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SPHERICAL SUBMANIFOLDS WHICH ARE OF 2.TYPE
VIA THE SECOND STANDARD IMMERSION
OF THE SPHERE

MANUEL BARROS AND BANG-YEN CHEN

§1. Introduction

Let S™(r) be an m-sphere of constant sectional curvature 1/r* and M
an n-dimensional compact minimal submanifold of S™(r). If S™(r) is im-
bedded in E™*!' by its first standard imbedding, then, by a well-known
result of Takahashi [11], the Euclidean coordinate functions restricted to
M are eigenfunctions of 4 on M with the same eigenvalue n/r’. Moreover,
the center of mass of M in E™"' coincides with the center of the hyper-
sphere S™(r) in E™*'. Thus, M is mass-symmetric in S™(r) c E»*'. Con-
sequently, we see that if one wants to study the spectral geometry of a
submanifold of S™(r), it is natural to immerse S™(r) by its k-th standard
immersion, in particular, by its second standard immersion.

In [9], A. Ros has used this idea to study compact minimal submani-
folds of S™(r) via the second standard immersion. In [9], he obtained a
formal characterization of a compact minimal submanifold M, fully in S™,
such that the Euclidean coordinate functions restricted to M via the second
standard immersion f of S™ are described by means of two different
eigenvalues of 4, i.e.,, M is of 2-type via f. He showed that such sub-
manifolds are Einstein and mass-symmetric via f. However, he did not
obtain any classification result for such submanifolds.

In this paper, we study compact submanifolds of a sphere which are
mass-symmetric and of 2-type via the second standard immersion of the
sphere. In Section 3, we obtain a generalization of Ros’ characterization
(Lemma 1). Some primary classifications are obtained in this section
(Theorems 1 and 2). In Section 4, hypersurfaces of a sphere which are
mass-symmetric and of 2-type via f are completely classified (Theorem 3).
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In Section 5, submanifolds of S™ with “maximal possible” codimension
are studied. In the last section, results in previous sections are applied
to obtain a classification theorem of compact surfaces of S™ which have
the desired properties via f.

§2. Basics

Let x: M — E™ be an isometric immersion of a compact, connected,
n-dimensional, Riemannian manifold M into a Euclidean m-space. Denote
by Spec(M) = {0 =2, <2 <--- <2 <--- 1 oo} the spectrum of 4 acting
on differentiable functions in C=(M). If we extend the Laplace-Beltrami
operator 4 to E™valued functions on M in a natural fashion, then, we
have the following spectral decomposition of x (in L’-sense) (cf. [1, 3, 5,
6, 9]):

2.1) x = x, + f: x,, dx, = A,x,, x,: M—> E™,
t=1

where x, is the center of mass of M in E™. The submanifold M is said
to be of finite type if the spectral decomposition of x consists of only
finitely many nonzero terms. More precisely, M is said to be of k-type
if there are exactly k nonzero x,’s (¢ > 1) in the decomposition of x ([5, 6]).

From the Takahashi Theorem [11] we know that M is of 1-type if
and only if M is a minimal submanifold of a hypersphere S™-'(r) of E™.
In this case, M is mass-symmetric in S™"!(r) C E™, i.e., the center of mass
of M in E™ coincides with the center of S™-!(r) in E™ (cf. [6]).

Let x : M — E™ be a 2-type submanifold with mean curvature vector
H. Then we have

(2.2) X =%+ X, + x,, Adx, = ,x,, dx,= 2%,
for some integers p, ¢ (¢ > p =1). Since 4dx = — nH, (2.2) implies
(2.3) AH = bH + e(x — x,),

where b = 1, + 2, and e = 2,2,/n.

On E™ we consider an inner product {,) given by <{u,v) = u-v* for
any u,ve€ E™, where each vector in E™ is regarded as a row matrix and
v* is the transpose of v. Let r>0. Then the sphere S™'(r) = {xe E™|
{x, x) = r*} with the induced metric has constant sectional curvature 1/r%
Let SM(m) = {Pegl(m; R)|P' = P} be the space of symmetric m by m
matrices over R endowed with the metric g(P, @) = (1/2r")tr(PQ) for
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P, Q e SM(m). Consider the mapping [:S™r)— SM(m -+ 1) defined by
f(w) = u'-u. Then f is an isometric immersion which is in fact the second
standard immersion of S™r). The image f(S™(r)) is a real projective space
which lies fully in an (m + m(m + 1)/2)-dimensional linear space of
SM(@m 4+ 1). We call f(S™(r)) a Veronese submanifold.

