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Abstract. Let A (resp. B) be a bounded linear operator on a complex Hilbert
space H (resp. K). We show that the tensor product A ⊗ B is log-hyponormal if and
only if A and B are log-hyponormal, and that a similar result holds for class A(s, t)
operators.
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1. Introduction. Let H,K be complex Hilbert spaces and H ⊗ K the tensor
product of H,K; i.e., the completion of the algebraic tensor product of H,K with
the inner product 〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉〈y1, y2〉 for x1, x2 ∈ H, y1, y2 ∈ K. Let
B(H) (resp. B(K)) be the algebra of all bounded linear operators on H (resp. K). Let
A ∈ B(H) and B ∈ B(K). A ⊗ B ∈ B(H ⊗ K) denotes the tensor product of A and B;
i.e., (A ⊗ B)(x ⊗ y) = Ax ⊗ By for x ∈ H, y ∈ K.

Let S and T ∈ B(H). T is said to be non-negative if T ≥ 0; i.e., 〈Tx, x〉 ≥ 0 for all
x ∈ H. S ≤ T means T − S is non-negative, and S < T means T − S is non-negative
and invertible. T is said to be p-hyponormal (0 < p) if (TT∗)p ≤ (T∗T)p. If p = 1, T is
said to be hyponormal, and if p = 1/2, T is said to be semi-hyponormal. T is said to
be log-hyponormal if T is invertible and log(TT∗) ≤ log(T∗T). If T is p-hyponormal
and 0 < q < p, then T is q-hyponormal. Invertible p-hyponormal operators are log-
hyponormal.

Let T = U|T | be the polar decomposition of T ∈ B(H) and T̃s,t = |T |sU|T |t be
the Aluthge transform for s, t > 0. T is called a class A(s, t) operator if |T̃s,t| 2t

s+t ≥ |T |2t.
T is called a class wA(s, t) operator if T is a class A(s, t) operator and |T |2s ≥ |(T̃s,t)∗| 2s

s+t .
A class A(1, 1) operator is called a class A operator and a class wA(1/2, 1/2) operator is
called a w-hyponormal operator ([2, 8]). T is said to be paranormal if ‖Tx‖2 ≤ ‖T2x‖‖x‖
for x ∈ H. It is known that class A operators are paranormal.

D. Xia [16] investigated properties of hyponormal and semi-hyponormal operators.
A. Aluthge [1] introduced p-hyponormal operators and investigated properties of a p-
hyponormal operator by its Aluthge transform. The idea of log-hyponormal operator
is due to T. Ando [3] and the first paper in which log-hyponormality appeared is [6]. See
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[2, 14, 15] for properties of log-hyponormal operators. M. Ito [8] proved p-hyponormal
operators and log-hyponormal operators are class wA(s, t) operators for all s, t > 0.
(See [7, 14, 17, 18] for related results.) M. Ito and T. Yamazaki [9] proved that class
A(s, t) operators are class wA(s, t) operators, and investigated the relations between
these classes of operators.

There are many properties which are preserved under tensor product. For example,
H. Jinchuan [11] proved that A ⊗ B is normal if and only if A, B are normal, where
A, B are non-zero operators. Similar results were obtained for subnormal operators by
B. Magajna [12], hyponormal operators by J. Stochel [13], p-hyponormal operators
by B. P. Duggal [4], class A operators by I. H. Jeon and B. P. Duggal [10] and
p-quasihyponormal operators by D. R. Farenick and I. H. Kim [5]. But T. Ando
[3] proved that there exist paranormal operators A and B such that A ⊗ B is not
paranormal. In this paper, we show that the tensor product A ⊗ B is log-hyponormal
if and only if A and B are log-hyponormal, and that a similar result holds for class
A(s, t) operators.

2. Results. The following key lemma is due to J. Stochel [13].

LEMMA 1. [12] Let A1, A2 ∈ B(H), B1, B2 ∈ B(K) be non-negative operators. If A1

and B1 are non-zero, then the following assertions are equivalent.
(1) A1 ⊗ B1 ≤ A2 ⊗ B2.
(2) There exists c > 0 such that A1 ≤ cA2 and B1 ≤ c−1B2.

The proofs of the following elementary properties are easy.

LEMMA 2. Let A = UA|A| and B = UB|B| be the polar decompositions of A ∈ B(H)
and B ∈ B(K), respectively. Then the following assertions hold.

(1) |A ⊗ B| = |A| ⊗ |B|.
(2) A ⊗ B = (UA ⊗ UB)(|A| ⊗ |B|) is the polar decomposition of A ⊗ B.
(3) ˜(A ⊗ B)s,t = Ãs,t ⊗ B̃s,t for s, t > 0.

THEOREM 3. Let A ∈ B(H) and B ∈ B(K) be non-zero operators. Then A ⊗ B is a
class A(s, t) operator if and only if A and B are class A(s, t) operators for s, t > 0.

Proof. Let A and B be class A(s, t) operators. Then

|Ãs,t| 2t
s+t ≥ |A|2t,

|B̃s,t| 2t
s+t ≥ |B|2t.

