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Unitary Eigenvarieties at Isobaric Points

Joël Bellaı̈che

Abstract. In this article we study the geometry of the eigenvarieties of unitary groups at points cor-
responding to tempered non-stable representations with an anti-ordinary (a.k.a evil) refinement. We
prove that, except in the case where the Galois representation attached to the automorphic form is a
sum of characters, the eigenvariety is non-smooth at such a point, and that (under some additional
hypotheses) its tangent space is big enough to account for all the relevant Selmer group. We also study
the local reducibility locus at those points, proving that in general, in contrast with the case of the
eigencurve, it is a proper subscheme of the fiber of the eigenvariety over the weight space.

1 Introduction

In [BC2], G. Chenevier and the author of this note studied the geometry of the eigen-
variety of a unitary group at a point corresponding to a non-tempered automorphic
representation π with an anti-ordinary refinement, and used the results to prove new
cases of the lower bound on the Selmer group in the Bloch–Kato conjecture for an
essentially self-dual Galois representation ρ of arbitrary dimension. While the meth-
ods developed in the book were more general, the case needed for the application
to the Bloch–Kato conjecture was the one of an automorphic representation π with
attached Galois representation ρπ = 1 ⊕ ω ⊕ ρ, where 1 is the trivial character (of
motivic weight 0), ω is the cyclotomic character (of motivic weight −2 according to
the most used conventions, that we shall also use) and ρ is some irreducible, essen-
tially self-dual Galois representation of motivic weight −1. Observe that ρπ is not
isobaric, that is that the motivic weights of the components of ρπ are distinct. This
corresponds, in accordance to Arthur’s philosophy, to the fact that the automorphic
representation π is not tempered.

Let us recall that the lower bound in the Bloch–Kato conjecture is the prediction
that the Bloch–Kato Selmer group H1

f (GK , ρ) has dimension at least the order of van-
ishing of the L-function L(ρ∗(1), s) at s = 0. If the motivic weight of ρ is not−1 and
ρ is automorphic, then, using the functional equation and the Hadamard–De-La-
Vallée-Poussin theorem of Jacquet–Shalika, the order of vanishing ords=0 L(ρ∗(1), s)
can be expressed purely in terms of local invariants of ρ. Moreover, this lower
bound on dim H1

f (GK , ρ) can be proved by relatively elementary means (essentially
by Poitou–Tate duality; cf. [B2, Corollary 4.1, p. 49]). Hence, working with non-
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tempered automorphic representations is essential to new applications to the Bloch–
Kato conjecture. We conjecture that the geometry of the eigenvariety at π is closely
related to the p-adic L-function of ρ in such a way that the methods of [BC2] or
variants will imply the lower bound in the Bloch–Kato conjecture for ρ. There is an
ongoing program to prove this conjecture.

In this article, we study the geometry of the eigenvariety at a tempered automor-
phic representation (still with anti-ordinary refinement) with two aims in mind: to
provide support for the aforementioned conjecture, and to test tools to solve it. The
temperedness of π means that the components of the Galois representation ρπ all
have the same motivic weight, hence whatever lower bound in the Bloch–Kato con-
jecture one might deduce from our results will concern representations of motivic
weight 0, and thus be already known by elementary methods. Yet the fact that, as we
shall show, the geometry of the eigenvariety is rich enough to allow us to construct
the whole Selmer group of a self-dual weight 0 Galois representation ρ is a strong
encouragement to try to do so for weight−1 Galois representations.

This study is a sequel to my paper [B1], which deals with the case of the unitary
groups with three variables U(3), and endoscopic forms of type (2, 1). In this pa-
per, we work out the general case. While the techniques are similar in nature to the
ones used in [B1] (and thus relying heavily on the work of [BC2]), the algebraic and
combinatorial arguments needed to solve the general case are much harder.

1.1 Reminder on Eigenvarieties, Galois Representations, and Refinements

Notations introduced here will stay in force throughout the paper.

1.1.1 Unitary Groups

We fix a prime p.
Let K be a quadratic imaginary field1 in which p is split. We denote by GK the

absolute Galois group of K, and for every place v of K, denote by Gv the absolute
Galois group of the completion Kv of K at a place v that we see as a decomposition
subgroup of GK . We fix a prime p that is split in K. Let U(d) be the unitary group
over Q attached to an hermitian form over K in d variables, which is definite over R.

1.1.2 Eigenvarieties

The p-adic eigenvariety X for U(d) (and a fixed level U = KpU p, where U p is an
open compact subgroup of U(d)(Ap

f ) and Kp is a maximal compact subgroup of
U(d)(Qp)) has been constructed independently by Chenevier [C] and Emerton [E].
The two constructions have been shown in [BC2] to lead to the same eigenvariety,
which indeed can be characterized by some simple natural properties. The eigenva-
riety X is a reduced rigid analytic space over Qp, equidimensional of dimension d−1
(it would be d if we were allowing central twists), provided with a Zariski-dense set

1The methods of this paper could in principle be applied to any CM field K.
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of so-called classical points, which corresponds to automorphic eigenforms for U(d)
of level U and of various weights.

