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TIMO KNÜRR1*, ESA LÄÄRÄ2
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Summary

A new estimation-based Bayesian variable selection approach is presented for genetic analysis of complex traits
based on linear or logistic regression. By assigning a mixture of uniform priors (MU) to genetic effects,
the approach provides an intuitive way of specifying hyperparameters controlling the selection of multiple
influential loci. It aims at avoiding the difficulty of interpreting assumptions made in the specifications of priors.
The method is compared in two real datasets with two other approaches, stochastic search variable selection
(SSVS) and a re-formulation of Bayes B utilizing indicator variables and adaptive Student’s t-distributions (IAt).
The Markov Chain Monte Carlo (MCMC) sampling performance of the three methods is evaluated using
the publicly available software OpenBUGS (model scripts are provided in the Supplementary material). The
sensitivity of MU to the specification of hyperparameters is assessed in one of the data examples.

1. Introduction

Many genetic traits relevant to medicine, plant and
animal breeding, as well as to evolution are thought
to exhibit a complex genetic architecture. Large-scale
genetic marker data have become available in recent
years making genetic association and mapping studies
on genome level possible (McCarthy & Hirschhorn,
2008). These studies aim at identifying multiple genes
underlying either a quantitative trait (e.g. human
height, plant yield and milk production) or a quali-
tative trait such as disease status. Major questions
of interest are the number of such trait loci, their
genomic positions and the magnitude of locus-specific
effects on the trait. Classical quantitative genetic
theory assumes a great number of genes each with a
small effect on a polygenic trait (Fisher, 1918). How-
ever, empirical studies indicate that this assumption
may be unrealistic as mostly only a few loci, and these
with moderate-to-large effects, can be established.
The true underlying distribution of effect sizes has
been hypothesized to be bell shaped, exponential or

leptokurtic (see e.g. Otto & Jones, 2000; Hayes &
Goddard, 2001; Xu, 2003a). Regardless of these as-
sumptions being true for a specific trait or not, limited
sample sizes of real datasets prohibit the detection of
individual loci with small effects. As a consequence,
mixed inheritance models seem plausible in empirical
studies. On the one hand, they allow for an oligogenic
component as the systemic part to describe effects
of detectable trait loci. On the other hand, they
merge effects of undetectable loci into a polygenic
component. Multiple linear regression provides a
suitable statistical framework for analysing the
potential associations between complex traits and
genotypes.

Multilocus analysis is usually performed using
linear regression models where a small subset of loci is
selected out of a large number of markers as regressors
to the model. This is a model selection problem where
a large number of potential regressors and possibly
linkage disequilibrium, i.e. correlations among them,
complicate the task (see e.g. Broman & Speed, 2002;
Sillanpää & Corander, 2002; O’Hara & Sillanpää,
2009). For variable selection in genetic association
and mapping studies, numerous Bayesian approaches
have been proposed. They exhibit several advantages
over non-Bayesian methods: multiple testing is not an
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issue, Bayes factors (BFs) can be used to detect signals
of association, and model-averaging across the high-
dimensional posterior distribution incorporates the
uncertainty of the variable selection procedure into
the evaluation of model alternatives.

Bayesian variable selection methods may first fit
an over-parameterized model, in which the number of
regressors is much larger than the number of individ-
uals. All regressors are simultaneously taken as
potential explanatory variables, but shrinkage by
means of informative priors is used to force most re-
gressors to have zero or close-to-zero contribution
in the model. In the following, our focus will be on
different alternatives for shrinkage priors in the
context of genetic association and mapping studies.
Specifically, we will compare three different shrinkage
approaches.

The first one utilizes indicator variables and
adaptive Student’s t-distributions (IAt) in the specifi-
cation of priors assigned to gene effects and is a
re-formulation of the well-known Bayes B method
introduced byMeuwissen et al. (2001). The second ap-
proach is stochastic search variable selection (SSVS)
as formulated by George & McCulloch (1993). In the
third approach, we introduce a mixture of uniform
priors (MU) as an alternative type of prior specifi-
cation novel to Bayesian variable selection. We argue
that our approach, in contrast to the other two ap-
proaches, facilitates the biological interpretation of
prior assumptions.

Subsequently, we first describe the multiple re-
gression model in the context of genetic association
and mapping studies. Next, we provide details of the
prior specification in the three different approaches
and compare some of their methodological proper-
ties. Then, we spotlight the utility of the Bayes fac-
tor in variable selection. We apply Markov Chain
Monte Carlo (MCMC) methods as implemented in
the publicly available software package OpenBUGS
(Thomas et al., 2006) to two well-known datasets.
Our results consist of a comparison of posterior
results yielded by the three different models and an
assessment of their MCMC sampling performance
under OpenBUGS. Additionally, we evaluate the
sensitivity of our approach to the choice of hyper-
parameters in the prior specification in one of the data
examples.

2. Bayesian variable selection

(i) Data model

Consider an association analysis with a population-
based sample of distantly related individuals whose
phenotypes and genotypes (over marker loci) have
been measured. The quantitative phenotype measure-
ments Yi (i=1, …, N) fromN individuals are assumed

to follow a multivariate normal distribution with
mean vector m=(m1, . . . , mN)

T 2 R
N and variance–

covariance matrix s2I, where I is the NrN identity
matrix. Suppose there are M biallelic markers as
potential additively acting trait loci. Genotype ob-
servations, say AA, Aa and aa, are coded as 0, 1/2 and
1, respectively, in the NrM model matrix X. Thus,
the regression equation takes the form m=a+Xb,
where the vector a=(a, . . . ,a)T 2 R

N consists of N
entries with the common intercept a and the vector
b=(b1, …, bM)T holds the marker effects.

In practice, some genotypes in X may be missing.
In a Bayesian set-up, unobserved data points may be
treated as additional parameters to be estimated.
These nuisance parameters are assigned prior dis-
tributions leading to imputation of the missing values
according to their emerging posterior distributions.
Assuming Hardy–Weinberg equilibrium in the popu-
lation (see e.g. Hartl & Clark, 2007, pp. 48–54) and a
fixed frequency p for allele A, a natural choice for the
treatment of a missing genotype is to assign a multi-
nomial prior distribution with probabilities p2,
2p(1xp) and (1xp)2 for the genotypes AA, Aa and
aa, respectively.

