodule of 23 always contains 0 : p. This proves the fol
lowing simple and important corollary on interlacing of completely indecom
posable modules. 

COROLLARY 9.3. Let 23i and 232 be two completely indecomposable A-modules 
with the same radical p. Let 23 be obtained by interlacing 231 and 232, using non
zero laces and a not-extendable lacing isomorphism. Then 23 is completely inde
composable and has radical p. 

REMARK 9.1. We can see from the following that we can not omit the 
condition that the lacing isomorphism is not extendable from corollary 9.3 
(and hence not from corollary 9.2 and lemma 9.2). Choose for the 23i and 232 
of corollary 9.3 one and the same completely indecomposable A -module 23i 
of length / i> 1 and with qi as annihilating ideal; hence 23i= 232 and, according 
to lemma 2.1, the length of qi is also l\. Let 2Bi be a maximal submodule of 231 
and let / be an A -automorphism from SBi onto itself; then 2Bi has length 
li— 1 > 0 and hence is not the zero module of 231 and, according to corollary 
3.1, J is extendable to an automorphism from 23i onto 23i. Let 23 be obtained 
by interlacing 23i with itself, using SBi as both laces and / as lacing isomor
phism. Then, all the conditions of corollary 9.3 are satisfied except that / is 
extendable, while we can see as follows that 23 is not completely indecompos
able. According to lemma 8.1, the length of 23 is h+ h— (h— 1) =h+ 1 
and the annihilating ideal of 23 is qi Pi qi = qi. Consequently, since qx has 
length h, it follows from lemma 2.1 that 23 is not completely indecomposable. 

We have now developed the theory of interlacing far enough to prove 
Theorem 9.1. Before doing this, however, we give one example of interlacing 
in order to demonstrate the power of this composition for the construction of 
counterexamples. 

EXAMPLE 9.1. We know that the length of any completely indecomposable 
module and of any cyclic module is always equal to the length of its annihilator. 
We counterexample the converse of this statement by constructing an A -module 
23 which has the following properties. 

9.13 23 satisfies the properties 1-1, 1-2 and 1-3 of the introduction. 
9.14 The zero element of 23 is a primary module of 23 and the radical of 23 

is a maximal ideal of A. 
9.15 23 is indecomposable. 
9.16 The length of 23 is equal to the length of its annihilator. 
9.17 23 is neither completely indecomposable nor cyclic. 

We do this by choosing a Noetherian ring^l with unit element (i.e., a commu-
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tative ring with unit element whose ideals satisfy the ascending chain condi
tion) and two ideals qi and q2 in A which have the following properties. 

9.18 qi7^ q2 and qi and q2 are primary ideals with the same maximal asso
ciated prime p. 

9.19 The difference modules SSi = A — c\i and 3S2 = A — q2 both have finite 
length equal to 3. 

9.20 q n p = q 2 :p = p. 

9.21 q i n q 2 = p2 and the length of the difference module A — p2 is equal 
to 4. 

We then have in 351 and 35 2 two A -modules of finite length 3 with the same 
maximal radical p, while qi and q2 are the annihilating ideals of respectively 
35i and 352. Consequently, since q i ^ q2, 35i and 352 are not isomorphic. Further
more, if 0i and 02 denote the zero elements of respectively 35i and 352, property 
9.20 implies that both modules 8Bi = 0i: p and 882= 02: p have length 2; hence 
the first Loewy invariant of both 851 and 852 is 2 and 3Bi and 882 are maximal 
submodules of respectively 85i and 852. Furthermore, 3Bi and 8B2 are iso
morphic since each of these modules is isomorphic with the direct sum A — p + 
A — p. Let / be any fixed isomorphism from 2Bi onto 8B2; then, according to 
the sentence following definition 9.1, / is not extendable. We claim that the 
module 85 which is obtained by interlacing 85i and 852, using 3Bi and 8B2 as 
laces and J as lacing isomorphism, has the required properties. In the first 
place, it follows from lemma 8.1, that 85 has length 3 + 3 — 2 = 4 and that 
the annihilating ideal of 85 is qiPiq2= p2 which, according to 9.21, also has 
length 4 ; hence 9.13 and 9.16 are satisfied. Furthermore, according to corollary 
9.1, the radical of 85 is equal to p C\ p = p which, since p is maximal, implies 
that the zero module of 85 is primary and hence 9.14 is proved. In the second 
place, since the conditions of corollary 9.2 are satisfied, the first Loewy in
variant of 85 is 2 and hence 85 is not completely indecomposable. If 85 were 
cyclic, 35 would be A -isomorphic with the difference module A — p2. This is 
not possible since 85 contains two distinct maximal submodules 35'i and 35'2 