1.1.3 Galois Representations Attached to Automorphic Representations

Another recent development that is of importance to us is the construction, for any
automorphic forms π for U(d), of an attached Galois representation ρπ : GK →
GLd(Q p), whose restriction to Gv for any place v above a prime l such that πl is
unramified has the expected properties (namely corresponds to the base change of
πl to Kv by Local Langlands if l 6= p, and is crystalline with expected Hodge-Tate
weights and Frobenius eigenvalues if l = p). Those ρπ are polarized of weight d − 1,
that is

(1.1) ρ⊥ ' ρωd−1,

where for a representation ρ : GK → GLn(Q p) the representation ρ⊥ is defined by

ρ⊥(g) = tρ(cgc−1)−1,

where c is any lift of the nontrivial elements of Gal(K/Q) in GQ , and ω : GK →
Z∗p ⊂ (Q p)∗ is the cyclotomic character. This construction of ρπ is due to S. Morel
[Mor], Shin [S], and the authors of the book project [GRFAbook] led by Harris, all
of whom rely on works by many authors since Langlands, including fundamental
contributions by Shelstad, Kottwitz, Arthur, Clozel, Waldspurger, Laumon, and Ngo.

When π is stable tempered, that is, when the base change πK of π to GLn(AK ) is
cuspidal, it is expected that ρπ is irreducible. This is known in many cases, though
apparently not yet in full generality. For instance, the irreducibility of ρπ is known if
d ≤ 3 (cf. [BlRo]), and if d ≤ 5 and πK comes by base change from an automorphic
representation for GLn(AQ ) (cf. [CG]). In any dimension, it is known that ρπ is
irreducible when π is square-integrable at some place ([TY]), or for any given π for
a positive density of primes p ([PT]), or for a generic π in suitable p-adic families
([BC2]).

1.1.4 Families of Galois Representations

By interpolating the Galois representations attached to classical automorphic forms,
a simple argument due to Chenevier gives a pseudocharacter T : GK → O(X) of
dimension d. If x ∈ X(Q p), the post-composition of T with the “evaluation at x”
map O(X) → Q p gives a pseudocharacter Tx : GK → Q p, which is the trace of a
unique semi-simple representation ρx : GK → GLn(Q p) up to isomorphism. When
x is attached to a classical automorphic representation π, we have ρx ' ρπ .

1.1.5 Tempered and Isobaric Automorphic Representations

If π is an automorphic representation for U(d), then we can write ρ as a sum of
irreducible representations ρπ ' ρ1 ⊕ · · · ⊕ ρr, for some r between 1 and d, and the
ρi ’s are pairwise non isomorphic, since ρπ has distinct Hodge–Tate weights. The type
of ρπ is the r-tuple (d1, . . . , dr), where di = dim ρi . Since the map ρ 7→ ρ⊥(d − 1)

https://doi.org/10.4153/CJM-2014-020-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-020-9


318 J. Bellaı̈che

is an involution, the set {1, . . . , r} can be partitioned into singletons {i} such that
ρi ' ρ⊥i (d− 1) and pairs {i, j} such that ρi ' ρ⊥j (d− 1).

Definition 1.1 If for all i = 1, . . . , r, we have ρi ' ρ⊥i (d − 1), we say that ρπ (and
π) is isobaric.

Remark 1.2 Conjecturally, the isobaric representations π should be exactly the
tempered representations, and a ρπ should be isobaric reducible if and only if π is
endoscopic tempered (see e.g., the review of Arthur’s conjecture given in [BC2, Ap-
pendix].)

More precisely, if π1, . . . , πr are stable tempered representations of unitary groups
U (d1), . . . ,U (dr) with d = d1 + · · ·+dr, there should exist a tempered representation
π of U (d), called the endoscopic transfer of (π1, . . . , πr) such that ρπ = ρπ1⊕· · ·⊕ρπr

provided that the Hodge–Tate weights of ρπ1 , . . . , ρπr are distinct. Conversely, every
tempered representation π should be L-equivalent to one arising this way. Those
results, which have long been conjectured, are now almost known in full general-
ity. The analog for quasi-split unitary groups of the construction of the endoscopic
transfer from stable tempered representations π1, . . . , πr has been recently completed
by Mok [Mok] extending to unitary groups earlier results of Arthur for symplectic
and orthogonal groups. The transfer back and forth between definite at infinity and
quasi-split unitary groups seems a comparatively easy task, even if, to our knowledge,
it has been only written down for d ≤ 3 ([R]).

Thus a representation π obtained by endoscopic transfer from stable tempered
representations π1, . . . , πr would be isobaric of type (d1, . . . , dr) provided the rep-
resentations ρπ1 , . . . , ρπr are irreducible, as they are expected to be. In view of the
discussion at the end of Subsection 1.1.3, this provides a large supply of examples of
isobaric representations.