This set-up can be extended to analyse binary traits
such as disease status via logistic regression (see
e.g. Hosmer & Lemeshow, 1989) : the phenotype of
individual i is modelled as a Bernoulli variable, say Zi

with occurrence probability qi=P(Zi=1). Identically
to the model above, we describe the vector of logit-
transformed occurrence probabilities by regression
on the genotype observations, i.e. Q*=a+Xb, where
Q*=(logit(q1), …, logit(qN))

T.

(ii) Sparse variable selection: alternative priors
for effect sizes

In a typical genetic association or mapping study,
the number of scored markers M is considerably
larger than the number of individuals N. Therefore,
the previously described data model typically leads
to an over-parameterized regression and needs some
regularization. Otherwise, the parameters to be esti-
mated remain unidentifiable. If all markers are
simultaneously allowed to contribute essentially to
the variation observed in the phenotype, the variation
of effect size estimates becomes too large for any
meaningful inference. Therefore, a model selection
problem arises, and it becomes inevitable to choose a
smaller subset of markers contributing essentially to
the phenotypic variation. In a Bayesian set-up, model
selection can be achieved by assigning restrictive, and
thus informative, priors to the effect sizes.

In suitable priors, a large fraction of the probability
mass is put either directly onto zero or onto a small
interval around it, rarely allowing large effects.
Simultaneously, they force the majority of markers
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to explain only an inconsequential part of the pheno-
typic variation, as measured in the posterior. The
graphical form of such priors resembles the shape
of a spike (peak at or around zero) and a slab (flat
away from zero) (Miller, 2002). These priors have also
been referred to as spike and smear (see e.g. Ioannidis,
2008). In the following, we only consider priors that
are symmetric around 0, because there is usually
no prior biological knowledge, whether a certain
genotype has a positive or negative effect on the
phenotype. However, the prior distribution may be
truncated to positive or negative values if appropriate.

Typically, a main question of inference in associ-
ation analysis is the quantification of evidence of
whether a marker is to be included into the subset
of trait loci. Here, introducing auxiliary indicator
variables as a part of the effect size priors supplies
a useful means for quantification. The indicator vari-
able obtains value 0 when the effect size is 0 or close
to it (spike), and 1 if a non-negligible effect in the slab
is detected. The marker occupancy probability in the
posterior distribution or BFs provide numerical
quantification (see section 4).

Making use of M independent indicators, one for
each locus, results in a binomial prior distribution for
the number of loci essentially associated with the
phenotype with expectation M(1xp0), when the prior
probability of marker exclusion is set to p0. The sparse
selection problem necessitates careful choice of this
prior probability : if single-site MCMC sampling is
used to approximate the posterior distribution, one
would prefer a small value to speed up mixing of the
Markov chain, as non-negligible effect sizes would
be sampled more often and the whole parameter space
could be explored faster. However, as the prior
distribution for the number of included markers is
binomial, a small value of p0 would result in a poten-
tially unrealistic high number of associated markers,
because the data would hardly have any chance to
overcome this strong prior belief. This would increase
the risk of overfitting the data and possibly distort the
signals and effect sizes from real associations. One
should ideally choose p0 such that–in the specific data-
set – a realistic degree of sparseness is obtained and
that the MCMC chain still mixes sufficiently ensuring
close approximation of the true posterior distribution.

Different strategies exist for utilizing indicator
variables in statistical modelling, MCMC sampling
and during the inference process :

(a) Indicator variables and adaptive Student’s
t-distributions (IAt)

When the prior of the effect size is discontinuous at
zero (has a ‘ lump’), the indicator may be treated as a
random Bernoulli variable, say Sm, which controls the
inclusion/exclusion of marker m. The effect size in the

data model can be expressed as the product bm=
Smhm (Kuo&Mallick, 1998), where hm is a continuous
auxiliary variable for a non-zero marker effect.
Independently from the prior of Sm, the prior of hm is
some symmetric distribution on the entire real line or
on an interval around zero. Thus, the support of the
spike consists only of the point 0 and marker m does
not contribute to the likelihood, whenever its indicator
Sm is 0. The shrinkage of the effect size is adaptive,
because the prior specifications of Sm as well as hm
allow for local, i.e. marker-specific, shrinkage. In
MCMC sampling algorithms, the updating schemes
for Sm and hm should be chosen carefully : if updated
in separate steps, hm is sampled from its prior dis-
tribution when Sm=0. Therefore, a fairly informative
prior should be chosen for hm to avoid sampling
too often values that lie in areas with low posterior
support of bm, which would result in slow mixing of
the MCMC chain with regard to Sm.

In IAt, each hm is independently assigned aGaussian
prior with mean 0 and its own variance parameter tm

2 ,
for which an inverse-gamma distribution with certain
constants for the two hyperparameters is assumed.
In fact, the marginal prior of the effect size bm=Smhm,
(i.e. after integrating over tm

2 ) is mathematically
equivalent to the formulation in Bayes B as presented
by Meuwissen et al. (2001), because the prior distri-
bution of bm has a point mass of p0 (prior probability
of marker exclusion) for bm=0 and the marginal prior
distribution of hm is a zero-centred and scaled
Student’s t-distribution (see e.g. Andrews & Mallows,
1974). As our formulation of the hierarchical para-
metrization differs from Bayes B, results concerning
the computational efficiency of an MCMC imple-
mentation of IAt may not be directly transferable to
Bayes B and, to avoid confusion, we refrain from
using the same name for the two parameterizations.
Given the convergence of MCMC simulation runs,
IAt and Bayes B should yield nearly identical pos-
terior estimates, as they both approximate the same
posterior distribution.

As in IAt, Sillanpää & Bhattacharjee (2005) used
the product bm=Smhm to express the effect size of a
genetic marker and chose the same hierarchical para-
meterization for the scaled Student’s t-distribution
of hm. Unlike in IAt, however, they induced a depen-
dence structure by assigning a joint Markovian prior
to the the set of indicators Sm to model linkage
disequilibrium among the markers. Also Sillanpää &
Bhattacharjee (2006) specified the prior of bm similar
to IAt. Here, another indicator variable was added to
the product Smhm to assign sample individuals stoch-
astically to two groups. Further, marker indicators Sm

were group-dependent thus allowing for different sets
of associated markers in the two groups.

In Bayes A proposed by Meuwissen et al. (2001),
there is no indicator Sm (i.e. bm=hm) and therefore
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the marginal prior of bm is directly the scaled Student’s
t-distribution. In a simulation study, Gianola et al.
(2009) demonstrated that Bayes A can be sensitive
to the specification of the hyperparameters when
predicting genomic breeding values and estimating
marker-effects. They argued further that their findings
can be directly transferred to Bayes B, because Bayes
B is equivalent to Bayes A when no probability mass
is assigned to 0 (i.e. p0=0). In contrast, Verbyla et al.
(2010) found neither Bayes A nor Bayes B to be sen-
sitive to prior specifications in estimating genomic
breeding values in a simulated dataset.

