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Hypersonic flow over a two-dimensional compression corner with a Mach number of 7.7
and unit Reynolds number of 4.2 × 106 m−1 is numerically investigated. Special emphasis
is given to the onset of global instability with respect to three-dimensional perturbations.
Global stability analysis is performed for various ramp angles and wall temperatures. It
is found that the shock-induced separated flow system becomes unstable when the ramp
angle is beyond a certain value. The critical ramp angle increases slightly with the wall
temperature, although the length of the separation region is significantly enlarged. The
global instability is shown to be closely linked with the occurrence of secondary separation
beneath the primary separation bubble. A criterion is established based on a scaled ramp
angle defined in the triple-deck theory to predict the global stability boundary, which
depends on the free-stream conditions and geometries only.
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1. Introduction

As a canonical case of shock-wave/boundary-layer interaction, hypersonic flow over
a compression corner has been extensively investigated by theoretical, numerical and
experimental approaches. However, many aspects remain only partially understood.
A typical example of contemporary interest is the formation of three-dimensional (3-D)
streamwise streaks that are periodically distributed in the spanwise direction near flow
reattachment, although the geometry is nominally two-dimensional (2-D).

The streaks are essentially the footprints of streamwise counter-rotating vortices on
the model surface, which can cause a significantly elevated peak heating with strong
spanwise variations and promote boundary-layer transition downstream of reattachment
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(Simeonides & Haase 1995; Bleilebens & Olivier 2006; Roghelia et al. 2017a). Hereafter,
the terms of streamwise streaks and vortices will be used interchangeably. In fact, the
streamwise counter-rotating vortices give rise to downwash and upwash motions of
the fluid, resulting in spanwise heat flux variations with local peaks much larger than
the spanwise-averaged value. More importantly, the spanwise-averaged heat flux is also
considerably enhanced by as much as 100 % compared with its 2-D laminar counterpart.
Meanwhile, the vortices can easily break down after persisting for a certain distance, such
that the heating level downstream of reattachment is also evidently increased.

Streamwise streaks have been extensively observed in hypersonic compression corner
experiments over a wide range of Mach numbers, Reynolds numbers, ramp angles and
wall temperatures. Streamwise streaks were first reported by Miller, Hijman & Childs
(1964) using temperature-sensitive paint and oil-flow visualization techniques for a Mach
8 flow over a deflected control surface. De Luca et al. (1995) and de la Chevalerie
et al. (1997) applied infrared thermography to a Mach 7.14 compression corner flow to
investigate the influence of unit Reynolds number and ramp angle on the streamwise
streaks. It was found that the wavelength decreased with increasing unit Reynolds number
and ramp angle. Bleilebens & Olivier (2006) conducted hypersonic experiments over a
preheatable ramp model to address the influence of wall temperature on the length of
the separation region. Streamwise streaks in surface temperature on the ramp surface
were recorded using infrared thermography. Their 2-D laminar simulation significantly
underestimated the heat flux on the ramp surface downstream of reattachment. More
recently, a series of compression corner experiments was carried out in the hypersonic
Aachen Shock Tunnel TH2 by Roghelia et al. (2017b). A sharp leading-edge ramp model
with various ramp angles was tested at Mach 7.7. Streamwise streaks were captured by
infrared imaging, with the wavelength close to the shear-layer thickness immediately
before reattachment. Additionally, the streamwise extent of the streaks decreased with
increasing ramp angle, which indicates that the vortices quickly broke down for a
large ramp angle. Chuvakhov et al. (2017) conducted a similar experimental study in
a Ludwieg tube at the Central Aerodynamics Institute (TsAGI) with special emphasis
on the role of the leading-edge bluntness. Streamwise streaks were observed near
reattachment using temperature-sensitive paints over a wide range of Reynolds numbers
with various ramp angles and flat-plate lengths. The spanwise oscillation in heat flux
was significantly alleviated by the leading-edge bluntness. In addition to compression
corner flows, streamwise streaks near reattachment can also occur in many other canonical
2-D/axisymmetric configurations, including double wedge (Yang et al. 2012), hollow
cylinder/flare (Benay et al. 2006), oblique shock impingement on a flat plate (Currao et al.
2020), etc.

Conventionally, the streamwise streaks are attributed to the Görtler instability (Ginoux
1971; Inger 1977), i.e. upstream disturbances in the boundary layer are amplified due to
the action of centrifugal forces near flow reattachment where the streamline curvature
is highly concave, which generates steady, streamwise-oriented counter-rotating vortices
(Floryan 1991; Saric 1994). Leading-edge imperfections and free-stream noise were
usually considered as the origin of the upstream disturbances (Ginoux 1971). However,
Matsumura, Schneider & Berry (2005) observed regularly spaced streamwise vortices
on a scramjet forebody geometry with a high-quality leading edge. Brown et al. (2009)
performed a 3-D numerical simulation of hypersonic flow over an axisymmetric hollow
cylinder/flare. No external disturbance was introduced to the simulation, but a critical
Reynolds number was identified, beyond which the flow system bifurcated from a
steady-state axisymmetric solution into an unsteady 3-D flow motion accompanied
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by streamwise vortices in both the separation region and reattaching boundary layer.
Similarly, flow bifurcation of a steady 2-D solution into three-dimensionality was
numerically demonstrated by Egorov, Neiland & Shvedchenko (2011) for hypersonic
compression corner flows with no external disturbance, when the ramp angle reached a
certain value. Roghelia et al. (2017a) found a very similar spanwise heat flux pattern on a
ramp model tested in two different facilities at Aachen and TsAGI. These numerical and
experimental studies suggest that the observed streamwise streaks in hypersonic laminar
interaction are likely triggered by internal mechanisms that are intrinsic to the flow system
instead of the Görtler instability.