1.1.6 Anti-ordinary Refinements

If a classical automorphic form π of level U is given, it does not yet define a point in
the eigenvariety X. For this, we need to choose some combinatorial data, called either
a p-stabilization or a refinement R of πp. For the general definition of a refinement,
we refer the reader to [BC2, §6.4]. We will place ourselves in the case where the
eigenvalues of the crystalline Frobenius on Dcrys(ρ|Gv

) (here v is one of the two places
of K above p) are distinct. In that case, a refinement is simply defined by an ordering
of those eigenvalues. Thus there are at most d! refinements. When ρπ is isobaric,
which we shall assume, every ordering of the eigenvalues of the crystalline Frobenius
defines a refinement (cf. [BC2, 6.4.5]), so there are exactly d! refinements

Each pair (π,R) defines a classical point on the eigenvariety X. For a given π,
those d! different points x1, . . . , xd! have in general very different Galois-theoretic
behavior: even if the representation ρxi is the same at the different xi , namely ρπ , its
deformations to a small neighborhood of xi are very different.

Among the various refinements of π we will consider a special kind that we call
the anti-ordinary refinements. They are the generalizations of the evil refinements
of Eisenstein series in the theory of p-adic modular forms. They are also critical
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refinements, though not all critical refinements are anti-ordinary. The definition of
anti-ordinary, and some properties, are given in §2.

1.2 Results

1.2.1 Non-smoothness of the Eigenvariety at Isobaric Anti-ordinary Points

We are almost ready to state our non-smoothness result. As we import results from
[BC2], we are also obliged to import some technical hypotheses. Those technical
hypotheses, called (REG) (for regular), (MF′) (for multiplicity free) and (NGD) (for
no geometric deformation), are as follows. Let π be an automorphic representation
for U(n), unramified at p, of type (d1, . . . , dr) with ρπ = ρ1 ⊕ · · · ⊕ ρr.

(REG) For every integer a, with 1 ≤ a ≤ d − 1, the eigenvalues of the crystalline
Frobenius on Dcrys(Λaρπ) have multiplicity 1.

(MF′) For every family of integers (ai)i=1,...,r with 1 ≤ ai ≤ di , the representation
ρ(ai ) :=

⊗r
i=1 Λaiρi is absolutely irreducible. Moreover, if (ai) and (a′i) are

two distinct sequences as above with
∑r

i=1 ai =
∑r

i=1 a′i , then ρ(ai ) 6' ρ(a′i ).

(NGD) For i = 1, 2, . . . , r, H1
g (GK , ad ρi) = 0.

Both assumptions (REG) and (MF′) are multiplicity one statements, which are only
necessary due to our imperfect knowledge of the trianguline nature of the Galois
representation on the eigenvarieties. It should be possible to remove them in the
near future.

The hypothesis (NGD) asserts that any de Rham (at every place of K dividing p)
deformation of ρi to Q p[ε]/(ε)2 is trivial. This is a standard infinitesimal version of
the Fontaine–Mazur conjecture, which states that de Rham representations of GK,S

are geometric, and therefore form a countable set and cannot have non-trivial fami-
lies. From another point of view, the hypothesis (NGD) is a special case of the asser-
tion that for any representation ρ′ of non-negative motivic weight, H1

g (GK,S, ρ
′) = 0,

namely the case ρ′ = ad ρi . This assertion is the p-adic avatar of the famous “Yoga of
Weights” of Grothendieck. It is also a part of the Bloch–Kato conjecture. At any rate,
the assertion (NGD) is known already in a significant number of cases, for example
for one-dimensional representations and for many 2-dimensional representations ρi

coming from GQ (by results of Weston and Kisin, see [Kis,W]). It is also provable for
all representations satisfying (1.1) whose residual representations satisfy the hypothe-
ses of the fast-growing set of theorems on potential automorphy; see forthcoming
work of Davide Reduzzi.

The following result is analogous to, but much harder than, the main theorem
of [B1].

Theorem 1 Let π be an automorphic representation of U(d), unramified at p, iso-
baric of type (d1, . . . , dr) (with r ≥ 2, that is ρπ reducible). Assume that ρπ satis-
fies (REG), (MF′), and (NGD). Let R be an anti-ordinary refinement of π, and let
x ∈ X(Q p) be the point corresponding to (π,R) on the eigenvariety. Assume further-
more that (d1, . . . , dr) 6= (1, . . . , 1). Then X is non-smooth at x. Furthermore, the local
ring at x of every irreducible component of X through x is not factorial.
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The condition that the type of π is not (1, . . . , 1) is necessary.

1.2.2 The Case of Type (1, n)

We shall now explain two results that provide examples of two important phenom-
ena: a case where the method of Ribet on eigenvarieties can produce not only one,
but all the n independent extensions that are supposed to exist between two Galois
representations for n arbitrary large and a classical anti-ordinary point of the eigenva-
riety where the local reducibility locus of the Galois representation and the schematic
fiber over weight space at this point do not coincide (in contrast with the case of the
eigencurve, where they always coincide). As we are interested here in constructing
examples (or counter-examples), we do not mind adding restrictive hypotheses (cf.,
(IRR) and (WEI) below) that simplify the argument, since they are still satisfied by a
large set of representations.

We keep the assumptions of Theorem 1, but we assume in addition that π is of
type (1, n), where n = d − 1 is an integer ≥ 2. In this case, ρπ = ρ1 ⊕ ρ2, with
dim ρ1 = 1. We set ρ = ρ−1

1 ⊗ ρ2, which is a representation of dimension n and
motivic weight 0, satisfying ρ = ρ⊥. The hypotheses on π are equivalent to the
following hypotheses on ρ:

(REG) For every integer a, with 1 ≤ a ≤ n − 1, the eigenvalues of the crystalline
Frobenius on Dcrys(Λaρ) have multiplicity 1.

