
J. Functional Programming 10 (5): 453–499, September 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

453

Uniform confluence in concurrent computation

JOACHIM NIEHREN

Programming Systems Laboratory, Universität des Saarlandes,

66041 Saarbrücken, Germany

(e-mail: niehren@ps.uni-sb.de)

Capsule Review

A novel technique for comparing complexities of rewriting systems is presented. The essential

machinery is the notion of uniform confluence, which is very simple and yet pleasantly

applicable to various useful systems. In particular, simulations work nicely when we have

uniform confluence, and this observation provides a good basis for comparing complexities

of systems.

The translations from functional programs to the concurrent setting (in particular, the

π-calculus) have been studied by many people. This work adds a new interesting insight;

using uniform confluence and simulations it is shown that there are complexity-respecting

translations from the call-by-value lambda calculi into a fragment of the π-calculus.

This result enables us to compare the complexity of the call-by-value standard reduction

with that of the call-by-need standard reduction. Though these reduction systems may not

directly respect the complexities of the actual implementation, this result suggests an abstract

and formal way to understand the efficiency of call-by-need over call-by-value, which has

been a folklore and never been treated formally.

Abstract

Indeterminism is typical for concurrent computation. If several concurrent actors compete

for the same resource then at most one of them may succeed, whereby the choice of the

successful actor is indeterministic. As a consequence, the execution of a concurrent program

may be nonconfluent. Even worse, most observables (termination, computational result,

and time complexity) typically depend on the scheduling of actors created during program

execution. This property contrast concurrent programs from purely functional programs. A

functional program is uniformly confluent in the sense that all its possible executions coincide

modulo reordering of execution steps. In this paper, we investigate concurrent programs

that are uniformly confluent and their relation to eager and lazy functional programs.

We study uniform confluence in concurrent computation within the applicative core of

the π-calculus which is widely used in different models of concurrent programming (with

interleaving semantics). In particular, the applicative core of the π-calculus serves as a kernel

in foundations of concurrent constraint programming with first-class procedures (as provided

by the programming language Oz). We model eager functional programming in the λ-calculus

with weak call-by-value reduction and lazy functional programming in the call-by-need λ-

calculus with standard reduction. As a measure of time complexity, we count application

steps. We encode the λ-calculus with both above reduction strategies into the applicative

core of the π-calculus and show that time complexity is preserved. Our correctness proofs

employs a new technique based on uniform confluence and simulations. The strength of our

technique is illustrated by proving a folk theorem, namely that the call-by-need complexity of

a functional program is smaller than its call-by-value complexity.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

454 J. Niehren

1 Introduction

During the last 15 years, concurrency has been investigated for high-level program-

ming. This kind of research lead to the development of a variety of new programming

languages. Two major lines of research can be distinguished, concurrent constraint

programming (Maher, 1987; Saraswat et al., 1991; Smolka, 1995) which originates

from logic programming and concurrent functional programming (Reppy, 1992;

Thomsen et al., 1993; Armstrong et al., 1996; Pierce and Turner, 1997; Fournet and

Maranget, 1997). The work presented here was motivated by concurrent constraint

programming but contributes mainly to the area functional programming.

Computation models of concurrent programming

It is standard that high-level programming languages are designed on the basis of a

computation model. The level of abstraction on which these models are formulated

often permits to relate quite distinct programming paradigms.

The most popular model of concurrent constraint programming is Saraswat’s

(1991) cc-model. It describes concurrent constraints that communicate over common

logic variables residing in a global constraint store. In contrast to a memory store

in the classical machine-oriented sense, a constraint store contains information on

logic variables and increases monotonically as computation proceeds. Monotonicity

is a central property needed for reliable synchronization. The ρ-calculus (Niehren

and Smolka, 1994; Niehren and Müller, 1995) extends the cc-model with first-class

procedures. It is a variation of Smolka’s (1994) γ-calculus which models important

aspects of the concurrent constraints language Oz (Smolka et al., 1995).

In the research line starting from functional computation, Milner (1992) proposed

the π-calculus as a model of concurrent computation. The π-calculus describes

concurrent actors that communicate over shared channels. For several years, the

π-calculus served mainly for semantical reasoning. Later on, it was also used as the

basis of a concurrent programming language named Pict (Pierce and Turner, 1997).

Another concurrent computation model of interest is the join calculus (Fournet and

Gonthier, 1996), which was introduced as a variation of the π-calculus. The join

calculus underlies the join calculus language (Fournet and Maranget, 1997) which

features distributed programming.

All computation models mentioned above are closely related. The relationship

between the ρ-calculus and the π-calculus was first noticed by Smolka (1994) and

was formally elaborated by Niehren and Müller (1995), Victor and Parrow (1996)

and Niehren (1996). Most of the material of this article stems from Niehren (1996),

but has undergone a major revision. The relationship between the join calculus and

the π-calculus is investigated in Fournet and Gonthier (1996).

Confluence

Indeterminism is typical for concurrent computation. If several concurrent actors

compete for the same resource then at most one of them may succeed eventually,

whereby the choice of the successful actor is indeterministic. As a consequence,

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 455

the execution of a concurrent program may be non-confluent. Even worse, most

observables (termination, computational result, and time complexity) depend on the

scheduling of the actors created during program execution. This property contrasts

concurrent programs to purely functional programs whose execution is expected to

be confluent.

A functional program might be expected to be uniformly confluent in the sense

that all its possible executions coincide modulo reordering of executable function

calls. Of course, this property depends on the notion of an executable function call.

In this article, function calls nested inside of function definitions are not considered

executable. This view is consistent with all implementations of functional languages

used in practice; it is also naturally reflected in the λ-calculus by means of some

weak reduction strategy to which we will restrict ourselves.

1.1 Uniform confluence in concurrent computation

In this article, we investigate the class of concurrent programs that are uniformly

confluent in the sense that all execution of a program coincide modulo reordering of

execution steps. We then consider eager and lazy functional programs as uniformly

confluent concurrent programs.

Our study of uniformly confluence in concurrent computation is based on the

applicative core of the π-calculus which is widely used in different models of

concurrent programming. Eager functional programming is modeled in the call-

by-value λ-calculus with weak reduction and lazy functional programming in the

call-by-need λ-calculus with standard reduction (Ariola et al., 1995). We measure the

time complexity of the execution of a concurrent or functional program by counting

application steps.

Uniform confluence

We consider a computation model as a calculus which is an abstract rewrite system

(Dershowitz and Jouannaud, 1990; Klop, 1987) consisting of a set of (program)

expressions denoted with E, a binary relation → between expressions that we call

(one-step) reduction, and an equivalence relation ≡ on expressions called congruence.

In this paper, we mainly consider three different calculi: the λ-calculus with the weak

call-by-value strategy, the call-by-need λ-calculus with standard reduction, and the

applicative core of the π-calculus. Note that our abstract notion of a calculus

applies to the π-calculus but deviates from Plotkin’s (1975) usage, who considers the

λ-calculus as an equational theory (not including a reduction strategy).

Following Niehren and Smolka (1994), we call an expression E uniformly confluent

if E1 ← E → E2 implies that either E1 ≡ E2 or there exists E ′ such that E1 → E ′ ←
E2. All executions of a uniformly confluent expression E coincide up to a reordering

of reduction steps. Uniform confluence is an important notion for reasoning about

(time) complexity where the complexity of the execution of a program expression

is measured in the number of its reduction steps. The complexity of a uniformly

confluent expression is independent of the scheduling of the concurrent actors created

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

456 J. Niehren

during its execution. We call a calculus uniformly confluent if all its program

expressions are uniform confluent. Note that a uniformly confluent calculus is

confluent in the usual sense of (abstract) rewrite systems (Dershowitz and Jouannaud,

1990; Klop, 1987). Note also that the notions of confluence investigated by Nestmann

(1996) and Philippou and Walker (1997) are quite unrelated to those for rewriting

systems.

Contribution

We study uniformly confluent concurrent computation in the applicative core of

the π-calculus. We present embeddings of both, the λ-calculus with weak call-by-

value reduction and the call-by-need λ-calculus with standard reduction, into the

applicative core of the π-calculus. We prove our encodings correct in the sense that

they preserve complexity up to a constant factor. Our correctness proofs exploit

a new technique we develop based on the notions of uniform confluence and

simulations. The strength of this technique is illustrated by proving a folk theorem,

namely that the call-by-need complexity of a functional program is smaller than its

call-by-value complexity (measured in terms of β-reduction steps).

Complexity measures

One might hesitate to accept the number of β-reduction steps as a good measure for

the complexity of functional programs. A first counter argument is that one might

wish to choose some reduction strategy not considered in this article. However,

the alternatives are few. The restriction to weak reduction is not problematic in

this respect, as long as compile time optimizations (program transformations or

partial evaluation) are ignored. The choice of a particular weak reduction strategy

does not matter for call-by-value since all of them coincide in the number of β-

reduction steps. For call-by-need, we do also not know about any alternative which

significantly differs from the call-by-need λ-calculus with standard reduction, at least

with respect to counting β-reduction steps.

A more severe doubt might be that the substitution operation of the λ-calculus

is not appropriate for modeling time complexity in implementations. Of course,

substitutions [M/x] of arbitrary λ-terms M for some variable x are not realistic; In

call-by-name reduction, these substitutions raise duplications of β-reduction steps;

in weak call-by-name reduction, they even lead to non-confluence. In this article,

we restrict ourselves to substitutions [V/x] of some value V for a variable x. Still,

one might object that substitutions [V/x] are non realistic for implementations

since many occurrences of x are replaced by V in one single step (whereas in an

implementation one might access V in a closure several times). Therefore, one might

opt for a calculus with explicit substitution (see, for instance, Abadi et al., 1995) or

for the call-by-let λ-calculus with some form of weak reduction (Maraist et al., 1995).

A more recent discussion on models of call-by-need complexity that is appropriate

for actual implementations is given by Moran and Sands (1999).

For the formal approach of this article however, both of these alternatives seem

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 457

to be problematic since they require administrative steps for the treatment of substi-

tutions or let-environments, which do not easily combine with uniform confluence.

For instance, it seems difficult to define a weak reduction strategy for the call-by-let

λ-calculus (Maraist et al., 1995) which is at the same time maximally liberal in

its reduction strategy and uniformly confluent (compare Example 7.2 below). Nev-

ertheless, additional administrative steps have to be implemented and thus, their

execution costs time. We conjecture that the costs of administrative steps can be

safely ignored for a complexity analysis of weak reduction, in contrast to deep

reduction (Asperti, 1997).

Structure of the article

In the remainder of this introduction, we survey our formal contributions, which

concerns calculi and embeddings, complexity results and a proof technique based on

uniform confluence. In sections 2, 3, and 4, we develop a theory of complexity based

on uniform confluence and simulations. In section 5 we introduce concurrent com-

putation in the applicative core of the π-calculus and investigate uniform confluence

on basis of a linear type system. In sections 6 and 7 we translate eager and lazy

functional computation respectively into concurrent computation and prove that

complexity is preserved. Finally, section 8 contains a formal comparison between

call-by-value and call-by-need complexity.

For lack of space, most of the simpler proofs are only scetched or completely

omitted. They can however be found in an unabridged technical report preceeding

this article (Niehren, 1999). This report also supplies an additional result of its own

interest: an encoding of the δ-calculus (see section 1.3) into the applicative core of

the π-calculus.

1.2 The applicative core of the π-calculus

Our study is based on the applicative core of the polyadic asynchronous π-calculus

(Milner, 1991; Honda and Tokoro, 1991; Boudol, 1992) that we call π0 here but δ0

in Niehren (1999). Also, π0 is a subcalculus of the ρ-calculus Niehren and Smolka

(1994) and Niehren and Müller, 1995). Therefore, all results presented here also

apply to concurrent constraint programming.

The fragment π0 of the π-calculus

As with any other calculus, we define π0 in terms of a set of expressions, a structural

congruence, and a reduction relation. Expressions of π0 are built from variables

ranged over by x, y, z. An expression E of π0 is either a (named) abstraction, an

application, a concurrent composition, or a declaration, as given by the following

abstract syntax:

E ::= x:x1 . . . xn/E || xx1 . . . xn || E|E ′ || (νx)E (n > 0)

The syntax of π0 is borrowed from the ρ-calculus rather than from the π-calculus.

A (named) abstraction x:x1 . . . xn/E requires the (syntactic) value of variable x to

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

458 J. Niehren

be the (anonymous) abstraction x1 . . . xn/E. An application xx1 . . . xn applies the

abstraction referred to by x with arguments referred to by x1, . . . , xn.

The calculus π0 is identical to the ρ-calculus without cells and constraints. It

also coincides with the polyadic asynchronous π-calculus without once-only input

agents x?(x1 . . . xn).E. In the terminology of the π-calculus, variables are usually

called channels. Following the syntax of Kobayashi et al. (1996), a (named) abstrac-

tion x:x1 . . . xn/E would be called a replicated input agent x?∗(x1 . . . xn).E and an

application xx1 . . . xn an output agent x!(x1 . . . xn).

Reduction in π0 is defined by the following application relation →A where y and

z stand for sequences of variables y1 . . . yn and z1 . . . zn:

x:y/E | xz →A x:y/E | E[z/y]

We do allow for reduction in every context except below abstraction. It was proved

by Niehren and Smolka (1994) and Niehren (1994) that π0 is uniformly confluent

when restricted to expressions that remain consistent under reduction, i.e. that cannot

be reduced to an expression containing two abstractions with the same name x:y/E

and x:z/E ′ that are not congruent. For the expressions stemming from functional

programming, we can ensure this invariant by an appropriate linear type system.

1.3 Call-by-value and call-by-need translation

The applicative core π0 of the π-calculus is surprisingly expressive. An encoding of

the λ-calculus with call-by-value reduction was already given by Niehren and Müller

(1995). A analogous result for the full π-calculus was proved earlier by Milner

(1992). As we show in this article, it is also possible to express lazy functional

computation in π0. We present an encoding of the call-by-need λ-calculus with

standard reduction (Ariola et al., 1995). An encoding of the call-by-need λ-calculus

with standard reduction into the full π-calculus was proved before by Brock and

Ostheimer (1995). Independently, Smolka (1994) formulated an analogous encoding

but without correctness proof.

The δ-calculus

A major difficulty in finding an encoding of some λ-calculus into π0 is to de-

vise a mechanism for transporting values along reference chains. The only values

considered in this article are anonymous abstractions. In π0, abstractions can be

transported when using continuation passing style. In a model of concurrent con-

straint programming, equational constraints x=y can be used for this purpose.

To abstract from ‘how to transport abstractions’, we introduce an extension of π0

that we call the δ-calculus. The δ-calculus extends π0 extended with three new forms

of expressions, which come with two additional reduction relations, forwarding →F

and triggering →T . The first new expressions are forwarders of the form x = y

which are directed from the right to the left (and not symmetric). Their operational

semantics is to forward an abstraction from y to x (as soon as the abstraction

referred to by y is available). The forwarding relation →F is described by the

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 459

following rule where z stands for a sequence of variables z1 . . . zn:

x=y | y:z/E →F x:z/E | y:z/E

Note that an analogous operation for ‘copying abstractions’ exists implicitly in the

call-by-value λ-calculus and explicitly in the call-by-need λ-calculus. Note also, that

forwarders provide for single assignment as known from a directed usage of logic

variables (Pingali, 1987) in the data-flow language Id (Arvind et al., 1989).

