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INEQUALITIES FOR SYMMETRIC MEANS, SYMMETRIC
HARMONIC MEANS, AND THEIR APPLICATIONS

HSU-TUNG K U , M E I - C H I N KU AND X I N - M I N ZHANG

In this paper, we establish a number of inequalities involving symmetric means and
symmetric harmonic means. We then apply these new inequalities to obtain many
geometric inequalities of isoperimetric type for plane polygons.

1. INTRODUCTION

Inequalities are basic in pure and applied mathematics which brought together three
distinguished mathematicians Hardy, Littlewood and Polya to publish the famous book
"Inequalities" [4], One of the most well-known inequalities is the arithmetic-geometric
mean inequality. Among many important applications of inequalities to other fields, in-
equalities involving various means, such as symmetric means and symmetric harmonic
means are of particular interest. They are used extensively in probability and statistics.
In geometry and topology, many basic invariants are also defined in terms of the symmet-
ric means, for instance, the rth mean curvature of a Riemannian submanifold et cetera.
Let R denote the field of real numbers, and R + = {x € R : x > 0}. For 1 ^ r ^ n, the
rth symmetric mean f^r'(a) of a = (<Zi, a2 , . . . , an) G R" is defined by

n
r

where

<Tr(ai, . . . ,On) = ^ Z aiiai2 • • • air

is the rth elementary symmetric function of a, and the summation is taken over all
possible permutations of (ix,... ,ir), 1 ^ r ^ n. The arithmetic mean An(a) and the
geometric mean Gn(a) are simply

An (a) = PW (a) and GB (a) = Pn"l (a).
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Set b = ( 1 / a i , . . . , l / a n ) . The harmonic mean Hn(a) of a is defined as Hn(a) = n/<Ti(b).
It is well-known that

An(a) > Gn{a) ^ Hn{a),

with either equality holding if and only if a^ = a2 — ... = an. Furthermore, we have the
following symmetric mean inequality.

LEMMA 1 . 1 . (See [3, 7, 9, 10].) For 1 ^ t < r ^ n, and a G R" ,

(1) ^ J ( a ) > ^ r ) ( a ) ,

with equality holding if and only if di = ... = an.

For a G R", set m(a) = min{aj : 1 ^ i ^ n}, m(a) — max{a; : 1 ^ i ^ n) and
define
(2) en(a) = 4m(a)m(a)/{m(a) + m(a)}2.

By the arithmetic-geometric mean inequality (or Lemma 1.1), we have

(3) en(a) ^ 1, with equality if and only if ax = a2 = . . . = an.

In terms of en(a), we can restate a result in [3, p.201] as follows in contrast with the
inequality An{a) ^ Hn(a).

LEMMA 1 . 2 . (Kantorovich.) For a G R^,

(4) Hn(a) > en(a)An{a).

Equality holds if and only ifn = 2m is even, an = . . . = am and am+1 = . . . = a2m.

In this paper, we shall generalise the inequality (1) and establish inequalities that
reverse the direction of (1) in the sense of (4). In fact, we shall prove the following result.

THEOREM 1 .3 Let 1 ^ t <r < n and a G R". Then

Equality holds if and only if ai = a-i = ... = an.

We apply these inequalities along with some other inequalities for various means that
we have proved earlier in [6] to establish many new interesting geometric isoperimetric
inequalities for plane polygons in section 3.

2. INEQUALITIES FOR SYMMETRIC AND HARMONIC MEANS

We shall begin by proving a new inequality which may be viewed as a counterpart
of Lemma 1.1.

THEOREM 2 . 1 . Let a e R" and l < < < r < s < n .

(5) i*l(a) > { ^ ( . ) } W ' ^ ^ ^
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Equality holds if and only if ai = a2 = . . . = an.

PROOF: First we set

pM(a) = {^l(a)}r = ar(ai,.. .,an), 1 ^ r ^ n.

It is well-known that if 1 < r < n, we have (see [3, 9])

(6)

with equality if and only if a,i = a2 = . . . = an. We claim that

(7) Mr«(a)
According to (6), (7) is true for k = 1. Suppose
k = r. By induction and (6),

- 2 , and (7) is valid for

and so,

Hence (7) holds for k — r + 1. To prove the theorem, it suffices to prove the following:

(8) Pl

Now, by (7) we obtain

that is, (8) holds for r = 2. Suppose
by (7) we get,

n — 1, and (8) is valid for k — r. Then

That is, (8) holds for k = r + 1. Hence the result follows by induction.

Now, Theorem 1.3 is simply a corollary of the following theorem.

THEOREM 2 . 2 . Let 1 ^ t < r ^ n, and a € R!J..

(9)
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with equality if and only if ax = a? = • • • — an.