It is well known that a 2-D separated flow can bifurcate into three-dimensionality due
to intrinsic instability (Theofilis, Hein & Dallmann 2000; Robinet 2007; Theofilis 2011;
Hildebrand et al. 2018). The linear behaviour of the instability can be described by the
approach of global stability analysis (GSA). The GSA considers the temporal stability of
small-amplitude perturbations superimposed on a steady base flow with no assumption
on its spatial variation. The analysis is also called bi-global if the perturbations are
further assumed to be periodic in the spanwise direction. For a Mach 5 double-wedge
flow, GSA revealed a stationary unstable mode beyond a certain turn angle (Sidharth
et al. 2018). The mode was associated with streaks in wall temperature downstream
of reattachment, which originated from the streamwise deceleration of the recirculating
flow instead of the Görtler instability. A similar study was conducted for a heated
compression corner flow at Mach 7.7 by Sidharth et al. (2017) and several stationary and
oscillating unstable modes were captured by the GSA. The wavelength of the most unstable
mode agreed well with experimental observations of Bleilebens & Olivier (2006). More
recently, the hypersonic laminar flow over a 15 ° compression corner was investigated
using direct numerical simulations (DNS) and GSA by the authors (Cao et al. 2021;
Cao, Klioutchnikov & Olivier 2019). The DNS were initialized using the 2-D steady
solution with no external disturbance. Streamwise streaks in heat flux were formed
on the ramp surface and exhibited low-frequency unsteadiness. The spanwise-averaged
surface heat flux and pressure distributions agreed well with experimental data (Roghelia
et al. 2017b). The growth rate of spanwise velocity magnitude in the linear stage,
wavelength of the streaks and dominating frequencies were well predicted by the
GSA.

Experimental conditions of a Mach 8 compression corner flow (Chuvakhov et al. 2017)
were considered by Dwivedi et al. (2019). Interestingly, the flow system was proven to
be globally stable by the GSA, but the experiments observed streaks in wall temperature
on the ramp surface. An input–output analysis revealed that the upstream counter-rotating
vortical perturbations with a specific spanwise wavelength can be strongly amplified by
the separation bubble, leading to the emergence of these streaks. The amplification was
attributed to baroclinic effects, whereas the centrifugal effects only played a minor role.
However, the experimental peak heating was close to the 2-D laminar value, indicating
that the streamwise vortices were relatively weak in this case.

Obviously, a debate continues on the origin of streamwise streaks that occur in
hypersonic SWBLI. Recent DNS and GSA studies have highlighted the role of global
instability intrinsic to the separation bubble, which merits further investigations. This
study focuses on our discovery that the intrinsic instability in a hypersonic compression
corner flow is closely linked with the emergence of secondary separation. A criterion is
thus established in terms of a scaled ramp angle based on the triple-deck theory to predict
the stability boundary.

919 A4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.372


J. Hao, S. Cao, C.-Y. Wen and H. Olivier

2. Governing equations

The governing equations are the compressible Navier–Stokes equations for a calorically
perfect gas written in the following conservation form:

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= ∂F v

∂x
+ ∂Gv

∂y
+ ∂Hv

∂z
, (2.1)

where U = (ρ, ρu, ρv, ρw, ρe)T is the vector of conservative variables and F and F v are
the vectors of inviscid and viscous fluxes in the x direction, respectively, given by

F =

⎛⎜⎜⎜⎝
ρu

ρu2 + p
ρuv

ρuw
(ρe + p)u

⎞⎟⎟⎟⎠ , F v =

⎛⎜⎜⎜⎝
0
τxx
τxy
τxz

uτxx + vτxy + wτxz − qx

⎞⎟⎟⎟⎠ . (2.2a,b)

The parameters G, H , Gv and Hv can be expressed analogously. In these expressions,
ρ is the density, u, v and w are the flow velocities in the x, y and z directions, respectively,
p is the pressure, e is the total energy per unit mass, τ ij is the shear stress tensor modelled
assuming a Newtonian fluid and Stokes’ hypothesis and q is the vector of heat conduction
modelled according to Fourier’s law. Sutherland’s law is used to evaluate the dynamic
viscosity. The specific heat ratio γ and Prandtl number Pr are set to 1.4 and 0.72,
respectively. Note that only 2-D laminar simulations are considered in the present study.

The flow field variables are non-dimensionalized using the free-stream parameters. The
flat-plate length L is used as the characteristic length of the flow. For a compression
corner flow, the solution of the governing equations depends only on the free-stream Mach
number M∞, Reynolds number ReL, ramp angle α and wall temperature ratio Tw/T0, where
Tw is the wall temperature and T0 is the free-stream total temperature.

