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Abstract

Background. The present paper presents a fundamentally novel approach to model individual
differences of persons with the same biologically heterogeneous mental disorder. Unlike
prevalent case-control analyses, that assume a clear distinction between patient and control
groups and thereby introducing the concept of an ‘average patient’, we describe each patient’s
biology individually, gaining insights into the different facets that characterize persistent
attention-deficit/hyperactivity disorder (ADHD).
Methods. Using a normative modeling approach, we mapped inter-individual differences in
reference to normative structural brain changes across the lifespan to examine the degree to
which case-control analyses disguise differences between individuals.
Results. At the level of the individual, deviations from the normative model were frequent in
persistent ADHD. However, the overlap of more than 2% between participants with ADHD
was only observed in few brain loci. On average, participants with ADHD showed significantly
reduced gray matter in the cerebellum and hippocampus compared to healthy individuals.
While the case-control differences were in line with the literature on ADHD, individuals
with ADHD only marginally reflected these group differences.
Conclusions. Case-control comparisons, disguise inter-individual differences in brain biology
in individuals with persistent ADHD. The present results show that the ‘average ADHD patient’
has limited informative value, providing the first evidence for the necessity to explore different
biological facets of ADHD at the level of the individual and practical means to achieve this end.

Introduction

Two patients suffering from the same mental disorder may show differences in symptom
expression, behavior, and pathophysiology. Case-control research paradigms ignore these
sources of heterogeneity; they assume that each diagnostic group is a distinct entity. A key
goal in many such studies is to identify biological markers that are reliable indicators of disease
state. However, markers identified through this approach generally explain only a small part of
the variance linked to mental disorders (Schmaal et al., 2016; Hibar et al., 2017; Hoogman
et al., 2017). Therefore, the case-control paradigm has been challenged in recent years. For
example, large international initiatives aim to bridge the gap between a psychiatric diagnosis
and its underlying biology through the integration of information across multiple dimensions
(Insel, 2009; Insel et al., 2010; Schumann et al., 2014), yielding subgroups of patients stratified
based on behavior (Fair et al., 2013; Mostert et al., 2015) or biological functioning (Marquand
et al., 2016b). While such stratification approaches may produce more homogeneous diagnos-
tic groups, these approaches still do not fully inform on how patients differ from one another
in terms of the underlying biology. Therefore, inter-individual differences become a novel
research focus (Foulkes and Blakemore, 2018; Seghier and Price, 2018).

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and impairing neurodeve-
lopmental disorder, which persists into adulthood in a substantial part of the patients (Simon
et al., 2009). Reliable group differences between healthy individuals and those with ADHD
have been established for various biological readouts (Bush et al., 2005; Seidman et al.,
2005; Valera et al., 2007; Cortese and Castellanos, 2012; van Ewijk et al., 2012; van Rooij
et al., 2015; Wolfers et al., 2016). These include neuroimaging-based brain readouts, where
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differences in gray matter volume, white matter volume, as well as
functional brain readouts (Frodl and Skokauskas, 2012; Onnink
et al., 2014; Faraone et al., 2015; Greven et al., 2015; Wolfers
et al., 2015b, 2017; Francx et al., 2016; Norman et al., 2016)
have been reported. However, these differences are mostly of
small to medium effect size and have not readily translated into
individualized predictions (Wolfers et al., 2015a). In line with
this observation, evidence accumulated in the last decades points
towards ADHD being characterized by a high degree of hetero-
geneity (Faraone et al., 2015): More specifically, individuals
with ADHD can differ from each other in their symptom profiles
(clinical heterogeneity), their exposure to environmental stressors
(environmental heterogeneity), and the underlying biology of
their disorder (biological heterogeneity). This complexity, and
the rather exclusive research focus on a categorical diagnosis,
has hindered progress towards a better understanding of ADHD
(Burmeister et al., 2008; Sullivan et al., 2012). Moreover, the
developmental character of ADHD has been shown in numerous
studies, and differences in brain development and aging have been
observed across the lifespan (Shaw et al., 2007; Greven et al., 2015;
Hoogman et al., 2017). Therefore, the importance of modeling
ADHD across the lifespan has become increasingly apparent
(Shaw et al., 2006; Hoogman et al., 2017). For example, individu-
ally different growth trajectories of different brain regions may be
an important aspect of this complex phenotype (Shaw et al., 2006,
2007).