For each point ue S™(r), the normal space of S™(r) in SM(m + 1)
at u (or more precisely at f(w)) is given by

(2.4 THS™r)) = {PeSM(m + 1)|uP = pu for some pe R}.

In particular, we have f(u) e Ti(S™(r)).
If 7 is the second fundamental form of f, we have

(2.5) FX, Y)=X"Y+ Y X~ @2r)X Y)[(w)
for X, Y in T,(S™(r)). It is known that & is parallel and it satisfies

2.6) g@E(X, Y),a(V, W) = Ur)KX, YV, W) + (X, V)Y, W)
+ (X, W)Y, V)1,

@7 8@(X, Y),f(w) = - (X, Y), g@(X,Y),I)=0,

(2.8) AV = AMAX, YOV + (X, V)Y + (¥, V)X},

where A is the Weingarten map of f, X, Y, V, We T,(S™(r)), and I the
identity matrix.

It is known that S™(r) is immersed by the second standard immersion
[ as a minimal submanifold of a hypersphere of SM(m + 1) centered at
r*I/(m + 1) and with radius (r’m/2(m + 1))'*. For more details, see [6,9,
10].

In the following, we simply denote S™(1) by S™

§3. Submanifolds of $™ which are of 2-type via f

Let «» : M — S™ be an isometric immersion of M into S™ We denote
by ¢/, H” and A the second fundamental form, the mean curvature vector
and the Weingarten map of v, respectively. Denote by V and 7 the Levi-
Civita connections on M and S™, respectively, and by D the normal con-
nection of 4.

We consider the isometric immersion x : M — SM(m 4 1) defined by

x=fop: M5>S L\ SMm +1).

Then the mean curvature vector H of x satisfies
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(3.1) H=H + —}L—Z #(E, E),

i=1

where H’ is identified with the image f,H’ of H’ under f, and E,, -- -, E,
is an orthonormal frame tangent to M.

Let u be an arbitrary point in M. We may assume that J=0
at u. We compute 4H’ at u.

UH) () = — z E,EH

= S P An e + 3By Ay E) ~ Py Dy H'
- 6<Ei, DEiH/) + Zﬁ(Ei, H’)Ei - EE'LG:(E‘“ H,)} )

where D denotes the normal connection of f. By applying (2.8) and the
fact that  is parallel, we find

(32  (UH)(w) = 4°H' + tr(WAy) + 30" (E;, A E) + 25 0(E,, Ay Ey)
— 23, 6(E;, Dg,H') + nH' — na(H’, H')

where 4” is the Laplacian with respect to the normal connection D and
(3.3) tr(ﬁAH') =2V An)E; + 2] ADE,-H'Ei .

For each point u in M, we choose an orthonormal basis {§,,,, - -+, .}
of the normal space of M is S™ at u such that &,,, is parallel to H’ at
u (if H” = 0 at u, any orthonormal frame satisfies this condition). Simply
denote A, (r=n+1,..--,m) by A,. We have

n

(34 2,0 (B, ApE) = A, . [H + A'(H')

=1

where W(H') = > ™, tr(Ay-A)E, is the so-called allied mean curvature
vector of M in S™. It is clear that if H' = 0 at u, then W/(H') = |A,,,[H’
=0 at u. It is easy to see that W(H’) and both sides of (3.4) are inde-
pendent of the choice of &,,,, - - -, &, such that &,,, is parallel to H’. By
combining (3.2) and (3.4) we obtain

(3.5) (4H')(u) = A°H' + tr (FA,) + (A, ..} + n)H' + W(H)
+ 23 6(E, Ay E) — 2 X 5(E, Dy H') — na(H', H').