which are isomorphic with respectively A — q± and A — q2, while A — p2 has 
the unique maximal submodule p — p2; hence 9.17 is proved. In order to 
prove 9.15, suppose that 35 = %i+ 2I2, where Sti and %2 are non-zero sub-
modules of 85. Then, either 2li has length 1 and 2t2 has length 3, or both 3li 
and 2l2 have length 2. We can easily see that in both cases, since 2Ii O 2Ï2 = 0, 
the modules 2li and SI2 have to be completely indecomposable. Hence, if ai 
and ct2 denote the annihilating ideals of respectively ?ti and 2I2, the lengths of 
cti and a2 are equal to those of 2li and §l2. This, together with the facts that 
<U and ct2 are primary ideals with p as associated prime and that p2= cti O ct2, 
leads easily to a contradiction ; hence 9.15 is proved. We can choose for A the 
ring A = K[x, y, z] which consists of the polynomials in three variables x, y 
and z with coefficients in the field K\ and for q% and q2 we can choose respec
tively the primary ideals qx = (x, y2, yz, z2) and q2 = (x2, y, xz, z2) of A, Then, 
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x not € q2 and hence CJIT^ q2, while the common maximal associated prime ol qi 
and q2 is p = (x, y, z) ; hence 9.18 is satisfied. We easily prove that qi D q2 = 
(x2, y2, z2, xy, xz, yz) = p2 and that the following two sequences are both com
position series from p2 to A : 

0 2 C q i C ( x , ^ s 2 ) C p C i , 
tfCc\2C(x,y,z2)C$CA. 

This implies both 9.21 and 9.19. Finally, since p2C qi, we have p C qx: p, 
while qi: p C p follows from the fact that qi: p is primary and has p as asso
ciated prime. Hence p = qi: p and, in the same way, p = q2: p, which proves 
9.20 and completes example 9.1. 

The proof of Theorem 9.1 uses the following simple fact of Noetherian rings 
A with unit element. (If q is an ideal of A, a proper divisor qi of q is of course 
called a minimal divisor of q, if there exists no ideal a such that q C et C qi-) 

LEMMA 9.3. Let A be a Noetherian ring with unit element and let q be a 
primary ideal of A with maximal associated prime ideal p. Then, either q is 
intersection-irreducible, or q has two distinct minimal divisors qi and q2. In the 
latter case, qi and q2 are always primary ideals with p as associated prime, while 
q = qi H q2', furthermore, (qi, q2) is then a common minimal divisor of qi and q2 

and is also primary with p as associated prime. 

Proof. We know that, since p is maximal, every divisor of q, except A, is 
primary and has p as associated prime and that 33 = A — q has finite length. 
If q is not intersection-irreducible, 33 is not completely indecomposable and 
hence 33 has then at least two distinct minimal submodules 2Bi and 3B2. 
Consequently, $Bin3B 2 = 0 and (3Bi, 3B2) is a common minimal divisor of 
3Bi and 3B2. The lemma then follows immediately from considering the ideals 
qi, q2 and (qi, q2) which are mapped onto respectively 3Bi, 3B2 and (3Bi, 3B2) 
by the natural operator-homomorphism from A onto 4̂ — q. 

