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Under suitable assumptions on the family of anisotropies, we prove the existence of a
weak global 1/(n + 1) -Hölder continuous in time mean curvature flow with
mobilities of a bounded anisotropic partition in any dimension using the method of
minimizing movements. The result is extended to the case when suitable driving
forces are present. We improve the Hölder exponent to 1/2 in the case of partitions
with the same anisotropy and the same mobility and provide a weak comparison
result in this setting for a weak anisotropic mean curvature flow of a partition and
an anisotropic mean curvature two-phase flow.
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1. Introduction

Many processes in material sciences such as phase transformation, crystal growth,
grain growth, stress-driven rearrangement instabilities, etc., can be modelled as
geometric interface motions, in which surface tensions act as a principal driving force
(see e.g., [15,40,49,51] and references therein). A typical example of such a motion
is anisotropic mean curvature flow: given a norm φ on R

n (called anisotropy), the
equation for the anisotropic mean curvature flow of hypersurfaces parametrized as
Γt reads as

β(ν)V = −divΓt
[∇φ(ν)] on Γt, (1.1)

where V denotes the normal velocity of Γt in the direction of the unit outer normal
ν of Γt and β is the mobility, a positive kinetic coefficient [29]. Anisotropic
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mean curvature flow is called crystalline provided the boundary of the Wulff shape
Wφ := {φ � 1} lies on finitely many hyperplanes; in this quite interesting case,
equation (1.1) must be properly interpreted, due to the nondifferentiability of φ ;
see for instance [2,5–7,9,17,19,20,27,28,31,32,53]. Equation (1.1) (sometimes
referred to as the two-phase evolution) can be generalized to the case of networks
in the plane, and more generally to the case of partitions of space (sometimes
called the multiphase case): here the evolving sets are intrinsically nonsmooth, since
the presence of triple junctions (in the plane), or multiple lines, quadruple points
(in space), etc., during the flow is unavoidable. It must be stressed that evolutions
of partitions received recently a lot of attention from the mathematical community
[11,13,23,25,26,38,39,45,50,52] both as a natural generalization of the case
of two phases, and because they model a variety of physical phenomena, such as
grain growth and evolution of multicrystals [8,40].

The presence of singularities at finite time is a common feature of mean curvature
flow type motions, both in the two-phase case [33–36,44], and in the multiphase
case (see for instance [45]). This phenomenon justifies to introduce and study some
notion of weak solution, defined globally in time. This has been done in several
different ways: just to quote a few, the Brakke varifold-solution [15], the viscosity
solution (see [30] and references therein), the Ilmanen elliptic regularization [37],
the level-set theoretic subsolution and the minimal barrier solution (see [12] and ref-
erences therein), the Almgren–Taylor–Wang [1] and Luckhaus–Sturzenhecker [42]
solutions, next included by De Giorgi into his notion of minimizing movement and
generalized minimizing movement (GMM) [21,22]; see also [16,24,47]. Some of
those solutions (e.g., the Brakke solution [15,54], the GMM solution [14], the ellip-
tic regularization [50]) can be adapted to treat the multiphase case at least in the
Euclidean case, especially those that do not rely heavily on the comparison princi-
ple. Also, the existence of a distributional solution of mean curvature evolution of
partitions on the torus using the time thresholding method introduced in [46] has
been proved in [41]; see also [39].

The aim of the present paper is to prove the existence of a GMM for anisotropic
mean curvature flow of partitions with no restrictions on the space dimension, in the
presence of a set of mobilities and forcing terms, and to point out some qualitative
properties of this weak evolution, which are obtained via a comparison argument
with a GMM of each single phase considered separately.

Let us recall the definition of GMM for partitions from [22] (see definition 2.6
for the notion of bounded partition).

Definition 1.1 Generalized minimizing movement for partitions. Let Pb(N + 1)
be the set of all bounded (N + 1) -partitions of R

n (definition 2.6) endowed
with the L1(Rn) -convergence, and let F : Pb(N + 1) × Pb(N + 1) × [1,+∞) →
[−∞,+∞] be defined as

F(A,B, λ) =
N+1∑
j=1

Pφj
(Aj) + λ

N+1∑
j=1

∫
AjΔBj

dψj
(x, ∂Bj) dx+

N+1∑
j=1

∫
Aj

Hj dx,

where φj and ψj are norms on R
n, called anisotropies and mobilities, respectively,

Hi ∈ L1
loc(R

n), i = 1, . . . , N, and HN+1 ∈ L1(Rn) are driving forces, Pφj
(Aj)
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is the φj -anisotropic perimeter, A = (A1, . . . , AN+1), B = (B1, . . . , BN+1) and
dψj

(·, E) is the ψj -distance function from E ⊆ R
n. We say that a map M :

[0,+∞) → Pb(N + 1) is a GMM associated to F starting from G ∈ Pb(N + 1) ,
and we write M ∈ GMM(F,G), if there exist L : [1,+∞) × N0 → Pb(N + 1) and
a diverging sequence {λh} such that

lim
h→+∞

L(λh, [λht]) = M(t) in L1(Rn) for any t � 0,

where the bounded partitions L(λ, k), λ � 1, k ∈ N0, are defined inductively as
L(λ, 0) = G and

F(L(λ, k + 1),L(λ, k), λ) = min
A∈Pb(N+1)

F(A,L(λ, k), λ) ∀k � 0.

Our first result (see theorems 4.1 and 4.2 for the precise statements) extends
the existence results of [14] to the case with anisotropies, mobilities and external
forces. We also improve the 1/(n+ 1) -Hölder regularity in time of GMM proven
in [14] to 1/2 -Hölder continuity in the two-phase case, without any restriction on
the anisotropies.

Theorem 1.2. Suppose that the driving forces {Hi} satisfy (4.4). Let G ∈ Pb

(N + 1) . The following assertions hold:

(a) Let N � 2. If {φj} satisfy (3.1) and (4.3), then GMM(F,G) is nonempty.
Moreover, any M = (M1, . . . ,MN+1) ∈ GMM(F,G) is locally 1/(n+ 1) -
Hölder continuous in time and for any t � 0,

⋃N
j=1Mj(t) is contained in

the bounded closed convex set related to G and Hj (see (4.6)).

(b) Let N = 1. Then, with no assumptions on the anisotropies φ1, φ2 and
the mobilities ψ1, ψ2, GMM(F,G) is nonempty. Moreover, any M ∈
GMM(F,G) is locally 1/2 -Hölder continuous in time.

To prove theorem 1.2 we establish uniform density estimates for minimizers of F
using the method of cutting out and filling in with balls, an argument of [42]. At
this level the presence of mobilities does not create any new substantial problem.
While in the two-phase case we do not need any assumption on the anisotropies,
in the multiphase case assumption (3.1) is needed to get the lower volume density
estimate for minimizers which is important in the proof of time-continuity of GMM.

In case of partitions with the same anisotropies and the same mobilities and
without forcing, the Hölder exponent of GMM can be improved to 1/2 (see theorem
5.1). Denoting by F2 the restriction of F to two-phase case without forcing (see
(5.2)), this can be done using the comparison property (theorem 5.2) between the
minimizers of F and the minimizers of F2 . This comparison result also enables
us to get a weak comparison flow of corresponding multiphase and two-phase flows
(theorem 5.5):

Theorem 1.3. Assume that φj = φi and ψj = ψi for all i, j = 1, . . . , N + 1, and
Hi = 0 for all i = 1, . . . , N + 1. Then any M ∈ GMM(F,G) is locally 1/2 -
Hölder continuous in time and

⋃N
j=1Mj(t) is contained in the closed convex
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envelope of the union
⋃N
j=1Gj of the bounded components of G for any t � 0.

Moreover:

(a) for any M ∈ GMM(F,G) and for any i ∈ {1, . . . , N + 1} there exists Li ∈
GMM(F2, Gi) such that

Li(t) ⊆Mi(t), t � 0;

(b) Let Ci, i ∈ {1, . . . , N}, and CN+1 be any convex sets such that Ci ⊂ Gi for
any i ∈ {1, . . . , N + 1} and let Li ∈MM(F2, Ci) be the unique minimizing
movement starting from Ci. Then for any M ∈ GMM(F,G),

Li(t) 	= ∅ =⇒Mi(t) 	= ∅ for any i ∈ {1, . . . , N}, (1.2)

and

R
n \ LN+1(t) = ∅ =⇒ R

n \MN+1(t) = ∅. (1.3)

Note that the comparison principle (1.3) implies that any bounded partition will
disappear in the long run; moreover, (1.2) allows to estimate the extinction time of
the i -th bounded phase (Corollary 5.6).

Finally, let us mention that a natural problem remains open, namely the con-
sistency of GMM with the classical solution, provided the latter exists, at least on
a short time interval. Such a result has been proven by Almgren–Taylor–Wang in
[1] in the two-phase case without mobility; the proof is based on various stability
properties of the flow, and using comparison arguments. It has also been proven by
Almgren–Taylor [2] in the two-phase crystalline case. However, consistency is not
known in the case of networks in the plane (and a fortiori for partitions in space),
even in the Euclidean case without mobilities and forcing.

The paper is organized as follows. In § 2 we introduce the notation, some results
from the theory of sets of finite perimeter, and the definition of a partition. In § 3
we prove the density estimates for almost minimizers. The existence of general-
ized minimizing movements (theorem 1.2) is established in § 4. In § 5 we improve
the Hölder regularity of GMM (theorem 1.3) and provide some weak comparison
principles.

2. Notation and preliminaries

In this section, we introduce the notation and collect some important properties of
sets of locally finite perimeter. The standard references for BV -functions and sets
of finite perimeter are [4,43].

We use N0 to denote the set of all nonnegative integers. The symbol Br(x)
stands for the open ball in R

n centred at x ∈ R
n of radius r > 0. The character-

istic function of a Lebesgue measurable set F is denoted by χF and its Lebesgue
measure by |F |; we set also ωn := |B1(0)|. We denote by Ec the complement of
E in R

n.

https://doi.org/10.1017/prm.2020.53 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.53


Minimizing movements for anisotropic mean curvature flow 1139

Given a norm ψ in R
n and a nonempty set E ⊆ R

n, dψ(·, E) stands for the
ψ -distance from E, i.e.,

dψ(x,E) = inf{ψ(x− y) : y ∈ E},
and

d̃ψ(x, ∂E) = dψ(x,E) − dψ(x,Rn \ E)

is the signed ψ -distance function from ∂E, negative inside E. When ψ is
Euclidean for simplicity we drop the dependence on ψ. We also write

diamψE := sup{ψ(x− y) : x, y ∈ E}
to denote the ψ -diameter of E.