On the other hand, from (2.6), (2.7) and parallelism of &, we have
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i"(i 3(E., Ei>)<u> = 2(n + DH' + 2(n+ 1) L a(B, E)
=t 7

S (Ao By B — % 5((E,, E), o(E,, E,)

iy7 (2¥)

(3.6)

:]w ;g[m

> a((Pa')E, E, E) E),

Y

where ¢’ denotes the covariant derivative of ¢’. From Codazzi’s equation,

we have
(3.7 S (W) E, E, E)=nDyH' .
Thus, we obtain, from (3.1), (3.5), (3.6) and (3.7),
(dH)(u) = 4°H’ + tr(PAg) + W(H') + (| A, .| + 3n + HH

+ 3‘”—:11— S15(E, E) + 25 0(E, Ay E)
J k3
(8.8)

% AviesyBy E) — 43 6(E, Dy H)

0]

— na(H', H') — 2 Y 9(c'(E,, E,), o'(E,, E,))
n J

As we mentioned in Section 2, f:S™—SM(@m + 1) is of 1-type and
S™ 1is isometrically immersed in a hypersphere, say W, of SM(m + 1)
centered at I/(m 4+ 1) as a minimal submanifold.
The general assumptions we made in this paper are
(1) x=foyp:M—S™—SM(m + 1) is of 2-type and
(2) x=fo1 is mass-symmetric, i.e., the center of mass of M in
SM(m + 1) is the center of the hypersphere W in SM(m + 1),
which means that x, = I/(m + 1); and
(8) the immersion  : M — S™ is full, i.e., (M) is not contained in
any great hypersphere of S™.

Under these assumptions we have
R S R )
n i=1

where b = 1, + 2, and e = 1,2,/n. We put
(3.10) L=3oFE,D;H).

Then, by using (2.6) and (3.8), we obtain
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(3.11) g4H, L) = —4g(L, L) = — 4 3 <{E,, E>{D; H', Dy H")

= — 4|DH'}.
On the other hand, (2.6), (2.7) and (3.9) imply
(3.12) g(4H,L) = eg(x,L) = —e >, (E,,D; HYy =0.

Therefore, from (3.11) and (3.12), we see that +» : M — S™ has parallel
mean curvature vector, i.e., DH’ = 0. Thus, we have 4?H’ = tr(TA,) = 0.

For the immersion x: M — S™ we may regard the Weingarten map
A as a linear map from the normal bundle 71M into the space of self-
adjoint endomorphisms S,(TM) of the tangent bundle TM:

A:T*M— S (TM)
which carries £ € T+M onto A,. On S,(I'M) there is a canonical inner
product defined by (B, C)) = (1/n)tr(BC) for B, C e S,(TM). We say that
the Weingarten map A is homothetic if there exists a positive number p

such that ((4,, A,)) = p<§&, n) for & ne T+M. Submanifolds with conformal
or homothetic Weingarten map were investigated in [2].

Lemma 1. Let + : M — S™ be a full isometric immersion. If x = fo+
is mass-symmeiric and of 2-type, then

(1) the mean curvature vector of + is parallel, i.e., DH' = 0,

(2) WH)=0, ie., >, d(E, ApE,) is parallel to H,

(8) ||Ag| is constant,

(4) the Weingarten map A of  is homothetic on {H'), where (H’>*

is the orthogonal complement of (H') = Span {H'}, and
(5) the Ricci tensor S of M satisfies

S(X,Y)=2n{A, X, Yy + KX, Y)
for some constant k. (k depends only on 2, and 1)).

Proof. Since x = foyp: M—SM(m + 1) is assumed to be mass-
symmetric and of 2-type, H’ is parallel in the normal bundle of M in S™.
In particular, the length of H’ is constant. Since 4°H’ = tr(FA,) =0,
(3.8) and (3.9) imply W(H’) =0 and ||A,.:|' +3n + 4 = b. This proves
(2) and (3).

From (2.6) and (3.8) we have

g(4H, (¢, 1) = [4(n + 1) + 2n||H'['KE, 7y

(3.13) s
— 2n(H', &Y(H', ) — ;tr(AeAq)
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for any normal vector fields &, » of M in S™.
On the other hand, (2.7) and (3.9) give

(3.14) g(4H, 55, 7)) = (2b — )&, 1) .
From (3.13) and (3.14) we find
(A, A = %[«n £ 1)+ 20 H + e — 26)E, 1)

(3.15)
— —2”—<H', ESCH!, 7y

which proves the homotheticy of A on (H’)".
From (2.6) and (3.8) we find

g(4H, 5(E,, Ey)) = [4(n + 1)+ <4/<771l + 2nz|H'n2]<Ek, B>
(3.16)

+ 4{d'(E, E), H") + —i— 2. (B, E), o' (E,, E)) .
From (2.6), (2.7) and (3.9) we get
(3.17) $(4H, 5(E,, E,)) = (2b + % . e)(Ek, E>.