In this study, we aimed to quantify and map the brain structural
heterogeneity in adults with persistent ADHD, at the level of the
individual patient. We employed a normative modeling approach
for this purpose, which provides a perspective that is fundamen-
tally different from the classic case-control approach. A normative
model can be understood as a statistical model that maps demo-
graphic, behavioral, or any other variable to -for example- a quan-
titative brain read-out (Marquand et al., 2016a), whilst providing
estimates of centiles of variation within the population. Then, the
individual can be placed within the normative range, allowing for
the characterization of differences between individual patients in
relation to the healthy range. In this way, we (i) chart the hetero-
geneity in abnormalities of brain structure at the level of the indi-
vidual with ADHD, and (ii) investigate the degree of spatial
overlap in terms of deviations from the normative model to pro-
vide concrete estimates for disorder heterogeneity. Based on previ-
ous case-control comparisons (e.g. Onnink et al., 2014; Faraone
et al., 2015; Greven et al., 2015; Wolfers et al., 2015b, 2017;
Francx et al., 2016), which introduced the notion of the ‘average
ADHD patient’, we expected participants with ADHD to show
on average larger negative deviations from the normative brain
ageing model than healthy individuals. More importantly, we
anticipated that the individual local deviance from the normative
model would differ substantially between individuals, suggesting
that previous group-level distinctions provide an incomplete picture
of the neurobiological abnormalities in ADHD and disguise extreme
inter-individual differences between individuals with ADHD.

Methods

Participants

We selected adult participants with persistent ADHD and
healthy individuals from the Dutch cohort of the International
Multicenter persistent ADHD CollaboraTion (IMpACT;
Hoogman et al., 2011; Mostert et al., 2015), based on data

availability for structural MRI images. Participants with persistent
ADHD were recruited from the Department of Psychiatry of the
Radboud University Medical Center and through advertisements.
In this recruitment process, the participants with persistent
ADHD were matched for gender, age, and estimated intelligence
to a healthy individual population. All participants underwent
psychiatric assessments, neuropsychological testing, and neuroi-
maging. The diagnostic interview for persistent ADHD (DIVA;
Sandra Kooij et al., 2008) was conducted to confirm the diagnosis
of ADHD in adulthood. This interview focuses on the 18 DSM-IV
symptoms of ADHD and uses realistic examples to thoroughly
investigate whether a symptom is currently present or was already
present in childhood (Sandra Kooij et al., 2008). In all partici-
pants in the ADHD cohort, a childhood history of ADHD symp-
toms was established, and persistent ADHD was diagnosed. The
ADHD Rating Scale-IV was filled in by each participant to report
current symptoms of attention and hyperactivity/impulsivity
(Pappas, 2006). To assess comorbidities, the structured clinical
interviews (SCID-I and SCID-II) for DSM-IV were administered
(van Groenestijn et al., 1999; Weertman et al., 2003; Lobbestael
et al., 2011). The inclusion criteria for participants with ADHD
were: (i) DSM-IV-TR criteria for ADHD met in childhood as
well as in adulthood, (ii) no psychosis, (iii) no substance use dis-
order, (iv) full-scale intelligence estimate >70 (prorated from
Block Design and Vocabulary of the Wechsler Adult
Intelligence Scale-III (Wechsler, 2012), (v) no neurological disor-
ders, (vi) no obvious sensorimotor disabilities, (vii) no medication
use other than psychostimulants or atomoxetine. Additional
inclusion criteria for healthy individuals were: (viii) no current
neurological or mental disorder according to DIVA, SCID-I, or