The remaining additional constructions of the δ-calculus can be used to encode

call-by-need control. There are delay expressions of the form x.E and trigger expres-

sions tr(x). The execution of an expression E nested into a delay expression x.E is

delayed until a trigger expression tr(x) becomes active. The trigger relation →T is

defined by the following rule:

x.E | tr(x)→T E | tr(x)

The δ-calculus can be encoded into π0 such that complexity is preserved up to

a constant factor. Proving this is of its own interest but not in the scope of the

presented article. It can be found in Niehren (1999). Note also, that the encoding of

the δ-calculus into π0 given in Niehren (1996) is not complexity preserving.

Call-by-value translation

Encoding the λ-calculus with weak call-by-value reduction into the δ-calculus is

quite simple. The idea is to name all entities of interest by variables, in particular

functional abstractions and return values. Functional nesting can then be replaced

by concurrent composition and declaration. For example, let I be the λ-identity λy.y.

and z be a variables for naming it. The call-by-value translation [[I]]val
z of I with

name z is a named abstraction:

[[I]]val
z ≡ z:yy′/y′=y

An additional output argument y′ is introduced whose value is related to the input

argument y by means of a forwarder. Whenever z is applied, this forwarder passes

the input value to the output argument.

Naming leads to a call-by-value translation such that every weak call-by-value

β-reduction step corresponds to exactly one application plus at most two forwarding

steps in the δ-calculus. Translation is adequate in that it preserves complexity up-to

a constant factor. There exists a simulation which relates every weak call-by-value

execution to a unique execution in the δ-calculus.

However, a bisimulation does not exist. Consider for instance the λ-term I(II)

which has a unique weak call-by-value execution where the inner redex is reduced

first. Modulo an irrelevant simplification (which introduces sharing for all occur-

rences of the definition of I), the call-by-value translation [[I(II)]]val
z is:

[[I(II)]]val
z ≈ (νx)(νy)([[I]]val

x | xxy | xyz)
It contains a named abstraction [[I]]val

x and two applications corresponding to the

inner and out redex respectively. Thus, [[I(II)]]val
z can be reduced in two ways

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

460 J. Niehren

depending on the scheduling of its applications. Those two executions corresponds

to either first reducing the inner or outer redex of I(II). In contrast, the outer redex

can not be reduced by call-by-value reduction. Hence, call-by-value translation

introduces new flexibility to the scheduling of applications. This property contrasts

the presented call-by-value translation with those of Milner (1992), who considers

deterministic reduction strategies only such that bisimulations exist.

According to a proposal of Philip Wadler during a personal communication the

observation of the previous paragraph can be rephrased as the following conjecture:

The mapping of M to [[M]]val
z rather encodes call-by-let λ-calculus (Maraist et al.,

1995) with some form of weak reduction than the λ-calculus with weak call-by-

value reduction. In order to establish this statement formally, an appropriate weak

reduction strategy for the call-by-let λ-calculus has to be defined such that in our

example I(II) above, both the inner and the outer redex in I(II) could be reduced.

As mentioned before, it is unclear how to define such a weak reduction strategy.

Call-by-need translation

We now consider the call-by-need λ-calculus with standard reduction. This calculus

can also be encoded into the δ-calculus based on the idea of naming. In addition, we

have to express call-by-need control which can be encoded by the delay and trigger

mechanism of the δ-calculus. For instance, the call-by-need translation [[I]]need
z of I

with name z is the a named abstraction:

[[I]]need
z ≡ z:yy′/(y′=y | tr(y))

The only difference to [[I]]val
z is that the computation of the value of the input

argument y has to be triggered before and not only forwarded to the output

argument y′. The call-by-need translation [[I(II)]]need
z looks as follows (modulo

sharing of I):

[[I(II)]]need
z ≈ (νx)(νy)([[I]]need

x | y.[[xxy]]need
y | xyz)

Also, the definition of [[I(II)]]need
z is similar to that of [[I(II)]]val

z except that the

application corresponding to the inner redex is delayed.

Our call-by-need translation is correct in that every execution in the call-by-

need λ-calculus with standard reduction can be simulated by a unique execution

in the δ-calculus and vice versa, i.e. there exists a bisimulation and not only

a simulation as for call-by-value. Every application step in call-by-need λ-calculus

with weak reduction corresponds to exactly one application plus some triggering and

forwarding steps. Thus, our call-by-need translation preserves complexity measured

by counting application steps.

A proof technique based on uniform confluence

An adequacy proof for the call-by-value translation has to deal with the fact that

this embedding introduces new flexibility to the executions scheduling. This problem

can be solved due to a proof technique that combines uniform confluence and

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 461

simulations (Niehren, 1994). It is sufficient to prove that every execution of M can

be simulated by an execution of [[M]]val
z of the same length up to a constant factor.

The uniform confluence of the λ-calculus with weak call-by-value reduction implies

that all executions of M have the same length and the uniform confluence of the

consistent fragment of the δ-calculus implies that all executions of [[M]]val
z have the

same length. Hence all executions of M and [[M]]val
z have the same complexity up

to a constant factor.

The proof technique based on simulations is less restrictive than Milner’s (1992)

bisimulation based proof technique, but only applicable once uniform confluence is

available. The bisimulations technique is more general in that it allows to deal with

observable indeterminism. Also, note that the definitions of the concrete simulations

given in the technical part of this article are strongly inspired by the concrete

bisimulations presented by Milner (1992).

Call-by-need versus call-by-value complexity

It is a folk theorem that – up to overhead – the time complexity of call-by-need

computation is smaller than the time complexity of call-by-value computation. We

formalize the folk theorem for a first time for the call-by-need and call-by-value

λ-calculus and prove its correctness in this setting. Every closed λ-expression M

satisfies:

Cneed(M) 6 Cval(M)

where Cneed(M) denotes the complexity of M in the call-by-need λ-calculus with

standard reduction and Cval(M) the complexity M in the call-by-value λ-calculus

with weak reduction (both measured in terms on β-reduction steps).

Our proof exploits the similarity of call-by-value and call-by-need translations

into the δ-calculus, i.e. that [[M]]val
z and [[M]]need

z coincide for all M and z up to

triggering and delay expressions expressing the call-by-need control. Therefore, every

application step in an execution of [[M]]need
z corresponds to an application step for

[[M]]val
z . Hence every β-reduction step of M under standard call-by-need reduction

corresponds to a β-reduction step of M under weak call-by-value reduction. This

might seem surprising, because in the call-by-need λ-calculus an abstraction may be

applied before its argument is evaluated, whereas in the λ-calculus with call-by-value

reduction, an argument has to be evaluated first. This problem is solved due to the

additional flexibility introduced by our call-by-value translation. In other words, we

rather compare call-by-need with call-by-let than call-by-value. This does not matter

because call-by-let and call-by-value reduction are indistinguishable with respect

to complexity of weak reductions. They only differ in the flexibility of possible

schedulings for applications.

Alternative approaches

Alternative formalizations of the folk theorem and respective correctness proofs can

be derived from previous results on weak optimal reduction. Yoshida (1993) proves

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

462 J. Niehren

for her λf-calculus that weak call-by-need reduction is optimal in that the complexity

of weak call-by-need reduction is smaller than the complexity of any other weak

reduction strategy. An explicit relationship between the λf-calculus and the call-

by-value λ-calculus or call-by-need λ-calculus is not given. An earlier approach to

weak optimal reduction based on calculi with explicit substitutions was explored by

Maranget (1990). He also proved optimality of weak call-by-need reduction with

respect to weak reduction.

We compare the complexity of call-by-value and call-by-need by means of an

indirection through the δ-calculus. One might ask whether such an indirection is

necessary. The problem that one has to deal with is that the scheduling of function

calls in call-by-need and call-by-value are very different. We therefore need a common

calculus in which to express both schedulings in a uniform way. We propose the

δ-calculus for this purpose. Alternatively, it should also be possible to choose the

call-by-let λ-calculus with some weak reduction strategy to be defined. Also it might

be possible to deal with Yoshida’s λf-calculus (1993) or a calculus with explicit

substitutions as used by Maranget (1990).

Call-by-need computation models

A call-by-need model describes the complexity behavior of lazy functional program-

ming. In other words, a call-by-need model is a call-by-name model with sharing

of evaluations. Designing good call-by-need models turned out to be a difficult task

which was solved only recently. Early approaches are based on calculi with explicit

substitutions (Purushothaman and Seaman, 1992; Maranget, 1992) or graph reduc-

tion (Jeffrey, 1994). Launchbury’s (1993) call-by-need model uses environments. It is

base on a big-step semantics where complexity is reflected in the size of proof trees.

Launchbury relates his call-by-need calculus to the λ-calculus with call-by-name

reduction and proves correctness with respect to denotational semantics (but not

with respect to complexity). A first small-step semantics for call-by-need compu-

tation based on λ-term notation was introduced by several authors (Ariola et al.,

1995; Ariola and Felleisen, 1997; Maraist et al., 1998) under the name call-by-need

λ-calculus. In the same papers, the relationship between the call-by-need λ-calculus

and the λ-calculus with standard call-by-name reduction is established and proved

correct.

2 Complexity and uniform confluence

We introduce a framework in which to reason about complexity in computation

models. It provides several criteria for proving that an encoding preserves complexity.

The basic notion of our framework is the notion of a calculus which can be

considered as an abstract computation model. The notion of a calculus slightly

generalizes Klop’s (1987) abstract rewrite systems; it was first introduced by the

author (1994).

We need the following notation throughout the paper. The symbol ◦ stands for

relational composition; if →1 and →2 are two binary relations on some set E and

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 463

E, E ′′ ∈ E, then E →1 ◦ →2 E
′′ if and only if there exists E ′ ∈ E such that E →1 E

′
and E ′ →2 E

′′.

Definition 2.1

A calculus is a triple (E, ≡, →), where E is a set, ≡ an equivalence relation and →
a binary relation on E. Elements of E are called expressions of the calculus, ≡ its

congruence, and → its reduction. We require for every calculus that its reduction is

modulo its congruence, i.e. that (≡ ◦ → ◦ ≡) ⊆ → holds.

Typical examples for a calculus are the π-calculus, the ρ-calculus, the λ-calculus

with some reduction strategy, abstract rewrite systems, Turing machines, etc.

2.1 Complexity

Intuitively, the complexity of an expression in some calculus is the maximal length

of one of its (complete) executions. We now define formally what this means.

Let a calculus (E, ≡, →) be given. We call an expression E ∈ E irreducible if

there exists no E ′ ∈ E such that E → E ′. A partial execution in the given calculus

is a finite or infinite sequence (Ei)
n
i=1 or (Ei)

∞
i=0 of expressions such that Ei → Ei+1

holds for all consecutive elements. A partial execution of an expression E is a partial

execution whose first element is congruent to E. An execution of E is a maximal

partial execution of E, i.e. an infinite partial execution, or a finite one whose last

element is irreducible. The least transitive relation containing → and ≡ is denoted

with →∗. We also define for all n > 0 the relation →n via →n+1 def
= → ◦ →n and

→0 def
= ≡. Furthermore, we set →6n def

= ∪ni=0 →i. The length of a finite partial

execution (Ei)
n
i=0 is n and the length of an infinite execution (Ei)

∞
i=0 is ∞.

Definition 2.2 (Complexity)

The complexity C(E) of an expression E is the least upper bound of the lengths

of the executions of E.

C(E) = sup{m | m is the length of an execution of E}

Note that 0 6 C(E) 6 ∞. Instead of considering complete executions, we may

also consider finite partial executions; for all E:

C(E) = sup{m | m is the length of a finite partial execution of E}
In general, distinct executions of the same expression E may have distinct lengths. For

instance, consider the calculus with two expressions a and b, the trivial congruence

(equal to the set of pairs {(a, a), (b, b)}), and the reduction given by a→ a and a→ b.

In this calculus, the expression a has executions of arbitrary length greater than 1.

For example, the sequence a → a → a → b defines an execution of a of length 3.

Note that the considered calculus is confluent because every partial execution of a

can be extended such that it terminates with b.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

464 J. Niehren

2.2 Uniform confluence

We introduce the notion of uniform confluence and show that every execution of an

expression in a uniformly confluent calculus has the same complexity.

Definition 2.3 (Uniform confluence)

A calculus is uniformly confluent if its reduction → and congruence ≡ satisfy

the inclusion (← ◦ →) ⊆ ((→ ◦ ←) ∪ ≡) visualized below.

Proposition 2.4

A uniformly confluent calculus is confluent. For every expression E of a uniformly

confluent calculus every execution of E has the same length.

Proof

By a standard inductive argument as for the notion of strong confluence (Huet,

1980) which is implied by uniform confluence. More precisely, we can prove

the following property for every expression E, E1, E2 and natural numbers m1

and m2 by simultaneous induction over m1 and m2: If E1
m1← E →m2 E2 then

there exists an expression E ′ and a natural number m 6 min{m1, m2} such that

E1 →m1−m E ′ →m2−m E2. q

3 Complexity in unions of calculi

Throughout the paper, we will consider several calculi which are defined as unions

of others. This additional structure renders our theory surprisingly rich.

Definition 3.1 (Union of calculi)

We define the union of two calculi (E, ≡, →1) and (E, ≡, →2) to be the calculus

(E, ≡, →1 ∪ →2).

3.1 Uniform confluence for unions

Under the assumption of commutativity, one can conclude the uniform confluence of

a union from the uniform confluence of its components. We say that the relations

→1 and→2 commute iff (1← ◦ →2) ⊆ (→2 ◦ 1←), i.e. if the following diagram can

be completed for all E, E1, E2.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 465

Lemma 3.2 (Reformulation of the Hindley–Rosen Lemma)

The union of uniformly confluent calculi with commuting reductions is uniformly

confluent.

Lemma 3.2 implies the classical Hindley–Rosen Lemma (see, for instance, Baren-

dregt, 1981), which states that the reflexive transitive closure of a confluent relation

is confluent. This follows from that a relation is confluent if and only if its reflexive

transitive closure is uniformly confluent.

We will use sequence notation where we freely omit index bounds if they are not

relevant. This means that we may write (xj)j for some sequence (xj)
l
j=k where k is a

natural number and l > k is a natural number or l = ∞.

Definition 3.3 (i-steps and i-complexity)

Let (E, ≡, →1 ∪ . . .∪ →n) be a union of calculi, 1 6 i 6 n, and (Ej)j a partial

execution. An i-step in (Ej)j is an index k of the sequence (Ej)j such that Ek →i Ek+1

(and k+1 is also an index of (Ej)j). We define the i-complexity Ci(E) of an expression

E ∈ E to be the least upper bound of the number of i-steps in a partial execution

of E:

Ci(E) = sup{m | m is number of i-steps in a finite partial execution of E}
Lemma 3.4

Let (E, ≡, →1 ∪ . . .∪ →n) be a union of calculi. For all E ∈ E and all 1 6 i 6 n:

Ci(E) 6 C(E).

