A NOTE ON STAR COMPACT SPACES WITH POINT-COUNTABLE BASE

YAN-KUI SONG

(Received 8 September 2009)

Abstract

In this note we give an example of a Hausdorff, star compact space with point-countable base which is not metrizable.

2000 Mathematics subject classification: primary 54D20.
Keywords and phrases: star compact space, point-countable base.

1. Introduction

By a space, we mean a topological space. Let A be a subset of a space X and let \mathcal{U} be a family of subsets of X. The star of the set A with respect to \mathcal{U}, denoted by $\operatorname{St}(A, \mathcal{U})$, is the set $\bigcup\{U \in \mathcal{U} \mid U \cap A \neq \emptyset\}$.

Definition 1.1 [3]. Let \mathcal{P} be a class (or a property) of a space X. The space X is said to be star \mathcal{P} (or star-determined by \mathcal{P}) if, for every open $\operatorname{cover} \mathcal{U}$ of X, there exists a subspace Y of X such that $Y \in \mathcal{P}$ and $\operatorname{St}(Y, \mathcal{U})=X$.

By the above definition, a space X is said to be star compact if, for every open cover \mathcal{U} of X, there exists a compact subset K of X such that $\operatorname{St}(K, \mathcal{U})=X$. In [2], a star compact space is said to be K-starcompact. It is not difficult to see that every countably compact space is star compact (see [2]). Thus it is natural for us to consider the following question.

QUESTION 1.2. Is a star compact space metrizable if it has a point-countable base?
The purpose of this note is to construct an example of a Hausdorff, star compact space with point-countable base which gives a negative answer to this question.

Throughout the paper, the cardinality of a set A is denoted by $|A|$. Let ω be the first infinite cardinal. Other terms and symbols that we do not define will be used as in [1].

[^0](C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

2. The example

Example 2.1. There exists a Hausdorff, star compact space with point-countable base which is not metrizable.

Proof. Let

$$
\begin{gathered}
A=\left\{a_{n}: n \in \omega\right\}, \quad B=\left\{b_{m}: m \in \omega\right\}, \\
Y=\left\{\left\langle a_{n}, b_{m}\right\rangle: n \in \omega, m \in \omega\right\},
\end{gathered}
$$

and

$$
X=Y \cup A \cup\{a\} \quad \text { where } a \notin Y \cup A .
$$

We topologize X as follows: every point of Y is isolated; a basic neighbourhood of a point $a_{n} \in A$ for each $n \in \omega$ takes the form

$$
U_{a_{n}}(m)=\left\{a_{n}\right\} \cup\left\{\left\langle a_{n}, b_{i}\right\rangle: i>m\right\} \quad \text { for } m \in \omega
$$

and a basic neighbourhood of a takes the form

$$
U_{a}(n)=\{a\} \cup \bigcup\left\{\left\langle a_{i}, b_{m}\right\rangle: i>n, m \in \omega\right\} .
$$

Clearly, X is a Hausdorff space by the construction of the topology of X. However, X is not regular, since the point a cannot be separated from the closed subset A by disjoint open subsets of X. Thus X is not metrizable, since it is not regular. By the construction of the topology of X, it is not difficult to see that X is second countable. Thus X has a point-countable base.

We shall now show that X is star compact. Let \mathcal{U} be an open cover of X. For each $n \in \omega$, there exists a $U_{n} \in \mathcal{U}$ such that $a_{n} \in U_{n}$, so there exists an $m_{n} \in \omega$ such that $\left\langle a_{n}, b_{m_{n}}\right\rangle \in U_{n}$. If we put $S_{1}=\left\{\left\langle a_{n}, b_{m_{n}}\right\rangle: n \in \omega\right\} \cup\{a\}$, then S_{1} is a convergent sequence with the limit point a. Hence S_{1} is compact and

$$
\left\{a_{n}: n \in \omega\right\} \subseteq \operatorname{St}\left(S_{1}, \mathcal{U}\right)
$$

On the other hand, choose $U_{a} \in \mathcal{U}$ such that $a \in U_{a}$. Then there exists an $n \in \omega$ such that $U_{a}(n) \subseteq U_{a}$, and hence

$$
U_{a}(n) \subseteq \operatorname{St}\left(S_{1}, \mathcal{U}\right)
$$

since $U_{a} \cap S_{1} \neq \emptyset$. Finally, for $i \leq n,\left\{a_{i}\right\} \cup\left\{\left\langle a_{i}, b_{m}\right\rangle: m \in \omega\right\}$ is compact, so there exists a finite subset $F_{i} \subseteq\left\{a_{i}\right\} \cup\left\{\left\langle a_{i}, b_{m}\right\rangle: m \in \omega\right\}$ such that

$$
\left\{a_{i}\right\} \cup\left\{\left\langle a_{i}, b_{m}\right\rangle: m \in \omega\right\} \subseteq \operatorname{St}\left(F_{i}, \mathcal{U}\right)
$$

Put $F=S_{1} \cup \bigcup\left\{F_{i}: i \leq n\right\}$. Then F is a compact subset of X and $X=\operatorname{St}(F, \mathcal{U})$, which completes the proof.

REMARK 2.2. The author does not know if there exists a regular, star compact space with point-countable base which is not metrizable.

Acknowledgement

The author would like to thank Professor R. Li for his kind help and valuable comments.

References

[1] E. Engelking, General Topology, Revised and Completed Edition (Heldermann, Berlin, 1989).
[2] Y.-K. Song, 'On K starcompact spaces', Bull. Malays. Math. Soc. (2) 30 (2007), 59-61.
[3] J. van Mill, V. V. Tkachuk and R. G Wilson, ‘Classes defined by stars and neighbourhood assignments', Topology Appl. 154 (2007), 2127-2134.

YAN-KUI SONG, Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210046, PR China
e-mail: songyankui@njnu.edu.cn

[^0]: The author acknowledges support from the National Science Foundation of Jiangsu Higher Education Institutions of China (Grant No 07KJB-110055).