Table 1. Demographics and clinical characteristics

Healthy
individuals

Attention-deficit/
hyperactivity
disordera

Demographics

Total (N) 146 153

Males (%) 43.8% 41.2%

Age (years) (mean ± std) 35.43 ± 12.01 35.05 ± 10.81

Education (years ± std) 5.19 ± 0.808 4.78 ± 0.811

Estimated intelligenceb

(mean ± std)
109.94 ± 14.53 107.45 ± 15.08

Symptoms

Hyperactivity/impulsivityc

(mean ± std)
0.63 ± 1.12 5.45 ± 2.46

Inattentiond (mean ± std) 0.55 ± 1.21 7.27 ± 1.74

Comorbiditiese (mean ± std) 0.01 ± 0.117 0.20 ± 0.436

Stimulant medication Current = 0.0%
Past = 0.0%
No medication =
100.0%

Current = 11.8%
Past = 76.4%
No medication =
11.8%

aADHD diagnosis was based on a structured Diagnostic Interview for ADHD in Adults
(DIVA; Sandra Kooij et al., 2008).
bEstimated intelligence was based on the block-design and vocabulary subtests of the
Wechsler Adult Intelligence Scale (WAIS-III; Wechsler, 2012).
cDIVA hyperactivity/impulsivity symptoms in adults.
dDIVA inattention symptoms in adults.
eNumber of comorbid disorders such as major depressive disorder based on a SCID
(Structured Clinical Interview) interview (van Groenestijn et al., 1999; Weertman et al., 2003;
Lobbestael et al., 2011)
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SCID-II, (ix) no first-degree relatives with ADHD or other major
mental disorders. All participants were Dutch and of European
Caucasian ancestry. This study was approved by the regional eth-
ics committee (Centrale Commissie Mensgebonden Onderzoek:
CMO Regio Arnhem – Nijmegen; Protocol number III.04.0403).
Written informed consent was obtained from all participants.

MRI acquisition

Whole brain imaging was performed using a 1.5 T scanner
(Magnetom Avanto, Siemens Medical Systems) with a standard
8-channel head coil. A high-resolution T1-weighted magnetiza-
tion-prepared rapid-acquisition gradient echo (MPRAGE) ana-
tomic scan was obtained from each participant, in which the
inversion time (TI) was chosen to provide optimal gray matter–
white matter T1 contrast [repetition time (TR) 2730 ms, echo
time (TE) 2.95 ms, TI 1000 ms, flip angle 7°, field of view (FOV)
256 × 256 × 176 mm3, voxel size 1.0 × 1.0 × 1.0 mm3]. The T1
images served as a basis for the extraction of gray and white matter
volumes.

Estimation of gray and white matter volume

Prior to gray matter volume estimation, all participants’ T1 images
were rigidly aligned using statistical parametric mapping version 12
(SPM-12). Subsequently, images were segmented, normalized, and
bias field–corrected using ‘new segment’ from SPM12 (http://www.
fil.ion.ucl.ac.uk/spm; Ashburner and Friston, 2000, 2005) yielding
images containing gray and white matter segments. We then used
DARTEL (Ashburner, 2007) to create a study-specific gray matter
template to which all segmented images were normalized.
Subsequently, all gray matter volumes were smoothed with an

8-mm full width half maximum (FWHM) Gaussian kernel, and
the normative model was estimated.

Normative modeling

The normative modeling method employed here is described in
the supplemental methods (Marquand et al., 2016a). Briefly, nor-
mative models were estimated using Gaussian process regression
(Rasmussen and Williams, 2006), a Bayesian non-parametric
interpolation method that yields coherent measures of predictive
confidence in addition to point estimates. This is important, as we
used this uncertainty measure to quantify both the centiles of
variation within the cohort and the deviation of each patient
from the group mean at each specific brain locus. In this way,
we were able to statistically quantify deviations from the norma-
tive model with regional specificity, by computing a Z-score for
each voxel, reflecting the difference between the predicted volume
and the true volume normalized by the uncertainty of the predic-
tion (Marquand et al., 2016a). Thus, we quantified extreme posi-
tive and negative deviations (reflecting increased or decreased
volume, respectively) from the normative model using a reason-
able threshold for the resulting z-statistic. In the present study,
we estimated normative brain changes across the adult lifespan
represented in our study (Fig. 1) using Gaussian process regres-
sion to predict regional gray and white matter volumes across
the brain from age and sex. The normative range for this model
in healthy individuals was estimated using 10-fold cross-
validation, then we applied the model trained on all healthy indi-
viduals to participants with ADHD.