In a comparison of four different shrinkage ap-
proaches, Yi & Xu (2008) used a modified version of
Bayes A, where the hyperparameters in the inverse-
gamma distribution were treated as random variables.
Similarly, Xu (2003a) used a model without marker
indicators, but set both the hyperparameters in the
inverse-gamma distribution to zero. This leads to an
improper prior, namely p(tm

2 )/ tm
x2. Pikkuhookana &

Sillanpää (2009) took the approach of Xu (2003a),
but included marker indicators in the model and
finitely approximated the improper prior.

In this paper, we prefer to use fairly informative
values for the hyperparameters (i) to avoid potential
problems induced by improper priors, (ii) to ensure
the single-site updater to stay in a reasonable range
for the values of hm and consecutively also of bm and
(iii) to guarantee comparability with results obtained
from the other two approaches as described in the
following.

(b) SSVS

In contrast to the discontinuity at the origin in the
previous choice of prior, the probability mass of the
spike is concentrated on a small interval around zero
in SSVS as proposed by George & McCulloch (1993).
Both the spike and the slab have zero-centred normal
distributions, the spike having a small variance, say
t2, and the slab a large variance, say c2t2 with c�1.
Bernoulli distributions for the indicator variables Sm

control the a priori mixture proportions of the spike
and the slab: bmyp0N(0, t2)+(1xp0)N(0, c2t2), where
p0=P(Sm=0). Here, the support of the spike and that
of the slab are not distinct, but they are in fact the
same: the entire real line. Therefore, the interpretation
of Sm as an indicator for marker inclusion/exclusion
in the model does–strictly speaking–not hold: bm
obtains non-zero values almost surely, and thus mar-
ker m always contributes to the likelihood, irrespec-
tive of the value of Sm. Unlike in IAt, the likelihood
in SSVS contains only bm but not the indicator Sm

directly. Merely, the indicator controls whether the
effect size comes from the spike or from the slab.
In practice, however, the spike will be sufficiently
narrow, if the hyperparameters are appropriately

chosen. When Sm=0, it will allow only such small
values of bm that such marker effects can be con-
sidered ineffective or negligible in their contribution
to the likelihood.

Typically, pilot MCMC simulations are run to tune
the hyperparameters thus ensuring good mixing
properties of the final MCMC chain. Alternatively,
Meuwissen & Goddard (2004) gave t2 its own prior
and treated it as a random parameter to be estimated
with the other parameter c2 being fixed. In the pre-
diction of breeding values for genomic selection pur-
poses, Verbyla et al. (2010) found this model (Bayes
C) along with Bayes A as well as Bayes B (see previous
section) also to be insensitive to prior specifications.
In the context of variable selection, however, O’Hara
& Sillanpää (2009) noticed that this approach appears
sensitive to the choice of the mixing ratio c2 of the two
variances and may lead to poor separation capability
in distinguishing between true and false associations.
In this study, we chose to fix the two hyperpara-
meters, c2 and t2, to ensure the comparability of the
prior specification with the other two approaches.

During MCMC, the indicator variables are usually
treated as auxiliary parameters and updated in each
iteration of the sampling scheme. Therefore, posterior
occupancy probabilities are readily available for
inference concerning Sm. Although convenient for
inference and mostly used, the explicit sampling of Sm

would actually not be necessary, because the prior
of bm as well as its fully conditional posterior distri-
bution have continuous density functions that could
be directly exploited in a Metropolis–Hastings up-
dating step or during Gibbs sampling, respectively.

(c) Mixture of uniform priors

In this paper, we introduce a new class of spike-and-
slab–shaped priors for effect sizes. These priors aim
at fulfilling the following two properties : (i) hyper-
parameters controlling the extent of the spike and the
slab have a direct biological interpretation, which
simplifies the specification of realistic priors based on
expert knowledge; (ii) to ensure good simulation per-
formance, only one parameter per marker should be
updated during MCMC, i.e. separate sampling of
indicator variables and effect size values is avoided.

In our formulation, the prior density function fbm(x)
for a marker effect bm arises from a mixture of three
distinct uniform distributions on all loci m=1, …, M :

fbm(x)=p0 �
1

2b
� I(xb, b)(x)

+
1xp0

2
� 1

lxb
[I[xl,xb](x)+I[b, l](x)],

where IA(x) is the indicator function of a set A, i.e. it
obtains value 1 if xsA and 0 otherwise, and 0<b<l
are constants to be specified. The mixing proportion
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p0s(0,1) controls how much probability mass is
assigned to the interval around zero with borders
(xb, b). The effect size is limited to the interval (xl, l).
In this formulation, the supports of the spike and
the slab are distinct, (xb, b) for the spike and
(xl,xb][ [b, l) for the slab. Figure 1 illustrates the
prior density of this kind. In order to obtain a pos-
terior value for the occupancy probability of marker
m, we construct an indicator variable as a direct func-
tion of the effect size. We define the indicator as
Sm=1xI(xb, b) (bm), whose posterior distribution is
exploitable during posterior inference. Note, however,
that it is not necessary to sample Sm during MCMC
simulation.

The biological interpretation of the three hyper-
parameters (p0, b and l) to be specified is straight-
forward to conceptualize : the prior probability that
the absolute value of the effect size is smaller than b
is p0, and this prior does not allow effect sizes larger
than l. Although marker m contributes to the likeli-
hood for any value of bm, we may consider effect
sizes smaller than b as biologically negligible in this
context and may consequently interpret that the
marker is not essentially associated with the pheno-
type, i.e. is not a trait locus. This is undoubtedly
a simplistic interpretation, but on the other hand in
agreement with the empirical support (see Mackay,
2001, and references herein) suggesting that quanti-
tative variation cannot be explained by a very large
number of trait loci with very small effects, but that
it merely arises from a distribution of effect sizes re-
sembling some exponential distribution as proposed
by Robertson (1967). Further, the number of individ-
uals in the sample as well as the allelic frequencies
at single loci restrict the ability to detect small gene
effects and will therefore affect the choice of b.
Similarly, coarseness of measurement complicates
detection of small effect sizes, since such noise in the

data weakens the possibility of detecting signals from
small effects.