3. Computational details

3.1. Geometric configuration and flow conditions
A series of hypersonic compression corner flows was conducted in the hypersonic Aachen
Shock Tunnel TH2 by Roghelia et al. (2017b). As shown in figure 1, the test model
had a flat plate of L = 100 mm with a sharp leading edge followed by a ramp with
adjustable deflection angles. The free-stream conditions are given as follows: M∞ = 7.7,
ρ∞ = 0.021 kg m−3, T∞ = 125 K and Re∞ = 4.2 × 106 m−1. A previous study (Cao et al.
2021) indicated that the flow system was globally unstable with a ramp angle of 15 ° and
a wall temperature of Tw = 293 K (Tw/T0 = 0.18). In the present study, the considered
ramp angle varies from 11 ° to 15 ° to determine the stability boundary. Two additional
wall temperature ratios (i.e. Tw/T0 = 0.54 and 0.86) are considered to address the effect
of wall temperature. Note that Tw/T0 = 0.86 corresponds to the adiabatic condition with a
recovery factor of Pr1/2.

Figure 1 shows the schematic of the basic flow structure over a compression corner
configuration. A weak leading-edge shock (LES) is generated because of viscous
interaction. A separation region is formed near the corner due to the adverse pressure
gradient caused by the flow deflection. The separation region further induces a separation
shock (SS) and a reattachment shock (RS), which interact with each other and result in
a slip line (SL) and an expansion wave (EW). Essentially, the flow structure resembles
Edney’s type VI shock interaction (Edney 1968).
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Figure 1. Schematic of the flow structure over a compression corner. Red solid line: boundary of the
computational domain. Here LES, leading-edge shock; SS, separation shock; RS, reattachment shock; SL,
slip line; EW, expansion wave.
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Figure 2. Distributions of (a) skin friction coefficient and (b) surface pressure coefficient obtained using
three different meshes for α = 15 ° and Tw/T0 = 0.86.

3.2. Spatial and temporal discretization
The numerical simulations in this study are performed using an in-house multi-block
parallel finite-volume solver called PHAROS (Hao, Wang & Lee 2016; Hao & Wen 2020).
The modified Steger–Warming scheme (MacCormack 2014) extended to a higher order
by the monotone upstream-centred schemes for conservation law reconstruction (van Leer
1979) is used to calculate the inviscid fluxes, whereas a second-order central difference is
used to compute the viscous fluxes. An implicit line relaxation method (Wright, Candler
& Bose 1998) is employed for time integration.

Computational meshes are constructed with three levels of grid refinement including
800 × 200 (coarse), 1200 × 400 (medium) and 1600 × 600 (fine) in the streamwise and
wall-normal directions. The normal spacing at the surfaces is set to 1 × 10−7 m to ensure
that the grid Reynolds number has an order of magnitude of one. The boundary conditions
are specified as follows: the free-stream conditions are applied to the upper and left
boundaries. A simple extrapolation outflow condition is used at the exit boundary. The
wall is assumed to be isothermal and no slip. All the simulations in the present study are
run with a constant Courant–Friedrichs–Lewy number of 103. Numerical convergence is
achieved under the criteria that the Euclidean norm of the density residual is reduced by
ten orders of magnitude, and the length of the separation region remains unchanged.

Figure 2 compares the surface distributions of skin friction coefficient Cf and
surface pressure coefficient Cp obtained using three different meshes for α = 15 ° and
Tw/T0 = 0.86. In fact, this flow condition has the largest separation region among the cases
considered in this study. The Cf and Cp are defined by

Cf = τw

0.5ρ∞u2∞
, Cp = pw

0.5ρ∞u2∞
, (3.1a,b)

where τw and pw are the wall shear stress and pressure, respectively. Flow separation and
reattachment occur at the most upstream and downstream locations where the curve of
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Cf crosses zero. Herein, the length of the separation region is defined as the distance
between the separation and reattachment points in the x direction. It is seen that the length
of the separation region is underestimated by using the coarse grid. As the grid is refined,
the separation region is enlarged and approaches a certain value. The pressure and skin
friction distributions obtained on the medium and fine grids are almost overlapped, which
indicates that the medium grid (1200 × 400) is adequate to guarantee grid independence.

3.3. Global stability analysis
The vector of conservative variables U is decomposed into a 2-D steady solution U2-D
and a 3-D small-amplitude perturbation U ′ as

U(x, y, z, t) = U2-D(x, y) + U ′(x, y, z, t). (3.2)

The linearized Navier–Stokes equations (LNS) that describe the behaviour of U ′ can
be obtained by substituting (3.2) into the governing equations (2.1) and neglecting
higher-order terms. The LNS are then discretized using a second-order finite-volume
method. The modified Steger–Warming scheme is used to evaluate the inviscid Jacobians
on cell faces near discontinuities, which are detected by an improved Ducros shock sensor
(Hendrickson, Kartha & Candler 2018). To reduce numerical dissipation, a central scheme
is activated in smooth regions. The viscous Jacobians are computed using the second-order
central difference. Details of the inviscid and viscous Jacobians were given by Sidharth
et al. (2018).

The initial value problem is transformed to an eigenvalue problem by expressing the
vector of perturbed conservative variables U ′ in the following modal form:

U ′(x, y, z, t) = Û(x, y) exp
(

−iωt + i
2π

λ
z
)

, (3.3)

where Û is the 2-D eigenfunction, ω is the eigenvalue and λ is the spanwise wavelength. In
fact, the current GSA considers the temporal stability of a spanwise periodic perturbation
superimposed on a 2-D steady solution, i.e. a bi-global analysis. The eigenvalue problem
is solved using the implicit restarted Arnoldi method implemented in ARPACK (Sorensen
et al. 1996) for a given λ. A shift-invert approach is employed to efficiently explore
the eigenvalue spectra. The obtained eigenvalues are complex numbers with the real
and imaginary parts ωr and ωi representing the angular frequency and growth rate,
respectively. Note that a positive ωi indicates an unstable mode.

