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Chitinases are hydrolytic enzymes that have been employed in biotechnology in attempts to increase plants’
resistance against fungal pathogens. Genetically modified plants have given rise to concerns of the spreading
of transgenes into the environment through vertical or horizontal gene transfer (HGT). In this study, chitinase-
like sequences from silver birch (Betula pendula) EST-libraries were identified and their phylogenetic relation-
ships to other chitinases were studied. Phylogenetic analyses were used to estimate the frequency of historical
gene transfer events of chitinase genes between plants and other organisms, and the usefulness of phyloge-
netic analyses as a source of information for the risk assessment of transgenic silver birch carrying a sugar
beet chitinase IV gene was evaluated. Thirteen partial chitinase-like sequences, with an approximate length of
600 bp, were obtained from the EST-libraries. The sequences belonged to five chitinase classes. Some bacte-
rial chitinases from Streptomyces and Burkholderia, as well as a chitinase from an oomycete, Phytophthora
infestans, grouped together with the class IV chitinases of plants, supporting the hypothesis that some class IV
chitinases in bacteria have evolved from eukaryotic chitinases via horizontal gene transfer. According to our
analyses, HGT of a chitinase IV gene from eukaryotes to bacteria has presumably occurred only once. Based
on this, the likelihood for the HGT of chitinase IV gene from transgenic birch to other organisms is extremely
low. However, as risk is a function of both the likelihood and consequences of an event, the effects of rare HGT
event(s) will finally determine the level of the risk.
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INTRODUCTION

Chitinases are hydrolytic enzymes, many of which have
an important role as part of the inducible plant de-
fense system (Boller, 1987; Collinge et al., 1993).
They are able to catalyze the hydrolysis of chitin,
the primary structural component of the cell wall of
all true fungi (Bartnicki-Garcia, 1968). Class I and V
chitinases have been shown to inhibit the growth of var-
ious fungal species in vitro (e.g. Arlorio et al., 1992;
Mauch et al., 1988; Melchers et al., 1994; Schlumbaum
et al., 1986; Vierheilig et al., 2001), and various chiti-
nase transgenes have been tested in attempts to in-
crease plants’ resistance against fungal diseases (e.g.
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Asao et al., 1997; Broglie et al., 1991; Datta et al., 2000;
Emani et al., 2003; Grison et al., 1996; Lorito et al., 1998;
Vellice et al., 2006). Most research has been done on crop
plants, but some tests have also been carried out with trees
(Bolar et al., 2000, 2001; Pappinen et al., 2002). For ex-
ample, the effects of the sugar beet chitinase IV on the
fungal disease resistance of silver birch (Betula pendula)
have been tested in the greenhouse (Pappinen et al., 2002)
and in a field trial (Pasonen et al., 2004).

Chitinases are classified in two main groups (glyco-
syl hydrolase families 18 and 19) that have no significant
amino acid sequence identity or any similarity in three-
dimensional protein structures (Davies and Henrissat,
1995). Chitinases of glycosyl hydrolase family 18 are
present in many organisms, including viruses, archaea,
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bacteria, animals, plants, and fungi. Most of the presently
known family 19 glycosyl hydrolases have been found
among plants, and many plants are known to contain mul-
tiple copies of these genes (e.g. Davis et al., 1991). These
chitinases are classified in three subgroups: class I, II,
and IV chitinases. Chitinases belonging to class I are tar-
geted to vacuoles, while class II and IV chitinases are
secreted into intercellular spaces. Plant chitinases from
class III and V belong to glycosyl hydrolase family 18
(Beintema, 1994).