By O(Rn) (resp. Ob(Rn) ) we denote the collection of all open (resp. open and
bounded) subsets of R

n. The set of L1
loc(R

n) -functions having locally bounded
total variation in R

n is denoted by BVloc(Rn) and the elements of

BVloc(Rn, {0, 1}) := {E ⊆ R
n : χE ∈ BVloc(Rn)}

are called locally finite perimeter sets. Given a E ∈ BVloc(Rn, {0, 1}) we denote
by

(a) P (E,Ω) :=
∫
Ω
|DχE | the perimeter of E in Ω ∈ O(Rn);

(b) ∂E the measure-theoretic boundary of E :

∂E := {x ∈ R
n : 0 < |Bρ ∩ E| < |Bρ| ∀ρ > 0};

(c) ∂∗E the reduced boundary of E;

(d) νE the outer generalized unit normal to ∂∗E.

For simplicity, we set P (E) := P (E,Rn) provided E ∈ BV (Rn; {0, 1}). Further,
given a Lebesgue measurable set E ⊆ R

n and α ∈ [0, 1] we define

E(α) :=
{
x ∈ R

n : lim
ρ→0+

|Bρ(x) ∩ E|
|Bρ(x)| = α

}
.

Unless otherwise stated, we always suppose that any locally finite perimeter set E
we consider coincides with E(1) (so that by [43, equation (15.3)] ∂E coincides with
the topological boundary). We recall that ∂∗E = ∂E and DχE = νEdHn−1 ∂∗E,
where Hn−1 is the (n− 1) -dimensional Hausdorff measure in R

n and is the
symbol of restriction.

Remark 2.1. Given E ∈ BVloc(Rn; {0, 1}) the map Ω ∈ O(Rn) → P (E,Ω)
extends to a Borel measure in R

n so that P (E,B) = Hn−1(B ∩ ∂∗E) for every
Borel set B ⊆ R

n. Moreover, by [4, theorem 3.61] for every E ∈ BVloc(Rn; {0, 1})
Hn−1(Rn \ (E(0) ∪ E ∪ ∂∗E)) = 0.

In particular, Hn−1(E(1/2) \ ∂∗E) = 0.
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Theorem 2.2. [43, theorem 16.3] If E and F are sets of locally finite perimeter,
and we let

{νE = νF } ={x ∈ ∂∗E ∩ ∂∗F : νE(x) = νF (x)},
{νE = −νF } ={x ∈ ∂∗E ∩ ∂∗F : νE(x) = −νF (x)},

then E ∩ F, E \ F and E ∪ F are locally finite perimeter sets with

∂∗(E ∩ F ) ≈(F ∩ ∂∗E) ∪ (E ∩ ∂∗F ) ∪ {νE = νF
}
, (2.1)

∂∗(E \ F ) ≈(F (0) ∩ ∂∗E) ∪ (E ∩ ∂∗F ) ∪ {νE = −νF
}
, (2.2)

∂∗(E ∪ F ) ≈(F (0) ∩ ∂∗E) ∪ (E(0) ∩ ∂∗F ) ∪ {νE = νF
}
, (2.3)

where A ≈ B means Hn−1(AΔB) = 0.

The following generalizes the notion of the perimeter.

Definition 2.3 Anisotropic perimeter . Let φ : R
n → [0,∞) be a norm in R

n.
Given Ω ∈ O(Rn) the φ -perimeter of E ∈ BV (Ω; {0, 1}) is

Pφ(E,Ω) :=
∫

Ω∩∂∗E
φ(νE)dHn−1.

When Ω = R
n, we write Pφ(E) := Pφ(E,Rn), and when φ is Euclidean, we write

P in place of Pφ.

It is well-known that E → Pφ(E; Ω) is L1
loc(Ω) -lower semicontinuous. Recall

also that for every E,F ∈ BVloc(Rn; {0, 1}) and Ω ∈ O(Rn)

Pφ(E ∩ F,Ω) + Pφ(E ∪ F,Ω) � Pφ(E,Ω) + Pφ(F,Ω). (2.4)

2.1. Anisotropic partitions

We recall the notions of partition, almost-minimizer and bounded partition, see
[14].

Definition 2.4 Partition. Given an integer N � 2, an N -tuple C =
(C1, . . . , CN ) of subsets of R

n is called an N -partition of R
n (a partition, for

short) if

(a) Ci ∈ BVloc(Rn; {0, 1}) for every i = 1, . . . , N,

(b)
∑N
i=1 |Ci ∩K| = |K| for each compact K ⊂ R

n.

The collection of all N -partitions of R
n is denoted by P(N). Our assumptions

Ci = C
(1)
i imply Ci ∩ Cj = ∅ for i 	= j.

The elements of P(N) are denoted by calligraphic letters A,B, C, . . . and the
components of A ∈ P(N) by the corresponding roman letters (A1, . . . , AN ).

https://doi.org/10.1017/prm.2020.53 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.53


Minimizing movements for anisotropic mean curvature flow 1141

Let φ1, . . . , φN be norms in R
n and set Φ := {φ1, . . . , φN}. The functional

(A,Ω) ∈ P(N) × O(Rn) → PerΦ(A,Ω) :=
N∑
i=1

Pφi
(Ai,Ω)

is called the anisotropic perimeter, or Φ -perimeter of the partition A in Ω. For
simplicity, we write PerΦ(A) := PerΦ(A,Rn). For shortness, we also set PerΦ =
Per when all φi are Euclidean. Since N is finite, there exist 0 < cΦ � CΦ < +∞
such that

cΦ � φi(ν) � CΦ (2.5)

for any i = 1, . . . , N and ν ∈ S
n−1, therefore,

cΦPer(A,Ω) � PerΦ(A,Ω) � CΦPer(A,Ω). (2.6)

In view of [14, proposition 3.3]

PerΦ(A,Ω) =
∑

1�i<j�N

∫
Ω∩∂∗Ai∩∂∗Aj

(
φi(νAi

) + φj(νAi
)
)
dHn−1,

i.e., on a generalized hypersurface Σij := Ω ∩ ∂∗Ai ∩ ∂∗Aj dividing the phase i
from the phase j the perimeter contributes∫

Σij

(φi(νΣij
) + φj(νΣij

)) dHn−1,

where νΣij
is the generalized unit normal to Σij pointing for instance from Ai

to Aj . We set

AΔB :=
N⋃
j=1

AjΔBj and |AΔB| :=
N∑
j=1

|AjΔBj |, (2.7)

where Δ is the symmetric difference of sets, i.e., EΔF = (E \ F ) ∪ (F \ E).
We say that the sequence {A(k)} ⊆ P(N) converges to A ∈ P(N) in L1

loc(R
n)

if

|(A(k)ΔA) ∩K| :=
N∑
j=1

|(A(k)
j ΔAj) ∩K| → 0 as k → +∞

for every compact set K ⊂ R
n. Since E ∈ BVloc(Rn; {0, 1}) → Pφi

(E,Ω) is
L1

loc(R
n) -lower semicontinuous for any Ω ∈ O(Rn), so is the map A ∈ P(N) →

PerΦ(A,Ω). From (2.6) and [14, theorem 3.2] we get

Proposition 2.5 Compactness. Let {A(l)} ⊂ P(N) be a sequence of partitions
such that

sup
l�1

PerΦ(A(l),Ω) < +∞ ∀Ω ∈ Ob(Rn).

Then there exist a partition A ∈ P(N) and a subsequence {A(lk)} converging to
A in L1

loc(R
n) as k → +∞.
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2.2. Bounded partitions

Definition 2.6 Bounded partition. A partition C = (C1, . . . , CN+1) ∈ P(N + 1)
is called bounded, and we write C ∈ Pb(N + 1), if Ci is bounded for each i =
1, . . . , N.

Note that AΔB ⊂⊂ R
n for every A,B ∈ Pb(N + 1), and therefore,

|AΔB| =
N+1∑
j=1

|AjΔBj |

is the L1(Rn) -distance in Pb(N + 1).
Given A ∈ Pb(N + 1), we denote by co(A) the closed convex hull of

⋃N
i=1Ai.

In view of (2.6) and [14, theorem 3.10] we have the following compactness result.

Proposition 2.7 Compactness. Let A(k) ∈ Pb(N + 1), k = 1, 2, . . . , and Ω ∈
Ob(Rn) be such that

sup
k�1

PerΦ(A(k)) < +∞, co(A(k)) ⊆ Ω ∀k � 1.

Then there exist A ∈ Pb(N + 1) and a subsequence {A(kl)} converging to A in
L1(Rn) as l → +∞. Moreover,

⋃N
i=1Aj ⊆ Ω.

3. Density estimates for almost minimizers

In this section we prove density estimates for almost minimizers (see theorem 3.2).
In the two-phase case without mobility, density estimates have been proven in
[1,42] (see also the proof of theorem 4.2 for the case with mobility and forcing)
and in the isotropic N -phase case is proven in [14]. The proof of theorem 3.2 is
similar to [14, theorem 3.6], however, some (technical) difficulties arise when two
anisotropies differ too much and this is why we need assumption (3.5) for proving
the lower-density estimates.

Definition 3.1 Almost-minimizers. Given Φ = {φ1, . . . , φN}, Λ1,Λ2 � 0, α1, α2 >
(n− 1)/n and r0 ∈ (0,+∞], we say that a partition A ∈ P(N) is a
(Φ,Λ1,Λ2, r0, α1, α2) -minimizer in R

n of PerΦ (a (Λ1,Λ2, r0, α1, α2) -minimizer,
or also an almost-minimizer for short) if

PerΦ(A, Br) � PerΦ(B, Br) + Λ1|AΔB|α1 + Λ2|AΔB|α2

whenever B ∈ P(N), Br ⊂ R
n is a ball of radius r ∈ (0, r0) and AΔB ⊂⊂ Br.
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Define

κN := min
1�i<j�N

‖φi − φj‖L∞(Sn−1), (3.1)

β1 :=
(cΦnω1−α1

n

21+α1Λ1

)1/(nα1−n+1)

,

β2 :=
(cΦnω1−α2

n

21+α2Λ2

)1/(nα2−n+1)

,

γN :=
cΦ − (N − 1)κN/2

2cΦ + 2(N − 1)CΦ − (N − 1)κN
.