The GSA with the shift-invert approach can be computationally expensive, especially in
memory usage, because a lower–upper decomposition of the global matrix is performed in
the inversion step. To reduce the computational burden, the 2-D base flows are interpolated
on a coarser grid (600 × 300) for stability analysis. Grid independence was verified by
using a finer grid (800 × 400). On the wall, the velocity and temperature perturbations
and the wall-normal gradient of pressure perturbation are set to zero. A sponge layer is
implemented near the far field and outflow boundaries of the computational domain to
ensure no reflection of perturbations (Mani 2012).

4. Results

4.1. General flow features
Figure 3 shows the 2-D steady distributions of skin friction coefficient for different ramp
angles and wall temperature ratios. Also shown in the figure are the enlarged views near
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Figure 3. Distributions of skin friction coefficient for different ramp angles with the enlarged views near the
corner: (a) Tw/T0 = 0.18; (b) Tw/T0 = 0.54; (c) Tw/T0 = 0.86. Open circles: separation and reattachment points.
Blue, α = 11 °; green, α = 12 °; orange, α = 13 °; red, α = 14 °; black, α = 15 °.

the corner. The separation and reattachment points are indicated by open circles. For
a fixed Tw/T0, the separation and reattachment points move upstream and downstream,
respectively, as the ramp angle is increased. Inside the separation region, there are two
local minima of Cf . As reported by Smith & Khorrami (1991), Korolev, Gajjar & Ruban
(2002) and Gai & Khraibut (2019), the magnitude of the second minimum increases with
α. There is a local skin friction peak between the two minima near the corner, which
also increases with α. Beyond a certain ramp angle, the local peak becomes positive,
indicating the emergence of secondary separation. For Tw/T0 = 0.18, a secondary bubble
occurs when α is around 13 °–14 °, whereas the critical value is approximately 14 °–15 ° for
Tw/T0 = 0.54 and 0.86. In general, the occurrence of the secondary separation is postponed
to a larger ramp angle as the wall temperature is increased, which is consistent with
the observation of Shvedchenko (2009). Downstream of the reattachment point, the skin
friction rises to its peak value and then decreases gradually. Note that there is a local
increase in Cf further downstream for Tw/T0 = 0.18, which is caused by the impingement
of EW induced by the shock interaction between SS and RS (see figure 1).

Figure 4 shows the 2-D steady distributions of surface pressure coefficient for different
ramp angles and wall temperature ratios. The surface pressure begins to increase upstream
of the separation point controlled by the free-interaction process (Chapman, Kuehn &
Larson 1958). The rise is followed by a plateau region, the value of which increases with
α and Tw/T0. It is consistent with the free-interaction theory that the plateau pressure is
inversely proportional to the Reynolds number based on the distance between the leading
edge and separation point. The pressure rises again near the reattachment point and reaches
its peak value mainly determined by the oblique shock theory. As the wall temperature is
increased, the increase in Cp near reattachment becomes more gradual. For Tw/T0 = 0.18,
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Figure 4. Distributions of surface pressure coefficient for different ramp angles with the enlarged views near
the corner: (a) Tw/T0 = 0.18; (b) Tw/T0 = 0.54; (c) Tw/T0 = 0.86. Open circles: separation and reattachment
points. Blue, α = 11 °; green, α = 12 °; orange, α = 13 °; red, α = 14 °; black, α = 15 °.

the drop in Cp downstream of the peak is also caused by the impingement of EW. For
relatively large ramp angles, there is a small ‘dip’ in the surface pressure between the
plateau and peak. Similar features have also been observed by Smith & Khorrami (1991),
Korolev et al. (2002) and Gai & Khraibut (2019). As will be seen later, the ‘dip’ is
indicative of a local region with pressure gradient near the corner, which becomes stronger
as α is increased such that the reverse flow boundary layer cannot resist it and gives rise to
secondary separation.

Contours of 2-D density gradient magnitude and pressure (near the compression corner)
non-dimensionalized by ρ∞u2∞ are plotted with the streamlines inside the separation
region superimposed in figure 5 for Tw/T0 = 0.18. Only the flow fields with the ramp
angles of 13 °, 14 °, and 15 ° are presented to focus on the emergence of secondary
separation. There is no secondary separation at α = 13 °, and the core of the primary vortex
is located above the ramp surface downstream of the corner. At α = 14 °, a secondary
vortex occurs beneath the primary bubble near the corner. The secondary bubble grows
in both horizontal and vertical extents as α is increased to 15 °, while the primary bubble
fragments into two vortices. As demonstrated by Shvedchenko (2009), Egorov et al. (2011)
and Gai & Khraibut (2019), further increasing the ramp angle leads to fragmentation into
multiple vortices and eventually unsteadiness for 2-D laminar simulations.