The upper limit l restricts the range of the values
that the effect size bm can obtain. Its specification
should allow effect sizes expected to be seen in the
data under the experimental design in question. Such
an upper limit may be hard to determine a priori, but
expert knowledge in form of the empirical evidence
that effect sizes of single trait loci are typically not
larger than a couple of phenotypic standard deviations
can serve as guideline: e.g. large locus effects on bristle
number in Drosophila are mostly between 0.5-and 2
phenotypic standard deviations (Mackay, 1996), and
Hayes & Goddard (2001) reported a maximal additive
locus effect size of 1.2 phenotypic standard deviations
in a meta-analysis of quantitative traits in livestock.

As will be shown below in the sensitivity analysis
of our approach, the specification of the effect size
limit l can seriously affect posterior estimates. This is
alarming, because altering l only affects the width of
the slab (i.e. the tails of the distribution). Of course,
posterior results should ideally not be influenced by
the width of the tails. Clearly, this problem is common
to all the three spike-and-slab approaches considered
in this study, because they share the assumption of
relatively flat tails in the respective prior distributions
and the widths of the tails are specified via hyper-
parameters. In principle, this problem could be tar-
geted at by treating the hyperparameters influencing
the tails as random variables and trying to estimate
them from the data. Successful identification of these
parameters can only be expected, if effect size para-
meters get estimated with high precision and enough
markers are estimated with large effects providing the
necessary information on the tails of the distribution.
While the precision of effect size estimates can be
improved by increasing the sample size, the number of
markers with large effects is limited by the genetic
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Fig. 1. Prior density of an effect size bm with probability of marker exclusion p0, border value b and upper limit l.
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architecture of the trait : as mentioned in the intro-
duction, empirical studies indicate that even with
dense marker sets only a few loci with large effects can
be identified for many traits resulting in poor iden-
tifiability of the tails.

3. MCMC and sampling performance

We implemented the three models presented above
in the BUGS script language, and ran MCMC simu-
lations in OpenBUGS version 3.0.3 via the R-package
BRugs version 0.4–3 (Thomas et al., 2006). The
BUGS script is provided in the Supplementary
material.

In order to assess sampling performance of the
competing models with respect to marker indicators,
we first calculated the number of switches between
0s and 1s for sequences of marker indicator MCMC
samples. Then, we divided this number by compu-
tation time to attain comparability across the com-
peting sampling algorithms.As the number of switches
is strongly influenced by the marker’s occupancy
probability, i.e. the proportion of 1s in the sequence,
results for different markers within the same model
cannot be compared. However, if occupancy prob-
abilities are close to each other in competing models,
marker-specific number of switches can be used to
compare model performance.

Additionally, we assessed computational perform-
ance of the threemodels by calculating effective sample
sizes (ESS). Specifically, we used the initial positive
sequence estimator as proposed by Geyer (1992) to
estimate the cumulative lagged autocovariances in the
MCMC sampling sequences of each effect size par-
ameter bm. Thus, we obtained the MCMC errors of
the posterior means needed to calculate ESS. Again,
the division of ESS by computation time makes com-
parison across models possible (see Waagepetersen
et al., 2008). The interpretation of ESS for a Monte
Carlo estimate (here the mean of bm calculated across
MCMC iterations) is, how many independent samples
one would need to generate to obtain the same
precision of this estimate as obtained from Markov
Chain sampling, where consecutive samples are auto-
correlated. Thus, ESS divided by computation time
can be used to compare the sampling performance
of posterior mean estimation, as long as the marginal
posterior distributions of the effect sizes yielded by the
different MCMC samplers are reasonably close to
each other.

4. Posterior inference on marker occupancy and BFs

In genetic association and mapping studies, the main
focus is to quantify the importance of a marker with
respect to its influence on the trait in question. The
variable selection methods above provide the

posterior distribution of the dichotomous marker
indicators to address this question.

This posterior can be explored in terms of marker
occupancy probabilities during MCMC, i.e. we count
in how many iterations a certain marker obtains value
1 and calculate the corresponding occupancy prob-
ability by dividing this count by the total number of
MCMC iterations. When interpreting this posterior
probability, we have to keep in mind that the prior
specification does not necessarily correspond to expert
prior knowledge as conventionally intended in the
Bayesian paradigm. Merely, as mentioned in section 2
(ii), we have to carefully control p0 (prior probability
of marker exclusion) to obtain a realistic degree of
sparseness in the multilocus model and to guarantee
sufficient mixing of the MCMC chain. Therefore,
we are not completely free in assigning a prior
probability that would correspond to expert prior
knowledge.

Next to posterior probabilities, BFs provide an
alternative measure of evidence. For dichotomous
variables, such as a marker indicator Sm, the BF is
simply calculated as the ratio of posterior odds to
prior odds (Kass & Raftery, 1995):

BFm=
ppost(Sm=1)
ppost(Sm=0)

�
pprior(Sm=1)
pprior(Sm=0)

:

Following Jeffreys (1961), the BF values can be
classified into categories characterizing the strength of
evidence they suggest against the hypothesisH0 :Sm=0
(or against H1 :Sm=1):

’ evidence ‘not worth more than a bare mention’ :
a BF between 1 and 3 (0.3 and 1),

’ ‘ substantial ’ evidence: a BF between 3 and 10
(0.1 and 0.3),

’ ‘ strong’ evidence: a BF between 10 and 100
(0.01 and 0.1),

’ ‘decisive ’ evidence : a BF above 100 (below 0.01).

We use these evidence limits in the graphical presen-
tation of the results (left panel of Fig. 3 and Fig. 6a).

For any two hypotheses, the BF is defined as the
ratio of the marginal likelihoods of the two hypoth-
eses, say Pr(data|H1)/Pr(data|H0). As pointed out by
Satagopan et al. (1996), stable estimation of these
marginal likelihoods can be challenging depending on
the complexity of the models the hypotheses rep-
resent. Estimation of the BF for marker occupancy, as
seen above, is straightforward and does not require
demanding computations, because the two competing
hypotheses concern only the status of the dichot-
omous marker indicator.