The potential large-scale use of transgenic organisms
has given rise to concerns related to the spreading of
transgenes into the environment, either through micro-
bial processes (horizontal gene transfer, HGT) or repro-
ductive phenomena (vertical gene transfer) (e.g. Conner
et al., 2003; Wolfenbarger and Pfifer, 2000). Usually,
HGT is defined as the transfer of genetic material be-
tween organisms that are not sexually compatible with
each other (Gay, 2001). However, that definition as such
is not applicable to bacteria, since HGT is the ana-
logue of sexuality in bacteria. Thus, HGT in bacteria
can be defined as any process in which bacteria incorpo-
rates genetic material from another organism. Prokary-
otes are known to assimilate and integrate exogenous
DNA, and plasmid elements (promoters, etc.) having bac-
terial origin may facilitate HGT from transgenic plants
to bacteria (e.g. Nielsen et al., 1998, see for review e.g.
Heuer and Smalla, 2007; Monier et al., 2007; Pontiroli
et al., 2007). The most likely bacterial candidates for
HGT from genetically modified plants are symbiotic
and pathogenic microbes living in the plant rhizosphere
(e.g. Lilley et al., 1994; Troxler et al., 1997; van Elsas
et al., 1989, 2003). So far, researchers have been able
to demonstrate HGT from genetically modified plants
to micro-organisms like plant-associated fungi (Hoffman
et al., 1994) or bacteria (Nielsen et al., 2000) only under
optimized laboratory conditions or in soil microcosms.
Several experimental studies have failed in demonstrat-
ing HGT from transgenic plants to bacteria (Bertolla
and Simonet, 1999; Gebhard and Smalla, 1999; Nielsen
et al., 1997, 1998), and to our knowledge, HGT from
transgenic plants to other organisms has not been de-
tected in field conditions. In the light of present knowl-
edge, HGT can occur, but at such low frequencies that
detecting it is extremely difficult, mainly due to the huge
sampling efforts needed and the nonculturable nature of
most bacteria (Heinemann and Traavik, 2004; Nielsen
and Townsend, 2004).

Phylogenetic analyses provide a tool for seeking
information on the historical HGT events that have
occurred during the course of evolution. A standard phy-
logenetic analysis provides information on the evolution-
ary history of single genes, and numerous phylogenetic
studies have provided circumstantial evidence for HGT

events during the course of evolution, although some
reports of HGT have been considered controversial (see
e.g. Brinkman et al., 2002). Whole genome sequence
comparisons, as well as other studies, have revealed that
HGTs among bacteria are probably more numerous than
previously thought (Ke et al., 2000; Koonin et al., 2001;
Koski et al., 2000; Ochman et al., 2000; van Elsas
et al., 2003; Wiener et al., 1998), and evidence for
HGT between the archaeal, bacterial and/or eukary-
ote domains is steadily accumulating (e.g. Baker, 1998;
Brinkman et al., 2001; Buades and Moya, 1996; Furner
et al., 1986; Holmgren and Bränden et al., 1989; Intrieri
and Buiatti, 2001; Katz, 1996; Klotz et al., 1997; Royo
et al., 2000). Phylogenetic analyses have revealed HGT
events even between divergent groups like plants or ani-
mals and bacteria. For example, Gamieldien et al. (2002)
used phylogenetic methods to show that the mammalian
pathogen Mycobacterium tuberculosis has acquired sev-
eral protein-coding genes from eukaryotes through hori-
zontal gene transfer.

In this paper, we identified all chitinase-like se-
quences found in silver birch EST-libraries, and studied
their phylogenetic relationships to other published chiti-
nase sequences, with a special emphasis on the sugar beet
chitinase IV that was previously transferred to silver birch
in order to increase birch’s resistance against fungal dis-
eases. We used phylogenetic analyses to estimate the fre-
quency of the probable HGT events of chitinase genes
from plants to other organisms and discuss the applica-
bility of the information obtained from the phylogenetic
analyses to the risk assessment of genetically modified
plants.