At α = 13 °, a low-pressure region can be seen in the vortex core, which balances the
centrifugal force of a fluid element rotating about the core (Jeong & Hussain 1995). It
can be speculated that the ‘dip’ of surface pressure is the footprint of this low-pressure
region on the ramp surface. This low-pressure region also stretches out of the separation
region in the form of a weak expansion wave. As α is increased, the low pressure in the
primary-vortex core only changes slightly; however, the pressure in the upstream half
of the separation region is obviously elevated in accordance with the variation of the
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Figure 5. Contours of density gradient magnitude (left column) and non-dimensional pressure (right column)
with streamlines superimposed for Tw/T0 = 0.18: (a) α = 13 °; (b) α = 14 °; (c) α = 15 °. Closed circles:
separation and reattachment points.

plateau pressure (see figure 4). Such a behaviour poses a local streamwise adverse pressure
gradient to the reverse flow boundary layer developing from the reattachment point. With
the emergence of primary-vortex fragmentation and secondary separation, multiple waves
emanate from the separation region.

The corresponding non-dimensionalized pressure gradients in the x and y directions
are compared in figure 6 for Tw/T0 = 0.18 and different ramp angles. The separation and
reattachment points and the dividing streamline are also plotted to mark the extent of
the separation region. As α in increased, the streamwise pressure gradient (px) inside the
separation bubble near the corner becomes progressively intensified. Beyond a certain
value, the reverse flow boundary layer separates to form a secondary bubble. Meanwhile,
the emergence of secondary separation deforms the primary bubble, resulting in a
transverse pressure gradient (py). Similar observations were made by Khraibut et al. (2017)
for a hypersonic leading-edge separation.

Figure 7 shows the contours of density gradient magnitude and non-dimensionalized
streamwise pressure gradient for the hot-wall cases at α = 15 °. For Tw/T0 = 0.54,
the separation region is significantly enlarged compared with the cold-wall condition.
However, the occurrence of the secondary bubble is postponed until α = 15 ° and
no fragmentation of the primary bubble is observed. Meanwhile, the core of the
secondary bubble is shifted downstream of the corner. For the adiabatic-wall condition
(Tw/T0 = 0.86), only an incipient secondary separation can be seen. Clearly, the strength
of the streamwise pressure gradient in the separation region is weakened by elevating the
wall temperature, which is responsible for the delay of secondary separation.

To closely examine the reverse flow boundary layer, wall-normal distributions of flow
quantities are extracted through the core of the primary vortex located downstream of the
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Figure 6. Contours of non-dimensional streamwise (left column) and transverse (right column) pressure
gradients with dividing streamlines superimposed for Tw/T0 = 0.18: (a) α = 13 °; (b) α = 14 °; (c) α = 15 °.
Closed circles: separation and reattachment points.
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Figure 7. Contours of density gradient magnitude (left column) and non-dimensional streamwise pressure
gradient (right column) with streamlines superimposed at α = 15 °: (a) Tw/T0 = 0.54 and (b) Tw/T0 = 0.86.
Closed circles: separation and reattachment points.

corner for different wall temperatures at α = 15 °. Figure 8 plots the profiles of streamwise
velocity (u) and its streamwise gradient (ux) as a function of normal distance from the
wall (yn). The locations of the vortex core are marked by closed circles. There is no
clear definition of reverse flow boundary layer. Herein, it is defined as the reverse flow
region beneath the vortex core as seen in figure 8(a). A maximum reverse flow velocity
can be observed between the vortex core and wall, which increases with increasing
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Figure 8. Distributions of (a) streamwise velocity and (b) streamwise gradient of streamwise velocity extracted
along the wall-normal direction through the core of the primary vortex as a function of distance from the wall
for different wall temperatures at α = 15 °. Closed circles: vortex core.

wall temperature. Above the vortex core, the rapid change in the streamwise velocity
corresponds to the shear layer induced by the separation region. In figure 8(b), there are
two local minima separated by the vortex core, representing strong deceleration in the
shear layer and reverse flow boundary layer, respectively. The magnitude of the minimum
in the reverse flow boundary layer is reduced with increasing wall temperature, which may
result from the weakened streamwise pressure gradient.

4.2. Occurrence of global instability
To determine the global stability of the hypersonic compression corner flows with respect
to periodic spanwise perturbations, GSA is performed with the 2-D steady solutions
obtained in § 4.1 as the base flows over a wide range of spanwise wavelengths.

Figure 9 presents the growth rates of the least stable mode as a function of spanwise
wavelength for different ramp angles and wall temperature ratios. Open symbols represent
stationary modes with ωr = 0, whereas closed symbols denote oscillating modes with
ωr /= 0. For Tw/T0 = 0.18, the flow system is globally stable to 3-D perturbations at
α = 12 °, although not shown here. At α = 13 °, the separated flow becomes unstable
with the largest growth rate occurring at λ/L = 0.168. The captured least stable mode
is largely stationary, which is oscillating only for short spanwise wavelengths. As α is
further increased to 14 °, the stationary unstable mode is shifted to a larger wavelength.
Meanwhile, the growth rate of the oscillating mode increases significantly and dominates
over its stationary counterpart. Essentially, they belong to the same branch of eigenvalues.
As the spanwise wavelength is decreased, the pure imaginary eigenvalue corresponding
to the stationary mode leaves the imaginary axis to form two conjugate eigenvalues. At
α = 15 °, the conjugate eigenvalues merge again, resulting in a strongly unstable stationary
mode at λ/L = 0.066. For Tw/T0 = 0.54 and 0.86, the flows are marginally stable when
α = 13 ° and become unstable at α = 14 °. The behaviour of the most unstable mode is
similar to that for the cold-wall condition, i.e. the stationary mode is shifted to a longer
wavelength as α is increased and an unstable mode occurs at a shorter wavelength and
becomes dominant.