3.2 Additivity and orthogonality

Given the union of two calculi, say (E, ≡, →1 ∪ →2), one might wish complexity

to be additive in that C(E) = C1(E) + C2(E) holds for every expression E ∈ E. In

fact, most concrete unions considered in this paper have this property. However,

additivity does not hold in general since a 1-steps may at the same time be a 2-steps.

But it suffices to assume orthogonality for proving additivity.

Definition 3.5 (Orthogonality)

We call a union of calculi (E, ≡, →1 ∪ . . .∪ →n) orthogonal if for any two

expressions E, E ′ ∈ E there exists at most one integer i ∈ {1, . . . n} such that

E →i E
′.

In an orthogonal union, the length of a partial execution can be obtained by

summing up the numbers of its i-steps for all 1 6 i 6 n. This additivity property

for i-steps in partial executions can be lifted to an additivity property for the

i-complexity Ci(E) of an expression E.

Lemma 3.6 (Reduction decreases i-complexity)

Let (E, ≡, →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with commuting reductions, i, j ∈ {1, . . . , n}, E, E ′ ∈ E, E →i E
′, and i 6= j. Then:

Ci(E) = 1 + Ci(E ′) and Cj(E) = Cj(E ′)

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

466 J. Niehren

Proof

If E →i E
′ then every execution of E ′ can be extended to an execution of E by

adding an →i step in front. Hence, Ci(E) > 1 + Ci(E ′) and Cj(E) > Cj(E ′) follows

from orthogonality and i 6= j. The converse follows from the following claim which

can be proved by induction: For all F, F ′ ∈ E with F →i F
′ and every finite partial

executions (Fk)k of F there exists a finite partial execution (F ′k)k of F ′ such that (F ′k)k
with fewer or equally many i-steps and the same number of j-steps. q

Lemma 3.7 (Finite executions)

Let (E, ≡, →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with commuting reductions. If E ∈ E satisfies C(E) < ∞ and 1 6 i 6 n then the

number of i-steps coincides for all executions of E.

Proof

First note that Lemma 3.4 implies
∑n

i=1 Ci(E) 6
∑n

i=1 C(E) = n ∗ C(E) < ∞.

Lemma 3.7 follows from Lemma 3.6 which permits to show the following claim by

induction on the value of
∑n

i=1 Ci(E) (which is distinct from ∞): For all E ∈ E and

1 6 j 6 n, if
∑n

i=1 Ci(E) < ∞ then every executions of E contains the same number of

j-steps. q

The reader should notice carefully that Lemma 3.7 fails for expressions E with

infinite executions. For illustration, we consider the following calculus: Its expressions

are pairs of natural numbers (n, m); its congruence is the equality of expressions,

and its reduction is the union →1 ∪ →2 where (n, m) →1 (n+ 1, m) and (n, m) →2

(n, m+ 1) for all n, m. This calculus is orthogonal but for each of its expressions

there exists an execution with arbitrary numbers of 1-steps and 2-steps. For instance,

the following executions are possible:

(0, 0)→1 (1, 0)→1 (2, 0)→1 . . .

(0, 0)→2 (0, 1)→2 (0, 2)→2 . . .

The first execution contains infinitely many 1-steps and no 2-steps, whereas the

second execution contains no 1-step and infinitely many 2-steps. Both of these

executions are unfair: For instance, every initial segment of the first execution could

be continued with an 2-step but this never happens.

Proposition 3.8 (Additivity)

Let (E, ≡, →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with commuting reductions. For every expression E of E, complexity is additive:

C(E) = C1(E) + . . .+ Cn(E)

Proof

If C(E) = ∞ then there exists 1 6 i 6 n and an execution of E which contains an

infinite number of i-steps. Hence, Ci(E) = ∞ such that
∑n

i=1 Ci(E) = ∞. Otherwise,

C(E) < ∞. In this case, Lemma 3.7 implies for every 1 6 i 6 n that every execution

of E contains the same number of i-steps. Additivity for executions in orthogonal

unions implies for every execution (Ej)j of E that the length of (Ej)j equals to the

sum of the numbers of i-steps in (Ej)j where 1 6 i 6 n. Since all executions of E

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 467

contain the same numbers of i-steps (Lemma 3.7), additivity lifts from executions of

E to the expression E itself. q

4 Embeddings and simulations

We define the notion of an embedding between two calculi and present a method

for proving that an embedding preserves complexity. This method is based on sim-

ulations rather than bisimulation, but its applicability requires uniform confluence.

Otherwise, simulations do not necessarily preserve preserve complexity, in contrast

to bisimulations (Milner, 1992; Sangiorgi, 1996; Turner, 1996; Nestmann and Pierce,

1996).

Definition 4.1 (Embedding)

Let (E, ≡E, →E) and (F, ≡F, →F) be two calculi, Φ : E → F a function, and

S ⊆ E ×F be a binary relation. We call Φ an embedding of E into F if E1 ≡E E2

implies Φ(E1) ≡F Φ(E2) for all E1, E2 ∈ E. The function Φ is an embedding for S if

it is an embedding that satisfies (S1) below:

(S1) For all E ∈ E: (E, Φ(E)) ∈ S .

We formulate our theory for simulations between unions of calculi. Our results for

simulations carry easily over to encodings provided that (S1) is assumed.

4.1 Complexity simulations

We introduce lengthening simulations which relate expressions with smaller com-

plexity to expressions with higher complexity, and complexity simulations which

preserve complexity. Lengthening simulations are of there own interest. For in-

stance, the identity relation on λ-expressions can be seen as a simulation which

lengthens call-by-need to call-by-value.

Definition 4.2 (Lengthening and complexity simulation)

Let S ⊆ E × F be a binary relation between the expressions of two calculi

(E, ≡E, →1 ∪ . . .∪ →n) and (F, ≡F, ↪→). We define ≈ ⊆ F×F such that

F ≈ F ′ iff C(F) = C(F ′)

for all F, F ′ ∈ F: Given natural numbers m1, . . . , mn > 0, we call S a lengthening

simulation with indices m1, . . . , mn if S satisfies (S2) and (S3) below.

(S2) For all E, E ′ ∈ E, F ∈ F, and 1 6 i 6 n: If E →i E
′ and (E, F) ∈ S then there

exists an expression F ′ ∈ F such that (E ′, F ′) ∈ S and F ≈ ◦ (↪→ ◦ ≈)miF ′.

E →i E ′

S S

F ≈ ◦ (↪→ ◦ ≈)mi ∃F ′
(S3) For every E ∈ E with C(E) = ∞ there exists 1 6 i 6 n such that Ci(E) = ∞

and mi > 1.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

468 J. Niehren

We call S a complexity simulation with indices m1, . . . , mn if S is a lengthening

simulation with indices m1, . . . , mn, which additionally satisfies the condition (S4).

(S4) For all E ∈ E and F ∈ F: If E is irreducible with respect to →1 ∪ . . .∪ →n

and (E, F) ∈ S then F is irreducible with respect to ↪→.

Property (S2) is most important. It requires that every →i step can be simulated

by mi steps with ↪→ up to an equivalence ≈ which preserves complexity. If we would

require mi > 1 for all i then Property (S2) would clearly imply that a lengthening

simulation relates expressions with smaller complexity to expressions with higher

complexity. However, this property would be too restrictive. The slightly weaker

Property (S3) turns out to be precisely what we need. Note that (S3) expresses a

property of S even though S does not occur in it. But S depends on the indices

mi which occur in both (S2) and (S3) . Property (S4) requires that S preserves

termination. If (S4) holds then S cannot strictly increase complexity.

Proposition 4.3 (Lengthening or preserving complexity)

Let (E, ≡E, →1 ∪ . . .→n) be an orthogonal union with commuting reductions

and (F, ≡F, ↪→) another calculus. If S ⊆ E ×F is a lengthening simulation

with indices m1, . . . , mn then the following inequation holds for all (E, F) ∈ S:

C(F) >
n∑
i=1

mi ∗ Ci(E)

If S is also a complexity simulation with indices m1, . . . , mn then equality holds.

Lemma 4.4 (Quotients)

Let (F, ≡F, ↪→1 ∪ ↪→2) be an orthogonal union of uniformly confluent calculi with

commuting reductions, ≡2 the relation ↪→∗2 ◦ ∗2←↩, and G the triple:

G = (F,≡2,≡2 ◦ ↪→1 ◦ ≡2)

Then G is a uniformly confluent calculus whose complexity measure (denoted

by CG in order to distinguish it from the complexity measure C of F) satisfies

CG(F) = C1(F) for all F ∈ F.

Proof

The relation ≡2 is an equivalence relation since ↪→∗2 is confluent (Lemma 3.2). In fact,

G is a calculus since its reduction is modulo its congruence. It is also not difficult to

verify that G is uniformly confluent. q

Proposition 4.5 (Simple lengthening simulations)

Let (E, ≡E, →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with pairwise commuting reductions and S ⊆ E×E a relation such that the following

diagram can be completed for all 2 6 i 6 n and E, E ′, F ∈ E:

E →1 E ′

S S

F →1 ∃F ′

E →i E ′

S S

F →∗i ∃F ′

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 469

Furthermore, we assume for all E ∈ E that C(E) = ∞ implies C1(E) = ∞. In this

case, the equation C1(E) 6 C1(F) holds for all (E, F) ∈ S .

Proof

If n = 1 then S is a lengthening simulation between the calculus E and itself

with index 1. According to Lemma 4.3, C1(E) = C1(F) holds all (E, F) ∈ S . We

next suppose n > 2 and define ↪→1=→1 and ↪→2= ∪nj=2 →j . Since n > 2, the

triple (F, ≡F, ↪→1 ∪ ↪→2) is an orthogonal union of uniformly confluent calculi with

commuting reductions. Let ≡2 be the relation ↪→∗2 ∪ ∗2←↩ and G the auxiliary calculus:

G = (E,≡2,≡2 ◦ ↪→1 ◦ ≡2)

It is not difficult to show that S is a lengthening simulation between the calculi E
and G with indexes 1, 0 . . . , 0: Condition (S2) follows from the required diagrams

and Lemma 3.6 which shows ↪→2 ⊆ ≈, and (S3) follows from the assumption that

C(E) = ∞ implies C1(E) = ∞. Since E and G are uniformly confluent (Lemma

4.4), Lemma 4.3 yields for all (E, F) ∈ S that CG(F) = C1(E). Lemma 4.4 implies

CG(F) = C1(F) such that Proposition 4.5 follows. q

The following Proposition 4.6 is similar to Proposition 4.5 except that it does not

require an assumption on infinite computations.

Proposition 4.6 (Simple complexity simulations)

Let (E, ≡E, →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with pairwise commuting reductions and S ⊆ E× E a relation. Then Ci(E) = Ci(F)

holds for all 1 6 i 6 n and (E, F) ∈ S if the following diagram can be completed for

all 1 6 i 6 n and E, E ′, F ∈ E:

E →i E ′

S S

F →i ∃F ′

4.2 Administrative simulations

We finally consider a refined form of complexity simulation, which allow us to take

administrative steps into account.

Definition 4.7 (Administrative simulation)

Let φ be an embedding between two calculi (E, ≡E, →) and (F, ≡F, ↪→1 ∪ ↪→2).

Given natural numbers n1, n2 > 0, we call a relation S on E ×F an administrative

simulation for Φ with administrative reduction ↪→2 and administrative indices n1, n2, if

S satisfies the following properties (A1) to (A5):

(A1) For all E ∈ E: (E, Φ(E)) ∈ S .

(A2) For all E, E ′ ∈ E and F ∈ F: If E → E ′ and (E, F) ∈ S then there exists

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

470 J. Niehren

F ′ ∈ F such that (E ′, F ′) ∈ S and F ↪→6n2

2 ◦ ↪→n1

1 F ′.

E → E ′

S S

F ↪→6n2

2 ◦ ↪→n1

1 ∃F ′
(A3) For the first administrative index n1 it holds that n1 > 1.

(A4) For all E ∈ E and F ∈ F: If E is irreducible with respect to→ and (E, F) ∈ S
then C1(F) = 0 and C2(F) 6 n2.

(A5) For all E ∈ E: Φ(E) is irreducible with respect to ↪→2.

Lemma 4.8

Let Φ be an embedding between an uniformly confluent calculus (E, ≡E, →) and an

orthogonal union of uniformly confluent calculi (F, ≡F, ↪→1 ∪ ↪→2) with commuting

reductions. If there exists an administrative simulation for Φ with administrative

reduction ↪→2 and indices n1 and n2 then the two following properties hold:

1. For all E ∈ E: C1(Φ(E)) = n1 ∗ C(E).

2. For all E ∈ E with C(E) < ∞: C2(Φ(E)) 6 n2 ∗ C(E).

Proof

To establish the first statement of the lemma, we let ≡2 be ↪→∗2 ◦ ∗2←↩ and define

an auxiliary calculus G by (F,≡2,≡2 ◦ ↪→1 ◦ ≡2). According to Lemma 4.4, G is a

uniformly confluent calculus. We consider Φ as an embedding from the calculus E
into the auxiliary calculus G rather than the initial calculus F. It is easy to show

that S is a complexity simulation for this embedding with index n1 since for all

1 6 i 6 4, condition (Ai) easily implies (Si). Therefore, we can apply Proposition 4.3

which proves for all E ∈ E:

CG(Φ(E)) = n1 ∗ C(E)

Here again, we write CG instead of C in order to distinguish the complexity in

the calculus G from that in F. Lemma 4.4 implies CG(Φ(E)) = C1(Φ(E)) such that

property 1 of Lemma 4.8 follows.