First, we assessed group-level deviations from the normative
model. For this, individual gray and white matter deviation
maps were fed into PALM (Permutation Analysis of Linear

Fig. 1. In (a), the estimation of the normative model in healthy individuals is depicted using age and gender as covariates. In (b), the characterization of the nor-
mative model is shown. We see that the normative model changes with age and that, from age 20 to 70 years, gray matter is predominantly decreasing; this is true
for both females and males and more strongly observed in frontal brain regions. Blue colors indicate a decrease, red colors an increase. In (c), we depict the appli-
cation of the normative model to persistent ADHD. In (d), we present the steps that were taken to characterize the deviations from the normative model.
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Model; Winkler et al., 2015), which allowed for permutation-
based inference. We estimated mean group-level deviations
from the normative model in healthy individuals and in patients
with ADHD. PALM creates a map of z-values for each of these
groups. We thresholded these group maps using Z = ± 2.6, to
assist comparisons with the individual maps of deviation
described below. Further, we report the contrasts for participants
with persistent ADHD and healthy individuals corrected for false
discovery rate (FDR) at the 5% inference level using threshold-free
cluster enhancement.

Next, the individual maps of deviation were thresholded at |Z| >
2.6. These maps reflect the deviation from the normative model at
the individual level. Note that the use of a fixed statistical threshold
across participants allows for a simplified comparison between par-
ticipants in terms of numbers of extreme deviation from the nor-
mative model, even when the overall distribution of deviations of
a participant is shifted. We also repeated the analyses correcting
for multiple comparisons at the individual participant level using

the Benjamini and Hochberg procedure (Benjamini and
Hochberg, 1995). This did not change our conclusions. Extreme
positive deviations were defined as all voxels with a value higher
than Z > 2.6, while extreme negative deviations are defined as a
value below the Z <−2.6. All extreme deviations were combined
into scores representing the percentage of extreme positive and
extreme negative deviations for each participant. We tested for
associations between diagnosis and those scores using a non-
parametric χ2 test in a general linear model. We corrected for mul-
tiple comparisons using the Bonferroni-Holm method (Holm,
1979). We created individualized maps of extreme deviations and
calculated the voxel-wise overlap between individuals from the
same groups. In a final analysis, we tested for associations between
the percentage of extremely deviating voxels and age, symptom
scores, and comorbidity. We corrected for the number of correla-
tions (8) and modality using the Bonferroni-Holm method
(Holm, 1979). All analyses were performed in python3.6 (www.
python.org).

Fig. 2. In (a), the contrast between persistent ADHD and healthy individuals is depicted corrected at a false discovery rate of 5%. Cerebellar regions, temporal
regions, and the hippocampus deviate significantly in gray matter. In (b), the group-level mean deviations of participants with persistent ADHD and healthy
individuals are depicted (|Z| < 2.6) and compared with the overlap maps of extreme negative deviations (Z <−2.6). In summary, while we reproduce prominent
group-level differences between healthy individuals and participants with persistent ADHD, we observe that extreme negative deviations are hardly present in
more than 2% of the individuals with persistent ADHD in those brain regions.
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Results

Participants

Table 1 shows the demographics of the study population. We
included 153 adults with ADHD and 146 healthy adults. About
the same proportion of individuals in both groups were male
(43.8% first and 41.2% second group, respectively). The average
age of participants was 35 years in both groups with an age dis-
tribution that was very similar (online Supplementary Fig. S1).
Individuals with persistent ADHD showed higher scores than
healthy individuals for hyperactivity-impulsivity (5.45 v. 0.63; t
test: p < 0.01) as well as inattention (7.27 v. 0.55; t test: p < 0.01).