Theorem 3.2 Density estimates for almost minimizers. Assume that the
entries of Φ satisfy (2.5). Let A ∈ P(N) be a (Λ1,Λ2, r0, α1, α2) -minimizer and
i ∈ {1, . . . , N}. Then either Ai = ∅ or for any x ∈ ∂Ai and r ∈ (0, r̂0]

|Ai ∩Br(x)|
|Br(x)| � 1 −

(
cΦ

2(cΦ + CΦ)

)n
(3.2)

and
P (Ai, Br(x))

rn−1
�
(
CΦ

cΦ
+

1
2

)
nωn, (3.3)

where

r̂0 := min{r0, β1, β2}. (3.4)

Moreover, if

κN <
2cΦ
N − 1

, (3.5)

then for any r ∈ (0, r̃0]

γnN � |Ai ∩Br(x)|
|Br(x)| , (3.6)

and

c � P (Ai, Br(x))
rn−1

, (3.7)

where

r̃0 := min
{
r0,
( cΦ
N − 1

− κN
2

)1/(nα1−n+1)

β1,
( cΦ
N − 1

− κN
2

)1/(nα2−n+1)

β2

}
(3.8)

and

c := c(n,N, cΦ, CΦ, κN ) :=
nωn(21/n − 1)

21+1/n
γn−1
N .

Proof. Without loss of generality, we assume i = 1 and Ai 	= ∅. Since ∂∗A1 =
∂A1, it is sufficient to show (3.2), (3.3), (3.6), (3.7) when x ∈ ∂∗A1. For shortness,
we write Br := Br(x).
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We start by proving (3.2) and (3.3). Let us show

cΦP (A(0)
1 , Br) �CΦHn−1(A(0)

1 ∩ ∂Br)
+ 2α1−1Λ1|A(0)

1 ∩Br|α1 + 2α2−1Λ2|A(0)
1 ∩Br|α2

(3.9)

for all r ∈ (0, r̂0) such that

N∑
j=1

Hn−1(∂Br ∩ ∂∗Aj) = 0. (3.10)

Indeed, setting

B := (A1 ∪Br, A2 \Br, . . . , AN \Br),
we have AΔB ⊂⊂ Bs for every s ∈ (r, r̂0) and thus, by almost minimality, the
definition (2.7) of |AΔB| and the essential disjointness of Aj ,

0 �PerΦ(B, Bs) − PerΦ(A, Bs) + Λ1|AΔB|α1 + Λ2|AΔB|α2

=Pφ1(A1 ∪Br, Bs) − Pφ1(A1, Bs) +
N∑
j=2

(
Pφj

(Aj \Br, Bs) − Pφj
(Aj , Bs)

)
+ 2α1Λ1|Br ∩A(0)

1 |α1 + 2α2Λ2|Br ∩A(0)
1 |α2 , (3.11)

since Br \A1 = Br ∩A(0)
1 up to a Ln -negligible set and |AΔB| = 2|Br \A1| =

2|Br ∩A(0)
1 |. By (2.3) and (3.10),

Pφ1(A1 ∪Br, Bs) = Pφ1(A1, Bs \Br) +
∫
A

(0)
1 ∩∂Br

φ1(νBr
)dHn−1,

and for any j = 2, . . . , N,

Pφj
(Aj \Br, Bs) = Pφj

(Aj , Bs \Br) +
∫
Aj∩∂Br

φj(νBr
)dHn−1. (3.12)

Thus by (3.11)

N∑
j=1

Pφj
(Aj , Bs) �

N∑
j=1

Pφj
(Aj , Bs \Br)

+
∫
A

(0)
1 ∩∂Br

φ1(νBr
)dHn−1 +

N∑
j=2

∫
Aj∩∂Br

φj(νBr
)dHn−1

+ 2α1Λ1|Br ∩A(0)
1 |α1 + 2α2Λ2|Br ∩A(0)

1 |α2 .
(3.13)
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By (2.5), the essential disjointness of Aj and (3.10) we have∫
A

(0)
1 ∩∂Br

φ1(νBr
)dHn−1 +

N∑
j=2

∫
Aj∩∂Br

φj(νBr
)dHn−1

� CΦHn−1(A(0)
1 ∩ ∂Br) + CΦ

N∑
j=2

Hn−1(Aj ∩ ∂Br) = 2CΦHn−1(A(0)
1 ∩ ∂Br),

thus, (3.13) and (3.10) imply

N∑
j=1

Pφj
(Aj , Br) � 2CΦHn−1(A(0)

1 ∩ ∂Br) + 2α1Λ1|Br \A1|α1 + 2α2Λ2|Br \A1|α2 .

By (2.5), (2.4) and the essential disjointness of Aj ,

N∑
j=2

Pφj
(Aj , Br) �cΦ

N∑
j=2

P (Aj , Br) � cΦP

(
N⋃
j=2

Aj , Br

)
= cΦP (A(0)

1 , Br),

and thus
∑N
j=1 Pφj

(Aj , Br) � 2cΦP (A(0)
1 , Br) so that (3.9) follows from (3.4).

To prove (3.2) we add cΦHn−1(A(0)
1 ∩ ∂Br) to both sides of (3.9) and using

Hn−1(∂Br ∩ ∂∗A1) = 0 we get

cΦP (A(0)
1 ∩Br) � (cΦ + CΦ)Hn−1(A(0)

1 ∩ ∂Br) + 2α1−1Λ1|A(0)
1 ∩Br|α1

+ 2α2−1Λ2|A(0)
1 ∩Br|α2 ,

hence by the isoperimetric inequality

cΦnω
1/n
n |A(0)

1 ∩Br|(n−1/n �(cΦ + CΦ)Hn−1(A(0)
1 ∩ ∂Br)

+ 2α1−1Λ1|A(0)
1 ∩Br|α1 + 2α2−1Λ2|A(0)

1 ∩Br|α2 .
(3.14)

By the choice of r̂0 in (3.4) we have, for l = 1, 2,

2αl−1Λl|A(0)
1 ∩Br|αl−((n−1)/n) � 2αl−1Λlωαl−((n−1)/n)

n r̂nαl−n+1
0 � cΦnω

1/n
n

4
.

(3.15)
Inserting (3.15) in (3.14) we obtain

cΦ
2(cΦ + CΦ)

nω1/n
n |A(0)

1 ∩Br|(n−1/n � Hn−1(A(0)
1 ∩ ∂Br),

and whence, repeating for instance the arguments of the proof of [14, equation
(3.19)], we obtain

|A(0)
1 ∩Br| �

(
cΦ

2(cΦ + CΦ)

)n
ωnr

n,
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i.e.,

|A1 ∩Br|
|Br| � 1 −

(
cΦ

2(cΦ + CΦ)

)n
.

From (3.9) and the definition of r̂0 for all r ∈ (0, r̂0] we get

P (A1, Br) � CΦ

cΦ
Hn−1(∂Br) +

2α1−1Λ1

cΦ
|Br|α1 +

2α2−1Λ2

cΦ
|Br|α2

�
(
CΦ

cΦ
+

1
2

)
nωnr

n−1.

Now we prove (3.6) and (3.7). Note that assumption (3.5) implies r̃0, γN > 0. Let
us show( cΦ

N − 1
− κN

2

)
P (A1, Br) �CΦHn−1(A1 ∩ ∂Br)

+ 2α1−1Λ1|A1 ∩Br|α1 + 2α2−1Λ2|A1 ∩Br|α2

(3.16)

for all r ∈ (0, r̃0) such that

N∑
j=1

Hn−1(∂∗Aj ∩ ∂Br) = 0. (3.17)

Set

I1 := {j ∈ {2, . . . , N} : Hn−1(Br̃0 ∩ ∂∗A1 ∩ ∂∗Aj) > 0}.

Since x ∈ ∂A1, I1 	= ∅. Fix r ∈ (0, r̃0); for every j ∈ I1 consider the competitor

B(j) := (A1 \Br, A2, . . . , Aj−1, Aj ∪ (A1 ∩Br), Aj+1, . . . , AN ).

Since B(j)ΔA ⊂⊂ Bs for every s ∈ (r, r̃0), by the almost minimality of A (recall
that r̃0 � r0 ) and the equality |AΔB(j)| = 2|A1 ∩Br| one has

Pφ1(A1, Bs) + Pφj
(Aj , Bs) �Pφ1(A1 \Br, Bs) + Pφj

(Aj ∪ (A1 ∩Br), Bs)
+ 2α1Λ1|A1 ∩Br|α1 + 2α2Λ2|A1 ∩Br|α2 .

(3.18)
Using the equality

Pφj
(Aj ∪ (A1 ∩Br), Bs) =Pφj

(Aj , Bs) + Pφj
(A1, Br) +

∫
A1∩∂Br

φj(νBr
)dHn−1

−
∫
Br∩∂∗A1∩∂∗Aj

(
φj(νA1) + φj(νAj

)
)
dHn−1,

https://doi.org/10.1017/prm.2020.53 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.53


Minimizing movements for anisotropic mean curvature flow 1147

the analogue of (3.12) with j = 1 and also (3.17) in (3.18) we establish

Pφ1(A1, Bs) + Pφj
(Aj , Bs) �Pφj

(Aj , Bs) + Pφj
(A1, Br) +

∫
A1∩∂Br

φj(νBr
)dHn−1

−
∫
Br∩∂∗A1∩∂∗Aj

(
φj(νA1) + φj(νAj

)
)
dHn−1

+ Pφ1(A1, Bs \Br) +
∫
A1∩∂Br

φ1(νBr
)dHn−1

+ 2α1Λ1|A1 ∩Br|α1 + 2α2Λ2|A1 ∩Br|α2 .

Hence using φj(νA1) = φj(νAj
),

2
∫
Br∩∂∗A1∩∂∗Aj

φj(νA1)dHn−1 � Pφj
(A1, Br) − Pφ1(A1, Br)

+
∫
A1∩∂Br

(
φ1(νBr

) + φj(νBr
)
)
dHn−1 + 2α1Λ1|A1 ∩Br|α1 + 2α2Λ2|A1 ∩Br|α2 .

Summing these inequalities in j ∈ I1 and using (2.5) we get

2cΦ
N∑
j=2

Hn−1(Br ∩ ∂∗A1 ∩ ∂∗Aj) �
∑
j∈I1

(
Pφj

(A1, Br) − Pφ1(A1, Br)
)

+
∑
i∈I1

∫
A1∩∂Br

(
φ1(νBr

) + φj(νBr
)
)
dHn−1

+ |I1|(2α1Λ1|A1 ∩Br|α1 + 2α2Λ2|A1 ∩Br|α2),
(3.19)

where |I1| is the number of elements of I1. By the definition of I1,∑
j∈I1

Hn−1(Br ∩ ∂∗A1 ∩ ∂∗Aj) = P (A1, Br),

by the definition of κN in (3.1)∑
j∈I1

(
Pφj

(A1, Br) − Pφ1(A1, Br)
)

� κN |I1|P (A1, Br),

and by (2.5)∑
i∈I1

∫
A1∩∂Br

(
φ1(νBr

) + φj(νBr
)
)
dHn−1 � 2CΦ|I1|Hn−1(A1 ∩ ∂Br).