PROOF: From the definitions,

(10) {Gn(a)}B = Hn

Hence, it follows from Lemma 1.2 and Theorem 2.1 that

GB(a) £ { c

Thus,

That is,

(11) GB(a) £ {en(aMn(a)}("-*>/" {pM(a)}'/n .

Hence (9) holds for r = n. If r < n, by (11) and Theorem 2.1 we have

Recall that if we set b = ( 1 / a j , . . . , l /a n ) , then //n(a) = l/pW(b). Hence we can
define the rth symmetric harmonic mean //n>r(a) of a € R" by

Observe that Hn(a) — Hnii(a) and Hn>n(a) = Gn(a). As an immediate corollary to
Lemma 1.1 and Theorem 1.3 we have the following inequalities.

THEOREM 2 . 3 . Let a e R" and 1 ^ t < r < n. Then

(a) ffBpt(a) < Fn, r(a).

fbj HBit(a) ^ {cB(a)}('-t)/'-^B>r(a).

Equality holds in either (a) or (b) if and only if a\ — 02 = . . . = an.

3. GEOMETRIC ISOPERIMETRIC INEQUALITIES

As pointed out by Polya in his excellent book Induction and Analogy in Mathematics
[13], isoperimetric inequalities and inequalities for means share a lot of common proper-
ties. In this section, we shall apply the results about various means in previous sections
and some other inequalities that we have obtained earlier in [6] to establish geometric
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inequalities for plane polygons. We are able to obtain uncountably many new isoperi-

metric inequalities which are not only interesting in geometry, but also very important

in analysis, as well as in mathematical physics [2, 1 1 , 12, 14, 15]. Let Tn be an 71-

sided polygon in the plane and a i , a 2 , . . . , an denote the lengths of its sides. Denote by
n

A(Vn) and L(Vn) = ^ a i ; the area and the perimeter of Vn respectively. The well-known
i=l

classical isoperimetric inequality asserts that [12, p.1209]:

(12) L2{Vn)IA{Vn) > 4dn, where dn = ntan {n/n).

Equality holds if and only if Vn is regular.

Set a = (QI, Q2,. . . , an) € R", a; — L(Vn) — 2a*, 1 ^ i ^ n. Then we have

(13) L(Pn) = - ^ P W ( « ) .

For n = 3 and n = 4, the famous Heron formula for a triangle and Brahmagupta formula
for a quadrilateral can be expressed as follows [5, 7, 8]:

(14 ) { ^ 2 ^"(a)](""2)/(2(n"1)) \Gn{a)T'{2{n-l))) = 4dnA(Vn), (n = 3).

(15)

The equality in (15) holds if and only if Vi is a cyclic quadrilateral, that is, it can be
inscribed in a circle. It is a well-known fact that "Of all n-sided plane polygons with
given n sides, the cyclic polygon encloses the largest area" [5, 8]. Since we are mainly
concerned with isoperimetric problem for polygons, from now on, all polygons will be
assumed to be cyclic unless otherwise specified. For the simplicity of statement, it is
convenient to use a instead of a £ R" when we discuss isoperimetric inequalities for
polygons by virtue of inequalities for means. Formulas (13), (14), and (15) also motivate
us to introduce the following new geometric invariants.

DEFINITION 3.1: The rth symmetric perimeter C^}{Vn) and the rth symmetric har-

monic perimeter Cn<r(Tn) of Vn, 1 ^ r ^ n, are defined respectively by

4rlCPn) = - ^ r l ( a ) , and Cn,r{Vn) = -^-Hn,r(a).n — 2 n — 2

Set 'Hn(Vn) = Cn<i(Vn) and call it the harmonic perimeter of Vn. By Lemma 1.1 and
Theorem 2.3 (a) we have

(16) L(Vn) = £W(Vn) > C^CPn) >...> C[:](Vn) = Cn,n{Vn)

and

(17) CnAVn) > £n,n-l(7>n) ^ • • • ̂  £n,l(P») = 'Hn{Vn).

Now, let us set en(Vn) = en(a). By (3), en(Vn) ^ 1 with equality if and only if Vn is

regular. We present the following generalisation and variations of (12).

THEOREM 3 . 2 . For r — 1,2,... ,n, we have
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(a) {£$(Vn)}
2 /A(Vn) > 4dn{en(l

(b) {CnAVn)}
2 /A(Vn) > 4rfn{en(;

In particular,

{Hn{Vn)}
2 /A{Vn) > 4

Equality holds in (a) (respectively (b)) if and only ifVn is regular.

PROOF: Apply Theorem 1.3 to a € R!^. D

Notice that if r = 1, (a) is simply the inequality (12).