As can be seen from the general definition of the BF
with regard to two arbitrary hypotheses, its esti-
mation corresponds to calculation of two marginal
likelihoods, which involves integrating over parts of
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the parameter space, i.e. different models with varying
parameter values are weighted according to their
respective probabilities under the hypothesis in ques-
tion. Hence, the ratio of two marginal likelihoods,
i.e. the BF, is a model-averaged measure for the
evidence against H0, somewhat similar to the con-
ventional likelihood ratio test statistic. However, the
conventional likelihood ratio test statistic is based on
only two models, namely those two that maximize
the likelihood of the data under the two hypotheses,
thus ignoring uncertainty induced by the existence of
model alternatives. Additionally, the likelihood ratio
only provides a means to compare nested models,
whereas such a restriction does not apply to the use of
BFs, as H0 and H1 can be freely chosen.

5. Examples

(i) Barley data

(a) Description of the data and specification
of the prior

The data originate from the North American Barley
Genome Mapping Project (Tinker et al., 1996). The
plant material consisted of 150 two-row barley
(Hordeum vulgare L.) double-haploid lines, for which
seven agronomic traits were monitored. Here, we only
analysed one of the traits : days to heading. We
excluded five double-haploid lines due to missing
trait observations (one line) or completely missing
genotypes (four lines). As the trait was monitored
in 25 different environments, we averaged the ob-
servations across the environments for each double-
haploid line. Here, we report results based on the
standardized scores of these 145 means, which were
used as quantitative phenotype measurements. In case
of double-haploid lines, the genotype data in X com-
prise dichotomous observations, say genotypes AA
and aa, for each marker. Here, 127 markers on seven
linkage groups were scored. Nine hundred and thirty
genotype observations (5.1%) were missing.

The prior distributions assigned to the gene effects,
bm, are illustrated in the left plot of Fig. 2. As the
density function of the prior of bm is not defined at
0 for IAt, we present the cumulative distribution
functions (CDF) to allow comparison. We deliber-
ately choose the values of the hyperparameters in IAt,
SSVS and MU so that the distributions would
resemble each other. As can be seen in the figure, the
distributions are visually distinguishable only in the
tails of the distributions. In the following we give
the numerical values for the hyperparameters used in
the prior specifications.

We assumed the following priors for the parameters
shared by all three models : for the intercept par-
ameter a a normal distribution with mean 0 and vari-
ance 106, for the residual variance s2 an inverse-gamma

distribution with shape parameter 0.01 and scale
parameter 100, and for missing genotype observations
in the model matrix X Bernoulli distributions with
probability 0.5. In all three models, the prior exclusion
probability was set to p0=0.89 for each marker.
Therefore, in both IAt and SSVS, the model para-
meters Smwere given Bernoulli priors with probability
1xp0=0.11. This choice for p0 was arbitrary ; we ad-
dress the question of the influence of this choice below
in the sensitivity analysis for MU.

In IAt, the marker-specific effect size variances tm
2

were given inverse-gamma prior distributions with
shape 1 and rate 1. In SSVS, we set the variances of
the spike and the slab to t2=1.1r10x5 and c2t2=
0.15, respectively. In MU, we used the border value
b=0.01. Here, this corresponds to a minimal effect
size of 1% of the phenotypic standard deviation, be-
cause we analysed a standardized score. Likewise, we
allowed for a maximal effect size of one phenotypic
standard deviation by setting the limit value to l=1.

(b) Comparison of posterior estimation

The three models yielded slightly different estimates
for the summary statistic NQ=g127

i=M
Sm, which counts

the indicators with value 1 across loci and aims at
estimating the number of trait loci in the marker
data. Keeping in mind that the individuals are from a
double-haploid population, the conclusions that can
be drawn from the estimates of NQ with respect to the
genetic architecture of the trait are very limited. The
posterior mean of this combined parameter was
smallest for IAt with 17.5. For MU and SSVS, the
posterior means were 19.0 and 22.9, respectively.
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Fig. 2. Comparison of prior distributions in IAt (blue),
SSVS (red) and MU (black). The curves indicate the CDF
of the prior distributions assigned to gene effects bm in the
analysis of the Barley data (left) and the CF data (right).
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Thus, IAt estimated more parsimonious models than
the other two. However, the mean number of trait loci
was estimated higher in all three models when com-
pared with the prior assumption assigned to this par-
ameter, M(1xp0)=14.0.

The observation that IAt produced the most simple
models was corroborated by the residual variance:
posterior estimation showed the highest residual vari-
ance for IAt with a maximum a posteriori (MAP)
estimate of 0.14, and 0.08–0.25 as the 95% credible
interval with the 2.5% quantile as lower, and the
97.5% quantile as upper bound (95% CI). For
MU and SSVS, the MAPs and 95% CIs were 0.11
(0.07–0.22) and 0.12 (0.06–0.21), respectively. As we
were analysing a standardized trait, we obtainedMAP
estimates for heritability by calculating h2=1xs2,
which yielded 0.86 for IAt, 0.89 for MU, and 0.88 for
SSVS.

Table 1 reports BFs for marker occupancy of 12
loci with strongest evidence according to all three
models. Notably, all three models identified the same
five markers to have the highest BFs, all of them being
above 100. The left panel of Fig. 3 shows the BFs for
the remaining 115 markers illustrating their com-
parability among the three models : the majority of
markers fell within the same categories of strength of
evidence (see section 4) for all the three models.

The Bland–Altman plots (Altman & Bland, 1983)
for the posterior means of the effect sizes in the right
panel of Fig. 3 show that estimates of the effect sizes
did not systematically differ in the three models.

(c) Performance of MCMC simulation

Computation of 40 000 iterations took 235 min for
MU, 666 min for IAt and 234 min for SSVS. The left

panel of Fig. 4 shows the number of switches between
0s and 1s per minute of computation time for each
marker indicator in the three competing models. MU
showed best performance with respect to this indi-
cator of mixing property: for MU, the number of
switches per minute was on average 1.4 (median: 1.4)
times higher than for IAt, and 2.1 (median: 1.7) times
higher than for SSVS. When compared with SSVS,
IAt performed better with on average 1.4 (median:
1.2) times more number of switches per minute.

The right panel of Fig. 4 shows Bland–Altman
plots of effective sample sizes per minute (ESS/min) of
computation time for each effect size parameter in the
three competing models. Also here, MU showed best
performance: it yielded on average 1.6 ESS/min more
than IAt (median: 0.8), and 2.0 (median: 0.7) more
than SSVS. SSVS had better performance than IAt
according to this criterion, with the average number
of ESS/min being 0.5 more in SSVS than in IAt
(median: 0.0). However, the picture from this per-
formance measure was less pronounced than for the
indicators : we observed 107 (of 127) effect sizes with
higher ESS/min in MU than in IAt ; 109 times the
number was higher in MU than in SSVS, and 74 times
higher in SSVS than in IAt.