(MF′) For every integer a, with 1 ≤ a ≤ n− 1, the representation Λaρ is absolutely
irreducible.

(NGD) H1
g (GK , ad ρ) = 0.

Let us add another hypothesis:

(IRR) The restriction ρ|Gv
is irreducible.

Let us refer to the two places of K above p as v and v. By Proposition 2.3, applicable
because of (IRR), π has an anti-ordinary refinement if and only if the Hodge–Tate
weights of ρ at v are all negative, or all positive.2 Those two case are symmetric (just
exchange v and v), so let us assume that the Hodge–Tate weights of ρ at v are all
negative, and a little more to simplify some arguments:

(WEI) The Hodge–Tate weights of ρ|Gv
are all≤ −2.

Note that the Hodge–Tate weights of ρ|Gv
are therefore all ≥ 2. We can choose an

anti-ordinary refinement of π and call it R. Let x be the point of X corresponding to
(π,R).

The extension of Ribet’s method, which is developed in [BC2], uses the families
of Galois representations carried by the eigenvariety X around the point x (where
the Galois representation is ρx = ρ1 ⊕ ρ2) to construct extensions of ρ1 by ρ2. The
space of extensions we can construct by this method is a subspace of H1(GK , ρ) =

2Our convention regarding Hodge–Tate weight is that the cyclotomic character of Gv has Hodge–Tate
weight 1.
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Ext1
GK

(Qp, ρ) ' Ext1
GK

(ρ1, ρ2) that we shall call H1
x (GK , ρ). The Bloch–Kato conjec-

ture implies 3 that dim H1(GK , ρ) = n, and it is an easy consequence of Poitou–Tate
duality that dim H1(GK , ρ) ≥ n.

The following result is analogous to, but harder than, [B1, Theorem 2].

Theorem 2 With the above hypotheses, one has dim H1
x (GK , ρ) ≥ n.

The significance of this result is that Ribet’s method on eigenvarieties can con-
struct all the n independent extensions in H1(GK , ρ) that are known to exist. This
is encouraging for the ability of Ribet’s method on eigenvarieties to construct all ex-
tensions that are supposed (but not necessarily known) to exist in other cases (for
example when ρ has motivic weight−1).

Keep the assumptions of the preceding theorem and let Rx be the local reducibility
locus at x, that is the largest local closed subscheme of X containing x on which
the family of Galois representations carried by X, restricted to the decomposition
group Dv, is reducible. Let κ : X → W be the weight map from the eigenvariety to
the weight space W (a union of n-dimensional rigid open balls), and let Fx be the
connected component at x of the schematic fiber of κ at κ(x). Since κ is locally finite,
Fx is a finite local closed subscheme of X. One of the main result of [BC2, Theorem
4.4.6] is that we have an inclusion of closed subschemes of X: Rx ⊂ Fx. In particular,
Rx is a finite local scheme. In the case of the eigencurve, two proofs are given in [BC1]
that Rx = Fx. Surprisingly (for the author), this is not the case in higher dimensions,
or else the Bloch–Kato conjecture is false:

Theorem 3 Keep the hypotheses of the above theorem, and assume that the Bloch–
Kato conjecture holds for ρ and all its twists ρτ where τ is a character of GK satisfying
τ = τ⊥. (That is to say, since ρτ has motivic weight 0, assume H1

f (GK , ρτ ) = 0.)
Then there are infinitely many points x ∈ X such that the inclusion Rx ⊂ Fx is strict,

that is, such that the local reducibility locus is strictly smaller than the fiber over the
weight space.

This result raises the question of what exactly is the reducibility locus Rx. This
question is important if one wishes to extend the results of [BC2, Chapter 9] relating
the absolute geometry of the eigenvariety X at non-ordinary points to the rank of
suitable Selmer groups, in a way that takes into account the finer relative (that is, as
a variety over the weight space W) geometry of X. One reason one might wish to do
that is because it is this relative geometry of X that seems more directly related to the
vanishing of a suitable p-adic L-function (cf. [Kim],[B4, ChapterV]).

3Indeed, an extension of 1 by ρ has automatically good reduction in the sense of Bloch–Kato at all
places w not dividing p and also at the place v above p. This is true because ρ is of weight 0, hence ρ|Gw

does
not contain Qp(1), and at v because of hypotheses (WEI). Then we can argue as in [B1, Proposition 12].
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2 Anti-ordinary Refinements

We use the same notations as in the introduction: K is a quadratic imaginary field,
p a prime that splits in K, v a place of K above p, and “ρ is crystalline” (or “De
Rham”, or “Hodge–Tate”) means the same thing for the restriction ρ to the local
Galois group Gv.

Let ρ be a representation of GK,S that is crystalline. Recall that a refinement R of ρ
is an ordering of the eigenvalues of the crystalline Frobenius φ on Dcrys(ρ) (we assume
that those eigenvalues are distinct). If ρ′ is a subrepresentation of ρ, a refinement of
ρ induces, by restriction, a refinement of ρ′.

We assume that ρ ' ρ1 ⊕ · · · ⊕ ρr, where the ρi are irreducible of dimension di ,
and that the Hodge–Tate weights of ρ are distinct.