Hence
∣∣ ˜(A ⊗ B)s,t

∣∣ 2t
s+t = |Ãs,t ⊗ B̃s,t| 2t

s+t

= |Ãs,t| 2t
s+t ⊗ |B̃s,t| 2t

s+t ≥ |A|2t ⊗ |B|2t

= (|A| ⊗ |B|)2t = |A ⊗ B|2t,

by Lemmas 1 and 2. Hence A ⊗ B is a class A(s, t) operator.
Conversely let A ⊗ B be a class A(s, t) operator. Then there exists c > 0 such that

|A|2t ≤ c|Ãs,t| 2t
s+t ,

|B|2t ≤ c−1|B̃s,t| 2t
s+t ,
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by Lemma 1. Let x ∈ H be a unit vector. Then

‖|A|tx‖2 = 〈|A|2tx, x|〉 ≤ c
〈|Ãs,t| 2t

s+t x, x
〉

≤ c
∥∥|Ãs,t| t

s+t
∥∥2 = c‖Ãs,t‖ 2t

s+t = c‖|A|sU|A|t‖ 2t
s+t ≤ c‖|A|t‖2,

where A = U|A| is the polar decomposition of A. Hence ‖|A|t‖2 ≤ c‖|A|t‖2 and 1 ≤ c.
Similarly we have 1 ≤ c−1 because |B|2t ≤ c−1|B̃s,t| 2t

s+t . Thus c = 1. This implies that
A and B are class A(s, t) operators. �

LEMMA 4. Let A ∈ B(H) and B ∈ B(K) be invertible non-negative operators. Then

log(A ⊗ B) = (log A) ⊗ I + I ⊗ (log B),

where I denotes the identity operator.

Proof. Let A = ∫ ∞
0 λdE(λ) and B = ∫ ∞

0 µdF(µ) be the spectral decompositions of
A and B, respectively. Then

A ⊗ B =
∫ ∞

0

∫ ∞

0
λµdG(λ,µ),

where

G(σ × τ ) = E(σ ) ⊗ F(τ )

for all Borel sets σ, τ ⊂ [0,∞). Hence

log(A ⊗ B) =
∫ ∞

0

∫ ∞

0
log(λµ) dG(λ,µ)

=
∫ ∞

0

∫ ∞

0
(log λ + log µ) dG(λ,µ)

= (log A) ⊗ I + I ⊗ (log B).

�
THEOREM 5. Let A ∈ B(H), B ∈ B(K). Then A ⊗ B is log-hyponormal if and only if

A and B are log-hyponormal.

Proof. Let A and B be log-hyponormal. Then A and B are invertible and

log |A| ≥ log |A∗|,
log |B| ≥ log |B∗|.

Hence A ⊗ B is invertible and

log |A ⊗ B| − log |(A ⊗ B)∗|
= log(|A| ⊗ |B|) − log(|A∗| ⊗ |B∗|)
= (log |A|) ⊗ I + I ⊗ (log |B|) − (log |A∗|) ⊗ I − I ⊗ (log |B∗|)
= (log |A| − log |A∗|) ⊗ I + I ⊗ (log |B| − log |B∗|) ≥ 0,

by Lemmas 1 and 4. Thus A ⊗ B is log-hyponormal.
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Conversely let A ⊗ B be log-hyponormal. Since A ⊗ B is invertible and

σ (A ⊗ B) = {λµ|λ ∈ σ (A), µ ∈ σ (B)},
we have that A and B are invertible and

log |A ⊗ B| − log |(A ⊗ B)∗|
= (log |A| − log |A∗|) ⊗ I + I ⊗ (log |B| − log |B∗|) ≥ 0.

Hence

〈((log |A| − log |A∗|) ⊗ I) x ⊗ y, x ⊗ y〉
≥ −〈(I ⊗ (log |B| − log |B∗|)) x ⊗ y, x ⊗ y〉

for x ∈ H, y ∈ K, and

〈(log |A| − log |A∗|) x, x〉
≥ −〈(log |B| − log |B∗|) y, y〉

for unit vectors x ∈ H, y ∈ K. This implies that there exists a real number c ∈ � such
that

inf
‖x‖=1

〈(log |A| − log |A∗|) x, x〉 = c

≥ sup
‖y‖=1

〈− (log |B| − log |B∗|) y, y〉

= − inf
‖y‖=1

〈(log |B| − log |B∗|) y, y〉.

Hence

log |A| − log |A∗| ≥ cI,

log |B| − log |B∗| ≥ −cI.

Since

log(|kA|) − log(|(kA)∗|) = log |A| − log |A∗|
for all k > 0, we may assume that I < |A|, ec|A∗|, |B|, e−c|B∗| by taking kA, kB instead
of A, B for some large k > 0. Then

∥∥(log |A|) 1
2 x

∥∥2 = 〈(log |A|)x, x〉
≥ 〈(log (ec|A∗|)) x, x〉
= ∥∥(log (ec|A∗|)) 1

2 x
∥∥2

for x ∈ H. Hence

(log ‖A‖)
1
2 = (log ‖|A|‖)

1
2

= ∥∥(log |A|) 1
2
∥∥ ≥ ∥∥(log (ec|A∗|)) 1

2
∥∥

= (log (ec‖A∗‖))
1
2 = (log (ec‖A‖))

1
2

and 1 ≥ ec.
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Similarly we have that 1 ≥ e−c by log |B| − log |B∗| ≥ −cI . Thus c = 0 and this
implies that A and B are log-hyponormal. �
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