Normative model

Figure 1a, c and d show a high-level visual summary of the ana-
lysis procedure. Figure 1b depicts a spatial representation of the
voxel-wise normative model. This model was characterized by
global gray matter decreases from age 20 to 70 years, with the lar-
gest decreases primarily in frontal and cerebellar regions, which is
in line with the typical decline of gray matter volume over age
(Ziegler et al., 2012; Farokhian et al., 2017). This was true for
females and males, which we modeled separately due to the pres-
ence of sex effects in ADHD (Martin et al., 2018). In contrast, the
normative model for the white matter was characterized by both
decreases and increases across adulthood. More specifically, par-
ietal and temporal brain regions showed an increase with age,
areas in frontal and in particular thalamic regions showed
decreased, in both sexes. This is in line with earlier reports on
healthy aging (Farokhian et al., 2017). In online Supplementary
Fig. S2, we depict the mean deviation of the normative model
across all ages separately for females and males.

Characterization of mean deviations from the normative
model

Figure 2a shows the mean deviations from the normative model
in the gray matter for healthy individuals and those with
ADHD. Individuals with ADHD and healthy individuals differed
significantly after correction for multiple comparisons in their
mean deviations from the normative model in the cerebellum,
temporal brain regions, and the hippocampus. Participants with
ADHD on average showed larger mean negative deviations in
those regions. Looking at Z-score maps thresholded at ±2.6, this
pattern was confirmed, and additional regions showing negative
mean deviations were observed in the anterior cingulate, insula,
and frontal cortex (Fig. 2b). No differences in mean deviations
between patients and controls were observed in white matter
(online supplementary Fig. S3a), although some positive and
negative mean deviations exceeded the z-score threshold of ±2.6
in patients: for instance, temporal brain regions showed positive
deviations, while frontal and parietal regions showed negative
deviations (online Supplementary Fig. S3b).

Association of extreme deviations from the normative model
with persistent ADHD

An analysis of the total percentage of extreme negative deviations
in gray matter across the groups showed that participants with
persistent ADHD differed significantly from healthy individuals
(Wald χ2(1) = 23.64, pcorr. < 0.001). This effect was driven by a lar-
ger percentage of negative deviations in participants with

persistent ADHD (0.48%; 95% confidence interval 0.30–0.66%)
than in healthy individuals (0.28%; 95% confidence interval
0.24–0.34%). In white matter, significant differences in the per-
centage of extreme negative deviations were observed between
groups as well (Wald χ2(1) = 18.02, pcorr. < 0.001); again, a signifi-
cantly higher proportion of negative deviations was seen in parti-
cipants with persistent ADHD (0.41%; 95% confidence interval
0.24–0.57%) than in healthy individuals (0.24%; 95% confidence
interval 0.17–0.31%). No differences between groups were
observed in positive deviations on measures in gray and white
matter (online Supplementary Table S1). As only the percentage
of extreme negative deviations were significant between indivi-
duals with persistent ADHD and healthy participants we focus
our characterizations of those deviations on extreme negative
deviations in gray matter, we report the other extreme deviations
in different modalities in the supplement but report the main out-
comes in the section below as well.

Characterization of extreme negative deviations from the
normative model

Participants with ADHD showed overlap in local gray matter
negative deviations in more than 2% of patients primarily in
the cerebellum, hippocampus, and basal ganglia; less overlap in
negative deviations was observed in healthy individuals
(Fig. 2b). In white matter, we also observed greater overlap in par-
ticipants with ADHD than in healthy individuals, again involving
regions around the hippocampus and the basal ganglia (online
supplementary Fig. S3b). A scattered pattern of positive deviations
was seen in the (online supplementary Fig. S4) overlap maps for
participants with ADHD as well as for healthy individuals in both
gray and white matter. The overlap maps of the extreme negative
deviations partly resembled the pattern observed in the mean
deviation analyses of cases and controls (Fig. 2b), also when
detecting extreme deviation based on the FDR (online
Supplementary Fig. S5). Further, nine out of the ten most nega-
tively deviating patients showed extreme values in the cerebellum
(Fig. 3), although in non-overlapping areas. Generally, deviations
in both positive and negative directions were unique for each par-
ticipant with ADHD in gray and white matter, when looking at
the patterns of individual deviations, with limited overlap (online
Supplementary Fig. S6). The extreme negative deviations were
associated with age in participants with ADHD (β-weight =
0.198, p = 0.014), but not symptom scores, stimulant medication,
or comorbidity, before correction for multiple comparisons
(online Supplementary Table S1); for the extreme positive devia-
tions, we did not find any associations that were even nominally
significant.