For the cold-wall condition, the flow system is unstable when 12 ° <α < 13 °. For
the hot-wall conditions, the critical ramp angles are 13 °–14 °. The GSA reveals that
the global instability of the hypersonic compression corner flow is closely linked with
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Figure 9. Growth rates of the most unstable mode as a function of spanwise wavelength for different ramp
angles: (a) Tw/T0 = 0.18; (b) Tw/T0 = 0.54; (c) Tw/T0 = 0.86. Open symbols: stationary. Closed symbols:
oscillating modes.
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Figure 10. Contours of real part of spanwise velocity perturbation (left column) and eigenvalue spectra (right
column) for α = 15 °: (a) Tw/T0 = 0.18 at λ/L = 0.066; (b) Tw/T0 = 0.54 at λ/L = 0.114; (c) Tw/T0 = 0.86
at λ/L = 0.209. Closed circles: separation and reattachment points. Open circles in the eigenvalue spectra:
eigenvalues obtained on a coarse grid (600 × 300). Open squares in the eigenvalue spectra: eigenvalues
obtained on a fine grid (800 × 400).

the emergence of secondary separation. Elevating the wall temperature stabilizes the flow
system, although the length of the separation region is considerably enlarged.

Figure 10 shows the contours of the real part of the spanwise velocity perturbation ŵ/u∞
corresponding to the short-wavelength unstable modes at their respective most unstable
wavelengths (i.e. λ/L = 0.066, 0.114, and 0.209) for different wall temperatures at α = 15 °.
Note that the short-wavelength mode dominates over the long-wavelength mode as α is
increased to a certain value. The corresponding eigenvalue spectra at these conditions are
also plotted. Grid independence was verified by comparing the eigenvalues obtained on
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Figure 11. Contours of real part of spanwise velocity perturbation (left column) and eigenvalue spectra (right
column) for α = 15 °: (a) Tw/T0 = 0.18 at λ/L = 0.349; (b) Tw/T0 = 0.54 at λ/L = 0.503; (c) Tw/T0 = 0.86 at
λ/L = 0.628. Closed circles: separation and reattachment points.

the coarse (600 × 300) and fine (800 × 400) grids for Tw/T0 = 0.18. The spanwise velocity
perturbations are mainly confined to the separation region for different wall temperatures.
In the downstream portion of the separation bubble, the spanwise velocity perturbations
are highly distorted in a pattern of alternating positive and negative components. For
Tw/T0 = 0.18, the eigenfunction structurally resembles the GSA result of Sidharth et al.
(2017) for a heated compression corner. As seen from the spectrum, two oscillating
unstable modes are captured with the non-dimensionalized frequencies fL/u∞ of 0.225
and 0.578, respectively, where f = ωr/2π. The frequencies agree well with the DNS
results of Cao et al. (2021). As the wall temperature is increased, the growth rate of the
most unstable mode decreases, which becomes an oscillating mode for the adiabatic-wall
condition (Tw/T0 = 0.86). Meanwhile, the two oscillating unstable modes are stabilized
and eventually merge with the continuous modes.

Figure 11 shows the contours of the real part of ŵ/u∞ and the eigenvalue spectra
corresponding to the long-wavelength unstable modes at their respective most unstable
wavelengths (i.e. λ/L = 0.349, 0.503 and 0.628) for different wall temperatures at α = 15 °.
The spanwise velocity perturbation is mostly confined to the separation region with an
opposite sign in the upstream and downstream halves, which is similar to the GSA
result of Sidharth et al. (2018) for a double-wedge configuration. In contrary to the
short-wavelength scenario, only one stationary unstable mode can be identified.

To further understand the physical mechanisms that drive the global instability of
the separation bubble, an energy budget analysis is performed for the short-wavelength
unstable modes corresponding to different wall temperatures as shown in figure 10
at α = 15 °. According to previous GSA studies on laminar flow separation (Theofilis
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et al. 2000; Sidharth et al. 2018; Cao et al. 2021), the global instability induces
three-dimensionality in the separation bubble and alters its topological structure, which
indicates that the disturbance field is mainly characterized by velocity perturbations.
Hence, only the kinetic disturbance energy is considered here, which contributes more
than 70 % of the total disturbance energy quantified by the Chu energy norm (Chu 1965).

The linearized governing equation of velocity perturbations is given by

∂u′
i

∂t
+ ūj

∂u′
i

∂xj
= −(ρuj)

′

ρ̄

∂ ūi

∂xj
− 1

ρ̄

∂p′

∂xi
− 1

ρ̄

∂τ ′
ij

∂xj
, (4.1)

where indices i = 1, 2 and 3 represent the x, y and z directions, respectively. The specific
kinetic disturbance energy is defined by

e′
k = 1

2
u′u′

i
†
, (4.2)

where † is used to denote the complex conjugate. The governing equation of e′
k can be

obtained by taking the dot product of (4.1) and u′
i
† as

∂e′
k

∂t
= Re

[
−ūju′

i
† ∂u′

i

∂xj
− u′

i
† (ρuj)