RESULTS

Amino acid sequences of glycosyl hydrolase
family 19 chitinases

Thirteen partial chitinase-like sequences, with an ap-
proximate length of 600 bp, were identified from the
silver birch (Betula pendula) EST-libraries. These se-
quences belonged to five chitinase classes: class I and II
(580–749 bp), and IV (633 and 641 bp) chitinases of the
family 19 glycosyl hydrolases, and class III (604 bp) and
class V chitinases (666 and 673 bp) of the family 18 gly-
cosyl hydrolases. The alignment of amino acid sequences
of class I, II and IV chitinases resulted in a data set of
271 characters, of which 221 characters were parsimony-
informative. Sequences of class IV chitinases differed
from the others by having two long deletions. These and
five other long indels in the alignment were treated as sin-
gle character states (presence/absence). The phylogenetic
analysis resulted in one most parsimonious tree (Fig. 1),
with a length of 2131 steps and a consistency index (CI)
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Figure 1. The most parsimonious tree based on 55 family 19 glycosyl hydrolase amino acid sequences. Bootstrap support
(> 50%) are shown at nodes. GenBank entries for the sequences are: 1: AAN31509, 2: BAA92252, 3: AAD32750, 4: CAD55444, 5:
CAB37321, 6: BAA88834, 7: BAC45252, 8: BAA23739, 9: T09131, 10: AAA32916, 11: CAA53544, 12: CAA40474, 13: S57476,
14: CAA74930, 15: AJ606365, 16: AJ606366, 17: AAA33445, 18: AAA33444, 19: AAK92198, 20: CAD41543, 21: T03405, 22:
CAA43708, 23: AAB64048, 24: AAD28730, 25: AAB64049, 26: BAC55635, 27: AAL90922, 28: AJ606367, 29: AJ606368, 30:
NP_172076, 31: AAC95376, 32: BAA95846, 33: AAB67171, 34: AAC72865, 35: CAA57773, 36: AAC49718, 37: BAA03749,
38: BAA03751, 39: AAF04454, 40: AAG53609, 41: BAB82473, 42: CAB01591, 43: AAA34070, 44: AAG51023, 45: AJ606369,
46: AJ606370, 47: AAA33756, 48: AAG23965, 49: S20737, 50: CAA45359, 51: AAF17593, 52: AJ606371, 53: AJ606372,
54: AJ606373, 55: AJ606374.
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of 0.52 (excluding uninformative characters). The chiti-
nases were divided into two major groups (Fig. 1). The
first group consisted of sequences from bacteria, plants,
and an oomycete (Phytophthora infestans), and had
81% bootstrap support. The oomycete chitinase grouped
together with bacterial chitinases with 53% bootstrap
support. These sequences formed a sister group to all
plant chitinases in group A, which had a bootstrap sup-
port of 82%. A chitinase of Picea glauca appeared as a
sister to all other plant chitinases in that group. Two sil-
ver birch chitinase-like sequences grouped together with
class IV chitinases from Beta, Phaseolus, Vigna and Ara-
bidopsis, but this subgroup did not have any bootstrap
support. Another subgroup included several monocotyle-
don sequences (Oryza, Saccharum, Triticum, Zea) and
some Arabidopsis and Brassica sequences (Fig. 1).

The second main group in the phylogenetic tree in-
cluded only plant chitinases (Fig. 1). Two silver birch
chitinase-like sequences grouped together with similar
sequences from Oryza sativa and Arabidopsis thaliana
with 100% bootstrap support (group B; Fig. 1). Among
the remaining sequences, a clade (with 89% support)
consisting of monocotyledon chitinases (Cynodon and
Oryza; bootstrap support of 94%) formed a sister group
to sequences from Arabidopsis thaliana and Arachis hy-
pogaea (group C; Fig. 1). The large group D in Figure 1
(with no support) consisted of a Pinus strobus chitinase as
a sister group to the other sequences. The ingroup com-
prised of monocotyledon chitinases (Oryza, Poa, Secale,
Triticum; 61% support) formed a sister group to a clade
consisting of six silver birch chitinases (in two groups)
and sequences from Persea americana, Nicotiana, Ara-
bidopsis, and several fabalean species (Glycine, Phaseo-
lus, Pisum, Vigna). Only certain small groups within the
group D were supported.

DNA sequences of class IV chitinases

The alignment of 28 class IV chitinase DNA sequences
resulted in a data set with a length of 719 characters, of
which 574 (70 characters from indels) were parsimony-
informative. The phylogenetic analysis yielded four
equally parsimonious trees, from which a strict consen-
sus tree was calculated (Fig. 2). The tree was far bet-
ter supported than the corresponding group in the amino
acid tree (Fig. 1), having class IV chitinases of mono-
cotyledons (Oryza, Saccharum, Triticum, Zea) and di-
cotyledons (Arabidopsis, Beta, Betula, Phaseolus, Vigna)
in separate groups (with bootstrap support 85% and 70%,
respectively).