Discussion

We mapped the biological heterogeneity of persistent ADHD in
reference to normative brain aging across the adult lifespan,
based on voxel-based morphometry derived brain measures. In
participants with ADHD, we observed robust mean deviations
in gray matter from the normative model in the cerebellum, tem-
poral regions, and the hippocampus. However, at the individual
level, we found that few brain loci showed extreme negative devia-
tions in more than 2% of the participants with ADHD, providing
a measure for the (substantial) inter-individual variation between
adults with persistent ADHD.
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Case-control comparisons show small to medium effect sizes
of (gray matter) alterations in adult ADHD patients (Frodl and
Skokauskas, 2012; Ziegler et al., 2012; Hoogman et al., 2017).
Here, we show that some of these differences between participants
with ADHD and healthy individuals in normative gray matter
deviations are consistent with these earlier case-control findings.
Note that our approach differs as we modeled the healthy range
prior to computing group-level differences on the basis of devia-
tions from normative aging. That said, mean normative differ-
ences in hippocampus and temporal region overlap with regions
that have earlier been identified in children with ADHD

(Hoogman et al., 2017). In addition, we observed mean normative
deviations in the cerebellum; a decreased gray matter was seen in
individuals with ADHD across the adult lifespan. The cerebellum
is of increasing interest in ADHD (Berquin et al., 1998): for
example, in case-control studies, those with ADHD have shown
a decreased size of the cerebellum (Carmona et al., 2005;
Ivanov et al., 2014), which may be linked to timing problems
that are present across many individuals with this disorder
(Aase and Sagvolden, 2005). We do not observe a robust differ-
ence in the prefrontal cortex or basal ganglia, regions that have
often been implicated in (childhood) ADHD (Faraone and

Fig. 3. The individual extreme negative deviations from the normative model in gray matter are depicted for participants with persistent ADHD. Below the corre-
sponding overlap map in gray matter is depicted. In summary, individual extreme deviations show a very unique pattern across participants with persistent ADHD.
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Biederman, 1998; Frodl and Skokauskas, 2012). However, when
reducing thresholding in the group-level maps (|Z| > 2.6), these
regions do present reductions in gray matter volume also in the
current study (Fig. 2).

Whilst the group-level results based on normative deviations
described above are largely in line with existing ADHD literature
and point to the cerebellum as an important structure in persist-
ent ADHD, we additionally observe a large biological heterogen-
eity at the level of the brain. Specifically, we found that only a few
individual brain loci showed extreme negative deviations in more
than 2% of the participants with ADHD, providing quantitative
evidence of the biological heterogeneity of persistent ADHD
(Faraone et al., 2015) and showing that inter-individual differ-
ences at the level of brain structure are a hallmark for this pheno-
type. This is consistent with conceptual developments such as the
Research Domain Criteria (Insel et al., 2010), which emphasize
the importance of moving beyond simple group comparisons in
psychiatry towards multilevel, high-dimensional descriptions of
individual patients. Our finding that patients with persistent
ADHD differ substantially on an individual level speaks against
the concept of the ‘average ADHD patient’ and suggests that it
does not sufficiently reflect the degree of inter-individual vari-
ation that characterizes this disorder. This may explain why case-
control studies, which dominate research on ADHD and mental
disorders in general, have shown small group differences between
patients and healthy individuals (Franke et al., 2009; Hamshere
et al., 2013; Onnink et al., 2014; Faraone et al., 2015; Greven
et al., 2015; Wolfers et al., 2015b, 2017; Francx et al., 2016). We
expect a high degree of inter-individual differences for other bio-
logical readouts (e.g. functional measures) but quantifying the
degree and mapping the nature of such heterogeneity is an
important topic of future research.