Recall that a refinement R defines a maximal flag in Dcrys(ρ) (namely the flag
whose space of dimension k is generated by the eigenvectors corresponding to the
first k eigenvalues of the refinement) and that R is said to be non-critical if this flag
is in general position with respect to the Hodge filtration in Dcrys(ρ). Otherwise, it is
said to be critical. It is clear from the definition that there always exists at least one
non-critical refinement.

To a refinement F as above we can attach a permutation σ ∈ Sd by the fol-
lowing recipe: let k1, . . . , kd be the Hodge–Tate weights of ρ in increasing order.
Let φ1, . . . , φd be the eigenvalues of φ on Dcrys(ρ) in the order given by R. For
i = 1, . . . , r, let Wi be the set of indices l such that kl is a Hodge–Tate weight of
ρi , and let Ri be the set of indices l such that φl is an eigenvalue of φ on Dcrys(ρi). The
Ri ’s, and the Wi ’s, are two partitions of {1, . . . , d} into r parts, with |Wi | = |Ri | = di .
We define σ as the unique permutation of {1, . . . , d} that maps Ri to Wi and is in-
creasing on Ri for i = 1, . . . , r.

Definition 2.1 A refinement R of ρ is said to be anti-ordinary if

(INT) The Ri are intervals of {1, . . . , n}
(TR) The permutation σ attached to F and ρ is transitive.

(NCR) The restriction of F to ρi , i = 1, . . . , r, is non-critical.

Remark 2.2 (i) It should be noted that the anti-ordinarity of (ρ,F) is a global
property: it depends on ρ and not only on its restriction to Gv.

(ii) If ρ is non-critical, then the permutation σ is the identity. (We leave this as an
exercise for the reader.) Thus, in some sense, the anti-ordinary refinements are
highly critical.

(iii) If ρ is irreducible, then σ = 1 and no refinement is anti-ordinary. If ρ is a sum
of characters, then conditions (NCR) and (INT) are automatic and is is easy to
see that the number of anti-ordinary refinements is (d− 1)!.

(iv) For another case of existence of an anti-ordinary refinement, see [BC2, Lemma
9.3.4].

Proposition 2.3 Assume that d1 = 1 and d2 = d − 1. Then ρ admits an anti-
ordinary refinement if and only of the Hodge–Tate weights of ρ2 are all bigger, or all
smaller, than the Hodge–Tate weight of ρ1.

https://doi.org/10.4153/CJM-2014-020-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-020-9


Unitary Eigenvarieties at Isobaric Points 323

Proof Assume that ρ admits an anti-ordinary refinement. By hypothesis (INT),
either R1 = {1} or R1 = {d}. Assume first that R1 = {1}. If W1 = {i} with i < d,
then by definition σ maps the integer j > i to themselves, contradicting (TR). Thus
W1 = {d}, which means that the weights of ρ2 are all smaller than the weight of ρ1.
Similarly if R1 = {d}, then the weight of ρ1 is smaller than all the weights of ρ2.

Conversely, assume that the weights of ρ2 are all smaller than the weight of ρ1.
Then construct a refinement R by taking φd the eigenvalue of the crystalline Frobe-
nius on ρ1, and φ1, . . . , φd−1 the eigenvalues on ρ2 in whatever order defines a non-
critical refinement of ρ2 (such an order always exists; see [BC2, §2.4.6]). Then (NCR)
is satisfied by construction, and we have R1 = {d} and R2 = {1, 2, . . . , d − 1}, so
(INT) is satisfied. We also have W1 = {1} and W2 = {2, . . . , d} by assumption, so
σ(d) = 1 and σ(i) = i + 1 for 1 ≤ i ≤ d− 1, and (TR) is also satisfied.

3 Eigenvarieties at Reducible, Isobaric, Anti-ordinary Points

In this section we prove Theorem 1. We use the notations introduced in the statement
of that theorem: π is an automorphic forms for U(n), unramified at p, which is
isobaric and such that ρπ = ρ1 ⊕ · · · ⊕ ρr with the ρi irreducible of dimension
di . The representation ρ satisfies the hypotheses (REG), (NF’), (NGD), and R is an
anti-ordinary refinement of π. The eigenvariety for U(n) (and some suitable level) is
denoted by X and x ∈ X(Q p) is the point corresponding to (π,R).

3.1 Reminder of Results of [BC2]

Let Ox be the local ring of X at x, and let A be the quotient of Ox by a minimal
prime ideal (or in other words, the local ring at x of an irreducible component of X
through x). The ring A is a local domain whose maximal ideal will be denoted by
m and whose residue field is Q p, and it carries a pseudo-character T : GK → A of
dimension d, which residually is T ⊗ A/m = tr ρx = tr ρπ = tr ρ1 + · · · + tr ρr.
In particular, T is a residually multiplicity free pseudocharacter. Those pseudochar-
acters are subject to a close analysis in [BC2, chapter 1]. In particular, attached to
T there exists a family (Ai, j)i, j=1,...,r; i 6= j of fractional ideals of A (that is, finite type
A-submodules of L = frac(A)) such that:

(a) Ai, jA j,i ⊂ m for every two distinct elements i, j in {1, . . . , r};
(b) Ai, jA j,k ⊂ Ai,k for every three distinct elements i, j in {1, . . . , r};
(c)

∑
i 6= j Ai, jA j,i is the total reducibility ideal of T, that is the smallest ideal I of A

such that T ⊗ A/I is a sum of r pseudocharacters.