Therefore, from (3.19) we obtain(
cΦ
|I1| −

κN
2

)
P (A1, Br) � CΦHn−1(A1 ∩ ∂Br) + 2α1−1Λ1|A1 ∩Br|α1

+ 2α2−1Λ2|A1 ∩Br|α2 .

Since |I1| � N − 1, inequality (3.16) follows.
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To prove (3.6) we add (cΦ/N − 1 − κN/2)Hn−1(A1 ∩ ∂Br) to both sides of
(3.16) and get( cΦ

N − 1
− κN

2

)
P (A1 ∩Br) �

( cΦ
N − 1

− κN
2

+ CΦ

)
Hn−1(A1 ∩ ∂Br)

+ 2α1−1Λ1|A1 ∩Br|α1 + 2α2−1Λ2|A1 ∩Br|α2 ,
(3.20)

By the definition (3.8) of r̃0 we have r � r̃0 � (cΦ/N − 1 − κN/2)1/nαl−n+1βl for
l = 1, 2 and therefore

2αl−1Λl|A1 ∩Br|αl−n−1/n � 2αl−1Λl|Br̃0 |αl−n−1/n

=
( cΦ
N − 1

− κN
2

) nω1/n
n

4
, l = 1, 2,

and thus, by (3.20) and the isoperimetric inequality,

cΦ − (N − 1)κN/2
2cΦ + 2(N − 1)CΦ − (N − 1)κN

nω1/n
n |A1 ∩Br|n−1/n � Hn−1(A1 ∩ ∂Br).

Now integrating we get

γnNωnr
n � |A1 ∩Br|

and (3.6) follows. Finally, since

cΦ
2cΦ + 2CΦ

> γN ,

from (3.2), (3.6) and the relative isoperimetric inequality we deduce (3.7). �

The following volume–distance comparison appeared in a similar form also in
[1,14,42] and will be used in the proof of the existence of GMM.

Proposition 3.3. Given θ, r0 > 0, let A ∈ BV (Rn; {0, 1}) be such that

θrn−1 � P (A,Br(x)), r ∈ (0, r0], (3.21)

whenever x ∈ ∂A. Then for any � > 0 and B ∈ BV (Rn; {0, 1}) one has

|BΔA| � 5nωn
θ

max
{

1,
( �
r0

)n−1}
P (A) �+

1
�

∫
AΔB

d(x, ∂A) dx. (3.22)

Proof. We follow [14, proposition 4.5] with minor modifications and we give the
details for the convenience of the reader. Define

E := {x ∈ BΔA : d(x, ∂A) � �}, F := {x ∈ BΔA : d(x, ∂Aj) � �}.
By the Chebyshev inequality,

|F | � 1
�

∫
F

d(x, ∂A) dx � 1
�

∫
AΔB

d(x, ∂A) dx.

Let us estimate |E|. By a covering argument, one can find a finite family of disjoint
balls {B�(xk)} xk ∈ ∂A, such that E is covered by the family {B5�(xk)}mk=1. If

https://doi.org/10.1017/prm.2020.53 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.53


Minimizing movements for anisotropic mean curvature flow 1149

� � r0, by (3.21) and the disjointness of {B�(xk)} (and hence of {Br0(xk)} ),

|E| �
m∑
k=1

ωn(5�)n =
5nωn�n

θrn−1
0

m∑
k=1

θrn−1
0 � 5nωn�n

θrn−1
0

m∑
k=1

P (Aj , Br0(xk))

�5nωn�n

θrn−1
0

P
(
Aj ,

m⋃
k=1

Br0(xk)
)

� 5nωn
θ

( �
r0

)n−1

P (Aj) �.

Analogously, if � < r0, then

|E| � 5nωn
θ

P (Aj) �.

Now (3.22) follows from the inequality |BΔA| � |E| + |F | and estimates for |A|
and |B|. �

4. Existence of GMM for bounded partitions

Given a norm ψ in R
n and E,F ⊆ R

n set

σ̄ψ(E,F ) :=
∫
EΔF

dψ(x, ∂F ) dx.

Note that σ̄ψ(E,F ) = 0 if |EΔF | = 0 whereas σ̄ψ(E,F ) = +∞ if ∂F = ∅ and
|EΔF | > 0. Moreover, X,Y ⊆ R

n are measurable and ∂Y 	= ∅,∫
XΔY

dψ(x, ∂Y ) dx =
∫
X

d̃ψ(x, ∂Y ) dx

−
∫
Y

d̃ψ(x, ∂Y ) dx if X ∩ Y is bounded,∫
XΔY

dψ(x, ∂Y ) dx =
∫
Y c

d̃ψ(x, ∂Y ) dx

−
∫
Xc

d̃ψ(x, ∂Y ) dx if Xc ∩ Y c is bounded.

Given a family Ψ := {ψ1, . . . , ψN+1} of norms ψi in R
n, and A,B ∈ Pb(N + 1),

we set

σΨ(A,B) :=
N+1∑
i=1

σ̄ψi
(Ai, Bi),

where N + 1 � 2. In the literature Ψ is called the set of mobilities. Since N is
finite, there exist 0 < cΨ � CΨ < +∞ such that

cΨ � ψi(ν) � CΨ, i = 1, . . . , N + 1, ν ∈ S
n−1. (4.1)

Observe that for every B ∈ Pb(N + 1) the map σΨ(·,B) is L1(Rn) -lower semi-
continuous in Pb(N + 1).

Given families Φ := {φ1, . . . , φN+1} of anisotropies and Ψ := {ψ1, . . . , ψN+1}
of mobilities, and H := (H1, . . . , HN+1) of functions Hi ∈ L1

loc(R
n), i =
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1, . . . , N, and HN+1 ∈ L1(Rn), consider the functional F : Pb(N + 1) × Pb

(N + 1) × [1,∞) → [−∞,∞],

F(E ,F , λ) = PerΦ(E) + Υ(E) + λσΨ(E ,F),

where

Υ(E) :=
N+1∑
i=1

∫
Ei

Hi dx.

Note that F(·,F ;λ) is well-defined and L1(Rn) -lower semicontinuous in Pb

(N + 1) . Notice that Υ can also be represented as

Υ(E) =
N∑
j=1

∫
Ej

(Hj −HN+1) dx+
∫

Rn

HN+1 dx. (4.2)

The functional F is a generalization of the Almgren–Taylor–Wang functional [1]
to the case of partitions [14,22] in presence of anisotropies, mobilities and external
forces.

The main result of this section is the following, which generalizes [14, theorems
4.9 and 5.1] to the anisotropic case with mobilities; recall that κN+1 is defined in
(3.1).

Theorem 4.1 Existence of GMM . Let Φ = {φ1, . . . , φN+1} and Ψ =
{ψ1, . . . , ψN+1} be families of anisotropies and mobilities, respectively. Suppose that

κN+1 <
2cΦ
N

, (4.3)

and H = (H1, . . . , HN+1) satisfies{
Hi ∈ Lploc(R

n), i = 1, . . . , N + 1, for some p > n and HN+1 ∈ L1(Rn);
[1mm]∃R > 0 s.t. Hi � HN+1 a.e. in R

n \BR(0) for i = 1, . . . , N.
(4.4)

Then for every G ∈ Pb(N + 1), GMM(F,G) is nonempty. Moreover, there exists
a constant C = C(N,n,Φ,Ψ,H,G) > 0 such that for any M ∈ GMM(F,G),

|M(t)ΔM(t′)| � C |t− t′| 1
n+1 , t, t′ > 0, |t− t′| < 1 (4.5)

and
N⋃
j=1

Mj(t) ⊆ D := closed convex hull of co(G) ∪BR ∀t � 0 (4.6)

and BR is not present in (4.6) if H ≡ 0 . In addition, if
∑N+1
j=1 |Gj \Gj | = 0,

then (4.5) holds for any t, t′ � 0 with |t− t′| < 1.

Proof. We give only few details of the proof since it can be done following the
arguments of the proofs of [14, theorems 4.9 and 5.1].
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Step 1: Existence of minimizers. Given A ∈ Pb(N + 1) and λ � 1, the problem

inf
B∈Pb(N+1)

F(B,A;λ)

has a solution. Moreover, every minimizer A(λ) = (A1(λ), . . . , AN+1(λ)) satisfies
the bound

N⋃
i=1

Ai(λ) ⊆ closed convex hull of co(A) ∪BR(0).

We omit the proof since it is proven along the same lines as [14, theorem 4.2]
using the anisotropic comparison theorem with convex sets 1 and the inequality
dψ(·, E0) > 0 in any F ⊂ R

n \ E0.
Step 2: Density estimates for minimizers. Let A ∈ Pb(N + 1) satisfy co(A) ⊂ D

and set

Λ1 := λ max
1�j�N+1

(diamψj
D + 2), Λ2 := N1/p max

1�j�N
‖Hj −HN+1‖Lp(D1), (4.7)

where D1 := {x ∈ R
n : d(x,D) � 1}. Let λ � 1 and A(λ) ∈ Pb(N + 1) be a min-

imizer of F(·,A;λ). Then for every i ∈ {1, . . . , N + 1} either ∂Ai(λ) is empty or
for any x ∈ ∂Ai(λ) and

r ∈
(
0,min

{
1,
(cΦ
N

− κN+1

2

) n

4Λ1
,
[(cΦ
N

− κN+1

2

) nω
1/p
n

22−1/pΛ2

]p/(p−n)}]
(4.8)

one has( 2cΦ −NκN+1

2cΦ + 2NCΦ −NκN+1

)n
� |Ai(λ) ∩Br(x)|

|Br(x)| � 1 −
( cΦ

2(cΦ + CΦ)

)n
(4.9)

and

cΦ � P (Ai(λ), Br(x))
rn−1

�
(
CΦ

cΦ
+

1
2

)
nωn, (4.10)

where κN+1 is given by (3.1) and

cΦ = cΦ(N,n) :=
nωn(21/n − 1)

21+1/n

(
2cΦ −NκN+1

2cΦ + 2NCΦ −NκN+1

)n−1

.

The proof is analogous to the the proof of [14, theorem 4.6]: we only show that

A(λ) is a (Φ,Λ1,Λ2, 1, 1 − 1/p) -minimizer,

1 If E ∈ BV (Rn; {0, 1}), then Pφ(E) � Pφ(E ∩ C) for every anisotropy φ and every closed
convex set C ⊂ Rn.
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and hence (4.9)–(4.10) follow from theorem 3.2. Let C ∈ Pb(N + 1) be such that
CΔA(λ) ⊂⊂ Bρ(x) with ρ ∈ (0, 1). By the minimality of A(λ),

PerΦ(A(λ), Bρ(x)) � PerΦ(C, Bρ(x)) + λ

N+1∑
j=1

∫
CjΔAj(λ)

dψj
(x, ∂Aj) dx

+
N∑
j=1

∫
CjΔAj(λ)

|Hj −HN+1|dx.

