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A TRANSIENT TEMPERATURE SOLUTION FOR 
BORE-HOLE MODEL TESTING 

By BR1AN HANSON* and ROBERT E . DICKINSON 

(National Center for Atmospheric Research,t Boulder, Colorado 80307-3000, U.S.A.) 

ABSTRACT. Transient temperature variations in a 
vertical column of ice with horizontally uniform conditions, 
constant vertical strain-rate and specified surface tempera­
ture, and basal heat flux can be calculated analytically. The 
solution consists of eigenfunctions which are forms of the 
confluent hypergeometric function. This solution shows that 
advection and diffusion have clearly separated areas of 
dominance, with diffusion being a sufficient approximation 
for small-scale perturbations in the temperature profile and 
advection placing an upper limit on the response time of 
the ice sheet as a whole. This solution is useful for analysis 
and testing of numerical models, for evaluation of the 
response time of an ice sheet and for exploratory analysis 
of real bore-hole data. The lowest eigenvalue of the 
solution determines the time-scale for transient decay of 
temperature anomalies. The time-scale can be determined 
for more general strain-rates using a finite-difference 
approximation to the linearized energy-balance equation. 

INTRODUCTION 

Measurements on ice sheets can be made along the 
surface and in vertical bore holes. Typical measurements in 
bore holes include tilts, temperature, and various properties 
of the removed ice, such as crystal fabrics and gas content. 
These measurements provide data essential to understanding 
the past climate and current dynamics of an ice sheet. To 
understand fully the implications of bore-hole data, one 
often uses a numerical model that either analyzes the 
current one-dimensional field provided by the hole, or 
attempts to make a forecast or reconstruction based on those 
data, as discussed exhaustively in Robin (1983), and for 
temperature in particular by Budd and Young (1983) . 
Numerical models are often required because real data 
seldom match the restnchve assumptions of analytical 
solutions . Analytical solutions which describe the vanatlOns 
of a field along the bore hole can be useful for model 
testing. 

A primary purpose of this paper is to present an 
analytical solution that describes the transient behavior of 
temperature in a vertical column. T~is solution is useful for 
testing the behavior of transient ice-temperature models in 
the vertical. In addition, the solution yields simple relations 
among the accumulation rate, the height of a column, and 
the response time associated with various sizes of perturba­
tion in the temperature profile. These relations show that 
advection and diffusion have clearly separated areas of 
dominance in their effect on transient temperature 
perturbations, with diffusion being most important for 
small-scale perturbations in the temperature field and 
advection having more importance for larger time- and 
space-scales. 
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The transient solution derived here generalizes the 
classic steady-state temperature solution developed by Robin 
(1955). Most analytic solutions used to test numerical models 
have been steady state (as Robin's) or contained no 
advection. Robin (1970) used a solution for an advected 
solid from Carslaw and Jaeger (1959) to analyze the 
penetration of surface-temperature changes. That solution 
produces similar results for the penetration of 
surface-temperature changes in the upper part of the ice 
sheet; it is less useful for model testing because it lacks 
finite lower boundary conditions. Solutions in eigenfunction 
form are also useful for analyzing more general initial 
conditions. 

We have applied this solution to a real bore hole with 
a few limiting assumptions to explore the possible effects of 
past climate changes on the hole. The example presented 
here for bore hole T020 of Barnes Ice Cap fairly closely 
matches previous results with a numerical model by Hooke 
and others (1980). The theoretical solution can serve as a 
first approximation to guide the work of a numerical model. 
To illustrate further the transition to a numerical model, we 
show that the equation for vertical energy balance used here 
can be generalized to a less restrictive assumption about the 
vertical velocity profile, and eigenvalues can still be 
calculated using a matrix formulation of the 
finite-difference analogue to our energy-balance equation. 
The first eigenvalue can be used to infer the response time 
of an ice sheet. 