Voxel-based morphometry studies are fundamentally reduc-
tionist, comparing group differences on the voxel by voxel level,
making strong assumptions on (i) a single locus contributing to
a disorder and (ii) group homogeneity. This approach has been
extended by pattern classification studies, which consider multiple
voxels at once and show that using structural MRI the predictions
of ADHD range from about 60% to up to about 90% accuracy
indicating a high variability between studies (Bansal et al., 2012;
Igual et al., 2012; The ADHD 200 consortium, 2012; Lim et al.,
2013; Peng et al., 2013; Johnston et al., 2014; Wolfers et al.,
2015a). A prime example, the ADHD-200 competition, in
which ADHD was predicted on the basis of different brain read-
outs, showed predictions that did not exceed 60% accuracy (The
ADHD 200 consortium, 2012). These outcomes were replicated
in follow-up research, summarized in different reviews and stud-
ies using all kinds of brain imaging readouts (Sabuncu and
Konukoglu, 2014; Wolfers et al., 2015a, 2016, 2017). Here, we
used mass-univariate predictions, similar to voxel-based morph-
ometry. However, unlike this approach we did not assume
homogenous groups of individuals with ADHD and healthy par-
ticipants. While this assumption is fundamental in voxel-based
morphometry, it is also essential for pattern classification
approaches. The present results question this assumption.

The present results allow for a novel interpretation of earlier
large-scale pattern recognition studies in ADHD, which often
showed relatively low accuracy in discriminating ADHD cases
from controls (Wolfers et al., 2015a). In larger studies, the pre-
dictive accuracy for ADHD is reduced relative to smaller studies,
which is counterintuitive to the premises of general machine
learning, where an increase in sample size usually improves

learning from data (Hastie et al., 2009). This conundrum can
be understood in the context of the present results, as larger,
more representative samples capture more of the biological as
well as procedural heterogeneity (e.g. due to different scanners
sites) of this disorder. Therefore, a larger sample will provide a
better estimate of the variation between individuals. This increases
the difficulty to find a common decision function across partici-
pants with ADHD in pattern classification analyses. Note, how-
ever, that larger studies also deal, to a greater extent with for
instance acquisition inhomogeneities across different scanners,
which might affect predictions negatively, while smaller studies
may be more carefully controllable, or just by chance select a
more homogenous subgroup.

We are confident that the present results and the main conclu-
sions are replicable in follow-up studies. However, a few limita-
tions require a discussion. First, we had to use 10-fold
cross-validation in healthy individuals and out of sample predic-
tions in individuals with persistent ADHD, as our healthy sample
was too small to split it into two. This potentially introduces a
small bias. Second, we did not find associations of symptom
scores with the percentage of deviation from the normative
model. However, the measures we used to assess symptoms rely
on self-report, which is generally noisier than measures from
diagnostic interviews. Finally, our sample did not allow to inspect
the effect of comorbidities and other potentially confounding fac-
tors on the obtained results as the comorbidities were inconsistent
across individuals. In future studies, we envision that normative
models are built on the basis of large population samples.
These population-based normative models can subsequently be
applied to cohorts that sample ADHD using the same inclusion
criteria for healthy individuals as for those with a disorder. In
this way normative modeling is complementary to classical case-
control comparisons as it allows for the investigation of individual
differences. Here, we show that an approach relying on case-
control differences is not sufficient to understand ADHD and
its biological heterogeneity.

In conclusion, while our group level effects are largely in line
with existing literature on ADHD, our approach also shows that
the disorder is a much more biologically heterogeneous on the
individual level than previously anticipated. We thus need to
move towards descriptions of biology for the individual patient
to improve our understanding of ADHD. The present results pro-
vide the first quantitative estimate of the degree of biological het-
erogeneity, in terms of spatial overlap of an individual’s extreme
gray and white matter deviations, linked to ADHD. In this way,
we provide valuable information to improve the nosology and
characterization of the different facets of persistent ADHD.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291719000084.
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