Since the Ricci tensor S of M satisfies
(3.18) S(E,LE)=mn-—1)XE,E) — ; (d'(E, E),d'(E,, E)>
+ nda'(Ey, E), H')
(3.16), (3.17) and (3.18) imply
S(E, E)) =2n{AyE, E,)

nt g . N b(n + 1)
+ [n(n +3) + 7|]H " -+ Vi fT»—](E“ E).

This proves (5). (Q.E.D.)

Remark 1. (1) It is not difficult to verify that if a submanifold M of
S™ satisfies conditions (1)-(5) of Lemma 1, then x = f¢+ is mass-symmetric
and it is of 1 or 2-type.

(ii) Lemma 1 was obtained in [9] in the special case when M is a
minimal submanifold of S™ So Lemma 1 is a generalization of Ros’
characterization theorem.
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By applying Lemma 1, we have the following,

THEOREM 1. Let +y : M — S™ be an isometric immersion of a compact
Riemannian manifold such that the immersion is full. If x = fo+ is mass-
symmetric and of 2-type in SM(m + 1), then either

(a) M is of 1-type in E™"' and so M is minimal in a hypersphere of
E™** or

() M is of 2-type in E™" and mass-symmetric in S*CE™"*,

Proof. Under the hypothesis, Lemma 1 implies DH’ =0 W(H’) =0
and ||Ay | being constant. Therefore, by applying Theorem 4.4 of [6, p.
278], we conclude that either M is of 1-type in E™*!' or M is mass-sym-
metric and of 2-type in S"C E™*. (Q.E.D)

If M is Einsteinian, then case (b) of Theorem 1 cannot occur. In
fact, we have

THEOREM 2. Let 4 : M — S™ be an isometric immersion of a compact
Einstein manifold M into S™ such that the immersion is full. If x = fo
is mass-symmetric and of 2-type, then either M is minimal in S™ or M is
minimal in a small hypersphere of S™. In both cases, M is of 1-type in
E™+,

Proof. Under the hypothesis, statement (5) of Lemma 1 implies that
M 1is pseudo-umbilical in S™. Moreover, from statement (1) of Lemma 1,
M has parallel mean curvature vector H’ in S™. Thus, by applying Propo-
sition 4.2 of [6, p. 133], we obtain the theorem. (Q.E.D.)

We give the following lemma for later use.

LemMA 2. Let M = S*(r) be a small hypersphere of radius r (r<1) of
S**1. Then M is of 2-type in SM(n + 2) via f:S***— SM(n + 2). More-
over, M is mass-symmetric and of 2-type in SM(n + 2) if and only if r* =
(n + D/(n + 2).

Proof. Let V, be the eigenspace of 4 on M with eigenvalue 2,. Then
we have V\V.CV, + V, + V,. Without loss of generality we may assume
that M is given by the intersection of S**'CE"** and the hyperplane P
of E**! whose last coordinate is given by +/1 — r%. Thus, M = {(y, V1 — %)
e E"**|y-y* = r*}. Since the immersion f:S**"' — SM(n + 2) is defined by
f(w) = u'-u for ue S™*', it is clear that M is of 2-type in SM(n + 2) via f.
Since M is immersed in SM(n + 2) by (v, ¥/1 — r)'-(y, V1 — 1), we see
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that the center of mass x, of M in SM(n + 2) is proportional to the
identity matrix I of SM(n + 2) if and only if r* = (n + 1)/(n + 2). More-
over, in this case, we have x, = (1/(n + 2))I which is exactly the center
of the hypersphere W which S™*' lies via f. (Q.E.D.)

In the following three sections, we shall apply previous results to
obtain some classifications results.

§4. Hypersurface of §™ which are of 2-type via f

The main purpose of this section is to classify hypersurfaces of S™
which are mass-symmetric and of 2-type via f.