The DNA tree (Fig. 2) had a slightly different topol-
ogy and a better overall bootstrap support than the tree
based on amino acid sequences (Fig. 1). This held true
even when only class IV chitinase sequences were used

in the analysis of amino acid sequences (tree not shown).
In the DNA tree (Fig. 2), both Beta vulgaris sequences
grouped together, and the monocots and dicots formed
supported groups of their own. On the other hand, when
DNA sequences of all the family 19 glycosyl hydro-
lases present in the amino acid tree were analyzed, many
branches collapsed and the overall bootstrap support was
drastically reduced (tree not shown). This could possibly
be attributed to saturation of third codon positions.

Among the chitinase-like sequences from Betula,
chitinases 15 and 16 grouped with class IV chiti-
nases of the family 19 glycosyl hydrolases (Fig. 1).
Betula chitinase-like sequences 45–46, as well as 52–55,
grouped together with class I chitinases, and sequences
28 and 29 were nested within a clade of previously
known chitinases from Oryza and Arabidopsis. The
amino acid sequences of the latter group (B in Fig. 1)
clearly differed from other family 19 glycosyl hydro-
lases. As the group was distinct, well-supported (100%
bootstrap support) and contained both monocotyledon
(Oryza) and dicotyledon (Arabidopsis and Betula) se-
quences, it may actually represent a chitinase class of its
own. Group C (Fig. 1), which also included both mono-
cotyledon (Cynodon, Oryza) and dicotyledon (Arabidop-
sis, Arachis) sequences, might also represent a distinct
class of chitinases.

Amino acid sequences of glycosyl hydrolase
family 18 chitinases

The alignment of the amino acid sequences of class III
chitinases (Fig. 3) resulted in a data set of 408 charac-
ters, of which 327 were parsimony-informative. The phy-
logenetic analysis resulted in one most parsimonious tree
(3520 steps long) with a CI of 0.6 (Fig. 3). The tree
consisted of a bacterial chitinases (55% bootstrap sup-
port) as a sister group to chitinases from fungi and plants.
The latter clade had 100% bootstrap support. The fun-
gal chitinases, all originating from either zygomycetes or
ascomycetes, formed a monophyletic sister group to the
plant chitinases, including two chitinase-like sequences
from silver birch (Fig. 3). Within the plant clade, se-
quences from monocotyledons (Oryza, Triticum, Zea)
and dicotyledons (the other plants in Fig. 3) were inter-
mixed. Chitinases from various species of the Fabaceae
(Cicer, Glycine, Vigna) and Solanaceae (Capsicum, Nico-
tiana) were found in two separate groups, suggesting past
gene duplication events. The silver birch chitinase-like
sequences grouped together with chitinases from Nico-
tiana tabacum, but this grouping did not have any boot-
strap support.

Alignment of the amino acid sequences of class V
chitinases (Fig. 4) resulted in a data set of 605
characters, of which 448 were parsimony-informative.
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Figure 2. A consensus of four equally parsimonious trees based on the family 19 glycosyl hydrolase DNA sequences. Bootstrap
support values (> 50%) are shown at nodes. The numbers in parentheses refer to the sequence number in the corresponding amino
acid group (class IV chitinases) in the Figure 1.

The phylogenetic analysis yielded one most parsimo-
nious tree (7963 steps long, CI of 0.45) with generally
poor bootstrap support (Fig. 4). The tree included chiti-
nases from a very wide variety of Archaea, Bacteria,
Eukaryotes and viruses. Only a few groups within the
tree were well-supported. One of the supported (97%)
clades included all the plant class V chitinases (sequences
16–21 in Fig. 4), including two silver birch chitinase-like
sequences.