(d) Sensitivity analysis

In order to assess the sensitivity of our proposed
model MU to the choice of the three hyperparameters
p0, b and l, we estimated the posterior distribution via
MCMC simulation under eight different prior speci-
fications of these hyperparameters. We assigned two
substantially different values to each parameter (p0=
0.99 or 0.79, b=0.01 or 0.1, l=1 or 10) and formed all
possible parameter triplets with these values. All other
prior parameters were specified as before. Table 2
shows the prior specifications of the eight MCMC
chains and posterior estimates for the number of
occupied markersNQ and the residual variance s2 and
Fig. 5 occupancy probabilities of all markers. For
reference, the positions of markers reported in Table 1
as well as threshold lines corresponding to a BF of
10 are also represented in Fig. 5.

As expected, chains A–D with higher p0 yielded
sparser models as reflected in the smaller posterior
estimates of NQ when compared pairwise with chains
E–H. Correspondingly, more phenotypic variation
remained unexplained in chains A–D as indicated
by the larger posterior estimates for s2. Notably,
the prior mean of NQ with value 1.3 in chains A–D
is smaller than the corresponding posterior means
estimated with values ranging between 3.1 and 10.5,
whereas the prior mean of NQ is higher than the pos-
terior estimates (8.2–23.9) in chains E–H. The marker
occupancy probabilities in Fig. 5 also show that the
chains with p0=0.99 (A–D) yielded sparser models,

Table 1. Comparison of Bayes factors (BFs) for marker
occupancy and ranks in the three competing models
(Barley data). Results of 12 markers that are among
the 10 markers with highest BFs in at least one model.

Marker
ID

IAt SSVS MU

BF Rank BF Rank BF Rank

44 4195 1 ‘ 1 9239 1
86 1770 2 507 2 753 2
9 214 4 166 4 350 3
6 116 5 126 5 211 4
33 540 3 272 3 177 5
117 39 6 44 9 111 6
55 30 8 95 6 68 7
62 37 7 29 12 63 8
12 19 10 38 11 31 9
122 20 9 53 8 29 10
63 16 11 57 7 19 12
40 13 13 38 10 19 13
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as these estimates are close to 0 for most markers.
In contrast, three of the chains with p0=0.79 (E–G)
produced noisy pictures with considerably more
markers obtaining posterior estimates away from 0.
Although the noise in chain H is less pronounced
than in chains E–G it is still somewhat more than in
chain D.

The pairwise comparisons of chains A, B, E and F
with smaller border value b against chains C, D, G
and H also yielded results as expected: choosing
a small value for b facilitates the indicator variables
Sm to obtain value 1 and accordingly the posterior
estimates of NQ were estimated larger for smaller b

indicating less sparse models. Correspondingly,
occupancy probabilities are found notably above 0
at more markers in chains A, B, E and F in these
pairwise comparisons. In three out of the four com-
parisons, s2 was estimated higher reflecting more vari-
ation unexplained for smaller b. The exception was
the comparison of chains E and G, where the point
estimates and the 95% credibility intervals of s2 were
very similar.

Changing the maximal effect size limit l from 1 to
10 notably increased the posterior estimates for s2

and reduced the posterior estimates of the number
of occupied markers NQ as seen in the pairwise
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Fig. 3. Results for the Barley data. Left panel (a–c) : Bayes factors (BFs) for marker occupancy on logarithmic scale.
The 12 BFs reported in Table 1 are not shown. Dashed lines indicate the borders of the BF categories of strength of
evidence (see section 4). Right panel (d–f) : Bland–Altman plots for effect sizes of 127 markers.
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comparisons of chains A, C, E and G with chains B,
D, F and H, respectively. As seen from Fig. 5,
also the estimation of occupancy probabilities was
seriously affected. As mentioned earlier in the de-
scription of the MU approach, this result is alarming,
because altering the maximal effect size limit l only
affects the width of the slab (the tails of the prior dis-
tribution of bm) and should not influence posterior
estimates. However, similar sensitivity to the specifi-
cation of the tails is expected to be seen in any spike-
and-slab approach where the tails are determined via
hyperparameters. We should also note here that set-
ting l=10 was a deliberately extreme choice for this
parameter in the light of locus effects being probably

not larger than 2 phenotypic standard deviations for
many quantitative traits (cf. Mackay, 1996; Hayes &
Goddard, 2001). Evidently, restricting l to a more
realistic value would have resulted in the sensitivity
appearing less strong.

(ii) Cystic fibrosis (CF ) data

(a) Description of the data and specification
of the prior

We also analysed a second well-known dataset, in
which the phenotype is a binary disease status, using
logistic regression as described in section 2 (i).We used
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Fig. 4. Results for the Barley data. Left panel (a–c): number of switches per minute during MCMC simulation for 127
marker indicators. Right panel (d–f) : Bland–Altman plots for ESS/min for 127 posterior means of effect sizes.
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the data on 92 haplotypes of individuals affected with
CF and 94 control haplotypes (N=186) as reported
by Kerem et al. (1989). The data contain observations
of M=23 biallelic restriction fragment length poly-
morphism (RFLP) markers ranging over a 1.8 Mb
candidate region on human chromosome 7 (region
q31). The marker data consist of distinct haplotypes,
rather than diploid genotype data, and haplotype
pairs belonging to the same individuals cannot be
matched. Therefore, we had to perform the analysis
based on a double-sized sample, in which each indi-
vidual is represented twice, although such analysis has
been criticized (cf. Sasieni, 1997). One hundred and
sixty-nine allelic observations (4.0%) were missing.

As for the Barley data analysis, we give a graphical
illustration for the prior distributions assigned to
the gene effects, bm (right plot of Fig. 2). As above, the
hyperparameters were deliberately chosen so that
the distributions would resemble each other for IAt,
SSVS and MU.

In all three models, we chose an arbitrary value for
p0 and set p0=1x1/M=0.957. The intercept par-
ameterawas assigned anormal distributionwithmean
0 and variance 106. All missing alleles were imputed
by assigning Bernoulli priors with probability 0.5. In
IAt, each marker-specific variance for the effect size
tm
2 was assigned an inverse-gamma prior distribution
with shape parameter 1 and rate parameter 1. In SSVS,
we used a value of t2=2.28r10x4 for the prior vari-
ance of the spike, and a value of c2t2=3.77 for the prior
variance of the slab. The border value in MU was set
to b=0.05 and the limit of the effect sizes to l=5.