′

ρ̄

∂ ūi

∂xj
− u′

i
†

ρ̄

∂p′

∂xi
− u′

i
†

ρ̄

∂τ ′
ij

∂xj

]
, (4.3)

where Re denotes the real part of a complex number. Note that the perturbed variables
can be written in a modal form as given by (3.3). One can readily obtain the following
expression:

e′
k = êk exp(2ωit), (4.4)

where êk is the eigenfunction of the kinetic disturbance energy. Substituting (4.4) into (4.3)
leads to

2ωiêk = Re

⎡⎢⎢⎢⎣−ūjûi
† ∂ ûi

∂xj︸ ︷︷ ︸
Convection

−ûi
† ρ̂uj

ρ̄

∂ ūi

∂xj︸ ︷︷ ︸
Production

− ûi
†

ρ̄

∂ p̂
∂xi︸ ︷︷ ︸

Transfer

− ûi
†

ρ̄

∂τ̂ ij

∂xj︸ ︷︷ ︸
Viscous

⎤⎥⎥⎥⎦ , (4.5)

where the convection term represents the advection of êk by the mean velocity, the
production term is the work done by the Reynolds stress on the mean velocity gradient,
the transfer term is the energy transport due to velocity and pressure fluctuations and the
viscous term accounts for the molecular dissipation effects.

Following Mittal (2010), we integrate (4.5) over the entire computational domain to
obtain the following equation:

ωi = ωi,convection + ωi,production + ωi,transfer + ωi,viscous, (4.6)

where ωi,convection, ωi,production, ωi,transfer and ωi,viscous are the contributions to the total
growth rate due to different mechanisms. Variations of these growth rate components
for the short-wavelength unstable modes are plotted in figure 12 as a function of wall
temperature ratio. The total growth rate is mainly contributed by the production term,
whereas the convection and transfer terms are negligible. As the wall temperature is
increased, the production term is significantly reduced.

Figure 13 shows the spatial distributions of the production term for the short-wavelength
unstable modes corresponding to different wall temperatures. The production term is
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Figure 12. Variation of growth rate components for the short-wavelength unstable modes at λ/L = 0.066,
0.114 and 0.209 as a function of wall temperature ratio for α = 15 °.
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Figure 13. Contours of production term in the kinetic disturbance energy equation with streamlines
superimposed (left column) and its distribution extracted along the wall-normal direction through the core
of the primary vortex as a function of distance from the wall (right column) for α = 15 °: (a) Tw/T0 = 0.18 at
λ/L = 0.066; (b) Tw/T0 = 0.54 at λ/L = 0.114; (c) Tw/T0 = 0.86 at λ/L = 0.209. Closed circles: vortex core.

localized near the primary-vortex core, which confirms that the instability arises from
the separation region. Distributions of the production term are also plotted in this figure in
the wall-normal direction through the vortex core. Close examination of the production
term reveals that the major contribution comes from the streamwise gradient of the
streamwise velocity (ux), which is consistent with the finding of Sidharth et al. (2018).
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Comparing with figure 8(b), one can see that it is the deceleration of the reverse flow
boundary layer instead of the shear layer that leads to the peak production of the kinetic
disturbance energy. Increasing the wall temperature alleviates this deceleration due to
the weakened streamwise pressure gradient (see figures 4 and 7), which explains the
suppression of global instability. Similar behaviours were observed near the critical ramp
angle of global instability. Deceleration of the streamwise velocity in the reverse flow
boundary layer becomes stronger with increasing ramp angle, which results in a production
term prevailing over the viscous term.

4.3. Criterion in terms of triple-deck scaling
This study reveals that the occurrence of both secondary separation and global instability
are governed by the characteristics of the reverse flow boundary layer. To describe the
behaviour of flow separation, an asymptotic theory known as the triple-deck theory was
established by Neiland (1969) and Stewartson & Williams (1969) using the method
of matched asymptotic expansions. They divided the boundary layer upstream of
separation into three decks, including a viscous lower deck, an inviscid and rotational
middle deck and an inviscid and irrotational upper deck. By introducing a specific
set of scaled variables, the governing equations in the lower deck were reduced to
the incompressible boundary-layer equations, which can be efficiently solved. Most
importantly, the characteristic scaling defined by the triple-deck theory provides an
effective approach to correlate and interpret numerical and experimental data in terms
of a scaled ramp angle α*. According to Stewartson & Williams (1969), α* is defined by

α∗ = αRe1/4
L

C1/40.3321/2(M2∞ − 1)
1/4 , C = μwT∞

μ∞Tw
, (4.7a,b)

where C is the Chapman–Rubesin parameter.
The triple-deck theory was initially applied to incipient or small-scale separation. As

α* is increased, a pressure plateau was formed by solving the triple-deck equations
(Rizzetta, Burggraf & Jenson 1978). Smith & Khorrami (1991) suggested that there was
a critical value of α* beyond which a singularity developed near reattachment in the
triple-deck solution. However, Korolev et al. (2002) found that the computational domain
used by Smith & Khorrami (1991) was insufficient to resolve the flow problem. Secondary
separation was observed near the corner inside the separation region for a large α*. They
also confirmed that the scaled length of the separation region was linearly proportional to
α*3/2 for a large separation region, as suggested by Burggraf (1975). It was indicated that
the triple-deck theory can be extended to moderate- to large-scale separation problems.