We next prove C2(F) 6 n2 ∗ C(E) + n2 for all (E, F) ∈ S with C(E) < ∞ by

induction on C(E). If C(E) = 0 then E is irreducible. According to (A4), C2(F) 6 n2

holds. We next consider the case C(E) > 1 in which there exists E′ with E → E ′.
Lemma 3.6 implies C(E) = 1 + C(E ′). Condition (A2) yields the existence of an

expression F ′ ∈ F and n 6 n2 which satisfies (E ′, F ′) ∈ S and F ↪→n
2 ◦ ↪→n1

1 F ′. Since

C(E ′) < C(E) we can apply the induction hypothesis to the pair (E′, F ′). This yields:

C2(F) = n+ C2(F ′) (Lemma 3.6)

6 n2 + n2 ∗ C(E ′) + n2 (Induction Hypothesis)

= n2 ∗ C(E) + n2 (Lemma 3.6)

We now prove C2(Φ(E)) 6 n2 ∗ C(E) for all E ∈ E. If C(E) = 0 then C2(Φ(E)) = 0

follows from (A5) and (A4). If C(E) > 1 then there exists E ′ such that E → E ′.
According to (A1), (E,Φ(E)) ∈ S . Since Φ(E) is irreducible with respect to ↪→2 due

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 471

to (A5), (A2) yields the existence of F ′ with Φ(E) ↪→n1

1 F ′ and (E ′, F ′) ∈ S . Hence:

C2(F) = C2(F ′) (Lemma 3.6)

6 n2 ∗ C(E ′) + n2 (as shown above)

= n2 ∗ C(E) (Lemma 3.6)

q

Proposition 4.9 (Counting administrative steps)

Let Φ be an embedding between a uniformly confluent calculus (E, ≡E, →) and

an orthogonal union of uniformly confluent calculi (F, ≡F, ↪→1 ∪ ↪→2) with

commuting reductions. If there exists an administrative simulation for Φ with

administrative reduction ↪→2 and indices n1 and n2 then Φ preserves complexity

up to a constant factor. For all E ∈ E:

n1 ∗ C(E) = C1(Φ(E)) 6 C(Φ(E)) 6 (n1 + n2) ∗ C(E)

Proof

The equation n1 ∗C(E) = C1(Φ(E)) follows from Lemma 4.8 part 1 It remains to be

shown for all E ∈ E that:

n1 ∗ C(E) 6 C(Φ(E)) 6 (n1 + n2) ∗ C(E)

If C(E) = ∞ then C1(E) = ∞ and thus C1(Φ(E)) = ∞ as shown above. In this case,

all three terms in the considered estimation evaluate to ∞ since n1 > 1. For all E ∈ E
with C(E) < ∞ we have:

C(Φ(E)) = C1(Φ(E)) + C2(Φ(E)) Additivity (Proposition 3.8)

6 n1 ∗ C(E) + n2 ∗ C(E) Lemma 4.8 parts 1 and 2

= (n1 + n2) ∗ C(E)

C(Φ(E)) > C1(Φ(E)) Lemma 3.4

= n1 ∗ C(E) Lemma 4.8 part 1

q

5 Concurrent computation

For studying uniform confluence in concurrent computation, we investigate the

applicative core of the π-calculus that we call π0. We first define π0 and its admissible

expressions and show that the restriction of π0 to admissible expressions is uniformly

confluent. We then extend π0 to the δ-calculus by adding two mechanisms for

forwarding and triggering. We present a criterion for proving admissibility based on

a linear type system.

5.1 The applicative core π0 of the π-calculus

We recall the applicative core of the polyadic asynchronous π-calculus (Milner,

1991; Honda and Tokoro, 1991; Boudol, 1992).

As any other calculus, we define π0 in terms of a set of expressions, a structural

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

472 J. Niehren

Expressions E, F ::= x:y/E || xy || E | F || (νx)E

Reduction x:y/E | xz →A x:y/E | E[z/y]

Contexts
E →A E

′
E | F →A E

′ | F
E →A E

′
(νx)E →A (νx)E ′

Congruence
E1 ≡ E2 E2 →A F2 F2 ≡ F1

E1 →A F1

Fig. 1. The applicative core π0 of the π-calculus.

congruence, and a reduction relation. The definition is given in figure 1. Expressions

of π0 are built from variables ranged over by x, y, z. Possibly empty sequences of

variables are denoted with x, y, z. An expression E of π0 is either an abstraction,

an application, a concurrent composition, or a declaration.

An (named) abstraction x:y/E is named by x, has formal arguments y and body E.

An application xy of x has actual arguments y. A composition E | F composes two

concurrent processes E and F in interleaving manner. A declaration (νx)E declares

a new variable x with scope E. Bound variables are introduced as formal arguments

of abstractions and by declaration. The set of free variables of an expression E is

denoted by V(E).

The precedence of the syntactic constructors in expressions E is as follows: Decla-

ration binds stronger than abstraction which binds stronger than composition. For

instance, the expression x:y/(νz)yz | z:y/yy reads as (x:y/((νz)yz)) | z:y/yy . We

identify expressions up to consistent renaming of bound variables. When being very

precise, we have to distinguish expressions and their representatives. We do so when

needed only but are sloppy in most cases. However, we do apply Barendregt’s hy-

giene condition (Barendregt, 1981) which requires that all considered representatives

are α-standardized, i.e. that bound and free variables are always distinct.

As presented, the syntax of π0 is borrowed from the ρ-calculus (Niehren and

Müller, 1995) rather than from the π-calculus. In the terminology of the π-calculus

as in Kobayashi et al. (1996), an abstraction x:y/E is called a replicated input

agent x?∗(y).E and an application xy an output agent x!(y). In comparison to the

polyadic asynchronous π-calculus only once-only input agents x?(y).E are omitted.

The congruence of π0 is well-known from the π-calculus. It is the least congruence

on expressions of π0 which renders composition associative and commutative and

provides for the usual scoping rules for declaration:

E | F ≡ F | E E1 | (E2 | E3) ≡ (E1 | E2) | E3

(νx)(νy)E ≡ (νy)(νx)E (νx)E | F ≡ (νx)(E | F) if x /∈ V(F)

The reduction →A of π0 is essentially given by a single reduction rule for executing

applications in figure 1. This rule is formulated in terms of the simultaneous

substitution operator [z/y] which replaces variables in y elementwise by variables

in z. When applying the operator [z/y] we implicitly assume that the sequence y

is linear and of the same length as z. Reduction →A can be performed in weak

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 473

contexts, i.e. inside of declarations and compositions but not inside of abstractions.

Furthermore, reduction is modulo congruence, i.e. a reduction step of E can be

performed on any expression congruent to E.

Example 5.1 (Explicit recursion)

The execution of the following expression is infinite since the application of x is

recursive. The fact that we are able to express recursion in π0 gives a first hint for

that π0 might be quite expressive.

xy | x:y/xy →A xy | x:y/xy →A . . .

Definition 5.2 (Consistency and admissibility)

We call an expression E of π0 consistent if it does not contain two non-congruent

abstractions with the same name; more formally, for all subexpressions E ′ of

some α-standardized representative of E and for all x ∈ V(E ′) if two abstrac-

tions are contained in E ′, say x:y/E1 and x:z/E2, then they are congruent:

x:y/E1 ≡ x:z/E2

We call E admissible if every expression E ′ such that E →∗ E ′ is consistent.

Example 5.3

We assume z1 6= z2. The expression E1 equal to x:y/z1y | x:y/z2y is not consistent

since x:y/z1y 6≡ x:y/z2y due to z1 6= z2. Similarly, x:y/(z1y | x:y/z2y) is not

consistent for x 6= y. In contrast, x:y/z1y | (νx)(x:y/z2y) is consistent since we

identify expressions modulo consistent renaming of bound variables. For every α-

standardized representative of this expression (for instance x:y/z1y | (νz)(z:y/z2y))

contains a unique abstraction with name x. The expression E2 equal to z′:z/x:y/zy

| z′z1 | z′z1 is consistent by not admissible; The problem is that E2 may reduce to

E1 which is not consistent. Note that all expressions of the form x:y/E | x:y/E are

consistent.

Example 5.4 (Non-confluence)

Typically, non-consistency may raise non-confluence. For illustration, we consider

the expression xz | E1 where E1 is given in the previous example:

z1z | E1 A← xz | E1 →A z2z | E1

The resulting expressions z1z | E1 and z2z | E1 are irreducible but not congruent if

we assume z1 6= z2.

The advantage of the notion of admissibility is that it is preserved by reduction

and nevertheless very simple to define. It also allows for a simple reasoning about

confluence. Unfortunately, the notion of admissibility is not always easy to deal

with. For instance, it is undecidable whether a given expression E is admissible

(since admissibility depends on termination in a Turing complete system). This

failure is harmless for our purpose. The reason is that there exists a simple type

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

474 J. Niehren

system that allows to test for admissibility for all expressions we are interested in.

This system will be presented in section 5.3.

Theorem 5.5 (Uniform confluence)

The restriction of π0 to admissible expressions is uniformly confluent.

Proof

We first reformulate reduction of π0 based on the notion of reduction contexts. A

reduction context D of the π0 is given by the following abstract syntax:

D ::= [] || D | E || E | D || ν(x)D

We write D[E] for the expression obtained by replacing the hole [] in the context

D with E, and D[D′] for the context obtained by substitution [] in D with D′. We

can show for all α-standardized representatives E of expressions of π0 and all E ′:

E →A E
′ iff

{
exists D, y and x:z/F ∈ D such that

E = D[xy] and E ′ ≡ D[F[z/y]]

Let E be an admissible and α-standardized expression of π0 and E1, E2 such that

E1 A← E →A E2. There exist D1, y1, x1:z1/F1 ∈ D1 and D2, y2, x2:z2/F2 ∈ D2

satisfying:

E1 ≡ D1[F1[y1/z1]] A← D1[x1y1] = E = D2[x2y2]→A D2[F2[y2/z2]] ≡ E2

We consider two cases depending on whether D1 = D2 holds or not.

1. For D1 = D2 the equation D1[x1y1] = D2[x2y2] implies x1 = x2 and y1 = y2.

Since E is admissible and contains abstractions x1:z1/F1 and x2:z2/F2 we

know that these abstractions are congruent: x1:z1/F1 ≡ x2:z2/F2. Hence

F1[y1/z1] ≡ F2[y2/z2] which proves E1 ≡ E2 as required.

2. If D1 6= D2 then the condition D1[x1y1] = D2[x2y2] implies that there exist D0,

D′1 and D′2 such that:

D1 = D0[D′1 | D′2[x2y2]] and D2 = D0[D′1[x1y1] | D′2]

or D1 = D0[D′2[x2y2] | D′1] and D2 = D0[D′2 | D′1[x1y1]]

The second possibility above is symmetric up to commutativity of com-

position. We therefore only consider the first one. If F is the expression

D0[D′1[F1[y1/z1]] | D′2[F2[y2/z2]]] then E1 →A F A← E2 follows from:

E1 ≡ D0[D′1[F1[y1/z1]] | D′2[x2y2]]→A F

E2 ≡ D0[D′1[x1y1] | D′2[F2[y2/z2]]]→A F

q

An alternative method for proving the uniform confluence of π0 has been applied

Niehren (1994). There reduction in π0 is considered as rewriting modulo associativity

and commutativity; the idea is simply to identify an expression of π0 modulo

congruence with a pair of a declaration prefix and a multisets of applications and

abstractions, and then to redefine reduction for such pairs.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 475

Expressions E, F ::= x:y/E || xy || E | F || (νx)E ||

x=y || tr(x) || x.E

Reduction → = →A ∪ →F ∪ →T

x:y/E | xz →A x:y/E | E[z/y]

x=y | y:z/E →F x:z/E | y:z/E

tr(x) | x.E →T tr(x) | E

Contexts
E → E ′

E | F → E ′ | F
E → E ′

(νx)E → (νx)E ′

Congruence
E1 ≡ E2 E2 → F2 F2 ≡ F1

E1 → F1

Fig. 2. The δ-calculus.

5.2 The δ-calculus: forwarding and triggering

We define the δ-calculus as an extension of π0 with forwarding and triggering.

Such an extension is not strictly needed from the viewpoint of expressiveness. The

δ-calculus can be embedded into π0 such that complexity is preserved (Niehren,

1999). Note that the embedding presented in Niehren (1996) does not have this

property. The main purpose of the δ-calculus is to simplify reasoning on functional

computation in π0. Another purpose of the δ-calculus is to emphasize a concurrent

constraint view on functional computation.

The δ-calculus extends π0 with two mechanisms each of which is defined by a

single reduction rule. The first mechanism provides a direct method for forwarding

abstractions and the second one for triggering the execution of delayed expressions.

The δ-calculus is presented in figure 2. Its expressions extend those of π0 with

three new forms. A forwarder x=y is used for forwarding an abstraction from y on

the right to x on the left. A delay expression x.E delays the execution of E until x is

triggered. A trigger expression tr(x) triggers the execution of all expressions delayed

by x.

The congruence of the δ-calculus is defined by the same equations as the con-

gruence of π0. The reduction → of the δ-calculus is the union of three relations,

application →A, forwarding →F , and triggering →T . Each of these reductions is

defined by a corresponding reduction rule. Similarly to reduction in π0, reduction in

the δ-calculus is closed under weak context and modulo congruence.

Example 5.6 (Forwarding)

The identity with name x can be written as x:yz/z=y. An execution of xxz′ in the

context of this expression turns z′ into a name of the identity, too.

x:yz/z=y | xxz′ →A x:yz/z=y | z′=x
→F x:yz/z=y | z′:yz/z=y

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

476 J. Niehren

Example 5.7 (Triggering)

The execution of the following expression illustrates how application →A and trig-

gering →A may interact.

x:y/tr(y) | xy | y.E →A x:y/tr(y) | tr(y) | y.E
→T x:y/tr(y) | tr(y) | E

At the beginning the expression E is delayed. The application step creates a trigger

expression tr(y) whose execution wakes up the delayed expression E.

Example 5.8 (Multiple triggering)

Multiple triggering has the same effect as once-only triggering. For instance, tr(x) |
tr(x) | x.E and tr(x) | x.E reduce in the same manner. Multiple triggering occurs

naturally when expressing call-by-need control in a concurrent calculus. There, the

execution of a functional argument is triggered once it is needed. Multiple requests

of the same functional argument lead to multiple triggering.

The notions of consistency and admissibility (Definition 5.2) carry over literally

from expressions of π0 to expressions of the δ-calculus. For example tr(x) | tr(x) and

x.x:y/tr(y) | tr(x) are admissible whereas x:y/z=y | xx | z:y/zy is not admissible.

Proposition 5.9

The δ-calculus restricted to admissible expressions is an orthogonal union of uni-

formly confluent calculi with commuting reductions →A, →F , and →T .

Proof

Orthogonality follows from the following two observations: A forwarding step

properly decreases the number of forwarders not nested into some body of an

abstraction whereas all other steps do not. Hence, no forwarding step can be at the

same time a triggering step or an application step. Every triggering step properly

decreases the number of delay expressions whereas no other step does. Hence, no

triggering step can be at the same time an application step. This show that the union

→A ∪ →A ∪ →F is orthogonal.

The uniform confluence of →A has been proved in Theorem 5.5. With the same

context-based technique as used there, the uniform confluence of →F and →T for

admissible expressions can be checked easily. Also, the claims on commutativity

follow in the same lines.

For illustration, we consider forwarding in more detail. Suppose E1 F← E →F E2

for an α-standardized representative E of some admissible expression and arbitrary

E1, E2. There exist occurrences of forwarders x1=y1 and x2=y2 in E which have

been reduced in one of the considered reduction steps respectively. If the two

reduced occurrences of forwarders are distinct (which means that the contexts

where the forwarding rule has been applied are distinct), then the existence of an

expression F with E1 →F F F← E2 follows trivially by reducing the respective other

occurrence. Otherwise, x1 is equal to x2 and y1 is equal to y2. Furthermore, there

are abstractions y1:z1/F1 and y2:z2/F2 in E such that the considered forwarding

steps have replaced x1=y1 (which is equal to x2=y2) with x1:z1/F1 and x2:z2/F2,

respectively. Admissibility implies y1:z1/F1 ≡ y2:z2/F2. Thus x1:z1/F2 ≡ x2:z2/F2

follows and hence E1 ≡ E2. q

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 477

Theorem 5.10 (Uniform confluence)

The restriction of the δ-calculus to admissible expressions is uniformly confluent.