A TRANSIENT VERSION OF ROBIN'S SOLUTION 

Theoretical development 
Robin (1955) solved the differential equation for steady 

conduction and advection of heat in the vertical, where the 
vertical velocity varies linearly from the negative of the net 
accumulation rate at the surface to zero at the base: 

Ay dB 

H dy 
o (I) 

where K is the thermal diffusivity, A is the accumulation 
rate, B is temperature, H is the thickness of the column 
and y is a vertical coordinate with origin at the base of th~ 
column. With boundary conditions of a temperature at the 
upper surface, BH, and a temperature gradient /3 at the base 
of the column, the solution of Equation (I) is 

B(y) 
/3./ii 

BH - - -[erf(cxH) - erf(lXy)l, 
IX 2 

where erf is the error function and 

IX = /A/2KH. 

(2) 

(3) 

A previous generalization of Robin's solution was given 
by Jones (1978), who considered the steady-state solution in 
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a flow plane with an additional assumption about t~e 
horizontal velocity profile. In the current study, we remaID 
restricted to the vertical dimension, but abandon the steady­
state assumption. For transient situations, the corresponding 
differential equation is 

a2a Ay a8 aa 
K--+--=--ay H ay at (4) 

where t is time. Define the dimension less coordinates 

T _ At/ 2H; z - ay (5) 

and use these to rewrite Equation (4) . 

a2a aa 
-- + 2z - = az 2 az (6) 

The solution will be of the form 

a(Z,T) = a",(z ) + 8(Z,T) (7) 

where a .. is the final steady state given by Robin's solution 
(Equation (2)) and 8 satisfies Equation (6) with the initial 
conditions, at T = 0, 

8(z,0) = a(z,O) - 8oo(z ) . (8) 

Initial conditions will be non-zero if either 8H , /3 , or A has 
shifted recently. 

Since the surface temperatures and basal gradients are 
fixed by the steady-state solution, 8 must satisfy the 
homogeneous boundary conditions, 

8(z* ,T) = 0; 
d~( 0, T) 

dz 
0, (9) 

where z* = aH, the dimensionless coordinate at the top of 
the column. Let 

[
-Z2 ] 

8(Z,T) = exp -2- I/I( z ,T) . (10) 

Then I/I(z,T) satisfies 

- (z2 + 1)1/1 
BrtJ 
BT' 

(11 ) 

which is essentially Schrodinger's equation for a parabolic 
potential well. 

Separation of variables is achieved by considering the 
Sturm-Liouville eigenvalue problem, 

0; 
dlP(O) 

dz 
0; IP(z*) = O. 

(12) 

Equation (12) has a complete set of orthonormal eigen-
solutions, cPl/( z ), with eigenvalues ~n ' . . . 

Any function that satisfies the boundary conditIOns (ID 
particular 8) can be expressed as a generalized Fourier 
series of the eigenfunctions, 

(13) 

Substituting Equation (J 3) into Equation (I I), and noting 
that each cP

ll 
satisfies Equation (\2) with >. = ~I/ ' we see 

that CIl(T) must satisfy 

where at some time T = T' , cn is related to a by 

(IS) 

allowing us to prescribe either initial values or a previous 
history of a. All the eigenvalues, ~n' are positive, so all the 
cn have decaying solutions, 

and in general Equation (I I) is solved by 

oo 

I/I(z,T) = L cn(T)cPn(z). 
n=1 

(17) 

Solutions to Equation (12) can be constructed from 

(18) 

where M is the confluent hypergeometric function (also 
called Kummer function) 

ax a(a + I )x2 

M-I+-+ + 
b b(b + 1)2! 

and where 

a(a + I )(a + 2) ... (a + n - I) 
f( a + n) 

f(a) 

(19) 

(20) 

(for example, Slater, 1964). The even-power series is 
selected to satisfy the natural boundary condition, dIP(O)/ dy 
= O. Eigenvalues, ~ = ~n' are found by solving 

M [.: ~ -z*2] = 0 
4' 2 ' 

(21) 

for the eigenvalues, ~Il" 

Evaluation of the eigenvalues and eigenfunctions 
The problem of finding eigenvalues and hence eigen­

functions reduces to the problem of finding zeros of the 
confluent hypergeometric function by varying the numerator 
parameter. Such zeros may be found by Newton-Raphson 
iteration, using (Slater, 1956): 

d '" (a) xn 11 
-M(a,b,x) = L =.n.::.- L 
da 11=1 (b)n ll ! m=1 a + m 

(22) 

Both the confluent hypergeometric function and its 
derivative are evaluated by summing the series. The signs 
on the parameters in Equation (18) force both series to 
have terms of alternating sign which simplifies convergence 
testing. For large 11 , ).n and hence the numerator of each 
term of the series will be large. Therefore, many terms may 
be needed in the summation, and hence many digits in the 
computer calculation. Asymptotic expansions for large ~n are 
hence useful. 