Next, we shall briefly review the so-called generalised power means and their inequal-
ities that we have obtained in [6]. Then we shall be able to establish a family of isoperi-
metric inequalities that are much more general than Theorem 3.2. Let /* : R!J. —> R+,
1 < i ^ m, be distinct functions, and f = (/i, / 2 , . . . f m ) . Let wx > 0, 1 ^ i < m, and
A(w) = A(tui , . . . , wm) be the (m — l)-simplex in R m with vertices

Wj = (0 , . . . , 0, l/u>i, 0 , . . . , 0) where \/wi is the ith coordinate, i = 1 , . . . , m.

771

Thus, if x = (xi,...,xm) G A(w), then ^2wiXt = 1. For x € A(w), a e R", and r > 0,

we have defined the generalised power mean L$m[f;x; w](a) in [6] by

ifr = 0,

4rln[f;x;w](a) =
VlXiim]r\ ifr>0.

t = i

Moreover, i f 0 ^ i < r , x S A(w), the following inequality generalises the ordinary power
mean inequality, and was proved in [6, Theorem 2.5(a)]:

(18) Lgjjf; x ; w ] ( a ) ^ LUm[f. x ;
.

Equality holds if and only if a.\ = a.2 = . •. = an.

We now can define the mixed symmetric perimeter £[[l[x;w]('Pn) and the mixed

symmetric harmonic perimeter £n>r[x;w]('Pn) for Vn with w € R" and x 6 A(w),
0 ^ r ^ n, as following:

(19) 4r)[x;w](Pn) = -^Li : l i [ f ;x ;w](a ) , where /,(a) = P^(a), 1 ^ i < n.

(20) £n,r[x;w](Pn) = —^—L^[f;x;w](a), where /i(a) = ffn,i(a), 1 ^ i < n.

Clearly, if x = Wi:

4 ] , and £n,r[x; w](Pn) = £n,r(Pn).
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In [6], we introduced a dominance relation >- on A ( w ) as follows: for x, x ' G A ( w ) ,

x >- x' if x = x' , or there exists an integer k, 1 ̂  k < m such that xt > x\ for 1 ̂  i ^ k,

xk+i < x'k+1; and x, ^ x\ for k + 2 ^ i ^ m, if k + 2 ^ m. We proved a fundamental

inequality for generalised power means [6, Theorem 2.5(b)]. Tha t is, if x , x ' G A(w) and

x >- x', then

As direct consequences of this result, we have the following inequalities for the mixed

symmetric perimeters.

THEROEM 3 . 3 . Suppose x y x ' ; x, x ' € A ( w ) , w G R^., and 0 < r ^ n. Then

Ifx^ x', then equality holds in (a) (respectively (b)) if and only ifVn is regular.

By using these new geometric quantities of Vn, Theorem 3.2 can be generalised even

further.

THEOREM 3 . 4 . For w e R" , and x 6 A ( w ) , we have

(a) {41[x;w](Pn)}
2 j'A(Vn) Z ±dn{en{Vn)} \^tXtl\

m

(b) {£n,r[x;w]0Pn)}
2 /A(Vn) > AdMVn)}^2'^2'^™'*'.

Equality holds in (a) or (b) if and only ifVn is regular.

PROOF: (a) By (18) and Theorem 3.2 (a),

wlCP }\2 IAiV \ > •[/'["ifx-wU'P )V IAiV 1

i=\

(b) Similar.

We can restate (14) and (15) respectively as

Thus, we may ask the following questions:

QUESTION 3.5. Can one improve Theorem 3.4 to obtain the following stronger inequal-

ities:

(21)
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(22) {£n,r[x; w](Vn)}
2 / A(Vn) > 4dn;

with equality in either (21) or (22) if and only if Vn is regular?

Observe that from (16),(17),(19),(20), together with Theorem 3.3, the mixed sym-
metric perimeters in (21) and (22) are all smaller than or equal to the ordinary perimeter
L(Pn) of Vn- For example,

L2{Vn) - {4r][x; w](Pn)}2 = B(Vn) 2 0, w e R^, x e A(w),

with equality holding if and only if Vn is regular. If the answers to the questions were to
be affirmative, one of its significances is that we would have a large family of the following
Bonnesen-style inequalities for plane polygons [16]

L\Vn) - 4dnA(Vn) > B(Vn).

As a matter of fact, a class of cyclic polygons satisfying (21) and (22) does exist. Let
Vn — Vm^m (n = 2m) denote cyclic 2m-gons with m sides of length b and remaining m
sides of length c. Set

and

oo

If ?7i ^ 3, a simple calculation using cos 6 = J^(—l)t(02'/(2z)!J yields
i0i = 0

. , 7T 1 + cos (ir/m)
23 1 - cos — > , , m 2 3.V m ( m - 1 ) 2

Hence, we have
(24) a(m) > /?(m) > 1 if m ^ 3.

LEMMA 3 . 6 . LetVn = Vm,m. Then

(b) {£W{Vn)}
2 JA(Vn) = 4dn/3(m).