(b) Comparison of posterior estimation

More parsimonious models were favoured by MU
than by the other two models, with the posterior

means of the summary statistic NQ=g127
i=M

Sm being
2.6 in MU, 2.9 in SSVS and 3.1 in IAt. Here, we
should note that NQ aims at estimating the number of
trait loci found in the marker data. As the marker
data are from a 1.8 Mb candidate region, i.e. only a
very small fragment of the human genome,NQ cannot
estimate the total number of trait loci found in the
entire genome and does therefore not allow any con-
clusions with respect to the genetic architecture of the
trait. Table 3 shows the posterior distribution of NQ

under the three models and its prior binomial distri-
bution. The modes of the distributions show that MU
supported models with two trait loci in the data, IAt
models with three trait loci, whereas SSVS yielded
models with two or three trait loci almost equally
likely.

Fig. 6a shows the marker-specific BFs for marker
occupancy in the three models. All models distinctly
identified signals of at least ‘strong evidence ’ for
markers 10 and 17 according to their BFs. For marker
17, the BFs in the three models agreed well with values
between 64 and 77. For marker 10, IAt and MU
yielded comparable BFs of 70 and 77, whereas the BF
in SSVS was remarkably high with 5692. There were
also signals of ‘substantial evidence’ with BFs be-
tween 4 and 9 for markers 2 and 18 in all three models.
Also the estimated effect sizes (Fig. 6c) suggested
strong trait loci at positions 10 and 17 and weaker
ones at positions 2 and 18.

Previous studies identified the same markers as
reported here. The 20-kb region between markers 17
and 18 is known to contain the DF508 mutation, a 3-bp
deletion found in 66% of CF chromosomes world-
wide (Bertranpetit & Calafell, 1996). Molitor et al.
(2003) as well as Sillanpää & Bhattacharjee (2005)
reported associations between CF and markers 10 and
17 making use of marker map information. Molitor

Table 2. Prior specifications and posterior estimates for the eight MCMC chains A–H used to evaluate the
sensitivity of model MU on the analysis of the Barley data. The summary statistic NQ=gM

i=1Sm is the number of
occupied markers and has prior mean E(NQ)=M(1xp0). The lower and upper limits of the reported credible
intervals (95% CI) are the 2.5% and 97.5% quantiles, respectively. The point estimate used for the residual
variance s2 is the MAP estimate.

Chain

Prior specification Posterior estimates

NQ s2

p0 b l E(NQ) Mean 95% CI MAP 95% CI

A 0.99 0.01 1 1.3 10.5 7.0–13.0 0.18 0.13–0.45
B 0.99 0.01 10 1.3 5.8 2.0– 8.0 0.40 0.32–0.77
C 0.99 0.10 1 1.3 6.6 4.0– 9.0 0.16 0.11–0.30
D 0.99 0.10 10 1.3 3.1 2.0– 5.0 0.26 0.18–0.41
E 0.79 0.01 1 26.7 23.9 19.0–30.0 0.11 0.06–0.21
F 0.79 0.01 10 26.7 12.8 9.0–16.0 0.17 0.11–0.37
G 0.79 0.10 1 26.7 18.3 13.0–24.0 0.13 0.07–0.20
H 0.79 0.10 10 26.7 8.2 6.0–11.0 0.15 0.10–0.27
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et al. (2003) used a single-locus model for marker
position and found a bimodal distribution with peaks
at locations corresponding to markers 10 and 17.
Sillanpää & Bhattacharjee (2005) used the smoothed
distances to control for between-marker correlations
in a multilocus model. The less pronounced effect
at marker 2 has also been observed by Lazzeroni
(1998) using marker-specific estimates of linkage dis-
equilibrium. Sillanpää & Bhattacharjee (2006) derived

stochastically two etiological subgroups from the data,
and found a strong association at marker 2 within the
smaller subgroup consisting of around 20% of the
haplotypes.

(c) Performance of MCMC simulation

Computation of 40 000 iterations took 79 min for
SSVS, 115 min for IAt and 153 min for MU. IAt
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Fig. 5. Marker occupancy probabilities for the eight MCMC chains A–H used to assess the sensitivity of model MU on
the analysis of the Barley data. The vertical lines indicate the markers with the highest (BFs) for marker occupancy as
reported in Table 1. The horizontal lines indicate the probability levels corresponding to BFs of 10 under the respective
values of p0 (0.99 in chains A–D and 0.79 in chains E–H).
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clearly outperformed the other two models with re-
spect to the number of switches per minute of com-
putation time for marker indicators (see Fig. 6b). MU
performed better than SSVS with on average 4.8 times
more number of switches/minute (median: 2.6), with
higher values at 20 of the 23 markers. When compar-
ing the three models by ESS/min for effect sizes (see
Fig. 6d), again IAt showed the best performance with
highest ESS/min at 21 loci.

6. Discussion

We have presented a new approach (MU) to specify
slab-and-spike priors for Bayesian variable selection
in genetic association and mapping studies. We illu-
strated its application as well as its performance in
two genetic datasets. We have also compared its
computational efficiency in MCMC estimation with
two other approaches (IAt and SSVS) used to identify
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multiple trait loci. Under the chosen prior specifica-
tions, the three models yielded similar results with
respect to trait locus detection.We observed fairly high
sensitivity of posterior estimation to the prior specifi-
cations in MU. The high sensitivity is likely due to the
considerable differences in the choice of the hyperpara-
meters we used for the sensitivity analysis. We further
argue that the other two approaches and any other
spike-and-slab approach requiring hyperparameters
are similarly sensitive, because altering hyperpar-
ameters affects the forms of the spike and the slab.

The differences in computational efficiency reported
here only reflect the performance of sampling schemes
as implemented in OpenBUGS, and can–at best–be a
guide to choose between the three models when
OpenBUGS is used. Further, even for OpenBUGS
the differences between efficiency statistics reported
here do not unequivocally favour any one of the three
models : themost efficient approach in the linearmodel
used for the Barley data appears to be MU, whereas
IAt seems superior when applying logistic regression
to the CF data. This is arguably attributable to the
differences in implementation of the linear and
logistic models inOpenBUGS. The computation times
required for MCMC simulation in the two data ex-
amples suggest that run-times in OpenBUGS remain
at reasonable levels for studies with a few hundreds of
markers at most.