The Newton-Raphson iteration requires an initial guess 
for the eigenvalue. We have developed an approximate 
formula for the eigenfunctions and eigenvalues by using a 
WKB approach , as described, for example, by Matthews and 
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Walker (1970). Any linear, second-order differential equation 
can be converted to a form analogous to Equation (12), in 
which 

d2tP 
dz 2 + f(z)tP = o. (23) 

Working from the simple solutions that are available if f( z ) 
is constant, the WKB method creates approximate solutions 
for cases in which f(z) is slowly varying. In this case, 
f(z) = ). - I - z2 is slowly varying if z*2/ ). is small, in 
which case Equation (12) is approximately solved by 

(24) 

which satisfies the boundary conditions, and which leads to 
eigenvalues that satisfy 

r.----:- z* S 
z*-/).n - 1 - - (n - t) n O. (25) 

6~ 
Equation (25) can be solved for ).n' using the Newton­
Raphson procedure for simplicity. 

To establish an initial guess for the eigenvalues, we 
note that as z* gets large, the eigenfunctions are bounded 
only if the eigenvalues approach the values ).n .... 4n - 2 as 
can be shown from Slater (l964, equation 13.5.1). The 
eigenfunctions are thus related to Hermite polynomials, as 
discussed below. The minimum value of the first eigenvalue 
is 2, which is used as an initial guess for ).1 in Equation 
(25). First estimates of higher eigenvalues are given by an 
approximate recursion relation, developed by assuming). is 
large enough relative to z* that the second term n of 
Equation (25) can be neglected, 

(26) 

In summary, the particular values of A and H for a 
given problem generate a value for z*. Taking an initial 
guess of ).1 = 2, we can improve the estimate by Newton­
Raphson iteration of Equation (25) and use this estimate as 

100 

Xn 

~ 4 
10 3 

2 

~ 
2 3 4 

z* 
Fig. 1. The value of the eigenvalue. ).n' as a functi on of z .. 

for the fir st four values of n. 
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TABLE 1. THE FIRST SEVEN EIGENVALUES FOR 
VARIOUS VALUES OF z* AND AS z* 

Eigenvalue z* = 1 z* = 2 z* = 3 z* 

number 

1 3.384 2.073 2.001 2 
2 23.52 7.800 6.081 6 
3 63 .01 17.74 10.90 10 
4 122.2 32.55 17.50 14 
5 201.2 52.59 26.26 18 
6 299.9 76.97 37.21 22 
7 418.3 106.6 50.36 26 

an initial value for the Newton-Raphson iteration of 
Equation (21), in which the formula for the derivative with 
respect to the numerator parameter (Equation (22» is 
essential. Subsequent eigenvalues are obtained by a similar 
procedure, except that the recursion formula (Equation (26» 
is used to establish the initial guess. 

The eigenvalues decrease as z* increases for a given 
eigenvalue number (Fig. I; Table I) . The first few eigen­
values approach the Hermite integer limit quite rapidly. The 
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Fig. 2. The first four eigenfunctions, tPn{ z ,O) , for a middle­
range value of z .. = 2.0. 

eigenfunctions appear as waves of varying period, with the 
number of zeros on the range [O,z*] being equal to the 
eigenfunction number, as illustrated in Figure 2 for 
z* = 2.0. As z* becomes large enough that eigenvalues 
approach their integer limits, the eigenfunctions become 
expressible in terms of Hermite polynomials, H m(z ), as 

As with the eigenvalues, this limit is reached for the first 
few eigenfunctions at relatively small values of z* (Fig. 3). 