If E is admissible then every execution of E contains the same number of

application steps.

Proof

Uniform confluence follows from the uniform confluence of →A, →T , and →F as

stated in Proposition 5.9, in combination with Lemma 3.2. If C(E) < ∞ then

all executions of E contain the same number of application steps according to

Propositions 5.9 and Lemma 3.7. Otherwise, C(E) = ∞. The uniform confluence

and Proposition 2.4 imply that every execution of E is infinite. Since →F ∪ →T

terminates, every execution of E must contain an infinite number of application

steps. q

If E is admissible and C(E) < ∞ then Lemma 3.7 also implies that every

execution of E contains the same number of forwarding steps and the same number

of triggering steps. It might be surprising that this property fails without the

assumption C(E) < ∞. There exists an admissible expression of the δ-calculus with

executions containing distinct numbers of forwarding steps. This phenomenon is

of a quite general nature. It depends on fairness of infinite executions (and not

on particularities of the δ-calculus), and has already been discussed in section 2

following Lemma 3.7.

Example 5.11 (Unfair infinite executions)

We consider the expression x′=x | E4 where E4 is the infinite loop of Example 5.1,

i.e. E4 = xy | x:y/xy .

x′=x | E4 →A x′=x | E4 →A x
′=x | E4 →A . . .

x′=x | E4 →F x′:y/xy | E4 →A x
′:y/xy | E4 →A . . .

The first execution above does not contain any forwarding step whereas the second

one does. The first execution is not fair with respect to the forwarder x′=x which

could have been reduced at every time point, but remains untouched forever.

In the light of the above fairness concern, we recall the definition of complexity

measures for the δ-calculus which can be obtained as instances of Definition 3.3:

CA(E) = sup{m | a finite partial execution of E has m application steps}
CF (E) = sup{m | a finite partial execution of E has m forwarding steps}
CT (E) = sup{m | a finite partial execution of E has m triggering steps}

Only in the case of application steps, it would be sufficient to consider a single exe-

cution rather than a least upper bound over all executions. Nevertheless, Proposition

3.8 ensures additivity.

Proposition 5.12 (Additivity)

For all admissible expressions E of the δ-calculus: C(E) = CA(E) +CF (E) +CT (E).

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

478 J. Niehren

5.3 Linear types for proving admissibility

We present a linear type system for π0 which allows to prove admissibility by

checking well-typedness. This type system was also presented in Niehren (1994,

1996). Type checking infers data flow information. The type system is linear in that

it cares about how often a variable is used for naming an abstraction. In other

words, a variable is a resource which is consumed when it is used for naming an

abstraction. In the extended version of this paper (Niehren, 1999), a richer linear

type systems is presented for which well-typed expressions of the δ-calculus can be

encoded into well-typed expressions of π0.

Sangiorgi (1997) has independently introduced a similar linear type system for

the π-calculus in order to prove uniform receptiveness of channel names. The idea

of uniform receptiveness is in fact the same as for admissibility, modulo a distinct

concept of output. In the present article, functional output is done by side effect

on logic variables, whereas Sangiorgi treats functional output by passing values.

Another similar linear type system was proposed by Kobayashi, Pierce and Turner

(1996) for the π-calculus. Their system is motivated by and applied to optimized

code generation with the PICT compiler, in case that some channel in a PICT

program is provably used exactly once for input and once for output.

Most typically, the inconsistent expression x:y/E | x:uv/E ′ is not well-typed

since it uses the variable x twice for naming an abstraction. For excluding multiple

naming, our type system administrates a set of possible abstraction names, each

variable of which can be used at most once.

We assume an infinite set of type variables denoted by α and use the following

recursive types σ internally annotated with modes η (where n > 0).

σ ::= α || ((σ1
η1 . . . σηnn)) || µα.σ

η ::= in || out

A type σ is either a variable α, a procedural type ((ση1

1 . . . σηnn)), or a recursive type

µα.σ. Note that we are interested in typability but not in principal types. In general,

principal types do not exist since our mode language does not provide for a most

general mode.

A type assumption x: σ is a pair of a variable x and a type σ and reads as x has

type σ. A mode assumption x: η is a pair of a variable x and a mode η and reads as x

has mode σ. For convenience, we will make use of the following sequence notation:

Instead of ((ση1

1 . . . σηnn)), we will write ((ση)) where y is the sequence σ1, . . . , σn and η the

sequence η1, . . . , ηn. We also write y: σ for a sequence of type assumptions yi: σi and

y: η for a sequence of mode assumptions yi: ηi.

A variable x has the procedural types ((ση)) in an abstraction x:y/E if the formal

arguments y are typed by σ and moded by η in E. We call a formal argument

with mode in an input argument and a formal argument with mode out an output

argument. In the abstraction x:yz/yz for example, the variable x can be given the

procedural type ((αin αout)) which states that y is an input argument and z an output

argument.

We call a sequence of mode assumptions y: η = y1: η1, . . . , yn: ηn output-linear if

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 479

(Com)
Γ; W1 ` E1 Γ; W2 ` E2

Γ; W ` E1 | E2

W ⊆W1]W2

(Dec)
Γ, x: σ; W ′ ` E
Γ; W ` (νx)E

W ′ ⊆W ∪ {x}

(Abs)
Γ, y: σ; W ` E
Γ; {x} ` x:y/E

Γ(x) = ((ση))

W ′ ⊆ Out(y: η)

(App)
Γ; W ` xy

Γ(x) = ((Γ(y)η))

Out(y: η) ⊆W

(Forw)
Γ; {x} ` x=y

Γ(x) = Γ(y)

(Trig)
Γ; ∅ ` tr(x)

(Del)
Γ;W ` E

Γ;W ` x.E

Fig. 3. Linear type checking for proving admissibility.

there does not exist 1 6 i < j 6 n such that yi = yj and ηi = ηj = out; for

an output-linear sequence of mode assumptions, we define the set of its output

arguments:

Out(y: η) =

{
undefined if y: η is not output-linear

{yi | 1 6 i 6 n, ηi = out} otherwise

Finally, recursive types µα.σ are provided. These will be needed in order to deal

with expressions stemming from recursively defined embeddings between calculi. As

usual, we identify recursive types modulo the following identity:

µα.((ση)) = ((ση))[µα.((ση))/α]

A type environment Γ is a sequence of type assumptions x: σ with scoping to the

right. We say that a variable x has type σ in Γ, written Γ(x) = σ, if there exists Γ1

and Γ2 such that Γ = Γ1, x: σ,Γ2 and x does not occur in Γ2. A type judgment for E

is a triple Γ; W ` E, where Γ is an environment and W are finite sets of variables.

Such a type judgment means that E can be typed in the environment Γ whereby the

variables in W may be consumed for naming an abstraction, but at most once.

An expression E is well-typed if there exists a judgment for E derivable with

the rules in figure 3. There are rules for abstraction (Abs), application (App),

composition (Com), and declaration (Dec); obvious additional rules for triggering

(Trig), forwarding (Forw), and delay (Del) are also provided. The resources (the set

of variables in a type judgment) are split by rule (Com) where] is the operator of

disjoint union of sets. Recursive types are checked by the same rules as non-recursive

ones. This works, since we identify recursive types with respect to their standard

equality. For instance, the judgment x: µα.((αin)); {x} ` x:y/xy can be derived with

the rules (Abs) and (App).

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

480 J. Niehren

Expressions M,N, P ::= x || V || MN

Values V ::= λx.M

Reduction (λx.M)V →val M[V/x]

Contexts
M →val M

′
MN →val M

′N
N →val N

′
MN →val MN ′

Fig. 4. The λ-calculus with weak call-by-value reduction.

Proposition 5.13

Every well-typed expression of the δ-calculus is admissible.

Rather than presenting the proof, we illustrate linear type checking at an example.

We show how to derive Γ3; {x} ` E3 where:

Γ3 ≡ x: ((αin αout)), u: α, E3 ≡ x:yz/(νv)(xuv | xvz)
The abstraction of name x in E3 can be applied with an input and an output

argument in first and second position respectively. The types of both arguments

have to coincide with the type of the global variable u. This global variable plays the

rôle of an additional input argument. The fact that the set of possible abstraction

names in E3 is {x} shows that x is the only free variable in E3 that may eventually

be used for naming an abstraction during the reduction of E3. Let Γ′3 be the type

environment Γ3, y: α, z: α, v: α. The rules in figure 3 yield:

Γ′3; {v} ` xuv
(App)

Γ′3; {z} ` xuz
(App)

Γ′3; {z, v} ` xuv | xvz
Γ3, y: α, z: α; {z} ` (νv)(xuv | xvz)

Γ3; {x} ` x:yz/(νv)(xuv | xvz) (Abs)
(Dec)
(Com)

We explain the above derivation bottom-up. First, (Abs) can be applied to the

abstraction named x, since the set of possible abstraction names in the final judgment

is {x}. The procedural type assumed for x in Γ3 requires that the second argument

z is the only output argument. We therefore continue with the set {z} for possible

abstraction names. An application of (Dec) adds the local variable v to this set. When

applying (Com), the actual set of possible abstraction names {z, v} is partitioned

into two disjoint parts, the set {v} for the possible abstraction names in xuv and

the set {z} for possible abstraction names in xvz. Finally, the rule (App) checks

successfully that both second arguments in the considered applications of x (v and

z, respectively) are a possible abstraction name.

6 Eager functional computation

We model eager functional computation in the λ-calculus with the weak call-by-value

reduction strategy that we call λval and encode λval into the δ-calculus.

The definition of λval is recalled in figure 4. An expression M of λval is a usual

λ-expression which is either a variable, an abstraction (ranged over by V), or an

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 481

[[MN]]val
z

def≡ (νx)(νy)([[M]]val
x | [[N]]val

y | xyz)
[[λx.M]]val

z

def≡ z:xy/[[M]]val
y

[[x]]val
z

def≡ z=x

Fig. 5. Embedding λval into the δ-calculus.

application. Bound variables are introduced by λ-binders in abstractions. We identify

λ-expressions up to consistent renaming of bound variables. The congruence of λval

is the equality of λ-terms. Reduction →val in λval is given by a single reduction rule

that is applicable in weak contexts (but not inside of abstractions).

We should note by an example that weak call-by-value reduction is not determin-

istic. Consider the expression (II)(II) which allows for two executions:

(II) (II) →val I (II) →val II →val I

(II) (II) →val (II) I →val II →val I

Proposition 6.1 (Uniform confluence)

The λ-calculus with weak call-by-value reduction λval is uniformly confluent.

The proof can be done by induction on the structure of λ-expressions.

Definition 6.2

We define the call-by-value complexity Cval(M) of an expression M as the number

of →val reduction steps in executions of M.

Note that this number coincides for all executions of M because of uniform

confluence (Propositions 6.1 and 2.4).

6.1 Call-by-value translation

An embedding of λval into the δ-calculus is given in figure 5. A λ-expression M

together with a variable z is mapped to an expression [[M]]val
z of the δ-calculus. The

definition of [[M]]val
z is given in figure 5. It is modulo congruence and assumes that

all variables introduced are fresh.

The translation of an application [[MN]]val
z with name z introduces new names

x and y for naming the functor and the argument (in [[M]]val
x and [[N]]val

y) and

concurrently applies the functors name x to y and z (in xyz). The translation of an

abstraction [[λx.M]]val
z with name z is a binary abstraction of the δ-calculus named

by z; its first argument x names the actual input whereas its second one y names

the actual output (in [[M]]val
y). The translation of a variable x with name z is simply

a forwarder z=x.

Example 6.3

The call-by-value translation [[I]]val
z of I with name z is z:xy/y=x and the translation

of [[I (II)]]val
z is congruent to the following expression of the δ-calculus:

[[I (II)]]val
z ≡ (νy1)(νz1)(νy2)(νz2)([[I]]val

y1
| [[I]]val

y2
| [[I]]val

z2
| y2z2z1 | y1z1z)

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

482 J. Niehren

The application y2z2z1 corresponds to the inner and y1z1z to the outer redex of

I (II). Although the call-by-value execution of I (II) is deterministic,

I (II) →val II →val I

there exist several executions of its call-by-value translation. Let D be the context

of y2z2z1 | y1z1z in the expression [[I (II)]]val
z , i.e.:

D = (νy1)(νz1)(νy2)(νz2)([[I]]val
y1
| [[I]]val

y2
| [[I]]val

z2
| [])

Recall that we write D[E] for the expression obtained by replacing the hole [] in D

with E. With this notation we have:

[[I (II)]]val
z ≡ D[y2z2z1 | y1z1z]

The following execution of [[I (II)]]val
z corresponds to the unique execution of I (II):

D[y2z2z1 | y1z1z] →A D[z1=z2 | y1z1z] →A D[z1=z2 | z=z1]

→F D[[[I]]val
z1
| z=z1] →F D[[[I]]val

z1
] | [[I]]val

z

Up to the closed expression D[[[I]]val
z1

] the outcome of the above execution is [[I]]val
z .

Every→val step in the unique execution of I (II) corresponds to one→A step plus at

most two →F steps in the above execution of [[I (II)]]val
z . There also exist executions

of [[I (II)]]val
z corresponding to reducing the outer redex of I (II) first.

D[y2z2z1 | y1z1z] →A D[y2z2z1 | z=z1] →A D[z1=z2 | z=z1]

→F D[[[I]]val
z1
| z=z1] →F D[[[I]]val

z1
] | [[I]]val

z

This shows that our embedding introduces new flexibility with respect to possible

schedulings of application steps.

Proposition 6.4

For all z and closed M the expression [[M]]val
z is well-typed and hence admissible.

Proof

Given a set a variables X = {x1, . . . , xn} we define ΓX to be the type environment:

ΓX = x1: µα.((αin αout)), . . . , xn: µα.((α
in αout))

For a fresh variable z, the judgment ΓV(M); {z} ` [[M]]val
z can be derived. q

Proposition 6.5

Let z be an arbitrary variable and consider [[.]]val
z as a mapping from closed λ-

terms to admissible expressions of the δ-calculus. Then there exists an administrative

simulation S for [[.]]val
z with administrative reduction →T ∪ →F and indices 1, 2.

Proof

The proof of Proposition 6.5 is delegated to section 6.2. There, an administrative

simulation S is defined such that for every M, M ′ and E the following diagram can

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 483

be completed with some E ′:

M →val M ′

S S

E →62
F ◦ →A ∃E ′

q

Theorem 6.6 (Call-by-value translation preserves complexity)

For every variable z and all closed λ-expressions M the following properties

hold:

Cval(M) = CA([[M]]val
z) 6 C([[M]]val

z) 6 3 ∗ Cval(M)

Proof

This follows directly from the existence of an administrative simulation with indexes

1 and 2 as claimed in Proposition 6.5 and Proposition 4.9. q

Theorem 6.6 shows that the the call-by-value translation of λ-calculus into the

δ-calculus preserves complexity up to a factor of 3, whereby every β-reduction step

in λval corresponds to exactly one application step in the δ-calculus.