THEOREM 9.1. Let A be a Noetherian ring with unit element. Let q be a 
primary ideal of A with maximal associated prime ideal p. Then there exists a 
completely indecomposable A-module 33 with q as annihilator. 

Proof. If the length of q is 1, then q = p and A — q is a completely inde
composable A -module with q as annihilator. Hence we can make the induction 
hypothesis that Theorem 9.1 has been proved when q has length 1, 2, . . . , I— 1. 
(The length of q is the length of A — q.) Suppose that q has length I. If q is 
intersection-irreducible, A — q is a completely indecomposable A -module (see 
example 7.2) with q as annihilator. If q is not intersection-irreducible then, 
according to lemma 9.3, q = qi Pi c\2 where qi and q2 are primary ideals with p 
as associated prime and I — 1 as length. The induction hypothesis then guar
antees the existence of two completely indecomposable A -modules 33i and 332 

with qi and q2 as respective annihilators. The modules 33i and 332 have the 
same radical p since p is the common associated prime of qi and q2, while 33i 
and 332 are not isomorphic since <\\^ q2. Furthermore, it follows from sec. 2 
and the fact that (qi, q2) is a common minimal divisor of qi and q2, that 33i and 
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9S2 contain non-zero maximal submodules SBiCSSi and SB2CSS2 which both 
have (qu q2) as annihilator. Hence 2Bi and 2B2 are completely indecomposable 
-4-modules with the same annihilator, which implies, according to Theorem 
5.1, that 2Bi and S332 are isomorphic. Let J be any fixed isomorphism from 
2Bi onto 2B2 and let S3 be the A -module which is obtained by interlacing SSi 
and S82, using 2Bi and SB2 as laces and J as lacing isomorphism. We claim that 
93 has the required properties. In the first place, it follows from lemma 8.1 
that the annihilating ideal of 93 is qi Pi q2 = q. In the second place, since SBi 
and 9B2 are maximal submodules of the not-isomorphic modules 931 and 932, / 
is not extendable. Hence all the conditions of corollary 9.3 are satisfied which 
proves that 93 is completely indecomposable. This completes the proof of 
Theorem 9.1. 

COROLLARY 9.4. Every completely primary ring A with unit element whose 
ideals satisfy both chain conditions has a faithful, completely indecomposable 
representation space. 

Proof. The zero ideal of A is primary and has a maximal associated prime 
ideal. Hence this zero ideal can be used as the q of Theorem 9.1 which proves 
corollary 9.4. 

REMARK 9.2. Let A be a completely primary ring with unit element which 
is at the same time an algebra of finite rank with respect to a field. Then the 
dual vector space of the regular representation of A defined in [8], p. 558, 
coincides with the faithful, completely indecomposable representation space 
of corollary 9.4. (See example 7.3.) There is no doubt that, if A is not an 
algebra, the faithful, completely indecomposable representation space of corol
lary 9.4 must be considered as the correct generalization of the dual vector 
space of [8]. Now, let A be any commutative ring with unit element whose 
ideals satisfy both chain conditions. Let 0 be the zero ideal of A and let 
0 = q i O . . .H (\s be the Noether decomposition of 0. The regular represen
tation space of A is the direct sum of the difference modules A — q i+ . . . + 
A — q5; and the ideals qi, . . . , qs satisfy the requirements of Theorem 9.1. 
Then, if 93i, . . . , 93s denote the completely indecomposable ^4-modules with 
respectively qi, . . . , qs as annihilators, we define the direct sum 93i+. . -+938 
as the dual vector space of A. It follows from lemma ll-B of [8], p. 559, that, 
if A is an algebra of finite rank with respect to a field, this dual vector space 
coincides with the dual vector space of the regular representation of A as 
defined in [8]. Again there is no doubt that, if A is not an algebra, the above 
definition of dual vector space is the correct generalization of the dual vector 
space of [8]. 
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