DISCUSSION

Phylogeny of chitinases

A total of thirteen chitinase-like sequences belonging
to five classes (I–V) were found from the silver birch

EST-libraries. Although these sequences were somewhat
shorter (523–673 bp for DNA/ca. 200 aa for protein se-
quences) than most of the previously published sequences
in GenBank, they were informative enough to be useful
in phylogenetic analyses. In each phylogenetic tree (see
Figs. 1–4) the birch chitinase-like sequences were nested
within the other plant chitinases, as expected.

The general topology of the class I chitinases of
group D (Fig. 1) was mostly congruent with the phy-
logeny of vascular plants: the pine (Pinus strobus) se-
quence appeared as a sister group to a clade consisting
of monocotyledon and dicotyledon chitinases that formed
monophyletic groups. The fabalean chitinases (Glycine,
Phaseolus, Pisum and Vigna) formed two groups within
the dicotyledon clade in the group D, which possibly
indicates historical gene duplication within the lineage.
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Figure 3. The most parsimonious tree based on 45 class III-like chitinases of the family 18 glycosyl hydrolase amino acid sequences. Bootstrap support (> 50%) are
shown at nodes. The GenBank entries for the sequences are: 1: BAA75642, 2: BAA02918, 3: AAC72236, 4: BAA36460, 5: BAA34114, 6: NP_657687, 7: AAN57059,
8: AAO80244, 9: CAC97226, 10: BAA76623, 11: NP_250990, 12: ZP_0086322, 13: P54197, 14: BAA36223, 15: CAA56315, 16: AAL78811, 17: BAA01018, 18:
BAA01022, 19: NP_013388, 20: AAC49409, 21: CAD19479, 22: CAC87260, 23: BAA77773, 24: BAA23807, 25: BAA92940, 26: BAA25015, 27: BAB84602,
28: AAB28479, 29: BAC06302, 30: AAB47176, 31: BAA77675, 32: CAA49998, 33: CAA61280, 34: CAA77657, 35: CAA77656, 36: AJ606375, 37: CAB66334,
38: BAA23809, 39: BAC55717, 40: BAB90565, 41: CAA61279, 42: AAN37391, 43: BAC11893, 44: BAA21873, 45: BAC11892.
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Figure 4. The most parsimonious tree based on the class V-type chitinases of the family 18 glycosyl hydrolase amino acid
sequences. Bootstrap support (> 50%) are shown at nodes. GenBank entries for the sequences are: 1: ZP_00060343, 2: BAA34922,
3: CAB62382, 4: BAB79618, 5: NP_800342, 6: CAB76866, 7: CAB83055, 8: BAA88380, 9: AAG19274, 10: BAC12747, 11:
BAA09831, 12: AAF74782, 13: BAB04635, 14: AAL17867, 15: BAB16891, 16: AAM18075, 17: CAA54373, 18: CAB78982, 19:
CAA19699, 20: AJ606375, 21: AJ606377, 22: ZP_00108998, 23: AAB52724, 24: AAB52722, 25: AAB52723, 26: AAG34171,
27: EAA32938, 28: CAA25334, 29: CAC34265, 30: AAA83586, 31: AAA27854, 32: AAL65401, 33: AAB87764, 34: AAF46663,
35: CAC87888, 36: BAA04065, 37: I38605, 38: AAG60018, 39: AAG60019, 40: BAB71805, 41: AAA83223, 42: AAF21468, 43:
AAB70917, 44: AAG27061, 45: ZP_00067236, 46: CAB61662, 47: BAA03404, 48: BAA02168, 49: CAB94547, 50: AAG35112,
51: AAG35111, 52: AAO42981, 53: BAA13489, 54: BAA35140, 55: AAL78814, 56: EAA26709, 57: AAA96515, 58: EAA36073,
59: AAF19616, 60: BAB40591, 61: CAA45468, 62: CAB44709, 63: CAA72201, 64: NP_454628, 65: T44440, 66: AAF21123,
67: BAB79620, 68: AAF21120, 69: NP_232428, 70: BAA78114, 71: AAL37255, 72: AAO08114, 73: AAK96293, 74: AAF33549,
75: AAC59123, 76: AAA66756, 77: AAC63792, 78: AAA93130, 79: AAF21124, 80: AAB49933, 81: 224972, 82: AAK72610,
83: AAB97779.
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A similar situation also applied to the chitinases of Nico-
tiana tabacum and Betula pendula. As coniferous (Picea
and Pinus) chitinases were basal in both clades A and D,
it seems that the divergence of class I and IV chitinases
not only predates the divergence of monocots and dicots
(as suggested by Hamel et al., 1997), but also predates the
divergence of gymnosperms and angiosperms. However,
more chitinase sequences from gymnosperms are needed
to confirm this.