6.2 A simulation for call-by-value

We now define an administrative simulation for the presented embedding of λval into

the δ-calculus. As proposed by Milner (1991, 1992), we also make use of a notation

for explicit substitution. Its syntax is given by:

subst M1/y1 . . . Mn/yn in N
def≡ N[Mn/yn] . . . [M1/y1]

Example 6.7

We first illustrate the idea underlying our definition of an administrative simulation.

We reduce the call-by-value translation [[I (II)]]val
z where we omit declaration pre-

fixes for simplicity. The translation of the inner redex is applied first; the translation

of the outer redex could also be reduced but without correspondence in λval.

[[I (II)]]val
z →A [[I]]val

y0
| [[I]]val

z0
| [[I z0]]val

z

→F [[I]]val
y0
| [[I]]val

z0
| [[I I]]val

z

→A [[I]]val
y0
| [[I]]val

z0
| [[I]]val

y1
| [[I]]val

z1
| [[z1]]val

z

→F [[I]]val
y0
| [[I]]val

z0
| [[I]]val

y1
| [[I]]val

z1
| [[I]]val

z

The call-by-value translation [[I (II)]]val
z introduces the variables y0 and z0 for

naming the functor and argument of the inner redex, respectively. In the first step,

the translated functor [[I]]val
y0

is applied with the arguments name z0 which then

is returned. In the second step, the variable z0 is replaced by the abstraction it

names. The similarity to an execution of I (II) in λval shows up when using our new

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

484 J. Niehren

substitution notion:

I (II) →val subst I/y0 I/z0 in I z0

≡ subst I/y0 I/z0 in I I

→val subst I/y0 I/z0 I/y1 I/z1 in z1

≡ subst I/y0 I/z0 I/y1 I/z1 in I

In our formal treatment, we will freely make use of the following sequence

notation. If y = (yi)
n
i=1 and M = (Mi)

n
i=1 then we write:

subst M/y in N ≡ subst M1/y1 . . . Mn/yn in N

[[M]]val
y ≡ [[M1]]val

y1
| . . . | [[Mn]]

val
yn

If 1 6 i 6 n then we write M<i for the sequence (Mj)
i−1
j=1, M>i for (Mj)

n
j=i+1, and

similarly y<i for (yj)
i−1
j=1, and y>i for (yj)

n
j=i+1. The concatenation of two sequences is

denoted by juxtaposition, for instance MN or yz. We also write MN, NM, or zy,

yz for the concatenation of a single element to the left or right of a sequence.

We define prefix equivalence ≈3 to be the smallest equivalence relation on expres-

sion of the δ-calculus that is modulo congruence, and satisfies the following property

for all x, y, E and reduction contexts D:

D[(νx)E] ≈3 D[E[y/x]] y fresh

Lemma 6.8

For all admissible E, F with E ≈3 F: C(E) = C(F) and CA(E) = CA(F).

Proof

The lemma essentially follows from the fact that for all E, F, E ′ the following

diagrams can be closed with some F ′:

E →A E ′

≈
3

≈
3

F →A ∃F ′

E →F E ′

≈
3

≈
3

F →F ∃F ′

E →T E ′

≈
3

≈
3

F →T ∃F ′
Hence, Propositions 4.6 and Theorem 5.10 imply for all admissible E, F with E ≈ F
that CA(E) = CA(F), CT (E) = CT (F), and CF (E) = CF (F). If follows from the

additivity Proposition 5.12 that C(E) = C(F). q

Definition 6.9 (Representation)

A representation for (M, E) is a triple (n, y, M), where y = (yi)
n
i=1, M = (Mi)

n
i=1, and

such that the following properties hold for all i ∈ {1, . . . , n}:
(R1) V(Mi) ⊆ {y1 . . . yi−1} and y is linear.

(R2) M ≡ subst M/y in yn.

(R3) E ≈3 [[M1]]val
y1
| . . . | [[Mn]]

val
yn

.

(R4) If i < n then Mi is an abstraction.

Lemma 6.10 (Closedness)

If n, M, y, and M satisfy (R1) and (R2) then M is closed.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 485

Definition 6.11

The relation Sval is the set of all pairs (M, E) for which a representation exists.

Proposition 6.12 (Sval is an administrative simulation)

For every z, the relation Sval is an administrative simulation for mapping of a closed

λ-expression E to its call-by-value translation [[M]]val
z . The administrative relation

of this simulation is →T ∪ →F and its administrative indices are 1, 2.

Proof

We check each of the conditions of Definition 4.7. Note that the proof of property

(A2) requires Lemma 6.13 given below.

(A1) If M is closed then (M, [[M]]val
z) ∈ Sval since (n, (z), (M)) is a representation

of (M, [[M]]val
z). Property (R1) follows from the closedness of M and (R2),

(R3), (R4) are trivial in this case.

(A2) Let (n, y, M) be a representation of (M, E) and M →val M
′. Applying the

following Lemma 6.13, there exists sequences x and V of length m and an

expression E ′ such that (n+ m, y<nxyn, M
<nVM ′n) is a representation for

(M ′, E ′) and E →62
F ◦ →A E

′.
(A3) The first administrative index is 1 thus greater than or equal to 1 as required.

(A4) Let M be closed and irreducible with respect to →val and assume (M, E) ∈
Sval. Since M is irreducible and closed it is an abstraction. There exists a

representation (n, y, M) for (M, E). Since M is an abstraction, either yn is a

variable or an abstraction. Hence E reduces in one →F step to a composition

of abstractions which is irreducible, i.e. CA(E) = 0 and CF (E) + CT (E) 6 1.

(A5) Let M be closed. The expression [[M]]val
z is irreducible with respect to →T

since no trigger expressions are used by the translation. The expression

[[M]]val
z is irreducible with respect forwarding since all forwarders introduced

by translation belong to the bodies of some abstraction.

q

Lemma 6.13

Let (n, y, M) be a representation of (M, E) and M →val M
′. Then there exists

fresh variables x, abstractions V , and a λ-expression M ′n such that E →62
F ◦ →A E

′,
V(V) ⊆ V(y<n), V(M ′m) ⊆ V(y<nx), and:

M ′ ≡ subst M<n/y<n V/x M ′n/yn in yn
E ′ ≈3 [[M<n]]val

y<n | [[V]]val
x | [[M ′n]]val

yn

Proof

Since (n, y, M) is an representation, we know M ≡ subst M/y in yn and E ≈3

[[M]]val
y . Since M can not be an abstraction, property (R4) implies that Mn is an

application N1N2 for some N1 and N2. Hence M ≡ P1P2 and:

P1 ≡ subst M<n/y<n in N1 , P2 ≡ subst M<n/y<n in N2

1. Case: M →val M
′ is an instance of the β-axiom, i.e. P1 ≡ λx.P̃1 and:

M ≡ (λx.P̃1)P2 →val P̃1[P2/x] ≡ M ′

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

486 J. Niehren

Since P1 and P2 are abstractions, N1 and N2 have to be either variables or

abstractions. This leads to four very similar subcases. We only consider the

case where N1 and N2 are both variables. In this case there exists yl1 and yl2
such that N1 = yl1 and N2 = yl2 . Furthermore:

P1 ≡ subst M<n/y<n in Ml1 , P2 ≡ subst M<n/y<n in Ml2

If Ml1 ≡ λx.M̃l1 then P̃1 ≡ subst M<n/y<n in M̃l1 . Let x1 and x2 be fresh:

M ′ ≡ (subst M<n/y<n in M̃l1)[P2/x]

≡ subst M<n/y<n in M̃l1 [P2/x]

≡ subst M<n/y<n in M̃l1 [yl2/x]

≡ subst M<n/y<n Ml1/x1 Ml2/x2 M̃l1 [x2/x]/yn in yn

Reduction of E may proceed with two forwarding steps followed by an

application step.

E ≈3 [[M<n]]val
y<n | [[yl1yl2]]val

yn≈3 [[M<n]]val
y<n | x1=yl1 | x2=yl2 | x1x2yn

→2
F [[M<n]]val

y<n | [[Ml1]]
val
x1
| [[Ml2]]

val
x2
| x1x2yn

→A [[M<n]]val
y<n | [[Ml1]]

val
x1
| [[Ml2]]

val
x2
| [[M̃l1]]

val
yn

[x2/x]

This proves the inductive assertion with M ′n ≡ M̃l1 [x2/x] and V equals the

sequence (Ml1 , Ml2).

2. Case: The last rule in the derivation of M →val M
′ allows for reduction in

functional position:

P1 →val P
′
1

M ≡ P1P2 →val P
′
1P2 ≡ M ′

Let z1 and z2 be fresh variables and define:

E1
def≡ [[M<n]]val

y<n | [[N1]]val
z1

By induction hypothesis there exists fresh variables x, abstractions V , N ′1, and

E ′1 such that E1 →62
F ◦ →A E

′
1 and:

P ′1 ≡ subst M<n/y<n V/x N ′1/yn in yn
E ′1 ≈3 [[M<n]]val

y<n | [[V]]val
x | [[N ′1]]val

yn

Additionally, we obtain some conditions on variables occurrences which imply:

M ′ ≡ P ′1P2 ≡ (subst M<n/y<n V/x in N ′1) (subst M<n/y<n in N2)

≡ subst M<n/y<n V/x N ′1N2/yn in yn

Furthermore:

E ≈3 [[M<n]]val
y<n | [[N1N2]]val

yn≈3 [[M<n]]val
y<n | [[N1]]val

z1
| [[N2]]val

z2
| z1z2yn

→62
F ◦ →A [[M<n]]val

y<n | [[V]]val
x | [[N ′1]]val

z1
| [[N2]]val

z2
| z1z2yn

≈3 [[M<n]]val
y<n | [[V]]val

x | [[N ′1N2]]val
yn

This proves the inductive assertion with M ′n ≡ N ′1N2 .

3. Case: The last rule in the derivation of M →val M
′ allows for reduction in

argument position. This case is symmetric to the previous one. q

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 487

Expressions L ::= x || V || LL′ || let x=L2 in L1 where x /∈ V(L2)

V ::= λx.L

A ::= V || let x=L in A

B ::= [] || BL || let x=L in B || let x=B2 in B1[x]

Reduction →need = →I ∪ →V ∪ →Ans ∪ →C

(λx.L1)L2 →I let x=L2 in L1

let x=V in B[x] →V let x=V in B[V]

let y=(let x=L in A) in B[y] →Ans let x=L in (let y=A in B[y])

(let x=L1 in A)L2 →C let x=L1 in AL2

Contexts
L→need L

′
B[L]→need B[L′]

Fig. 6. The call-by-need λ-calculus λneed with standard reduction.

7 Lazy Functional computation

The call-by-need λ-calculus (Ariola et al., 1995; Ariola and Felleisen, 1997; Maraist

et al., 1998) with standard reduction can be used to model complexity in lazy func-

tional computation. We embed the call-by-need λ-calculus with standard reduction

into the δ-calculus such that complexity is preserved.

The definition of the call-by-need λ-calculus with standard reduction λneed is

revisited in Figure 6. Its expressions L are variables, abstractions (denoted with V),

applications, and let-expressions. The reduction →need of the call-by-need λ-calculus

is a union of four relations, →I , →V , →Ans , and →C . The relation →I corresponds

to β-reduction and the relation →V to forwarding. The latter two relations are of

administrative character.

Example 7.1

For illustrating we consider the λ-term (II) I . This examples shows that →I steps

correspond to β-reduction whereas →V provides for forwarding abstractions.

(II) I →I (let y=I in y) I →V (let y=I in I) I →C let y=I in II

→I let y=I in (let z=I in z) →V let y=I in (let z=I in I)

The rôle of →C is to rearrange parenthesis introduced by let-expressions in function

position, for instance after the evaluation of II in (II) I as shown above. The rôle

of →Ans is to rearrange parenthesis after evaluation in argument position. This is

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

488 J. Niehren

illustrated by the call-by-need reduction of (λx.xx) (II).

(λx.xx) (II) →I let x= II in xx

→I let x=(let y=I in y) in xx →V let x=(let y=I in I) in xx

→Anslet y=I in (let x=I in x x) →V let y=I in (let x=I in Ix)

→I let y=I in (let x=I in (let y= x in y))

→2
V let y=I in (let x=I in (let y=I in I))

This example also illustrates sharing of computation. The evaluation of the func-

tional argument II is shared between both uses of the value of this argument.

With respect to the call-by-need λ-calculus, we consider standard reduction rather

than some form of weak reduction. The reason for this choice is purely technically

motivated: The problem with weak reduction is that its administrative reduction

steps spoil uniform confluence.

Example 7.2 (Weak call-by-need reduction is not uniformly confluent)

Weak reduction for the call-by-need λ-calculus allows to reduce in every weak

context (i.e. everywhere but not in bodies of abstractions). Weak reduction for

the call-by-need λ-calculus is not uniformly confluent. The problem depends on

the number of steps needed for rearranging parenthesis. This number depends on

the ordering in which parenthesis are rearranged. This can be illustrated with the

following expression L:

This expression contains two nested weak redexes where the →Ans axiom applies.

When reducing the outer redex first we obtain L1, whereas we obtain L2 when

reducing the inner redex first:

L1 = let x=A1 in (let y=(let z=L0 in A2) in x)

L2 = let x=(let z=L0 in (let y=A2 in A1)) in x

It is not possible to join L1 and L2 in exactly one step. It is possible however to join

L1 and L2 into L′ given below.

L′ = let x=A1 in (let y=A2 in (let z=L0 in x))

The expression L1 reduces in one weak answering step to L′ whereas L2 needs two

weak answering steps.

In standard reduction, this non-uniformity problem does not occur. The inner

weak redex of L can simply not be reduced since its context is not a reduction

context with respect to standard reduction.

Proposition 7.3 (Uniform confluence)

The call-by-need λ-calculus with standard reduction λneed is deterministic.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 489

Proof

The context rule determines a unique position where reduction may happen. More

precisely, whenever B1[L1] = B2[L2] then either L1 is a variable bound in B1, or L2

is a variable bound in B2, or B1 = B2 and L1 = L2. This can be shown by induction

on the size of the pair B1, B2. q

Proposition 7.3 implies in particular that λneed is an orthogonal union of uniformly

confluent calculi with commuting reductions →I , →V , →Ans and →C . Hence, the

theory developed in section 2 is applicable to λneed.

We wish to define the call-by-need complexity of a λ-expression L. We have

several choices in doing so. We might consider the number of all reduction steps

of an execution of L in λneed. This choice would be problematic (at least) for our

purpose. The reason is that →C and →Ans do not have any correspondents in a

concurrent calculus which we wish to compare with. This failure is illustrated by

Example 7.2. It is also unclear in how far the →C steps and →Ans steps are realistic

with respect to implementations of functional languages. We therefore ignore →C

steps and →Ans completely and leave it to future research to lift this restriction.

Another question is whether we should count →V steps. Doing so would not be

too difficult since →V steps nicely correspond to forwarding steps in the δ-calculus.

It would also be possible to argue that the number of →V steps is linearly bounded

by the number of →I steps. In favor of simplicity, we decide to count →I steps only.

These play the rôle of β-reduction in λneed.