In the present study, the secondary separation occurs when α* is 3.73–4.92, which
is consistent with the findings of Smith & Khorrami (1991), Korolev et al. (2002),
Shvedchenko (2009) and Gai & Khraibut (2019). Note that different definitions of scaled
ramp angle were used in these studies. The lower and upper boundaries correspond to the
cold- and adiabatic-wall conditions, respectively. A similar trend was observed by Egorov
et al. (2011). Then, a criterion can be established in terms of α* to predict the stability
boundary, i.e. 3.44 <α* < 4.59. Again, a higher wall temperature results in a larger critical
ramp angle.

Figure 14 presents the variation of the critical scaled ramp angle as a function of
wall temperature ratio. The error bars represent an uncertainty of 1 °, which is the
minimum increment in ramp angle considered in this study. Additional simulations and
GSA were performed for Tw/T0 = 0.18 with ReL = 2.1 × 105 and 8.4 × 105, respectively.
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Figure 14. The critical scaled ramp angle for global instability as a function of wall temperature ratio. Open
symbols: globally stable. Closed symbols: globally unstable.

Geometry and Reference M∞ ReL α (deg.) Tw/T0

Double wedge 5 6.8 × 105 7.8 0.89
Sidharth et al. (2018) 10

Compression corner 5 4.0 × 104 20 0.1
Egorov et al. (2011)

Compression corner 11.63 2.4 × 105 15 0.16
Cao et al. (2019)

Double wedge 7.11 5.6 × 104 20 0.14
Durna & Celik (2020)

Compression corner 7.7 7.6 × 105 15 0.22
Bleilebens & Olivier (2006)

Compression corner 8 2.0 × 105 15 0.39
Roghelia et al. (2017a) 5.0 × 105

Compression corner 7.7 4.2 × 105 15 0.18
Roghelia et al. (2017b) 20

25

Compression corner 6.85 3.8 × 105 15 0.49
Smith (1993) 25

Table 1. Flow conditions of the theoretical, numerical and experimental data collected in figure 14.

For the lower Reynolds number, the flow becomes globally unstable when α is 15 °–16 °,
whereas secondary separation occurs when α is 16 °–17 °. For the larger Reynolds number,
the critical ramp angles for global instability and secondary separation are 10 °–11 °
and 11 °–12 °, respectively. As expected, the resulting scaled ramp angles are almost
overlapped, which indicates that the effect of the Reynolds number is well accounted for.

Also shown in the figure are existing theoretical, numerical and experimental data
collected from the literature for hypersonic compression corner and double-wedge flows
with the free-stream Mach numbers ranging from 5 to 11.63 and the unit Reynolds
numbers from 4.0 × 105 m−1 to 13.6 × 106 m−1. The detailed flow conditions are provided
in table 1. For the double-wedge flows, α represents the angle between the first and second
wedges, and the scaled ramp angle is evaluated using the flow properties behind the
oblique shock induced by the first wedge. For the theoretical studies, it is straightforward
to determine whether a flow system is globally unstable based on the GSA predictions.
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For example, the Mach 5 double-wedge flow considered by Sidharth et al. (2018) was
found to be marginally stable when the turn angle is 7.8 ° and unstable for 10 °. For the
computational fluid dynamics simulations, a flow is considered to be globally unstable
only if 3-D streamwise streaks can be formed with no external disturbance. As for the
experimental data, an observation of streamwise streaks is a necessary but not sufficient
condition for global instability, as demonstrated by Dwivedi et al. (2019). Here, only those
experimental data that have been confirmed by GSA are included. The proposed criterion
clearly demarcates the stability boundary. Extension to shock impingement on a flat plate
and axisymmetric flows will be the focus of a future study.

Furthermore, it is important to note that no experimental evidence of secondary
separation has been found. The speculation that the secondary separation leads to
three-dimensionality and unsteadiness remains to be experimentally verified.

5. Conclusions

Hypersonic compression corner flows are numerically simulated to investigate the onset of
global instability with varying ramp angles and wall temperatures. Secondary separation
occurs when the ramp angle is beyond a certain value, which increases slightly with the
wall temperature ratio. It is demonstrated that the secondary bubble arises from the flow
separation of the reverse flow boundary layer under the action of an adverse pressure
gradient, which is alleviated by increasing the wall temperature.

The GSA reveals that the flow becomes globally unstable as the ramp angle is increased.
The unstable mode is shifted to a longer wavelength with increasing wall temperature.
Beyond the critical ramp angle, a short-wavelength unstable mode is significantly
destabilized and becomes dominant. Most importantly, it is found that the global instability
occurs immediately prior to the emergence of the secondary separation. A kinetic energy
budget analysis reveals that the global instability is driven by the streamwise flow
deceleration in the reverse flow boundary layer, which is weakened by increasing the wall
temperature.

The numerical simulations and GSA illustrate that the secondary separation and global
instability are closely linked with each other mainly determined by the characteristics
of the reverse flow boundary layer. The numerical results are then interpreted using the
triple-deck theory. A criterion is proposed in terms of a scaled ramp angle to predict
the stability boundary for hypersonic compression corner and double-wedge flows, which
agrees well with existing theoretical, numerical, and experimental studies. For flow
conditions far beyond the stability boundary, strong three-dimensionality (e.g. streamwise
streaks downstream of reattachment) and unsteadiness in the flow fields are expected.
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