The phylogenetic tree (Fig. 1) supported the view
that class II chitinases have arisen from class I chitinases
(Hamel et al., 1997). Moreover, the result indicated that
class II chitinases, as a group, are polyphyletic and have
originated from both class I and class IV chitinases.

In addition to the chitinases of Burkholderia gladi-
oli and Streptomyces species, a class IV-type chitinase is
also found in Phytophthora infestans, a plant-pathogenic
oomycete. According to our analysis, Phytophthora chiti-
nase grouped together with the bacterial chitinases, these
together forming a sister group to class IV chitinases
from plants, indicating that all presently known non-plant
class IV chitinases have a common evolutionary origin. If
these chitinases were once transferred from an eukaryotic
organism to bacteria, as suggested by Ohno et al. (1996),
Watanabe et al. (1999) and Kong et al. (2001), this may
have occurred only once, since the bacterial sequences
formed a monophyletic group (Fig. 1). The absence of
this type of chitinase from all other completely sequenced
bacteria (including other species of Burkholderia; Kong
et al., 2001) and other organisms supports the possibility
of HGT. Both Phytophthora infestans and Burkholde-
ria gladioli are plant pathogens, which may have facil-
itated gene transfer between the organisms. It is of addi-
tional interest that some strains of Burkholderia gladioli
with type IV chitinases show an ability to protect plants
from fungal pathogens (Kong et al., 2001). Among other
organisms possessing proteins with some sequence sim-
ilarity with family 19 glycosyl hydrolases are Encephal-
itozoon cuniculi, an organism causing encephalitozoono-
sis in humans and dogs (Snowden et al., 1999), bacteria
Vibrio cholerae and Salmonella typhimuri and nematodes
Caenorhabditis elegans and Ascaris suum. However, as
the sequences were only ambiguously alignable with the
chitinases included in this study, they were excluded from
the final data set.

The phylogenetic tree of the class III chitinases
(Fig. 2) supports the view of Hamel et al. (1997) accord-
ing to whom the origin of class III chitinases predates
the diversification of fungi and plants. However, accord-
ing to our analyses, class III chitinases are also found in
some bacteria belonging to different taxonomic groups,
but they are not found in basidiomycetous fungi. While
numerous class III chitinases are known from plants
(Hamel et al., 1997), only one plant chitinase belonging

to class V has been reported (Melchers et al., 1994).
This class V chitinase sequence from tobacco (Nicotiana
tabacum) was nested within animal chitinases in a phy-
logenetic tree (Sun et al., 1999). In this study, class V
chitinase-like sequence was identified from a silver birch
EST-library, and also class V chitinases from some other
plants were found in GenBank. The plant class V chiti-
nases formed a monophyletic group in the phylogenetic
tree (Fig. 4), and instead of being nested within meta-
zon chitinases (see Sun et al., 1999), they formed a sister
group to a clade consisting of all the other eukaryote se-
quences and one cyanobacterial sequence, but this clade
had no bootstrap support. In accordance with the study of
Hawtin et al. (1997), the tree indicates at least one hori-
zontal gene transfer event between viruses and bacteria,
since a group consisting of viruses is nested within a bac-
terial clade with very good bootstrap support. Our result
further supports the view of Cottrell et al. (2000), accord-
ing to which several horizontal gene transfer events in this
group of chitinases have presumably occurred, especially
among bacteria.