Our study does not give any indication that the pos-
terior results yielded byMU are in any way inferior or
superior when compared with the other two
approaches. In contrast, we specified the hyperpara-
meters in the three models in such a way that the priors
resembled each other and MCMC estimation yielded
similar results. Thus, the only obvious benefit of MU
lies in the more straightforward interpretation of the
the hyperparameters, until a more efficient MCMC
sampler is available. This is currently being worked on.

The main target in variable selection problems is
to answer the question, whether we should consider a
potential explanatory regressor to influence the out-
come or not. This question is addressed by testing
some statistical hypothesis. Specifically, testingmarker
inclusion means deciding in favour of or against a

precise null hypothesis. The precise null hypothesis can
be formulated in terms of a point null or an interval
null (see Berger & Delampady, 1987; Berger & Sellke,
1987). The latter corresponds to relaxing our concep-
tion of precise in the sense that a marker may exhibit
some minuscule effect on the trait, which is, however,
to be considered as of no practical interest. Use of BFs
as a measure of evidence in genetic association and
mapping studies has been motivated, at least, by the
following properties : (1) they are similar to the likeli-
hood ratio statistic, i.e. the evidence is compared
against a null model (Lee & Thomas, 2000), (2) they
are able to combine evidence from multiple data
sources (see Ball, 2007; Wakefield, 2008), (3) they
provide interpretation (unlike P-values) independent
from sample size (Wakefield, 2009) and (4) ‘(they) may
be used routinely to interpret ‘significant’ associations’
(Ioannidis, 2008).

A common approach for estimation-based variable
selection in Bayesian multilocus models is to fit
scaled zero-centred Student’s t-distributions to effect
size parameters. These distributions are controlled
by two parameters : (a) the degrees of freedom deter-
mining the peakedness as well as the heaviness of the
tails and (b) the scale parameter determining the dis-
persion in the distribution. Here, the peakedness of
the distribution controls the degree of sparseness in
the selected markers, whereas the dispersion in the
distribution relates to the range of possible effect size
values. In IAt, Student’s t-distributions are obtained
by applying a hierarchical prior consisting of normally
distributed effect sizes each with its own variance par-
ameter. IAt, however, extends the common Student’s
t approach by introducing another means to control
for sparseness in the model. The Bernoulli indicator
variables control inclusion/exclusion of a marker.
Thus, a third parameter contributes to the set-up of
priors, namely, the prior probability of the Bernoulli
distribution. As IAt is in fact an alternative para-
metrization of the well-studied Bayes B approach
proposed by Meuwissen et al. (2001), posterior esti-
mates should be identical, but our results concerning
the computational properties for the MCMC im-
plementation of IAt are not transferable to Bayes B.

As in IAt, three parameters specify the prior set-up
of the effect size parameters in SSVS: here, the
Bernoulli probability of the marker indicators deter-
mines the mixing proportion of the spike and the slab,
whose variances are then controlled by the two re-
maining parameters. Whereas in IAt and SSVS
only the Bernoulli probability of the marker indicator
offers a direct biological interpretation, also the
other two parameters used in the prior set-up of MU
are straightforward to interpret : the border value b
directly states when an effect size is to be considered
negligible, and the other parameter l restricts the
range of effect sizes to a realistic limit.

Table 3. Prior and posterior distributions of the
summary statistic NQ=gM

i=M
Sm (number of occupied

markers) for the CF data.

Model

NQ

0 1 2 3 4 5 o6

IAt – 0.001 0.288 0.407 0.225 0.065 0.015
SSVS – – 0.376 0.374 0.216 0.031 0.003
MU – 0.006 0.537 0.341 0.098 0.017 0.002

Prior 0.360 0.376 0.188 0.060 0.014 0.002 0.000
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As seen in our sensitivity analysis, posterior results
heavily depend on the assumptions concerning the
tails of the prior distribution assigned to effect sizes.
As large effects appear to be rare phenomena in
complex traits, there is little hope that single studies
or even meta-analyses could provide enough infor-
mation to identify these tails for a specific quantitative
trait. Additionally, genetic association and mapping
studies generally suffer from the Beavis effect (Lande
& Thompson, 1990; Beavis, 1998; Xu, 2003b) : limited
sample size prohibits identification of trait loci with
small effects and leads to the ‘winner’s curse ’ of dete-
cted loci, i.e. effect sizes of trait loci are typically over-
estimated and cannot be replicated in follow-up studies
due to underpowered study designs (Lohmueller
et al., 2003; Xiao & Boehnke, 2009). Therefore, trying
to estimate effect sizes and identify the tails of a slab-
and-spike distribution simultaneously could yield a
biased picture not only for effect sizes but for the
tails as well. It therefore appears reasonable to treat a
parameter used to specify the width of the tail, such as
l in MU, as a hyperparameter to be specified and rely
on prior knowledge or even assumptions independent
from the data to be analysed.

Whereas the indicator variables (Sm) are treated as
model parameters in IAt and SSVS and are sampled
during MCMC simulation, both the adaptive shrink-
age method of Xu (2003a) which makes use of an
improper prior, as well as MU avoid sampling of
indicator variables. However, there is one important
difference between the approach of Xu (2003a) and
MU: the former lacks the prior control for the degree
of sparseness in the model. On the other hand, this
lack of control can also be seen as an advantage: the
posterior distribution in the model of Xu (2003a) can
summarize the degree of sparseness from the infor-
mation in the data and relatively vague prior as-
sumptions. However, if the information in the data is
too little or the degree of sparseness should reflect
our biological assumptions concerning the number of
trait loci, the direct control of sparseness provided in
MU is an advantage over the shrinkage approach
of Xu (2003a).

Genomewide application of any of the three models
presented here to thousands or even a larger number of
markers would require MCMC simulation by another
means than OpenBUGS. More efficient MCMC im-
plementations and algorithms are topics for future re-
search. With limited computer resources in mind,
recent developments in computationally fast approxi-
mative Bayesian methods not relying on MCMC
simulation present an attractive alternative, especially
for large-scale studies. These include the design of fast
expectation–maximization (EM) algorithms, as e.g.
done by Yi & Banerjee (2009) to find the posterior
modes of the effect size parameters and byXu (2010) to
obtain empirical Bayes estimates. In order to estimate

genomic breeding values, Hayashi & Iwata (2010)
modified the algorithm by Yi & Banerjee (2009),
whereas Meuwissen et al. (2009) constructed an
iterative conditional expectation algorithm. All these
studies reported atmostmoderate losses in accuracy of
point estimates when compared with computationally
much more intensive MCMC-based methods.
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7. Supplementary material

The online data are available at http://journals.cambridge.
org/GRH.
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