By step 1, co(A(λ)) ⊆ D, thus

dψj
(z, ∂Aj) � diamψj

D + 2ρ for all j = 1, . . . , N + 1 and z ∈ CΔA(λ),

where diamψj
is the ψj -diameter of a set. Then, since CΔA(λ) ⊂ D1,

N+1∑
j=1

∫
CjΔAj(λ)

dψj
(x, ∂Aj) dx � max

1�j�N+1
(diamψj

D + 2) |CΔA(λ)|

and

N∑
j=1

∫
CjΔAj(λ)

|Hj −HN+1|dx �
N∑
j=1

|CjΔAj(λ)|1−1/p‖Hj −HN+1‖Lp(D1)

�N1/p max
1�j�N

‖Hj −HN+1‖Lp(D1) |CΔA(λ)|1−1/p.

Thus,

PerΦ(A(λ), Bρ(x)) � PerΦ(C, Bρ(x)) + Λ1|CΔA(λ)| + Λ2|CΔA(λ)|1−1/p.

Step 3: Existence of GMM. Given λ � 1 and k ∈ N0 we define G(λ, k) recursively
as: G(λ, 0) = G and

F(G(λ, k),G(λ, k − 1), λ) = min
A∈Pb(N+1)

F(A,G(λ, k − 1), λ).

Since F(G(λ, k),G(λ, k − 1), λ) � F(G(λ, k − 1),G(λ, k − 1), λ), we have

PerΦ(G(λ, k)) + Υ(G(λ, k))+λσΨ(G(λ, k),G(λ, k − 1))

� PerΦ(G(λ, k − 1)) + Υ(G(λ, k − 1)). (4.11)

Thus, the map k ∈ N0 → PerΦ(G(λ, k)) + Υ(G(λ, k)) is nonincreasing for any λ �
1. In particular,

PerΦ(G(λ, k)) �PerΦ(G(λ, 0)) +
N∑
j=1

∫
Gj(λ,k)ΔGj(λ,0)

|Hj −HN+1|dx

�PerΦ(G) +
N∑
j=1

‖Hj −HN+1‖L1(D) =: μ0, k � 0 (4.12)
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and
N⋃
j=1

Gj(λ, k) ⊆ D for all λ � 1, and k � 0. (4.13)

Fix t, t′ > 0 with 0 < t− t′ < 1. Let λ > 1 be so large (depending on t, t′, n,
N, H, Ψ and Φ ) that setting k0 = [λt′], m0 = [λt], one has m0 � k0 + 3 � 4
and

rλ := min
{

1,
(cΦ
N

− κN+1

2

) n

4Λ1
,
[(cΦ
N

− κN+1

2

) nω
1/p
n

22−1/pΛ2

]p/(p−n)}
=
γ

λ
,

where Λ1 and Λ2 are given in (4.7), and recalling (4.3),

γ :=
(cΦ
N

− κN+1

2

) n

4 max
1�j�N+1

(diamψj
D + 2)

> 0.

By (4.10) for such λ and for any k � 1 any minimizer G(λ, k) satisfies

P (Gj(λ, k), Br(x)) � cΦrn−1

for any x ∈ ∂Gj(λ, k) and r ∈ (0, rλ) provided ∂Gj(λ, k) is nonempty. There-
fore, by proposition 3.3 applied with r0 = rλ, θ = cΦ, A = Gj(λ, k − 1), B =
Gj(λ, k) and � = rλ|t− t′|−1/(n+1) > rλ, for any j ∈ {1, . . . , N + 1} and k ∈
{k0 + 1, . . . ,m0}, we have

|G(λ, k − 1)ΔG(λ, k)| � 5nωnγ
λcΦ|t− t′|n/n+1

Per(G(λ, k − 1))

+
λ|t− t′|1/n+1

γ
σ(G(λ, k),G(λ, k − 1)).

Now the bounds (2.5), (4.1) and (4.11) imply

|G(λ, k − 1)ΔG(λ, k)| � 5nωnγ
λcΦcΦ|t− t′|n/n+1

PerΦ(G(λ, k − 1))

+
|t− t′|1/n+1

γcΨ
(PerΦ(G(λ, k − 1)) + Υ(G(λ, k − 1)) − PerΦ(G(λ, k) − Υ(G(λ, k))).

Summing this inequality in k ∈ {k0 + 1, . . . ,m0}, we obtain

|G(λ, [λt])ΔG(λ, [λt′])| �
m0∑

k=k0+1

|G(λ, k − 1)ΔG(λ, k)|

� 5nωnγ
λcΦcΦ|t− t′| n

n+1

m0∑
k=k0+1

PerΦ(G(λ, k − 1)) (4.14)

+
|t− t′| 1

n+1

γcΨ

(
PerΦ(G(λ, k0)) + Υ(G(λ, k0)) − PerΦ(G(λ,m0) − Υ(G(λ,m0))

)
.
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By (4.12)

m0∑
k=k0+1

PerΦ(G(λ, k − 1)) � μ0(m0 − k0) � λμ0

(
|t− t′| + 1

λ

)
and

PerΦ(G(λ, k0)) + Υ(G(λ, k0)) − PerΦ(G(λ,m0)) − Υ(G(λ,m0))

� PerΦ(G(λ, k0)) +
N∑
j=1

‖Hj −HN+1‖L1(D) � 2μ0.

Thus, from (4.14) we get

|G(λ, [λt])ΔG(λ, [λt′])| � C|t− t′| 1
n+1 + C̃|t− t′|− n

n+1λ−1, (4.15)

where

C :=
5nωnγμ0

cΦcΦ
+

2μ0

γcΨ
and C̃ :=

5nωnγμ0

cΦcΦ
.

The remaining part of the proof is as the proofs of [14, theorems 4.9 and 5.1]. We
note here that if G ∈ Pb(N + 1) satisfies

∑N+1
j=1 |Gj \Gj | = 0, then 1/(n+ 1) -

Hölderianity of GMM at time t = 0 follows from the relations

lim
λ→+∞

|G(λ, 1)ΔG| = 0, lim
λ→+∞

PerΦ(G(λ, 1)) = PerΦ(G),

lim
λ→+∞

λσΨ(G(λ, 1),G) = 0, lim
λ→+∞

Υ(G(λ, 1)) = Υ(G)

whose proofs can be done following the arguments of [14, proposition 4.5]. �

4.1. Two-phase case

When N = 1, repeating the arguments of [42] in our more general setting, we
can improve the Hölder exponent of GMM to 1/2 without any restriction on the
anisotropies.

Theorem 4.2. Let Φ = (φ1, φ2) and Ψ = (ψ1, ψ2), and assume that H = (H1,
H2) satisfies (4.4) with N = 1. Then for every G ∈ Pb(2), GMM(F,G) is
nonempty. Moreover, there exists a constant C = C(n,Φ,Ψ,H,PerΦ(G)) > 0 such
that for any N ∈ GMM(F,G),

|N (t)ΔN (t′)| � C |t− t′|1/2, t, t′ > 0, |t− t′| < 1 (4.16)

and

N1(t) ⊆ closed convex hull of G1 ∪BR ∀t � 0.

In addition, if |G1 \G1| = 0, then (4.16) holds for any t, t′ � 0 with |t− t′| < 1.
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The proof runs along the same lines of theorem 4.1 with however an improved
bound for the radii in the proof of the density estimates, see (4.30) below. We need
to make a detailed proof since this will be used in the proof of theorem 5.1.

Proof. Letting φ := φ1 + φ2, H := H1 −H2, and

dEψ (·) := dψ1(·, ∂E) + dψ2(·, ∂E), d̃Eψ (·) := d̃ψ1(·, ∂E) + d̃ψ2(·, ∂E),

we have

F(A,B, λ) −
∫

Rn

H2 dx = Pφ(A1) +
∫
A1

H dx+ λ

∫
A1ΔB1

dB1
ψ dx

=Pφ(A1) +
∫
A1

H dx+ λ

∫
A1

d̃B1
ψ dx− λ

∫
B1

d̃B1
ψ dx =: F2(A1, B1, λ).

(4.17)

Therefore, it suffices to show that for any bounded G ∈ BV (Rn; {0, 1}),
GMM(F2, G) is nonempty and there exists C0 := C0(n,Φ,Ψ,H, Pφ(G)) such that
for any L ∈ GMM(F2, G)

|L(t)ΔL(s)| � C0 |t− t′|1/2, t, t′ > 0, |t− t′| < 1 (4.18)

and

L(t) ⊆ D := co(G ∪BR), t � 0. (4.19)

Note that, except for the presence of
∫
A1
Hdx, F2 is of the form of the Almgren–

Taylor–Wang functional.
We divide the proof into five steps.
Step 1: Existence of minimizers. Let E0 ∈ BV (Rn; {0, 1}) be such that E0 ⊂ D.

Since φ is a norm, d̃E0
ψ � 0 in R

n \ E0 and H � 0 in R
n \D, as in the Euclidean

two-phase case (see e.g. [3]) we can use the comparison theorem with the convex
set D to establish the existence of a minimizer of F2(·, E0, λ) and also that every
minimizer Eλ satisfies Eλ ⊆ D.

Step 2: Unconstrained density estimates for minimizers. Let Eλ minimize
F2(·, E0, λ) and x0 ∈ EλΔE0 be such that d(x0, ∂E0) � r1 for some r1 > 0
satisfying

w1/n−1/p
n r

1−n/p
1

(∫
D

|H|p dx
)1/p

< cΦnω
1/n
n . (4.20)

Notice that there are no restrictions on r1 > 0; in addition x0 need not to be on
∂Eλ. Let us show that

(a) if x0 ∈ Eλ \ E0, then

|Eλ ∩Br(x0)|
|Br(x0)| �

( cΦ
4CΦ

)n
for any r ∈ (0, r1) ;

(b) if x0 ∈ E0 \ Eλ, then

|Br(x0) \ Eλ|
|Br(x0)| �

( cΦ
4CΦ

)n
for any r ∈ (0, r1) .
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We prove only (a), since the proof of (b) is similar. For shortness we write Br :=
Br(x0). Fix any r ∈ (0, r1) such that

Hn−1(∂∗Eλ ∩ ∂Br) = 0. (4.21)

By the minimality of Eλ we have F2(Eλ, E0, λ) � F2(Eλ \Br, E0, λ) so that

Pφ(Eλ, Bs) + λ

∫
Eλ∩Br

d̃E0
ψ dx � Pφ(Eλ \Br, Bs) +

∫
Eλ∩Br

|H|dx (4.22)

for any s > r. The choice of x0 and the definition of d̃E0
ψ imply d̃E0

ψ � 0 in Br1
and hence using (4.21) and (3.12) (applied with φj = φ and Aj = Eλ ) and the
inclusion (Eλ \Br)ΔEλ ⊂ Br , from (4.22) we get

Pφ(Eλ ∩Br) � 2
∫
Eλ∩∂Br

φ(νBr
) dHn−1 +

∫
Eλ∩Br

|H|dx. (4.23)

The definition of φ, (2.5), the isoperimetric inequality and the Hölder inequality
yield

2cΦnω1/n
n |Eλ ∩Br|(n−1/n �4CΦHn−1(Eλ ∩ ∂Br)

+ |Eλ ∩Br|1− 1
p

(∫
Eλ∩Br

|H|p dx
)1/p

.
(4.24)

Recall by step 1 that Eλ ⊆ D. Thus from the inequality

|Eλ ∩Br|1−1/p � |Eλ ∩Br|(n−1/n |Br|1/n−1/p = ω1/n−1/p
n r1−n/p|Eλ ∩Br|(n−1/n

and (4.20), it follows that

|Eλ ∩Br|1−1/p

(∫
Eλ∩Br

|H|p dx

)1/p

� cΦnω
1/n
n |Eλ ∩Br|(n−1)/n,

and therefore, from (4.24) we deduce

cΦnω
1/n
n |Eλ ∩Br|(n−1)/n � 4CΦHn−1(Eλ ∩ ∂Br).