Implications for HGT from chitinase transgenic
silver birch to other organisms

HGT of plant DNA requires the existence of free DNA
that should be of sufficient length and persist long enough
for uptake. Furthermore, a bacterial recipient should be
able to incorporate, maintain and use the incoming DNA
(e.g. Conner et al., 2003; Nielsen et al., 2007), which
depends on the homologous sequences in the recipient
genome (de Vries et al., 2001, Monier et al., 2007). Ac-
cording to Dale et al. (2002), the impact of free DNA
of transgenic origin is likely to be negligible compared
with the large amount of total free DNA in the soil.
Some studies also showed that the persistence of naked
transgenic DNA in soil (Gebhard and Smalla, 1999) or
in decomposing leaves (Hay et al., 2002) is presumably
not long enough for the uptake of DNA by bacterial
cells. According to the present view, natural transforma-
tion in soil typically occurs at rates below 10−7 trans-
formants per recipient (Nielsen et al., 2000), and much
lower frequencies between transgenic DNA and bacte-
ria under natural conditions are expected (Nielsen and
Townsend, 2004). Hence, the risks linked to HGT have
generally not been considered as key concern in the cul-
tivation of GM plants (see e.g. van Frankenhuyzen and
Beardmore, 2004). However, as risk is a function of both
the likelihood (frequency) and consequences of an event,
there have been calls for more attention to the effects of
HGT events (e.g. Heinemann and Traavik, 2004, Nielsen
and Townsend, 2004).

The establishment of the horizontally-transferred
transgene DNA in a new host will depend on the
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prevailing selection pressures. Most horizontally trans-
ferred transgenes are likely to cause negative effects on
transformant’s survival, and even transgenes that do not
affect transformant’s survival are likely to be lost over
time (Nielsen and Townsend, 2004). Consequently, the
main interest also in the case of chitinase transgenic sil-
ver birch should be focused on the consequences of HGT.
The transferred sequence is originally from sugar beet,
but the microbial communities associated with birch and
found in forest soils are different and more diverse than
those of agricultural soils, including e.g. diverse commu-
nities of ectomycorrhizal fungi, and the selection pres-
sures are different. Furthermore, the evaluations of the
effects of HGT of the transgene should not be separated
from the evaluations of the effects of the other compo-
nents of the plasmid used in the transformation, such as
promoters and selection markers like the nptII gene.

From the risk assessment point of view, it is important
to consider all the potential functions of the transgene.
In general, chitinases are involved in many cellular
functions. Some chitinase genes are able to encode
antifreeze proteins or have a dual function encoding
both pathogenesis-related proteins and antifreeze pro-
teins (Hon et al., 1995), and high expression of a gene
belonging to class IV chitinases has been detected in
ripening grape fruits (Robinson et al., 1997). Chitinases
may also have various other not so well-known roles dur-
ing growth and development, e.g. during embryogene-
sis (Collinge et al., 1993). In addition, the chitin-binding
domain of a chitinase belonging to family 19 glycosyl
hydrolases is the major allergen of Persea americana
(Sowka et al., 1998). However, according to our phylo-
genetic analysis, Persea americana chitinase groups to-
gether with the class I chitinases and is thus only distantly
related with the chitinase of Beta vulgaris used for the
transformation of silver birch.

The use of phylogenetic analyses in risk assessment
aids in the observation of unintended HGT events of
transgenes. For example, phylogenetic analysis of chiti-
nases has revealed past HGT events, but the result also
indicates that transferred chitinases must have resulted in
favorable genetic changes that have survived over time
due to positive selection.

However, the implications and interpretation of differ-
ent phylogenetic outcomes in a biological risk assessment
are yet to be established. The observation that certain
genes frequently transfer between species on an evolu-
tionary timescale can be interpreted in a different manner.
For example, frequent historical transfer events of a cer-
tain gene may indicate that HGT has happened naturally,
and therefore it does not cause additional risk when using
transgenes. On the other hand, the same phenomenon also
indicates that the gene has resulted in positive selection

in the recipient organism and has the ability to become a
permanent part of the recipient genome.