A key fact, which uses many of the main results of the book [BC2], is that the total
reducibility ideal of T at x is m, which intuitively means that on any closed subscheme
of Spec A that is strictly larger than the reduced closed point {x} (for example, on
the closed subscheme of X of ring Q p[ε]/(ε2)) that is defined by a non-zero tangent
vector of Spec A at x), T is less reducible than it is at {x}, namely it is not the sum of
as many as r pseudocharacters. This result relies on the anti-ordinarity of ρ, and the
hypotheses (REG), (MF′), (NGD). For a proof, see [BC2, Proposition 9.3.7] (see also
[B1, Proposition 7]).
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Therefore, we can restate (c) as

(c′)
∑

i 6= j Ai, jA j,i = m

We need one more fact. Since T is defined by interpolating representations satis-
fying ρ⊥(1− d) ' ρ, it satisfies T(cgc−1)ω(g)1−d = T(g) for every g ∈ GK,S, and the
same relation is also satisfied by each of the tr ρi , since π is isobaric. Thus we have,
according to [BC2, Lemma 1.8.5],

(d) for every i 6= j, Ai, j and A j,i are isomorphic as A-modules.

3.2 An Algebraico-combinatorial Result

We now prove a purely algebraico-combinatorial result.

Proposition 3.1 Let A be a local noetherian domain of maximal ideal m, residue field
A/m = F, with a family of fractional ideals (Ai, j)i, j=1,...,r; i 6= j that satisfy (a), (b), (c′),
and (d) above. Then if A is factorial, we have r > dim A.

Proof If A is an UFD, there exist elements x1, . . . , xr in L∗, such that for every i 6= j,
xix
−1
j Ai, j is a true ideal of A (see the proof of [BC2, Prop 1.6.1]). Changing the Ai, j

by xix
−1
j Ai, j obviously preserves conditions (a), (b), (c′), and (d). So we can assume

that the fractional ideals Ai, j are true ideals of A.
Let us call a pair {i, j} ⊂ {1, . . . , r} bad if Ai, jA j,i ⊂ m2, and good otherwise. By

Nakayama’s lemma, (c′) can be re-written as

(c′′)
∑
{i, j} good pair⊂{1,...,r} Ai, jA j,i = m.

Let {i, j} be a good pair. The two ideals Ai, j and A j,i are not both contained in m,
otherwise Ai, jA j,i would be contained in m2. But since A is local, the only ideal not
contained in m is A. Therefore, one of the ideals Ai, j or A j,i is A, and in particular
is free of rank one as an A-module, and by (d), so is the other, which is therefore
principal. Call X{i, j} a generator of that ideal. By (a), we have X{i, j} ∈ m, but since
{i, j} is a good pair, X{i, j} 6∈ m2. In particular, X{i, j} is irreducible. Note that this
analysis allows to give a natural orientation to a good pair {i, j}. We orient {i, j} as
(i, j) if Ai, j = AX{i, j}, and as ( j, i) if A j,i = AX{i, j}.

Now reduce (c′′) modulo m2. We get∑
{i, j} good pair⊂{1,...,r}

X{i, j}F = m/m2,

where X{i, j} is the image of X{i, j} in m/m2. In other words, the family of X{i, j}’s for
{i, j} running among good pairs is a generating family of the cotangent space m/m2

of A. Let t be the dimension (over the residue field F) of this space. We can choose
t good pairs such that the corresponding X{i, j} are a basis over F of m/m2. Call the
chosen pairs very good. So we have t very good pairs, and as is well known (by the
Hauptidealsatz), t ≥ dim A.

Consider the non-oriented graph Γ whose vertices are the elements in {1, . . . , r},
and whose edges are the very good pairs {i, j}. We claim that this graph is simply
connected (that is, it is a forest). For if there is a cycle (i0, i1, . . . , ik), with ik = i0,
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in this graph, we can assume (changing the cycle to (ik, ik−1, . . . , i0) if necessary)
that (i1, i0) is the natural orientation of the very good pair ({i0, i1}), so that Ai1,i0 =
X{i0,i1}A. But by (b), we have

Ai1,i2 Ai2,i3 · · ·Aik−1,i0 ⊂ Ai1,i0 .

The Ail,il+1 for l = 1, . . . , k − 1 are either A or of the form X{i, j}A for a very good
pair {i, j}. So we obtain that, in A, X{i0,i1} divides a product of X{i, j}’s for other very
good pairs {i, j}. Since the X{i, j} are irreducible, X{i0,i1} has to be equal, up to a unit
in A, to X{i, j} for {i, j} another very good pair. But this contradicts the fact that the
family of X{i, j}’s for {i, j} very good is a basis of m/m2, hence a linearly independent
set.

Since Γ is simply connected, a well-known and elementary result of graph theory
asserts that its number of edges is strictly less that its number of vertices. So t < r,
and therefore dim A < r.