One might also argue against →I steps claiming that a slightly reformulated

version of the call-by-need λ-calculus in Ariola and Felleisen (1997) and Ariola et

al. (1995) does not use →I steps at all. The idea of this calculus is to identify a let

expressions let x=L2 in L1 with an application (λx.L2)L1. In this approach →I steps

are no longer explicitly needed and can be replaced by a sequence of →V steps.

Since the number of →V and →I steps coincide up to a linear factor, the absence of

→I steps does not really affect our results.

Definition 7.4 (Call-by-need complexity)

We define the call-by-need complexity Cneed(L) of a λ-term L as the number of

→I steps in the execution of L in λneed.

7.1 Call-by-need translation

The call-by-need λ-calculus λneed can be embedded into the δ-calculus such that

complexity is preserved. In figure 7, for every expression L and variable z we define

the call-by-need translation [[L]]need
z into the δ-calculus. The call-by-need translation

is fully analogous to the call-by-value translation, except that an additional control is

added. In the translation of an application [[LL′]]need
z the translation of the functional

argument [[L′]]need
y is delayed; whenever the value of a variable y is needed, its

computation is trigger. This is encoded by the additional trigger expression in

the translations of variables [[y]]need
z . Finally, notice that let-bound variables are

translated to variables of the δ-calculus.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

490 J. Niehren

[[LL′]]need
z

def≡ (νx)(νy)([[L]]need
x | y.[[L′]]need

y | xyz)
[[λx.L]]need

z

def≡ z:xy/[[L]]need
y

[[y]]need
z

def≡ z=y | tr(y)

[[let y=L2 in L1]]need
z

def≡ (νy)(y.[[L2]]need
y | [[L1]]need

z)

Fig. 7. Embedding λneed into the δ-calculus.

Example 7.5

We consider the translation and execution of the λ-term I (II).

[[I (II)]]need
z ≡ (νy1)(νz1)([[I]]need

y1
| z1 .[[II]]

need
z1
| y1z1z)

→A (νy1)(νz1)([[I]]need
y1
| z1 .[[II]]

need
z1

| z=z1 | tr(z1))

→T (νy1)(νz1)([[I]]need
y1
| [[II]]need

z1
| z=z1 | tr(z1))

The translation of outer redex of I (II) is reduced first (up to translation). The

inner redex is delayed at beginning but triggered during the evaluation of the outer

redex, such that further execution can be applied to the inner redex. Note that the

execution of [[I (II)]]need
z is deterministic.

Example 7.6 (Non-needed arguments)

We consider the λ-abstraction C ≡ λx.y where x 6= y. An application of C returns

the constant y independently of (and without needing) the actual argument.

[[C (II)]]need
z ≡ (νy1)(νz1)([[C]]need

y1
| z1 .[[II]]

need
z1
| y1z1z)

→A (νy1)(νz1)([[I]]need
y1
| z1 .[[II]]

need
z1
| z=y | tr(y))

Here, reduction terminates without having evaluated the translated functional argu-

ment z1 .[[II]]
need
z1

which is not needed and therefore delayed forever.

Example 7.7 (Sharing of evaluation)

Consider the λ expression let x=II in xx where x = II is needed twice but should

be evaluated only once.

[[let x=II in xx]]need
z

≡ (νx)(x.[[II]]need
x | [[xx]]need

z)

≡ (νx)(νy1)(νz1)(x.[[II]]need
x | y1=x | tr(x) | z1 .(z1=x | tr(x)) | y1z1z)

→T (νx)(νy1)(νz1)([[II]]need
x | y1=x | tr(x) | z1 .(z1=x | tr(x)) | y1z1z)

Further execution on [[II]]need
x results in [[x]]need

I up to some garbage. Forwarding

with y1=x yields [[y1]]need
I such that y1z1z reduces to z=z1 | tr(z1). This makes it

possible to trigger z1 .(z1=x | tr(x)). This is the point where multiple triggers

. . . | tr(x) | tr(x) | . . .
have become active (one per need of x). Two final forwarding step yield [[I]]need

z1
and

hence [[I]]need
z .

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 491

Proposition 7.8

For all z and closed M the expression [[M]]need
z is well-typed and hence admissible.

Proof

Given a set a variables X = {x1, . . . , xn} we define ΓX to be the type environment:

ΓX = x1: µα.((αin αout)), . . . , xn: µα.((α
in αout))

For every λ-expression M and z 6∈ V(M) the following judgment is derivable:

ΓV(L); {z} ` [[L]]need
z

This can be checked by induction on the structure of L. Hence every expression

[[L]]need
z is well-typed and hence admissible as shown by Corollary 5.13. q

Theorem 7.9 (Call-by-need translation preserves complexity)

For every z and closed λ-expression L the equation Cneed(L) = CA([[L]]need
z)

holds.

Proof

This follows from the existence of a complexity simulation as specified in Proposition

7.11 below, admissibility as stated (Proposition 7.8), uniform confluence (Propositions

7.3 and 5.9), and Proposition 4.3. q

7.2 A simulation for call-by-need

In this section, we present a complexity simulation for our call-by-need translation as

required in the proof of Theorem 7.9. The idea for defining a complexity simulation

S is to consider the relation S = {(L, [[[L]]]need
z)} (depending on a choice of z).

However, we have to extend this relation S such that we can deal with technical

details related to multiple triggering. Even worse, we cannot know statically, whether

an expression has been needed at some time point. We therefore have to deal with

similarities like between expressions E and x.E | tr(x) | tr(x). To do so, we will

consider sets E of expressions E and use the following notation.

E | E ′ = {E | E ′ | E ∈ E} E | E′ = {E | E ′ | E ′ ∈ E′}
x:y/E = {x:y/E | E ∈ E} (νx)E = {(νx)E | E ∈ E}
x.E = {x.E | E ∈ E} E∗ = { |ni=1 E | n > 0}

Note that the auxiliary expression 0 ≡ |0i=1 E is contained in E∗ which satisfies

E | 0 ≡ 0 | E ≡ E for all E. We next define sets of expressions [[[L]]]need
x for all x and

L such that [[L]]need
x ∈ [[[L]]]need

x .

[[[LL′]]]need
z = (νx)(νy)([[[L]]]need

x | y.[[[L′]]]need
y | xyz)

[[[λx.L]]]need
z = z:xy/[[[L]]]need

y

[[[x]]]need
z = {z=x | tr(x)}

[[[let y=L2 in L1]]]need
z =


if L2 ≡ V

then (νy)(y.[[[V]]]need
y | tr(y)∗ | [[[L1]]]need

z)

else (νy)(y.[[[L2]]]need
y | [[[L1]]]need

z)

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

492 J. Niehren

Definition 7.10

We define the relation Sneed
z by Sneed

z = {(L, E) | E ∈ [[[L]]]need
z , L closed}.

Proposition 7.11 (Sneed
z is a complexity simulation)

The relation Sneed
z is a complexity simulation for the embedding [[.]]need

z (restricted

to closed terms) with indices 1, 0, 0.

Proof

We have to verify the properties (S1) , . . ., (S4) of a complexity simulation for an

embedding according to Definitions 4.1 and 4.2.

(S1) For all closed L: (L, [[L]]need
z) ∈ Sneed

z . This follows immediately from the

definition of Sneed
z .

(S2) We define the relation ≈A on expression of the δ-calculus (in analogy to π0

before) such that E ≈A E ′ if and only if CA(E) = CA(E ′). By Lemma 3.6, we

know that →T ∪ →F ⊆ ≈A. For all L, L′ and E there exists E ′ such that the

following diagrams can be completed:

L →I L′

Sneed
z Sneed

z

E ≈A ◦ →A ◦ ≈A ∃E ′

L →V L′

Sneed
z Sneed

z

E ≈A ∃E ′

L →Ans ∪ →C L′

Sneed
z Sneed

z

E ≡ ∃E ′
These diagrams will be proved by Lemmas 7.15, 7.16, and 7.17.

(S3) If C(E) = ∞ then CA(E) = ∞ and the index for →A is 1.

(S4) If a closed λ-term L is irreducible and (L, E) ∈ Sneed
z then CA(E) = 0. q

Lemma 7.12 (Termination)

If a closed λ-term L is irreducible and E ∈ [[[L]]]need
z then there exist E ′ such that

E →∗T E ′ and C(E) = 0.

Proof

If a closed λ-term L is irreducible then L ≡ A for some answer A (It can be

shown by induction on structure of L that either L is reducible or an answer). By

induction on A we can show for all E ∈ [[[A]]]need
z that E consists of a declaration

scoping over composition of abstractions, delayed abstractions, triggers for delayed

abstractions, and other delayed expressions without appropriate triggers. We obtain

E ′ by triggering all delayed abstractions in E than can be triggered. q

A context B of the call-by-need λ-calculus can be considered as a function from

λ-terms to λ-terms ΛL.B[L]. Given a variable z, we can translate a context B in

call-by-need manner to a function [[[B]]]need
z from λ-terms to sets of expression of the

δ-calculus.

[[[[]]]]need
z = ΛL.[[[L]]]need

z

[[[BL′]]]need
z = ΛL.(νx)(νy)([[[B]]]need

x (L) | [[[L′]]]need
y | xyz)

[[[let y=L′ in B]]]need
z = ΛL.(νy)(y.[[[L′]]]need

y | [[[B1]]]need
z (L))

[[[let y=B2 in B1[y]]]]need
z = ΛL.


if B2[L] ≡ V

then (νy)(y.[[[V]]]need
y | tr(y)∗ | [[[B1[y]]]]need

z)

else (νy)(y.[[[B2]]]need
y (L) | [[[B1[y]]]]need

z)

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 493

Lemma 7.13 (Translation and context application commute)

For all B, L, and z the congruence [[[B[L]]]]need
z = [[[B]]]need

z (L) holds.

Proof

By induction on the structure of contexts B.

1. In the base case, B ≡ [], we have [[[B[L]]]]need
z = [[[L]]]need

z = [[[B]]]need
z (L).

2. If B ≡ B′L′ then the induction hypothesis yields [[[B′[L]]]]need
x = [[[B′]]]need

x (L).

Hence:

[[[B[L]]]]need
z = (νx)(νy)([[[B′[L]]]]need

x | y.[[[L′]]]need
y | xyz)

= (νx)(νy)([[[B′]]]need
x (L) | y.[[[L′]]]need

y | xyz)
= [[[B′L′]]]need

z (L)

3. The case B ≡ let y=L′ in B′ is similar to the previous one.

4. In the case B ≡ let y=B2 in B1[y], the induction hypothesis implies

[[[B2[L]]]]need
y = [[[B2]]]need

y (L). If B2[L] ≡ V then:

[[[let y=B2[L] in B1[y]]]]need
z = (νy)(y.[[[V]]]need

y | tr(y)∗ | [[[B1[y]]]]need
z)

= [[[let y=[] in B1[y]]]]need
z (V)

= [[[let y=B2 in B1[y]]]]need
z (L)

Otherwise B2[L] 6≡ V for any V :

[[[let y=B2[L] in B1[y]]]]need
z = (νy)(y.[[[B2[L]]]]need

y | [[[B1[y]]]]need
z)

= (νy)(y.[[[B2]]]need
y (L) | [[[B1[y]]]]need

z)

= [[[let y=B2 in B1[y]]]]need
z (L)

q

Given a binary relation →R on expressions of the δ-calculus, we define a binary

relation →R on sets of expressions. If E1 and E2 are sets of expressions of the

δ-calculus then E1 →R E2 holds if and only if for all E1 ∈ E1 there exists E2 ∈ E2

such that E1 →R E2.

E1 →R E2 iff ∀E1 ∈ E1∃E2 ∈ E2. E1 →R E2

For reasoning about call-by-need contexts B it is useful to introduce a notion of

contexts for the δ-calculus. A corresponding notation for contexts D was already

used in the proof of Theorem 5.5, i.e. D ::= [] | D | E | E | D | ν(x)D. Note

that D[E] | E ′ ≡ D[E | E ′] for all E, E ′, D since we assume α-standardized expression.

Lemma 7.14 (Translated needed arguments can be triggered)

For all B, z there exists D, x such that [[[B[L]]]]need
z →∗T D[[[[L]]]need

x] for all L.

Proof

By Lemma 7.13 it is sufficient to prove the existence of D and x such that for

all L, [[[B]]]need
z (L) →∗T D[[[[L]]]need

x]. This can be done by induction on the structure

of B. q

Lemma 7.15 (Application)

If L→I L
′ then [[[L]]]need

z →∗T ◦ →A ◦ ≈1 ◦ ∗T← [[[L′]]]need
z .

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

494 J. Niehren

In particular, if L →I L
′ and (L, E) ∈ Sneed

z then there exists E ′ such that

E ≈A ◦ →A ◦ ≈A E ′ and (L′, E ′) ∈ Sneed
z .

Proof

We can assume that L ≡ B[(λy.L2)L1] and L′ ≡ B[let y=L2 in L1] for some B,

y, L1 and L2. Lemma 7.14 implies the existence of D and x such that for all L,

[[[B[L]]]]need
z →∗T D[[[[L]]]need

x]. Hence:

[[[L]]]need
z →∗T D[[[[(λy.L2)L1]]]need

x]

= D[(νy1)(νz1)([[[λy.L2]]]need
y1
| z1 .[[[L2]]]need

z1
| y1z1z)

→A D[(νy1)(νz1)([[[λy.L2]]]need
y1
| z1 .[[[L2]]]need

z1
| [[[L2[z1/y]]]]need

z)]

≈1 D[[[[let z1=L2 in L2[z1/y]]]]need
z]

∗
T← [[[B[let y=L2 in L2]]]]need

z

q

Lemma 7.16 (Forwarding)

If L→V L
′ then [[[L]]]need

z →∗T ◦ →F ◦ ∗T← [[[L′]]]need
z .

In particular, if L→V L
′ and (L, E) ∈ Sneed

z then there exists E ′ such that E ≈A E ′
and (L′, E ′) ∈ Sneed

z .

Proof

We can assume that L ≡ B[let y=V in B′[y]] and L′ ≡ B[let y=V in B′[V]] for

some B, B′, y, and V . Lemma 7.14 implies the existence of D, x, D′, and x′ such that

for all L, [[[B[L]]]]need
z →∗T D[[[[L]]]need

x] and [[[B′[L]]]]need
x →∗T D′[[[[L]]]need

x′]. Hence:

[[[L]]]need
z →∗T D[(νy)(y.[[[V]]]need

y | tr(y)∗ | [[[B′[y]]]]need
x)]

→∗T D[(νy)(y.[[[V]]]need
y | tr(y)∗ | D′[x′=y | tr(y)])]

→T D[(νy)([[[V]]]need
y | tr(y)∗ | D′[x′=y | tr(y)])]

→F D[(νy)([[[V]]]need
y | tr(y)∗ | D′[[[[V]]]need

x′ | tr(y)])]

T← D[(νy)(y.[[[V]]]need
y | tr(y)∗ | D′[[[[V]]]need

x′ | tr(y)])]
∗
T← D[(νy)(y.[[[V]]]need

y | [[[B′[V]]]]need
x | tr(y)∗)]

∗
T← [[[B[let y=V in B′[V]]]]]need

z

In the last line above, we have made use of the additional triggers introduced in

[[[L]]]need
z compared to [[L]]need

z . q

The trigger equivalence ≈4 is the smallest equivalence on δ-expressions that is

modulo congruence, closed under weak contexts, and that satisfies the following

property for all x, y, E, and E ′:

y.(νx)(x.E | E ′) ≈4 (νx)(x.E | y.E ′)
It is again not difficult to see that E ≈4 E

′ implies E ≈A E ′. The E ′ on the left hand

side can only become active once y and x have been triggered. The same holds for

E ′ on the right hand side since a trigger for y can only be computed in E which

requires that x has to be triggered.