CONCLUSIONS

The increasing number of sequences in GenBank and
the availability of databases, such as the ‘The Horizon-
tal Gene Transfer DataBase’ (HGT-DB) of Garcia-Vallve
et al. (2003), provide important resources that can be
used in phylogenetic studies dealing with HGT. In the
future, when data from numerous phylogenetic analyses
can be combined, the frequencies and possible evolution-
ary significance of natural interkingdom HGT events can
be more exactly estimated. Our present study supports the
hypothesis that some class IV chitinases in bacteria have
evolved from eukaryotic chitinases via horizontal gene
transfer (Kong et al., 2001; Ohno et al., 1996; Watanabe
et al., 1999). The available evidence suggests that the hor-
izontal gene transfer event of a eukaryotic chitinase IV
gene may have occurred only once. However, the effects
of the possible HGT event, independent of frequency at
which it might occur, are difficult to estimate because
the effects are tightly linked with the prevailing selection
pressures.

MATERIALS AND METHODS

Alignment of sequences

Mainly amino acid sequences were employed, because of
the relative ease of the alignment of the sequences, even
from distantly related organisms, as compared to DNA
sequences. However, DNA sequences of closely related
class IV chitinases were also analyzed. Silver birch chiti-
nase DNA sequences were translated into amino acid se-
quences using the BioEdit program (Hall, 1999). After
translation, several PSI Blastsearch procedures (Altschul
et al., 1997) were performed in order to find all the chiti-
nases belonging to glycosyl hydrolase families 18 and 19
from the GenBank.

Sequences were aligned using the ClustalW (Thomp-
son et al., 1994) alignment program. All the result-
ing alignments were deposited in TreeBase (http://www.
treebase.org/treebase/index.html). Sequences belonging
to the two families (18 and 19) were analysed separately,
as there was no sequence similarity between them. Fur-
thermore, within the family 18 glycosyl hydrolases, se-
quences of the chitinases belonging to classes III and
V were aligned separately. Although these sequences
shared some conserved regions, they were still too dif-
ferent to be combined into one data set.
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A gap opening penalty of 10 and gap extension
penalty of 0.05 were used for the alignment of the gly-
cosyl hydrolase family 19 sequences. Single gaps were
coded as character states in order to make use of all
data in the data set. Long gaps (> 2 aa) were replaced
by question marks and coded as binary characters (pres-
ence/absence) at the end of the data set. This prevented
long gaps from gaining excessive weight in the phylo-
genetic analysis, but made sure that some phylogenetic
information from gaps could be utilized. DNA sequences
corresponding to the class IV chitinase amino acid se-
quences used in the protein analysis were aligned us-
ing parameters 10/5 (gap opening/gap extension penalty).
In the alignment of glycosyl hydrolase family 18 se-
quences the gap opening and gap extension parameters
were 5/0.05 for class III chitinase sequences, and 3/0.02
for class V chitinase sequences. The small values for the
latter group were chosen because of considerable length
variation in the sequences. Gaps were coded as miss-
ing data in both analyses, because neither data set had
obvious indel patterns, similar to those observed among
family 19 glycosyl hydrolases.

Phylogenetic analyses

Only the conserved catalytic domains of chitinases were
used in the phylogenetic analyses. Phylogenetic trees
were reconstructed using the heuristic search option in
PAUP 4.0, with a random addition sequence (10 repli-
cates) and tree bisection reconnection (TBR) branch-
swapping options (Swofford, 2000). Support for each
node was estimated using bootstrapping (5000 reps.), as
implemented in PAUP. Midpoint rooting was used in all
amino acid analyses, due to uncertainty of suitable out-
groups. Class I and II chitinases of Arabidopsis thaliana
were chosen as outgroups for the analysis of the class IV
chitinase DNA sequences.

All sequences obtained from the GenBank were first
subjected to preliminary phylogenetic analyses (trees not
shown). From a vast number of sequences in the ini-
tial phylogenetic trees, several representative examples
of all groups were picked for further analyses. These in-
cluded several examples from such plant families (e.g.
Brassicaceae, Fabaceae, Poaceae, Solanaceae) that had
chitinases in more than one group in the initial phylo-
genetic trees. Thus, all sequence groups within the pre-
liminary trees were sampled for subsequent analyses (in
which only some taxa were included from each group).
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