Now integrating we get

|Eλ ∩Br|
|Br| �

( cΦ
4CΦ

)n
for any r ∈ (0, r1).

The next step is valid in the two-phase case. We miss the proof of a similar
statement in the multiphase case because we are not able to prove the analogue of
step 2 2 .

2 In the multiphase case we miss the analogue of (4.23), that was obtained neglecting the term∫
Eλ∩Br

d̃E0
ψ dx in (4.22). For instance, in the planar 4 -phase, at a triple junction involving

φ1, φ2, φ3 and surrounded by the fourth phase having φ4 as surface tension, it is conceivable
that, if φ1, φ2, φ3 are quite large compared to φ4 , then around the triple point, the fourth phase
appears after one minimization step.
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We essentially follow the arguments of [42,48]. Let

C1 = C1(n,Φ,Ψ) := 8CΨ

(
(4CΦ)n+1n

2cΨcnΦ

)1/2

and

C2 = C2(n,Φ,Ψ,H, p) := (ncΦ)2p/(n−p)
( C1

2CΨ

)2( 1
ωn

∫
D

|H|pdx
)2/(p−n)

.

Step 3: L∞ -bound for minimizers. For any λ > C2, if Eλ minimizes F2(·, E0, λ)
then

sup
x∈EλΔE0

dE0
ψ (x) � C1λ

−1/2.

Assume by contradiction that there exist λ > C2 and x0 ∈ EλΔE0 such that
dE0
ψ (x0) > C1λ

−1/2. Then from (4.1) we get d(x0, ∂E0) > C1/2CΨ λ
−1/2. Since

λ > C2, we can choose ε > 0 such that r1 := 2r = d(x0, ∂E0) > (C1/2CΨ +
ε)λ−1/2 satisfies (4.20), where for shortness we drop the dependence of r on n,
λ, ε, Φ and Ψ . Setting Br := Br(x0), without loss of generality we also sup-
pose that (4.21) holds. First we assume x0 ∈ Eλ \ E0. Then the minimality of Eλ
implies F2(Eλ, E0, λ) � F2(Eλ \Br, E0, λ) so that, similarly to (4.23),

Pφ(Eλ ∩Br) + λ

∫
Eλ∩Br

d̃E0
ψ dx � 2

∫
Eλ∩∂Br

φ(νBr
) dHn−1 +

∫
Eλ∩Br

|H|dx.
(4.25)

By the Hölder inequality, the inclusion Eλ ⊂ D and (4.20),∫
Eλ∩Br

|H|dx �|Eλ ∩Br|1−1/p
(∫

Eλ∩Br

|H|p dx
)1/p

�ω1/n−1/p
n r1−n/p

(∫
D

|H|p dx
)1/p

|Eλ ∩Br|(n−1)/n,

<cΦnω
1/n
n |Eλ ∩Br|(n−1)/n,

(4.26)

therefore, by (2.5) and the isoperimetric inequality,

Pφ(Eλ ∩Br) >
∫
Eλ∩Br

|H|dx.

This and (4.25) imply

λ

∫
Eλ∩Br

dE0
ψ dx < 2

∫
Eλ∩∂Br

φ(νBr
) dHn−1. (4.27)

By (4.1), the choice of x0 and the definition of r one has dE0
ψ � cΨd(·, ∂E0) � 2cΨr

in Br. Thus, from (4.27) and (2.5) we get

2cΨλr|Eλ ∩Br| < 4CΦHn−1(Eλ ∩ ∂Br).
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This, the inequality Hn−1(Eλ ∩ ∂Br) � nωnr
n−1 and step 2 (a) imply

2cΨλωnrn+1
( cΦ

4CΦ

)n
< 4CΦnωnr

n−1.

Therefore, by the definition of C1 and r,( C1

8CΨ

)2

=
(4CΦ)n+1n

2cΨcnΦ
> λr2 >

( C1

8CΨ
+
ε

4

)2

,

a contradiction.
If x0 ∈ E0 \ Eλ, then we use F2(Eλ, E0, λ) � F2(Eλ ∪Br, E0, λ) and repeat a

similar argument.
Before passing to the next step let us define

C3 := C3(n,Φ,Ψ) =
2ncΦ

C1 +
√
C2

1 + 4ncΦCΨ

,

C4 := C4(n,Φ) =
nωn(21/n − 1)

2n+1/n

( cΦ
4CΦ

)n−1

and

C5 = C5(n,Φ,Ψ,H, p) := max
{
C2, C

2
3

(ncΦ
2

)2p/(n−p)( 1
ωn

∫
D

|H|p dx
)2/(p−n)}

.

Step 4: Uniform density estimates for minimizers. Given λ > C5 and a minimizer
Eλ of F2(·, E0, λ), following arguments of [42,48] let us show that( cΦ

4CΦ

)n
� |Eλ ∩Br(x)|

|Br(x)| � 1 −
( cΦ

4CΦ

)n
(4.28)

and

C4 � P (Eλ, Br(x))
rn−1

� 2CΦ + cΦ
2cΦ

nωn (4.29)

for any x ∈ ∂Eλ and

r ∈ (0, C3λ
−1/2). (4.30)

Since E
(1)
λ = Eλ and ∂∗Eλ = ∂Eλ, we can suppose x ∈ ∂∗Eλ. For any r as in

(4.30) and y ∈ Br(x) one has

dE0
ψ (y) � dEλ

ψ (y) + sup
z∈EλΔE0

dE0
ψ (z) � 2CΨr + sup

z∈EλΔE0

dE0
ψ (z)

so that by step 3

dE0
ψ (y) � (2CΨC3 + C1)λ−1/2. (4.31)

Let us prove the lower volume density estimate in (4.28). For shortness set Br :=
Br(x). Let r ∈ (0, C3λ

−1/2) be such that (4.21) holds. As in the proof of step 2,
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from the inequality F2(Eλ, E0, λ) � F2(Eλ \Br, E0, λ) we get

Pφ(Eλ, Br) �
∫
Eλ∩∂Br

φ(νBr
) dHn−1 + λ

∫
Eλ∩Br

dE0
ψ (y) dy +

∫
Eλ∩Br

|H|dy.
(4.32)

By (4.31), the choice of r and the equality

(2CΨC3 + C1)C3 =
ncΦ
2
,

we have

λ

∫
Eλ∩Br

dE0
ψ (y) dy � (2CΨC3 + C1)ω1/n

n λ1/2r|Eλ ∩Br|(n−1)/n

� ω1/n
n (2CΨC3 + C1)C3|Eλ ∩Br|(n−1)/n

=
cΦnω

1/n
n

2
|Eλ ∩Br|(n−1)/n.

Furthermore, using λ > C5, as in (4.26)∫
Eλ∩Br

|H|dx �ω1/n−1/p
n r1−n/p

(∫
Eλ∩Br1

|H|p dx
)1/p

|Eλ ∩Br|(n−1)/n

�ω1/n−1/p
n (C3λ

−1/2)1−n/p
(∫

Eλ∩Br1

|H|p dx
)1/p

|Eλ ∩Br|(n−1)/n

�cΦnω
1/n
n

2
|Eλ ∩Br|(n−1)/n.

Therefore, from (4.32) it follows that

Pφ(Eλ, Br) �
∫
Eλ∩∂Br

φ(νBr
) dHn−1 + cΦnω

1/n
n |Eλ ∩Br|(n−1)/n. (4.33)

Adding
∫
Eλ∩∂Br

φ(νBr
) dHn−1 to both sides of (4.33), using (2.5) and the

isoperimetric inequality we get

cΦnω
1/n
n |Eλ ∩Br|(n−1)/n � 4CΦHn−1(Eλ ∩ ∂Br).

Integrating this over r we get the lower volume density estimate in (4.28).
To get the upper volume density estimate in (4.28) we use F2(Eλ, E0, λ) �

F2(Eλ ∪Br, E0, λ) and proceed as above.
For what concerns the upper perimeter density estimate in (4.29) we observe that

from (4.33) and (2.5) it follows that

2cΦP (Eλ, Br) � (2CΦ + cΦ)nωnrn−1

for a.e. r ∈ (0, C3λ
−1/2). Since r → P (Eλ, Br) is nondecreasing and left-

continuous, this inequality holds for all r. Finally the lower perimeter density
estimate follows from (4.28) and the relative isoperimetric inequality for the ball.
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Step 5: Existence of GMM starting from G . We follow the arguments of [42,48].
Let {G(λ, k)}λ>C5,k∈N0 be defined as follows: G(λ, 0) = G and

G(λ, k) ∈ argmin F2(·, G(λ, k − 1), λ), k � 1.

By step 1 G(λ, k) is well-defined and

G(λ, k) ⊆ D (4.34)

for all λ > C5 and k � 0. Notice also that

k ∈ N0 → Pφ(G(λ, k)) +
∫
G(λ,k)

H dx is nonincreasing. (4.35)

Given t > s > 0 with t− s < 1, let λ > max{C5, 5 + C−2
3 /t− s, 5/s} so that

[λt] − [λs] � 4, [λs] � 5 and 1/λ|t− s|1/2 < C3λ
−1/2. By proposition 3.3 applied

with A = G(λ, k − 1), r0 = C3λ
−1/2, θ := C4, � := 1/λ|t− s|1/2 and B =

G(λ, k), and using the bounds (2.5) and (4.1) for anisotropies and mobilities, for
any k ∈ {[λs] + 1, . . . , [λt]} we get

|G(λ, k − 1)ΔG(λ, k)| � 5nωn
2C4cΦλ|t− s|1/2 Pφ(G(λ, k − 1))

+
λ|t− s|1/2

2cΨ

∫
G(λ,k−1)ΔG(λ,k)

d
G(λ,k−1)
ψ dx.