3.3 End of the Proof of Theorem 1

We have now proved Theorem 1. Indeed, A is the local ring at x of an irreducible
component of X through x, so what the theorem states in its precise form is that
if π is not of type (1, . . . , 1), then A is not factorial. Since X is equidimensional of
dimension d−1, dim A = d−1. If A were factorial, we would have r > dim A = d−1,
so r ≥ d. On the other hand, since r is the number of irreducible factors of ρπ which
has dimension d, we have r ≤ d with equality if and only if all factors are characters;
that is, π is of type (1, . . . , 1). In all other cases, we get a contradiction proving that
A cannot be factorial.

To prove the first assertion of the theorem, namely that X is nonsmooth at x if π
is not of type (1, . . . , 1), we use the fact that X is smooth at x if and only if it is irre-
ducible in a neighborhood of x, and Ox = A is regular, together with the Auslander–
Buchsbaum theorem, which states that every regular noetherian local ring is factorial.

4 Finer Study of Eigenvarieties at Isobaric Endoscopic Anti-ordinary
Points of Type (n, 1)

Let π be as in Theorem 2. By assumption, ρπ satisfies all hypotheses (MF′), (NGD),
and (REG) of Theorem 1. Therefore we can apply this theorem and all the tools de-
veloped for its proof. We adopt the same notations. As we recalled in Susbsection 3.1,
the residually multiplicity free pseudo-character T defines fractional ideals A1,2 and
A2,1. To simplify notations, we set B = A1,2 and C = A2,1. We restate the properties
(a) to (d) above, and add another property (e), which is [BC2, Theorem I.5.5]:

(a) BC ⊂ m.

(b) Void here since r = 2.

(c),(c′) The ideal BC is the total reducibility ideal of T, that is the smallest ideal I of
A such that T ⊗ A/I is a sum of two pseudocharacters, and this ideal is m.

(d) B and C are isomorphic as A-modules.
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(e) There is a natural injective linear map

ιB : (B⊗ A/m)∗ → Ext1
GK

(ρ1, ρ2) ' H1(GK , ρ).

There is a similar map

(C ⊗ A/m)∗ → Ext1
GK

(ρ2, ρ1) = H1(GK , ρ
∗).

Note that the idea of (e) (in this case r = 2) is due to Mazur and Wiles (see [MaW]
and [HP]). The subspace of H1(GK , ρ) that we denote by H1

x (GK , ρ) is by definition
the image of ιB.

Let us introduce the following notation: for any finite-type A-module M, the min-
imal number of elements of a family of generators of M is, by Nakayama’s lemma,
equal to the dimension of M ⊗ A/m over the field A/m = Q p. We shall denote this
number by gen(M). Therefore, by (e),

dim H1
x (GK , ρ) = gen(B).

Proposition 4.1 We have gen(B) ≥ n and gen(C) ≥ n.

Proof By (d), there exists an x ∈ L∗ such that C = xB. Let L′ = L[u]/(u2 − x)
if x has no square root in L. Otherwise, let L′ = L and denote by u a square root
of x in L. Let A′ be the integral closure of A in L. Since A is excellent, A′ is of finite
type over A, and the morphism Spec A′ → Spec A is finite surjective. In particular,
dim A′ = dim A = n.

Now let B′ = BA′, C ′ = CA′, and m′ = mA′. From BC = m it follows im-
mediately that B′C ′ = m′, and from C = xB that C ′ = xB′. Set D = uB′. Then
D2 = u2B′B′ = xB′B′ = C ′B′ = m′. The fractional ideal D is therefore a true ideal
(since the square of any of its elements is in m′, so in A′, and A′ is normal).

The closed subschemes of Spec A′ defined by D and by m′ have the same underly-
ing topological space, and therefore the same dimension, which is 0, since the closed
subscheme attached to m′ is the fiber of the closed point of Spec A, and therefore is
finite. Since A′ has dimension n, the hauptidealsatz implies that gen(D) ≥ n. But
clearly, gen(C) = gen(B) ≥ gen(B′) = gen(D), and the proposition follows.

We deduce that dim H1
x (GK , ρ) ≥ n, which is Theorem 2.

We now turn to the proof of Theorem 3. We focus on the restriction T|Gv
of the

pseudocharacter T to the local Galois group Gv. Its residual pseudocharacter T|Gv
⊗

A/m is (ρ1)|Gv
+ tr(ρ2)|Gv

. By our hypothesis (IRR) that ρ|Gv
is irreducible, where

ρ = ρ−1
1 ⊗ ρ2, this is a residually multiplicity-free pseudocharacter with two residual

factors. Therefore the same analysis as before applies: there exists two fractional
ideals Bv, Cv of A such that the following hold:

(α) Bv ⊂ B and Cv ⊂ C ; in particular BvCv ⊂ m.

(γ) BvCv is the reducibility ideal of T|Gv
, namely the smallest ideal I of A such that

TGv ⊗ A/I is the sum of 2 pseudocharacters. In other words, Rx = Spec A/BC .

(δ) The A-modules Bv and Cv are isomorphic as A-modules. More precisely, there
is an isomorphism of B onto C that sends Bv onto Cv (cf. [BC2, Lemma 1.8.5]).
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(ε) There is a natural injective linear map

ιBv : (Bv ⊗ A/m)∗ → Ext1
Gv

(ρ1, ρ2) ' H1(Gv, ρ).