Let M = S?(r,) x S"*(r,) be the Riemannian product of two spheres
with radii r, and r,, respectively. Let M be a hypersurface of S**!' =
S”*(1). Then we have r} + r; = 1. We recall that

Spec(S?(r)) = {4 = k(p + B — 1)/ri|lk >0} and
Spec(S*~2(r,)) = {4 = k(n —p + k — 1)[r;|]k > 0}.

Moreover, the coordinate functions of x; of S?(r,) in E?** are eigenfunctions
with eigenvalue 1, and the coordinate functions y, of S*~?(r,) in E»-?*!
are eigenfunctions with eigenvalue 1;. Therefore, the coordinate functions
of M = S?(r,) X S*?(r,) in SM(n + 2) via f are given by the following
matrix

X%, 0 X,
(4.1) [ ......... AR y]
X Ye i Vils

1<i,j<p+1,
1<s,t<n+1-p

So the coordinate functions of M in SM(n + 2) are eigenfunctions on M
associated with at most three eigenvalues of 4 on M given by 1,, 2, and
A+ A

LemMMA 3. M = S2(r,) X S™*(ry) (r} + r2 = 1) is of 2-type in SM(n + 2)
via f if and only if either

(1) =@+ Dn+2) and ri=(n —p + D/(n + 2) or

(2) rt=@+2/n+2) and r; =(n —p)[(n + 2), or

(3) ri=p/n+2) and r;=(n —p + 2)/(n + 2).

Proof. M is of 2-type via f if and only if two of 2, A} and 2} + 7,
are equal. This implies the Lemma.

LEmMA 4. M = S?(r,)) X S*?(r,) (ri +ri=1) is mass-symmetric in
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SM(n + 2) via fif and only if i= (@ + D/(n +2) and ri=((n —p + 1)/
(n + 2).
Proof. First we regard M = S*(r) X 8" %(r,) as a submanifold in

E"t = Er** @ E*~?*' in a natural way. It is easy to see that the center
of mass of M in SM(n + 2) via f 1s given by

2
PSR o
2
0 LR
l n—p+1 "

Thus, M is mass-symmetric if and only if (n —p + 1)ri = (p + Dri. Be-
cause r! 4 r: = 1, we obtain the Lemma.

Now, we give the following main result of this section.

THEOREM 3. Let  : M — S™** be an isometric immersion of a compact
n-dimensional Riemannian manifold M into S™*'. Then x = fo+ is mass-
symmetric and of 2-type if and only if either

(1) M is a small hypersphere of S™*' with radius

r=[(n+ D/n + 2)I'4 or

(2) M= S*(r) X 8™ ?(ry) with ri = (p + D/(n + 2) and

ri=m—p+ D/n+2).

The immersions of M into S™*' in (1) and (2) are given in natural
way.

Proof. If M is mass-symmetric and of 2-type in SM(n + 2) via f,
then Lemma 1 implies that DH’ = 0, ||A. || is constant and the Ricci
tensor S of M satisfies

(4.2) S(X,Y) =2n{AxX, Y) + k(X Y),
where % is a constant. On the other hand, from Gauss’ equation, we have
(4.3) SX,Y)=(n—1X, Y) + na’(AX, Y) — (AX, Y)

where A is the Weingarten map of M in S**' Combining (4.2) and (4.3)
we find A* 4+ na’A + (K +1 — n)I = 0. This shows that M has at most
two distinct principal curvatures and the principal curvatures are constant.
If M has only one principal curvature, M is a small hypersurface of S™*',
In this case, Theorem 3 follows from Lemma 2. If M has two distinct
principal curvatures, then M is the product of two spheres. In this case,
Theorem 3 follows from Lemma 3 and Lemma 4. (Q.E.D)

https://doi.org/10.1017/5002776300000266X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000266X

SPHERICAL SUBMANIFOLDS 87

Remark. Let W be the hypersphere of SM(n + 2) in which S**! is
immersed as a minimal submanifold via f. Examples (2) and (3) of Lemma
3 give the first known examples of 2-type submanifolds in W which are
not mass-symmetric.