Therefore,

|G(λ, [λs])ΔG(λ, [λt])| �
[λt]∑

k=[λs]+1

|G(λ, k − 1)ΔG(λ, k)|

� 5nωn
2C4cΦλ|t− s|1/2

[λt]∑
k=[λs]+1

Pφ(G(λ, k − 1))

+
λ|t− s|1/2

2cΨ

[λt]∑
k=[λs]+1

∫
G(λ,k−1)ΔG(λ,k)

d
G(λ,k−1)
ψ dx.

(4.36)
By (4.35),

[λt]∑
k=[λs]+1

Pφ(G(λ, k − 1))

�
[λt]∑

k=[λs]+1

(
Pφ(G(λ, k − 1)) +

∫
G(λ,k−1)

H dx+
∫
G(λ,k−1)

|H|dx
)

�
(
Pφ(G) +

∫
G

H dx+
∫
D

|H|dx
)(

[λt] − [λs]
)

�
(
Pφ(G) + 2

∫
D

|H|dx
)(

λ(t− s) + 1
)
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and

λ

[λt]∑
k=[λs]+1

∫
G(λ,k−1)ΔG(λ,k)

d
G(λ,k−1)
ψ dx

� Pφ(G(λ, [λs])) +
∫
G(λ,[λs])

Hdx− Pφ(G(λ, [λt])) −
∫
G(λ,[λt])

H dx

� Pφ(G) + 2
∫
D

|H|dx,

therefore, from (4.36) we get

|G(λ, [λs])ΔG(λ, [λt])| �
(
C6 |t− s|1/2 +

C6 − 1/2cΨ
λ|t− s|1/2

)(
Pφ(G) + 2

∫
D

|H|dx
)
,

(4.37)
where

C6 :=
5nωn
2C4cΦ

+
1

2cΨ
. (4.38)

Now (4.18) and (4.19) follow from (4.37) and (4.34), respectively. �

We will use (4.29), (4.30) and (4.37) in the proof of theorem 5.1.

5. Improved time Hölder regularity

In this section we show that when φi = φ and ψi = ψ for any i = 1, . . . , N + 1,
the time Hölder continuity exponent of GMM for partitions can be improved to
1/2 . The result follows from the generalization of [42] in the previous section
(theorem 4.2) combined with a comparison (theorem 5.2 below) between a mul-
tiphase flow and a two-phase flow starting from just one of the phases and its
complement. Arguments from our main continuity result (in theorem 4.1) are
needed to reconnect both flows in the limit.

Theorem 5.1. Let Φ = {φ, . . . , φ} and Ψ = {ψ, . . . , ψ} for some norms φ and
ψ on R

n, and H ≡ 0. Then for any G ∈ Pb(N + 1) and M ∈ GMM(F,G)

|M(t)ΔM(t′)| � C6 PerΦ(G) |t− t′|1/2, t, t′ > 0, |t− t′| < 1, (5.1)

where C6 is given in (4.38). In addition, if
∑N+1
j=1 |Gj \Gj | = 0, then (5.1) holds

for any t, t′ � 0 with |t− t′| < 1.

Recall that, by theorem 4.1, for any G ∈ Pb(N + 1), GMM(F,G) is nonempty,
each M ∈ GMM(F,G) is locally 1/(n+ 1) -Hölder continuous and

N⋃
i=1

Mi(t) ⊆ co(G) for any t � 0 .
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Besides F we need to consider also the functional F2 defined (up to constants)
in (4.17) with H = 0, i.e.,

F2(G,E, λ) := Pφ(G) + λ

∫
GΔE

dψ(x, ∂E) dx. (5.2)

We start with a comparison result: this is the key point of the proof of theorem
5.1 since it allows to compare the evolution of a single phase with the multiphase
case.

Theorem 5.2 Discrete comparison multiphase-phase. Let g1, . . . , gN+1 ∈ L1
loc(R

n)
and suppose that A ∈ Pb(N + 1) minimize

E ∈ Pb(N + 1) →
N+1∑
i=1

Pφ(Ei) +
N∑
i=1

∫
Ei

gi dx−
∫
Ec

N+1

gN+1 dx.

Suppose that for i ∈ {1, . . . , N} and g′i ∈ L1
loc(R

n) , there exists a bounded mini-
mizer Fi of

F ∈ BV (Rn; {0, 1}) → Pφ(F ) +
∫
F

g′i dx,

and suppose that, given g′N+1 ∈ L1
loc(R

n), there exists a bounded minimizer of

G ∈ BV (Rn; {0, 1}) → Pφ(G) −
∫
G

g′N+1 dx,

the complement of which we denote by FN+1. If 2g′i − gi + gj > 0 a.e. in R
n for

all i, j ∈ {1, . . . , N + 1}, i 	= j, then

Fi ⊆ Ai, i ∈ {1, . . . , N + 1}.

Proof. Let i ∈ {1, . . . , N}. By minimality,

N+1∑
j=1

Pφ(Aj) +
N∑
j=1

∫
Aj

gj dx−
∫
Ac

N+1

gN+1 dx � Pφ(Ai ∪ Fi)

+
N+1∑

j=1,j �=i
Pφ(Aj \ Fi) +

∫
Ai∪Fi

gi dx+
N∑

j=1, j �=i

∫
Aj\Fi

gj dx−
∫
Ac

N+1∪Fi

gN+1 dx

(5.3)
and

Pφ(Fi) +
∫
Fi

g′i dx � Pφ(Fi ∩Ai) +
∫
Fi∩Ai

g′i dx. (5.4)
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Summing (5.3) and twice (5.4), we obtain

Pφ(Fi) + Pφ(Ai) + Pφ(Fi) +
N+1∑

j=1,j �=i
Pφ(Aj)

+
∫
Fi\Ai

(g′i − gi) dx+
N+1∑

j=1,j �=i

∫
Aj∩Fi

gj dx+
∫
Fi\Ai

g′i dx

� Pφ(Fi ∪Ai) + Pφ(Fi ∩Ai) +
N+1∑

j=1,j �=i
Pφ(Aj \ Fi) + Pφ(Fi ∩Ai).

(5.5)

Let us show that for any E ∈ BV (Rn; {0, 1}), G ∈ Pb(N + 1) and i ∈ {1, . . . ,
N + 1},

N+1∑
j=1,j �=i

Pφ(Gj \ E) + Pφ(Gi ∩ E) � Pφ(E) +
N+1∑

j=1,j �=i
Pφ(Gj). (5.6)

First assume that Hn−1(∂∗E ∩⋃N+1
j=1 ∂∗Gj) = 0. In this case by (2.1) and (2.2),

as well as the inclusion ∂∗Gi ⊂
⋃N+1
j=1,j �=i ∂

∗Gj , we obtain

Pφ(Gj \ E) =
∫
E(0)∩∂∗Gj

φ(νGj
)dHn−1 +

∫
Gj∩∂∗E

φ(νE)dHn−1

and

Pφ(Gi ∩ E) =
∫
E∩∂∗Gi

φ(νGi
)dHn−1 +

∫
Gi∩∂∗E

φ(νE)dHn−1

=
N+1∑

j=1,j �=i

∫
E∩∂∗Gj∩∂∗Gi

φ(νGj
)dHn−1 +

∫
Gi∩∂∗E

φ(νE)dHn−1,

and hence,

N+1∑
j=1,j �=i

Pφ(Gj \ E) + Pφ(Gi ∩ E)

=
N+1∑

j=1,j �=i

(∫
E(0)∩∂∗Gj

φ(νGj
)dHn−1 +

∫
E∩∂∗Gj∩∂∗Gi

φ(νGj
)dHn−1

)

+
N+1∑
j=1

∫
Gj∩∂∗E

φ(νE)dHn−1 �
N+1∑

j=1,j �=i
Pφ(Gj) + Pφ(E).

In the general case we choose a sequence {ξk} ⊂ R
n such that |ξk| → 0

and Hn−1(∂∗(E + ξk) ∩
⋃N+1
j=1 ∂∗Gj) = 0 , where E + ξk := {x ∈ R

n : x− ξk ∈
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E}. By the previous case,

N+1∑
j=1, �=i

Pφ(Gj \ (E + ξk)) + Pφ(Gi ∩ (E + ξk)) �
N+1∑

j=1,j �=i
Pφ(Gj) + Pφ(E + ξk).

(5.7)
Since Pφ(E + ξk) = Pφ(E) and lim

k→+∞
|(E + ξk)ΔE| → 0, letting k → +∞ in

(5.7) and using the L1(Rn) -lower semicontinuity of the φ -perimeter we get (5.6).
Inserting (5.6) with G = A and E = Fi in (5.5) and using (2.4) we get∫

Fi\Ai

(g′i − gi) dx+
N+1∑

j=1,j �=i

∫
Aj∩Fi

gj dx+
∫
Fi\Ai

g′i dx � 0.

Recall that Fi \Ai =
⋃N+1
j=1,j �=i Fi ∩Aj up to a negligible set, thus,

N+1∑
j=1,j �=i

∫
Aj∩Fi

(2g′i − gi + gj) dx � 0.

By assumption 2g′i − gi + gj > 0 a.e., and hence Fi ⊆ Ai up to a negligible set.
The case i = N + 1 is similar. �

Lemma 5.3. Let G ∈ Pb(N + 1) and set

gj(·) := d̃ψ(·, ∂Gj), j ∈ {1, . . . , N + 1}.
For E ⊆ R

n define e(·) = d̃ψ(·, ∂E). If either E ⊆ Gi for some i ∈ {1, . . . , N} or
GcN+1 ⊆ Ec, then 2e− gi + gj � 0 a.e. in R

n for any j ∈ {1, . . . , N + 1}, j 	=
i. Similarly, if either E ⊂⊂ Gi for some i ∈ {1, . . . , N} or GcN+1 ⊂⊂ Ec, then
2e− gi + gj � 0 a.e. in R

n for any j ∈ {1, . . . , N + 1}, j 	= i.

Proof. Since Eci ⊆ Gci ∪Gcj , the assertion follows from the relation

A ⊆ B =⇒ d̃ψ(·, ∂A) � d̃ψ(·, ∂B) a.e. in R
n.

�

Lemma 5.4. Given A ∈ Pb(N + 1), let A(λ) minimize F(·,A, λ) with H = 0.
For i ∈ {1, . . . , N + 1} let E ∈ BV (Rn; {0, 1}) be such that E ⊆ Ai; in case i =
N + 1 we assume also that Ec is bounded. Then there exists a minimizer Ei(λ)
of F2(·, E, λ) such that Ei(λ) ⊆ Ai(λ).