Lemma 7.17 (Administration)

If L→Ans ∪ →C L
′ then [[[L]]]need

z →∗T ◦ ≈4 ◦ ∗T← [[[L′]]]need
z

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 495

In particular, if L→Ans ∪ →C L
′ and (L, E) ∈ Sneed

z then there exists E ′ such that

E ≈A E ′ and (L′, E ′) ∈ Sneed
z .

Proof

We first consider L →Ans L
′. We can assume that there exist y, y′, L′′, A such that

L ≡ B[let y=(let y′=L′′ in A) in B′[y]] and L′ ≡ B[let y′=L′′ in (let y=A in B′[y])].

Lemma 7.14 implies the existence of D and x such that [[[B[L]]]]need
z →∗T D[[[[L]]]need

x]

for all L. In the case that L′′ is not an abstraction, we have:

[[[L]]]need
z = [[[B[let y=(let y′=L′′ in A) in B′[y]]]]]need

z

→∗T D[(νy)(y.(νy′)(y′ .[[[L′′]]]need
y′ | [[[A]]]need

y) | [[[B′[y]]]]need
x)]

≈4 D[(νy)(νy′)(y′ .[[[L′′]]]need
y′ | y.[[[A]]]need

y) | [[[B′[y]]]]need
x]

= D[(νy′)(y′ .[[[L′′]]]need
y′ | [[[let y=A in B′[y]]]]need

x)]
∗
T← [[[B[let y′=L′′ in (let y=A in B′[y])]]]]need

z

The consideration for L′′ ≡ V for some V is similar. We second consider L →C L
′.

We can assume that there exist y, y′, L′′, A such that L ≡ B[(let y=L1 in A)L2] and

L′ ≡ B[let y=L1 in AL2]. Lemma 7.14 implies the existence of D and x such that

[[[B[L]]]]need
z →∗T D[[[[L]]]need

x] for all L. In the case that L1 is not an abstraction, we

have:

[[[L]]]need
z = [[[B[(let y=L1 in A)L2]]]]need

z

→∗T D[(νx′)(νy′)((νy)(y.[[[L1]]]need
y | [[[A]]]need

x′) | y′ .[[[L2]]]need
y′ | x′y′x)]

= D[(νy)(y.[[[L1]]]need
y | (νx′)(νy′)([[[A]]]need

x′ | y′ .[[[L2]]]need
y′ | x′y′x))]

∗
T← [[[B[let y=L1 in AL2]]]]need

z

The case that L1 is not an abstraction is similar again. q

8 Call-by-need versus call-by-value complexity

We are now in the position to compare call-by-need complexity and call-by-value

complexity. It is not difficult to find a variation of a simulation for the embedding

[[M]]need
z 7→ [[M]]val

z since [[M]]need
z coincides with [[M]]val

z up to some delay and

trigger expressions. Let 0 be the garbage expression (νx)x. Note that E | 0 ≈1 E

holds for all E where ≈1 is the garbage collection equivalence (lifted from π0 to the

δ-calculus). We define a projection function π on δ-expressions which replaces all

trigger expressions by 0 and removes all delays.

π(x:y/E) ≡ x:y/π(E) π(xy) ≡ xy π(E | F) ≡ π(E) | π(F)

π((νx)E) ≡ (νx)π(E) π(tr(x)) ≡ 0 π(x.E) ≡ π(E)

Let ≡1 be the smallest congruence on expressions of the δ-calculus, which contains

the garbage collection equivalence ≈1. Again, it is not difficult to show that E ≡1 E
′

implies CA(E) = CA(E ′).

Definition 8.1

Let Sneed
val be the relation {(E, E ′) | π(E) ≡1 E

′} on expressions of the δ-calculus.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

496 J. Niehren

Lemma 8.2

The following diagrams can be completed for all E and E′.

E →A E ′

Sneed
val Sneed

val

π(E) →A π(E ′)

E →F E ′

Sneed
val Sneed

val

π(E) →F π(E ′)

E →T E ′

Sneed
val Sneed

val

π(E) ≡ π(E ′)

Proposition 8.3

For every z and a closed λ-term M: CA([[M]]need
z) 6 CA([[M]]val

z).

Proof

Lemma 8.2 and Proposition 4.5 yields CA(E) 6 CA(F) for all pairs (E, F) ∈
Sneed

val of admissible expressions of the δ-calculus. Let z be a variable and M a

closed λ-expression. It is not difficult to verify π([[M]]need
z) ≡1 [[M]]val

z . Hence,

([[M]]need
z , [[M]]val

z) ∈ Sneed
val such that CA([[M]]need

z) 6 CA([[M]]val
z) follows. q

Corollary 8.4 (Folk theorem)

For every closed λ-term M the call-by-need complexity of M is smaller than its

call-by-value complexity.

Cneed(M) 6 Cval(M)

Proof

From Theorems 6.6 and 7.9 and Proposition 8.3. q

9 Conclusion

We have investigated uniform confluence in concurrent computation. We have

embedded the λ-calculus with call-by-value and call-by-need reduction into the π-

calculus such that complexity is preserved. We have worked out a powerful proof

technique based on uniform confluence and simulations. We have proved that call-

by-need complexity is smaller than call-by-value complexity.

Acknowledgements

I am deeply in debt to Gert Smolka, who initiated this work and contributed ideas

during many discussions. It is an honor for me to thank Phil Wadler’s for his

engaged support. Without Phil, I would never have succeeded in revising the first

version of this article according to the proposals of the referees. I would like to thank

to the referees for careful reading and useful comments. It’s my pleasure to thank

Martin Müller for daily comments on concepts and related work and for extremely

helpful discussions on notations and details. Denys Duchier deserves many thanks

for reading and commenting on the final version. I would like to thank Kai Ibach,

Peter Van Roy, Christian Schulte for their comments and the complete Oz team for

continuous support and interest during the period of 5 years I needed for getting

this work down to earth.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 497

References

Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J. (1991) Explicit substitutions. J. Functional

Programming, 1(4), 375–416.

Ariola, Z. M. and Felleisen, M. (1997) The call-by-need lambda calculus. J. Functional

Programming, 7(3).

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. and Wadler, P. (1995) A call-by-need

lambda calculus. ACM Symposium on Principles of Programming Languages, pp. 233–246.

Armstrong, J., Williams, R., Virding, M. and Wikstroem, C. (1996) Concurrent Programing in

Erlang. Prentice-Hall. 2nd ed.

Arvind, Nikhil, R. S. and Pingali, K. K. (1989) I-structures: data-structures for parallel

computing. ACM Trans. Programming Languages and Systems, 4(11), 598–632.

Asperti, A. (1997) P = NP, up to sharing. Dipartimento di Scienze dell’Informatizione,

Bologna. (Available at ftp://ftp.cs.unibo.it/pub/asperti/pnp.ps.gz.)

Barendregt, H. P. (1981) The lambda calculus. Its syntax and semantics. Studies in Logic and

the Foundations of Mathematics, vol. 103. Elsevier.

Boudol, G. (1992) Asynchrony and the π-calculus (note). Rapport de Recherche 1702. INRIA,

Sophia Antipolis, France.

Brock, S. and Ostheimer, G. (1995) Process semantics of graph reduction. 6th International

Conference on Concurrency Theory, pp. 238–252.

Dershowitz, N. and Jouannaud, J.-P. (1990) Rewrite systems. Vol. B, pp. 243–320. MIT Press.

Fournet, C. and Gonthier, G. (1996) The Reflexive CHAM and the Join-Calculus. 23rd ACM

Symposium on Principles of Programming Languages, pp. 372–385.

Fournet, C. and Maranget, L. (1997) Join Calculus Language. INRIA Rocquencourt,

http://pauillac.inria.fr/join.

Honda, K. and Tokoro, M. (1991) An object calculus for asynchronous communication.

In: America, P. (ed.), European Conference on Object-Oriented Programming, pp. 133–147.

Lecture Notes in Computer Science 512, Springer-Verlag.

Huet, G. (1980) Confluent reductions: Abstract properties and applications to term rewriting

systems. J. ACM, 27(4), 797–821.

Jeffrey, A. (1994) A fully abstract semantics for concurrent graph reduction. IEEE Symposium

on Logic in Computer Science, pp. 82–91.

Klop, J. W. (1987) Term rewriting systems: A tutorial. Bulletin of the European Association

on Theoretical Computer Science, 32, 143–182.

Kobayashi, N., Pierce, B. and Turner, D. N. (1996) Linearity and the pi-calculus. ACM

Symposium on Principles of Programming Languages, pp. 358–371.

Launchbury, J. (1993) A natural semantics for lazy evaluation. ACM Symposium on Principles

of Programming Languages, pp. 144–154.

Maher, M. J. (1987) Logic semantics for a class of committed-choice programs. In: Lassez,

J.-L. (ed.), 4th International Conference on Logic Programming, pp. 858–876.

Maraist, J., Odersky, M., Turner, D. and Wadler, P. (1995) Call-by-name, call-by-value, call-

by-need, and the linear lambda calculus. 11th International Conference on the Mathematical

Foundations of Programming Semantics.

Maraist, J., Odersky, M. and Wadler, P. (1998) The call-by-need lambda calculus. J. Functional

Programming, 8(3), 275–317.

Maranget, L. (1990) Optimal derivations in weak lambda-calculi and in orthogonal term

rewriting systems. ACM Symposium on Principles of Programming Languages, pp. 255–269.

Maranget, L. (1992) La Stategie Paresseuse. Thèse doctorale, Université Paris VII.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

498 J. Niehren

Milner, R. (1991) The polyadic π-calculus: A tutorial. ECS-LFCS Report Series 91–180.

Laboratory for Foundations of Computer Science, University of Edinburgh.

Milner, R. (1992) Functions as processes. J. Mathematical Structures in Computer Science,

2(2), 119–141.

Moran, A. and Sands, D. (1999) Improvement in a lazy context: An operational theory of

call-by-need. 26th ACM Symposium on Principles of Programming Languages, pp. 43–56.

Nestmann, U. (1996) On Determinacy and Nondeterminacy in Concurrent Programming. Dis-

sertation, technische Fakultät, Universität Erlangen.

Nestmann, U. and Pierce, B. (1996) Decoding choice encodings. In: Montanari, U. and

Sassone, V. (eds.), 7th International Conference on Concurrency Theory: Lecture Notes in

Computer Science 1119, pp. 179–194.

Niehren, J. (1994) Funktionale Berechnung in einem uniform nebenläufigen Kalkül mit logischen

Variablen. Dissertation, Universität des Saarlandes, Saarbrücken.

Niehren, J. (1996) Functional computation as concurrent computation. 23th ACM Symposium

on Principles of Programming Languages, pp. 333–343.

Niehren, J. (1999) Uniform confluence in concurrent computation, unabridged. Technical re-

port, Programming Systems Lab, Universität des Saarlandes, Saarbrücken. (Available at

http://www.ps.uni-sb.de/Papers/abstracts/Uniform:99.html.)

Niehren, J. and Müller, M. (1995) Constraints for Free in Concurrent Computation. In:

Kanchanasut, K. and Lévy, J.-J. (eds.), Asian Computing Science Conference: Lecture Notes

in Computer Science 1023, pp. 171–186.

Niehren, J. and Smolka, G. (1994) A confluent relational calculus for higher-order program-

ming with constraints. 1st International Conference on Constraints in Computational Logics:

Lecture Notes in Computer Science 845, pp. 89–104.

Philippou, A. and Walker, D. (1997) On confluence in the π-calculus. International Confer-

ence on Automata, Languages, and Programming: Lecture Notes in Computer Science 1256,

pp. 314–324. Springer-Verlag.

Pierce, B. C. and Turner, D. N. (1997) Pict: A Programming Language Based on the Pi-

Calculus. Milner Festschrift. MIT Press.

Pingali, K. K. (1987) Lazy Evaluation and the Logic Variable. Technical report, Cornell

University. Proceedings of the Institute on Declarative Programming.

Plotkin, G. D. (1975) Call-by-name, call-by-value and the λ-calculus. J. Theor. Comput. Sci.,

1, 125–159.

Purushothaman, S. and Seaman, J. (1992) An adequate operational semantics of sharing in

lazy evaluation. European Symposium on Programming: Lecture Notes in Computer Science

582. Springer-Verlag.

Reppy, J. H. (1992) Concurrent ML: Design, Application and Semantics. Functional Pro-

gramming, Concurrency, Simulation and Automated Reasoning: Lecture Notes in Computer

Science 693, pp. 165–198. Springer-Verlag.

Sangiorgi, D. (1996) A Theory of Bisimulation for π-Calculus. Acta Informatica, 33.

Sangiorgi, D. (1997) The name discipline of uniform receptiveness. International Conference

on Automata, Languages, and Programming, pp. 303–313.

Saraswat, V. A., Rinard, M. and Panangaden, P. (1991) Semantic foundations of concurrent

constraint programming. ACM Symposium on Principles of Programming Languages, p. 333–

352.

Smolka, G. (1994) A foundation for concurrent constraint programming. 1st International

Conference on Constraints in Computational Logics: Lecture Notes in Computer Science 845,

pp. 50–72. Springer-Verlag.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

Uniform confluence in concurrent computation 499

Smolka, G. (1995) The Oz programming model. In: van Leeuwen, J. (ed.), Computer Science

Today: Lecture Notes in Computer Science 1000, pp. 324–343.

Smolka et al. (1995) The Oz Programming System. Programming Systems Lab, Universität des

Saarlandes. (Available at www.mozart-oz.de.)

Thomsen, B., Leth, L., Prasad, S., Kuo, T.-M., Kramer, A., Knabe, F. and Giacalone, A.

(1993) Facile Antigua release programming guide. Technical Report ECRC-93-20. ECRC,

European Computer-Industry Research Centre.

Turner, D. N. (1996) The polymorphic pi-calculus: Theory and implementation. PhD thesis,

University of Edinburgh. (Available as LFCS report ECS-LFCS-96-345.)

Victor, B. and Parrow, J. (1996) Constraints as Processes. In: Montanari, U. and Sassone,

V. (eds.), 7th International Conference on Concurrency Theory: Lecture Notes in Computer

Science 1119, p. 389–405.

Yoshida, N. (1993) Optimal reduction in weak λ-calculus with shared environments. ACM

Conference on Functional Programming Languages and Computer Architecture.

https://doi.org/10.1017/S0956796800003762 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003762