§5. Submanifolds with maximal codimension

Let M be an n-dimensional submanifold of S™. Consider the associated
Weingarten map A : T+*M — S,(TM) from the normal space of M in S™
into the vector bundle of self-adjoint endomorphisms of TM. In the vector
bundle S, (TM) we consider the subbundle M, = {B € S,(TM)|trace B = 0}.
Then we have

(5.1) S(TM) = M, ® RI, .

With respect to the usual inner product ((,)) on S,(T'M), the subbundles
M, and RI, are orthogonal. It is easy to see that the fibres of S,(T'M)
are of in(n + 1)-dimensional.

LemMA 5. Let +: M —S™ be an isometric immersion of a compact
n-dimensional Riemannian manifold M into S™ such that the immersion is
full. If x=fo+ is mass-symmetric and of 2-type, then we have m < n(n -+ 3)/2.
In particular, if m = n(n + 3)/2, then M is immersed as a minimal sub-
manifold in a small hypersphere of S™ via .

Proof. Under the hypothesis, Lemma 1 implies that M has parallel
mean curvature vector in S™ Thus, M has constant mean curvature.
If M is minimal in S™, then A(T+tM)C M,. Since 4 is full, statement (4)
of Lemma 1 implies m — n < n(n 4+ 1)/2 — 1 which gives m < n(n + 3)/2 — 1.
Therefore, we may assume that M has nonzero constant mean curvature
in 8™ In this case, we obtain m < n(n 4 3)/2. If m = n(n + 3)/2, then
we see that A: T M — S, (TM) = M, ® RI is surjective. Since A maps
vy = (H"Y! onto M,, we have A(H’)c RI,. This shows that M is pseudo-
umbilical in S™. Because M has parallel mean curvature vector H’ in
S™, we conclude that M lies in a hypersphere S™ '(r) of S™ as a minimal
submanifold. Since M is not minimal in S™, we have r <1. (Q.E.D)

By applying Lemma 5 we may obtain the following.

THEOREM 4. Let v : M — S™"*»” be qn isometric immersion of a com-
pact, n-dimensional, Riemannian manifold M into S™"*®"* such that the
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immersion is full. If x = fo+ is mass-symmetric and of 2-type, then M is
a real-space-form which is immersed fully in a small hypersphere of S*»+92
as a minimal, isotropic submanifold.

Proof. Under the hypothesis, Lemma 5 implies that M is immersed
as a minimal submanifold in a small hypersphere S™"*»/-Y(r) = S of
Srr+nz - Moreover, from Lemma 1, we know that the Weingarten map
A of M in S is homothetic. Thus, for any fixed point p € M, the Weingarten
map at p; A(p): T+M — M,(p) is an isomorphism. Since A(p) is homo-
thetic, we have

((Ag, Ay)) = &
for some constant c. Let v be a given unit vector in T,M. We choose
an orthonormal basis B = {e,, - - -, e,} such that e, = v. Since A(p):TrM
— M ,(p) is an isomorphism, there exists an orthonormal basis &,,,, - -,
Entmanz—r in THM such that, with respect to B, the associated Weingarten
endmorphisms are given by

— —Da,_ | 0 ]
An+1 =c (n )a : | ’
L 0 a, I, )
0 0 0 ]
0 —(m~—2a,.
An+‘_’ =cC ( ) i I »
L 0 'an—ZIn-—Z J
(0 0
0
0 — 2a,
Ay =c ’
0 La,l,
(0 0 ]
0
0 — Q4 [
Ay =c ,
L o | a
i J
...... 0 2’2 1
2
An+[i,]] =cC : : s
n
n..o.... 0..
p) J
|
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where [i,jl=i4+3(—-DCn+1—-j+)—1, a_,=n/n—k(n—k+1);
1<k<n—1and 1<i<j<n From these we see that the second
fundamental form 7 of M in S satisfies |7 (v, V)| = (n — 1)c¢* which shows
the isotropy of M in S. The constancy of sectional curvature of M follows
from the equation of Gauss. (Q.E.D)

Remark. Isotropic isometric immersions from a real-space-form into
another real-space-form have been studied by Itoh and Ogiue [8].
By a similar argument we have the following.