The procedure described above gives accurate solutions 
using the confluent hypergeometric equation , but it also 
shows that the approximate WKB solution is accurate after 
the first few eigenfunctions, especially for small z*, and 
that Hermite polynomials may give adequate approximations 
to the first few eigenfunctions, especially for large z*. Any 
real ice sheet has a small accumulation rate at its center 
such that z* is likely less than 4. As z* approaches this 
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Fig. 3. Examples of the first three eigenfullctiolls, showing 
function values for z· = 1 (so lid curve) , z· = 2 (long 
dashes) , z* = 3 (a lternatlllg dashes), alld the limiting 
eigenfunctiol1s based on Hermite polynomials for z· .... co 

(short dashes). 

limit, the accuracy of the direct method of calculating the 
eigenvalues becomes less certain, as the number of terms 
required for convergence of the confluent hypergeometric 
function becomes very large. At z* = 3.5 , the maximum 
disagreement between the exact and the WKB eigenfunction 
is less than I % by eigenfunction 9. For z* = I, the 
maximum disagreement of the second eigenfunction between 
the exact and WKB solution is less than 10-4. The 
approximate eigenvalues correspondingly approach the real 
ones. Hence, for practical problems, only a few of the 
actual eigenvalues are needed and the simpler WKB formula 
may be used for the rest. In the solutions that are 
described below, we will generally be using such mixed 
series, in which the first few eigenfunctions are generated 
from the confluent hypergeomet ric function, and the 
remainder come from the approximate solution. 

EXAMPLES OF THE SOLUTION 

Responses to step-function perturbatiol1s 
To illustrate the transient behavior of the solution in 

terms of conditions found in Nature, we show a few 
examples of idealized si tuations . In the first of these cases, 
we assume as initial conditions a profile that was in steady 
state prior to a I · C increase in surface temperature at time 
zero. The transient solution thus predicts how the old 
steady-state temperature profile changes on its way to 
becoming a new steady state. 

Assume the following values: H = 1000 m , 
A = 0.3 m/year , 13 = -{) .02 ·C/m, and K = 36.2 m2/ year. The 
value of z* is then 2.04. The initial departure from steady 
state will be -I·C throughout the column. 

Two versions of the initial departure from steady state 
are calculated. First, the forcing at the surface at time 
zero is treated as a perfect step function. Fourier 
coefficients are fitted to this curve using a numerical 
integration over 800 equal intervals in the range [O,z*]. The 
series is truncated at 200 eigenfunctions, of which all but 
the first eight are the WKB approximation. Even at this 
number of eigenfunctions, the truncation leaves a visible 
oscillation in the initial conditions (Fig. 4). The oscillation 
becomes large near the surface discontinuity, as a 
manifestation of the Gibbs phenomenon (Courant and 
Hilbert, 1966, chapter n, section 10.9). In the second case, 
the step-function forcing is applied as a linear variation 
over the top lOO m of the column, reflecting how a 
discretized numerical model with lOO m grid spacing would 

1000 

E 500 
:>. 

0 
-I 0 

Fig. 4. The illi~al departure from steady state for an 
instantaneous 1 C rise in surface temperature produced by 
a generalized Fourier series truncated at 200 
eigenfunctions; z· is 2.04 in this example. 

1000 

E 500 

-I o 

Fig. 5. Initial departure from steady state. as in Figure 3, 
except that the "instantaneous" rise ill surface temperature 
is now assumed to produce an illstallt linear variation over 
tire top 10% of tir e column, as ill a discrete grid of tell 
elements. 
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Fig. 6. Isochrones of the response to the initial conditions of 
Figures 4 and 5, given as departures from the final 
steady state. The isochrones are labeled with times in 
years following the application of the I .Ooe 
surface-temperature change. Solid isochrones are responses 
to the pure step-function change ill boundary conditions 
(Fig. 4), while dashed isochrones are responses to the 
step- function change in boundary conditions as produced on 
a discretized grid (Fig. 5). 

see the step-function change (Fig. 5). The transient 
responses to these initial conditions are shown in Figure 6. 