Proof. First we assume that E = Ai. Let E1 ⊂⊂ E2 ⊂⊂ . . . ⊂⊂ Ai be sets of finite
perimeter such that Ai =

⋃
k Ek and d̃(·, ∂Ek) → d̃(·, ∂Ai) a.e. as k → +∞. Let

Ek(λ) be a minimizer of F2(·, Ek, λ). By [18], E1(λ) ⊆ E2(λ) . . . and E(λ)∗ :=⋃
k Ek(λ) is the minimal minimizer of F2(·, Ai, λ). Since Ek ⊂⊂ Ai, by lemma

5.3,

2d̃(·, ∂Ek) − d̃(·, ∂Ai) + d̃(·, ∂Aj) > 0 a.e. in R
n for all j 	= i.

Thus, by theorem 5.2, Ek(λ) ⊆ Ai(λ). Hence, we get E(λ)∗ ⊆ Ai(λ).
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In the general case, we consider the minimal minimizer E(λ)∗ of F2(·, E, λ) and
the minimal minimizer Ai(λ)∗ of F2(·, Ai, λ). Since E ⊆ Ai, by [18], E(λ)∗ ⊆
Ai(λ)∗. Hence, Ei(λ) = E(λ)∗ satisfies the assertion of the lemma. �

Proof of theorem 5.1. Given G ∈ Pb(N + 1) define {G(λ, k)}λ�1,k∈N0 as follows:
G(λ, 0) = G and

G(λ, k) ∈ argmin F(·,G(λ, k − 1), λ), k � 1.

Note that the map k ∈ N0 → PerΦ(G(λ, k)) is nonincreasing. In particular,

PerΦ(G(λ, k)) � PerΦ(G). (5.8)

For any i ∈ {1, . . . , N + 1} and k � 0, let {F ki (λ, l)}l�k be defined as follows:
F ki (λ, k) := Gi(λ, k) and F ki (λ, l) is the minimal minimizer of F2(·, F ki (λ, l − 1), λ)
for l > k. Notice that, according to step 2 of the proof of theorem 4.1, our actual
initial set F ki (λ, k) = Gi(λ, k) satisfies the density estimates (4.9) and (4.10) for all
radii r � O(1/λ) and, according to the proof of step 4 of theorem 4.2, all F ki (λ, l),
l > k, satisfy the density estimates (4.28) and (4.29) for all radii r � O(1/λ1/2).
Moreover, since the initial set F ki (λ, k) also depends on λ, we cannot use the
arguments of the 1/(n+ 1) -Hölder continuity up to time 0 in the proof of theorem
4.1.

For shortness we call {F ki (λ, l)}l�k a discrete solution starting from F ki (λ, k) =
Gi(λ, k). Applying lemma 5.4 inductively one can show that

F ki (λ, l) ⊆ Gi(λ, l), l � k.

In particular,

Gi(λ, l) =
(⋃
j �=i

Gj(λ, l)
)c

=
⋂
j �=i

Gj(λ, l)c ⊆
⋂
j �=i

F kj (λ, l)c.

Hence, using F ki (λ, k) := Gi(λ, k) for all i = 1, . . . , N + 1, we get

Gi(λ, l) \Gi(λ, k) ⊆
(⋂
j �=i

F kj (λ, l)c
)
∩
(⋃
j �=i

F kj (λ, l)
)
⊆
⋃
j �=i

(
F kj (λ, k) \ F kj (λ, l)

)
.

On the other hand,

Gi(λ, k) \Gi(λ, l) = F ki (λ, k) \Gi(λ, l) ⊆ F ki (λ, k) \ F ki (λ, l),

hence,

|G(λ, k)ΔG(λ, l)| �
N+1∑
i=1

|F ki (λ, k) \ F ki (λ, l)|, (5.9)

which is the inequality that will allow us to get the 1/2 -Hölderianity of GMM.
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Fix i ∈ {1, . . . , N + 1} and choose arbitrary t > s′ > s > 0. Let {F [λs]
i (λ, l)}l�[λs]

be a discrete solution starting from F
[λs]
i (λ, [λs]) = Gi(λ, [λs]). Then for any

λ > (5/s′ − s) + (5/t− s′) + (5/s) we have

|F [λs]
i (λ, [λs])) \ F [λs]

i (λ, [λt])| �
[λs′]∑

l=[λs]+1

|F [λs]
i (λ, l)ΔF [λs]

i (λ, l − 1)|

+
[λt]∑

l=[λs′]+1

|F [λs]
i (λ, l)ΔF [λs]

i (λ, l − 1)| =: I1 + I2.

(5.10)
Note that by the choice of λ, we have [λs′] − [λs] � 4, [λt] − [λs′] � 4 and [λs] �
4. According to step 4 of the proof of theorem 4.2, F [λs]

i (λ, l), l � [λs] � 4 satisfies
the uniform lower perimeter density estimate

C4 � P (F [λs]
i (λ, l), Br(x))

rn−1
, x ∈ ∂F

[λs]
i (λ, l), r ∈ (0, C3λ

−1/2),

provided λ > C5. Hence, from (4.37),

I2 �
(
C6|t− s′|1/2 +

C6 − 1/2cΨ
λ|t− s′|1/2

)
Pφ(Gi(λ, [λs])).

Since G(λ, [λs]) minimizes F(·,G(λ, [λs] − 1), λ), by step 3 of the proof of theorem
4.1, see in particular (4.8) and (4.10),

cΦ(N,n) � P (Gi(λ, [λs]), Br(x))
rn−1

, x ∈ ∂Gi(λ, [λs]), r ∈
(
0,
C(n,N, p,Φ,Ψ)

λ

)
.

(5.11)

Because of the presence of 1/λ (instead of 1/λ1/2 ) in (5.11), in general we cannot
use (4.37). To estimate I1 we proceed as in the proof of (4.15) and get

I1 �
(
C |s′ − s|1/n+1 +

C̃
λ|s′ − s|n/n+1

)
Pφ(Gi(λ, [λs])).

From the estimates for I1 and I2, and (5.8), (5.9) and (5.10) we obtain

|G(λ, [λs])ΔG(λ, [λt])|

�
(

C |s′ − s|1/n+1 +
C̃

λ|s′ − s|n/n+1

)
PerΦ(G(λ, [λs]))

+

(
C6|t− s′|1/2 +

C6 − 1/2cΨ
λ|t− s′|1/2

)
PerΦ(G(λ, [λs]))

�
(
C |s′ − s|1/n+1 +

C̃
λ|s′ − s|n/n+1

+ C6|t− s′|1/2 +
C6 − 1/2cΨ
λ|t− s′|1/2

)
PerΦ(G).

(5.12)
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Now if M ∈ GMM(F,G), there exists λk → +∞ for which

lim
k→∞

|G(λk, [λkt])ΔM(t)| = 0 for any t � 0.

Thus, from (5.12) we get

|M(s)ΔM(t)| � (C |s′ − s|1/n+1 + C6|t− s′|1/2)PerΦ(G).

Since s′ ∈ (s, t) is arbitrary, letting s′ ↘ s we get (5.1) with C := C6.

Finally, if
∑N+1
j=1 |Gj \Gj | = 0, then for any t > s > 0 and M ∈ GMM(F,G)

we have

|M(t)ΔG| � |M(t)ΔM(s)| + |M(s)ΔG| � C6PerΦ(G)|t− s|1/2 + Cs1/n+1,

where in the second inequality we used (5.1) and (4.5). Now letting s↘ 0 we get

|M(t)ΔG| � C6PerΦ(G) t1/2.

�

From lemma 5.4 we get the following weak comparison property of GMM.

Theorem 5.5 Comparison. Let Φ = {φ, . . . , φ} and Ψ = {ψ, . . . , ψ} for some
norms φ and ψ on R

n, and H ≡ 0. Given G ∈ Pb(N + 1), let M ∈ GMM(F,G)
and given i ∈ {1, . . . , N + 1}, let C ∈ BV (Rn; {0, 1}) be such that C ⊆ Gi; in
case i = N + 1 we assume also that Cc is bounded. Then there exists N ∈
GMM(F2, C) such that N(t) ⊆Mi(t) for all t � 0.

Proof. Let λh → +∞ be such that

lim
h→∞

|G(λh, [λht])ΔM(t)| = 0 for all t � 0, (5.13)

where for any h the sequence {G(λh, k)}k∈N0 is defined as: G(λh, 0) = G and

G(λh, k) ∈ argmin F(·,G(λh, k − 1), λh), k � 1.

Let i ∈ {1, . . . , N + 1} and C ∈ BV (Rn; {0, 1}) be as in the statement. For any h
let {G(λh, k)}k∈N0 be defined as G(λh, 0) = C and G(λh, k) is the minimal mini-
mizer of F2(·, G(λh, k − 1), λ), k � 1 (see the proof of lemma 5.4 for the definition).
Applying lemma 5.4 inductively we get

G(λh, k) ⊆ Gi(λh, k) for all h � 1 and k � 0. (5.14)

Passing to a further (not relabelled) subsequence if necessary, we assume that there
exists N ∈ GMM(F2, C) such that

lim
h→∞

|G(λh, [λht])ΔN(t)| = 0 for all t � 0. (5.15)

By (5.13) we have

lim
h→∞

|Gi(λh, [λht])ΔMi(t)| = 0 for all t � 0.

Now (5.14) and (5.15) imply that N(t) ⊆Mi(t) for all t � 0 up to a negligible
set. �
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Corollary 5.6. Under the assumptions of theorem 5.5 let G ∈ Pb(N + 1) and
M ∈ GMM(F,G). Let Ci ⊆ Gi, i ∈ {1, . . . , N}, and CcN+1 ⊇ co(G) be con-
vex sets and let Li ∈ GMM(F2, Ci), i ∈ {1, . . . , N + 1}. Then for any M ∈
GMM(F,G)

Li(t) 	= ∅ =⇒ Mi(t) 	= ∅, i = 1, . . . , N, (5.16)

and

LN+1(t) = ∅ =⇒ MN+1(t) = ∅. (5.17)

Proof. Recall that anisotropic mean curvature flow with a mobility starting from
a bounded convex set C is uniquely defined [10], coincides with the GMM start-
ing from C and becomes extinct at a finite time tC > 0. By theorem 5.5, the
i -th phase Mi of any M ∈ GMM(F,G) starting from the i -th phase Gi of
G does not disappear in the time-interval (0, tCi

) for any i ∈ {1, . . . , N}. Anal-
ogously, theorem 5.5 implies that (N + 1) -th phase of M becomes empty, i.e.,
R
n \MN+1(t) = ∅ if t � tCN+1 . �
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