THEOREM 5. Let + : M — S™ be an isometric minimal immersion of a
compact, n-dimensional, Riemannian manifold such that the immersion is
full. If x = fo+ is mass-symmetric and of 2-type, then m < n(n + 3)/2 — 1.
In particular, if m = n(n + 3)/2 — 1, then M is a real-space-form which is
immersed as an isotropic submanifold.

Since this theorem can be proved in the same way as that of Theorem
4, so we omit it.

§ 6. Classification of 2-type surfaces

In this section we classify surfaces in S™ which are mass-symmetric
and of 2-type via f.

THEOREM 6. Let + : M — S™ be an isometric immersion of a compact
surface M into S™ such that the immersion is full. If x = fo+ is mass-
symmetric and of 2-type, then one of the following statements holds:

(1) m=38 and M is immersed as a small hypersphere S*r) with

radius r = v/ 3 /2;
(2) m =3 and M is immersed as a Clifford (minimal) torus
S'A/V2) x S AV 2) in S

(3) m =4 and M is immersed as a Veronese (minimal) surface in S*;

(4) m =05 and M is immersed as a Veronese (minimal) surface in a

small hypersphere S*W5[6) of S°.

The converse is also true.

Proof. Under the hypothesis, Lemma 1 implies that M has parallel
mean curvature vector in S™. Thus, by applying a result of Chen and
Yau (cf. [4, p. 106]), we have m > 3 and either M is a minimal surface of
S™ or M is a minimal surface of a small hypersphere S™-'(r) of S™, or M
lies in totally geodesic S® of S™. If the later case holds, then m = 3 since
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4 is full. In this case, Theorem 3 implies that either case (1) or case (2)
occurs.

If m > 3, then, by Lemma 5, m =4 or m = 5. If m = 4, Theorem 5
and Theorem 2 of [8] imply that M is a Veronese surface in S%. If m = 5,
by using Theorem 4, we see that M is immersed in a small hypersphere
S*(r) of S° as a Veronese surface. Without loss of generality, we may
assume that Sr) is given by u, = v/1 — r’, where (u,, ---, u,) are the
Euclidean coordinates of S°® in E°. From direct computation, we see that
the center of mass of M in SM(6) via f is given by

Since M is mass-symmetric in WC SM(6), we have x, = I/6. Thus, we see
that M is mass-symmetric in SM(6) if and only if r* = 5/6.
The converse follows from direct computation. (Q.E.D.)

REFERENCES

[ 1] Barros, M. and B. Y. Chen, Classification of stationary 2-type surfaces of hyper-
spheres, C.R. Math. Rep. Acad. Sci. Canada, 7 (1985), 309-314.

[ 2] Barros, M. and B. Y. Chen, Finite type spherical submanifolds, Proc. II Intern.
Symp. Diff. Geom., Lecture Notes in Math., Springer-Verlag, 1209 (1986), 73-93.

[ 3] Barros, M. and A. Ros, Spectral geometry of submanifolds, Note Mat., 4 (1984),
1-56.

[4] Chen, B. Y., Geometry of submanifolds, M. Dekker, 1973,

[5] Chen, B. Y., On total curvature of immersed manifolds, IV, Bull. Math. Acad.
Sinica, 7 (1979), 301-311; , VI, ibid, 11 (1983), 309-328.

[ 6] Chen, B. Y., Total mean curvature and submanifolds of finite type, World Scientific,

1984,

[7] Chen, B. Y., 2-type submanifolds and their applications, Chinese J. Math., 14
(1986), 1-14.

[ 8] Itoh, T. and K. Ogiue, Isotropic immersions, J. Differential Geom., 8 (1973),
305-316.

[ 91 Ros, A., Eigenvalue inequalities for minimal submanifolds and P-manifolds, Math.
Z., 187 (1984), 393-404.

[10] Sakamoto, K., Planar geodesic immersions, Tohoku Math. J., 29 (1977), 25-56.

[11] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan,
18 (1966), 380-385.

M. Barros

Departamento de Geometria y Topologia
Universidad de Granada
18071—Granada, Spain

https://doi.org/10.1017/5S002776300000266X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000266X

SPHERICAL SUBMANIFOLDS

B.-Y. Chen

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824
USA

https://doi.org/10.1017/5002776300000266X Published online by Cambridge University Press

91


https://doi.org/10.1017/S002776300000266X