None of the noise in the Fourier series fit to the 
initial conditions remains in the transient solution I year 
later. For n = 200, the damping time is approximately 25 d. 
The discrete model increases the speed of penetration of the 
surface-temperature change into the ice, as is most clearly 
seen at 900 m height, at the base of the initial linear 
change. Small increases in penetration speed can be seen in 
these simulations down to 700 m height, but at all levels, 
including 900 m, the solution for a discretized step-function 
change becomes very similar to that for a pure step 
function after 500 years. 

The effects of advection on the transient response are 
seen by comparing this response to the solution obtained for 
pure diffusion (.4 = 0). Figure 7 compares the responses to 
a pure step-function change in boundary conditions from 
the current solution and from a solution with A = O. The 
isochrones at 30 years are virtually identical in the two 
cases. As the solution proceeds, the advective form 
progresses towards steady state more rapidly. In the later 
isochrones, the advective solution develops a characteristic 
upward concavity in the upper part of the column, which 
is not seen in the diffusive solution. To understand the 
change in importance of advection with time, we note that 
the Peclet number, Pe = AH/K, is 8.3 for the example in 
Figure 7, indicating that advection terms are dominant but 
not overwhelming. However, if we assign a Peclet number 
to each eigenfunction, in which the length scale is the 
wavelength of the eigenfunction rather than the total height 
of the column, we would have Pe « I for most of the 
eigenfunctions, so early in the time history of the solution 
when these higher eigenfunctions still have large Fourier 
coefficients, the solution is dominated by diffusion. 

As a second example, we retain the height, diffusivity, 
and basal temperature gradient defined above, and subject a 
steady-state temperature profile to instantaneous changes in 
accumulation rate. For a. constant surface temperature, 
increasing the value of A reduces the steady-state basal 
temperature. In these examples, we double the accumulation 
rate from 0.2 m/ year to 0.4 m/ year, so that the new steady­
state temperature is 3°C cold er at the base, and we halve 
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Fig. 7. Isochrones of the transient response, as in Figure 
6, except that here the response to a pure step-function 
change using the value A = 0.3 (solid curves) is compared 
with the response to a step-function change under pure 
diffusion, A = 0 (dashed curves). 

the accumulation rate from 0.8 m/year to 0.4 m/year, so that 
the new steady state is 2.6°C warmer at the base (Fig. 8). 
The similarity in the size of the temperature difference 
produced by these different accumulation-rate changes 
results from the non-linearity of the influence of A on 
steady-state temperature, as shown in Equation (2). In these 
cases, simulating the initial departure from the final steady 
state required only six eigenfunctions to make the actual 
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Fig , 8. lsochrones of the transielll response, as in Figure 6, 
except that an instantaneous halving or doubling of the 
accumulation rate to a value of 0.4 m/ year was applied to 
the column at time zero. In the solid curves , the column 
was initially in steady state with an accumulation rate of 
0.2 m/ year. In the dashed curves the column was initially 
in steady state with an accumulation rate of 0.8 m/ year. 
The initial conditions (time O) are included for each 
case. 
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and simulated departures visually indistinguishable. Since the 
applied changes in accumulation produce a relatively smooth 
profile of initial departures from steady state, the diffusion 
processes are less important than the ad vecti ve processes in 
producing the final solution for this case. Hence, the 
transient changes toward the new steady state, normalized 
by the initial departures, reflect a strong dependence on the 
first few eigenfunctions. 

These above examples implicitly assume that the 
vertical velocity profile adjusts instantly to the new mass 
balance. The velocity profile may be in instantaneous steady 
state with the surface profile of the ice sheet, but the 
surface profile is not likely to be in steady state with the 
mass-balance conditions. The assumption of instantaneous 
adjustment of vertical velocity therefore exaggerates the 
speed with which a mass-balance change affects the 
temperature profile. 