There is a similar map ιCv : (Cv ⊗ A/m)∗ → Ext1
Gv

(ρ2, ρ1) = H1(Gv, ρ
∗). The

maps ιBv and ιCv are compatible with the maps ιB and ιC in the sense that the
following diagrams commute:

(B⊗ A/m)∗
ιB //

��

Ext1
GK

(ρ1, ρ2) ' H1(GK , ρ)

restriction

��
(Bv ⊗ A/m)∗

ιBv // Ext1
Gv

(ρ1, ρ2) ' H1(Gv, ρ)

and

(C ⊗ A/m)∗
ιC //

��

Ext1
GK

(ρ2, ρ1) ' H1(GK , ρ
∗)

restriction

��
(Cv ⊗ A/m)∗

ιCv // Ext1
Gv

(ρ2, ρ1) ' H1(Gv, ρ
∗).

We can now prove Theorem 3, by contradiction. Assume that Rx = Fx. Since x
is not a smooth point of X, it cannot be an étale point of κ, since κ(x) is a smooth
point of W (which is smooth at all points, being a union of balls). Thus Rx = Fx

is larger than the reduced closed point x, which means that the inclusion BvCv ⊂ m
is strict. Since m = BC , then at least one of the inclusions Bv ⊂ B and Cv ⊂ C
has to be strict. By Nakayama’s lemma, this means that at least one of the linear
maps Bv ⊗ A/m → B ⊗ A/m and Cv ⊗ A/m → C ⊗ A/m fails to be surjective, or
equivalently, that the dual of one of these maps fails to be injective. Using (ε), this
means that at least one of the restriction maps

H1(GK , ρ)→ H1(Gv, ρ)(4.1)

and

H1(GK , ρ
∗)→ H1(Gv, ρ

∗)(4.2)

is not injective. Assuming the Bloch–Kato conjecture, the first map (4.1) is injective.
Indeed an extension of 1 by ρ has good reduction (in the sense of Bloch–Kato) ev-
erywhere but perhaps at v (cf. footnote 3), and if it lies in the kernel of the first map,
it is trivial (and in particular has good reduction) at v; so such an extension lies in
H1

f (GK , ρ), which is zero according to the Bloch–Kato conjecture.
We thus deduce that the second restriction map, (4.2), is not injective. This does

not, by itself, leads to a contradiction. However, applying this reasoning to ρ and
many of its twists, we will quickly derive a contradiction. We argue as follows.

Let τ : GK → 1 + pZp ⊂ Z∗p be a Hodge–Tate character of GK satisfying τ⊥ =
τ whose Hodge–Tate weight at v is negative. Let k ∈ Z. By [H], there exists an
automorphic representation πk for U(d) such that ρπk = ρ1 ⊕ ρ2τ

k. When k ≥ 0, it
is obvious that πk satisfies all conditions of Theorem 2. (When k < 0, the hypothesis
(WEI) may and will eventually fail). Hence the same reasoning as above tells us that
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for k ≥ 0, the map (4.2) for ρ replaced by ρτ k is not injective. That is, for k ≥ 0, the
map

(4.3) H1(GK , ρ
∗τ−k)→ H1(Gv, ρ

∗τ−k)

is not injective.
However, the non-injectivity of a map like (4.3) for all k ≥ 0 implies its non-

injectivity for all k ∈ Z (and even, all k ∈ Zp). This is because the function

d(k) = dim Ker(H1(GK , ρ
∗τ−k)→ H1(Gv, ρ

∗τ−k))

is lower semi-continuous (this is easy, but see e.g., [B3, page 15] for a proof). Hence
for all k ∈ Z, (4.3) is not injective.

But if we take k � 0, the Hodge–Tate weights of ρ∗τ−k at v will all be ≥ 2, and
hence any extension of 1 by ρ∗τ−k will have good reduction at v, as well as at all
places not dividing p. If such an extension lies in the kernel of (4.3), it has good
reduction everywhere, and hence must be 0 by Bloch–Kato conjecture (remember
that ρ∗τ−k also has motivic weight 0). This contradicts the non-injectivity of (4.3)
and concludes the proof of Theorem 3.

Thanks and apologies In four talks at seminars and conferences in North America
during the second half of 2008, I explained Theorem 1 and Proposition 2, with ideas
of their proof. I want to thank the audiences of those talks for their questions and
comments. In two of those talks, I also mentioned a third result, which was that the
map (4.2), page 327, was not injective. As should be clear from the reading of this
paper, this result is false. The proof I had in mind used the erroneous fact that Rx =
Fx, which I then mistakenly believed to have proved along the lines of [BC1, théorème
2]. I realized when writing the first version of this paper at the end of 2008 that
that result was false (or at least, in contradiction with the Bloch–Kato conjecture),
and it took me a few weeks to identify with certainty the guilty lemma (namely that
Rx = Fx). In doing so, I was helped by an email of R. Greenberg, whom I want to
thank here. I also want to offer my apologies to the audience of the two seminars
where I announced results whose proofs were insufficiently checked.

The author wishes to thank the anonymous referee for careful reading and advice.
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