(c) {Hn{Vn)f /A(Vn) = 4dn{p(m)}2/a(m).

PROOF: In [8], Macnab has proved that

A(Vn) = A -™ , , \(b2 + c2) cos - + 2bc] .
4sin(7r/7n) Lv ' m 1T/m)

Hence the results follow directly from the definitions.
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LEMMA 3 . 7 . Ifm > 10, then {/3(m)}2 ^ a(m).

P R O O F : Set
n 2(1 + cos(7r/m))

- 1 + cos — + - i v ' "

(j>(m) — - - ==-.
TT (1 + cos(7r/m))

1 - cos '
m (m - I ) 2

Obviously, {0(m)}2/a(m) ^ 1 if and only if q ^ <f>(m). Since q > 0, it suffices to verify

that 4>(m) < 0 if m ^ 10. But

(25) 4>(m) < 0 <^=> cos — < ^ r — .
' y ' m m2 - 2m + 3

If m ^ 10,
4 1 /7T \ 4 7T2

m2-2m + 3 + 4!VmJ < 2m2'
and so,

7T l ( n Y 1 / ' 7 r V 4 _ m 2 - 2 m - l
C O S m < ~2!VmJ + 4 ! V m J ^ ~ m2 - 2m + 3 ~ m2 - 2m + 3'

This proves the Lemma. D

Now, the answer to Question 3.5 is affirmative for Vm<m if m ^ 10. In fact, we have
the following result.

THEOREM 3 . 8 . Let m > 10, 0 ^ r < n, w g R^, and x g A(w). Then the
isoperimetric inequalities (21) and (22) hold for polygon Vn — Vm,m-

PROOF: By (16), (17) and Theorem 3.3, it suffices to show that

(26) {Hn{Vn)}
2 /A(Vn) > 4dn,

with equality if and only if Vn is regular. As a matter of fact, from Lemmas 3.6, 3.7 we
see that it is certainly true. D

REMARK. A special case of inequality (21) in Theorem 3.8 for r = 0 was proved in [7].

For Vn = Vm,m, m ^ 10, we can improve inequalities (21) and (22).

THEOREM 3 . 9 . Let m ^ 10, 0 ^ r < n, w e R^., x g A(w), and Vn = Vm,m-

(a)

(b) {£n,r[x; w](Pn)}2 /A(Vn) > *dn [a(m)]~n&~"

Equality holds in (a) or (b) if and only ifVn is regular.

PROOF: (a) By Lemma 3.6(b) and Lemma 3.7 we have

(27)
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It follows from (4) that

hence by Lemma 3.6 and (27), we have

(28)

Repeating the proof of Theorem 3.4 using (28) and (18) completes the proof.

(b) From the definition, we can see that

(29)

By Lemma 3.6, {C^(Pn)}
2 = C^(Vn)nn(Vn), and C^{Vn) > C^(Vn) by Lemma 1.1,

hence

(V H2 IAiV \ — iC^iV ) \ n 11 fln'r](V \X A(V \
-rn,T\'n)i I **\'n} — \*^n \*n) f I \ *^n \'n) i •f*\in)

%~T)'T A{Vn)

Thus, by (26), we get

(30) {Cn,nCPn)}2/A(Vn):

From (30) and (18),

{£n,r[x;w](Pn)}2 I'A(Pn) > (-^-L| l
0 l[f;x;w](a)}2/^(^n) > 4dn{a(m)}2~"£(U''X')/l'.

D
The isoperimetric inequalities (21) and (22) hold for some other types of polygons.

For instance, if P2i = 'Pio.ii, that is, ai = a2 = . . . = ai0 and a u = a12 = . . . = a2i, then
(26) still holds. However, inequality (26) is not always true due to the following results.

THEOREM 3 . 1 0 . LetPn = Pm,m-

(a) If 3 ^ m ^ 8, then

with equality holding if and only ifVn is regular.

(b) For m = 9, we have

(i) {nu(Pis)}2 /A(V18) < 4d18, if g

(ii) {HuiVu)}2 /A(VW) 2 4d18) if q>4>(9).
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Equality holds if and only if Vis is regular and q = 0(9).

PROOF: (a) Since {P(m)}2 ^ a(m) for 3 ^ m ^ 8 because 0(3) = 16, 0(4) =

8.116.. , 0(5) = 5.788.. , 0(6) = 4.348.. . , 0(7) = 3.078..., and 0(8) = 1.7705 . . . .

(b) 0(9) = 0.3422..., and {/?(m)}2 < a{m) if and only if q ^ 0(9). D

One of the importances of the geometric isoperimetric inequalities is that they are

closely related to the eigenvalue problems for the Laplace operator [12, 14, 15]. To

conclude this paper, we shall point out that our new geometric findings can be used to

reformulate the famous Polya conjecture for polygons, and prove the conjecture in some

special cases.
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