To separate further the effects of diffusion and 
advection in the solution, we introduce two parameters: L is 
the wavelength of a perturbation in the temperature profile 
of a bore hole, as might for example be deduced from a 
Fourier analysis, and T is the response associated with a 
given wavelength, defined as the I/e dissipation time. These 
may be defined for the 11th eigenfunction as 

2H 2H 
L 

11 - !' 
T (28) 

The transient temperature solution implies a set of relation­
ships among these two variables and the height and 
accumulation rate of the column. To obtain an approximate 
relation for the response time as a function of wavelength, 
we again assume ). is large enough that the second term of 
Equation (25) can be neglected, in which case Equation 
(28) implies 

T= --+-[
4Kn2 A ]-1 

L2 2H 
(29) 

Observed scales can be inserted into Equation (29) and it 
can be inverted to make L, H, or A the dependent variable. 

The combination of the exact solution and the WKB 
approximation can be used to plot the relationship between 
response time and perturbation wavelength for several 
combinations of height and rate (Fig. 9). These 

1000 

E 

100 

T (yrs) 

Fig. 9. Wavelength versus response time for an accumulation 
rate of I m /year and various columll heights. Curves are 
for column heights of 100 m (so lid ). 300 m (lol/g dashes). 
alld 1000 m (short dashes ). respectively. 

response-time versus wavelength curves were calculated using 
Equation (29) with small eigenvalues calculated from the 
exact solution and large eigenvalues calculated using 
Equation (25). Note that, for any given ice-sheet thickness 
H, the maximum wavelength is 4H. The thickness and 
accumulation rate only significantly affect the response time 
for wavelengths that are large compared to the thickness of 
the column, as implied by Equation (29). The ratio of A to 
2H will always be on the order of 10-3 year- 1 for ice 
sheets. For all but the largest wavelengths, Equation (29) 
therefore reduces to 

T = (30) 

which is exactly the relation one would get for pure 
diffusion. In sum, the accumulation rate has an important 
effect on the response time only for wavelengths that are a 
significant fraction of the height of the column, while 
small-scale perturbations are almost entirely controlled by 
diffusion as further illustrated by Table 11. 

TABLE IT. THE EFFECT OF ACCUMULATION RATE 
ON RESPONSE TIME FOR LARGE WAVELENGTHS. 

COLUMN DEPTH IS 1000 m. RESPONSE TIMES ARE IN 
years; ACCUMULATION RATES IN m/year 

Wave Wavelength A = 0.0 A = 0.1 A = 0.3 A = 1.0 
number 

m 

I 4000 11200 6750 3230 1000 
2 1333 1240 1140 872 333 
3 800 448 434 387 199 
4 571 229 225 211 137 
5 444 138 137 132 99 
6 404 93 92 90 73 
7 308 66 66 65 56 

Since z* is proportional to AH, we can see that the 
eigenvalues, which approach 411 - 2, become independent of 
the accumulation rate and height as the product of these 
quantities becomes large. Thus, by considering the lowest 
eigenvalue, we get an upper limit to the response time for 
an ice sheet, i.e. 

Tmax H/ A, (31 ) 

which is half that inferred from Equation (28) for infinite 
wavelength. For the central part of East Antarctica, this 
implies a response time approaching 105 years (data from 
Budd and others (1971)). 

Deducing past climates ill a real bore hole 
To the extent that an ice-sheet vertical temperature 

profile satisfies the assumptions of the analytic model, the 
transient solution can be used to interpret bore-hole data in 
terms of the future and past history. If a temperature pro­
file that is in steady state with current climate conditions is 
removed from an observed profile, the remainder 
presumably represents transient modes plus observational 
noise. By fitting one or more of the lower-order modes to 
this remainder , simple estimates can be made of the future 
decay of the departures from steady state. The modes can 
also be extrapolated backward in time to attempt to infer 
past history or initial disturbance. Such backward 
extrapolation requires care and gives information only in the 
largest vertical scales, since the higher-order modes not on ly 
may be more contaminated by noise but also may grow 
more rapidly with decreasing time. 

As an example of backward extrapolation, we consider 
the temperature profile measured in 1979 in bore hole T020 
on the sou th dome of Barnes Ice Cap. Of the several bore 
holes whose temperature profiles were analyzed and 
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discussed by Hooke and others (1980), this one is most 
firmly in the accumulation area of the ice cap and hence 
suitable for analysis by the current solution. Hooke and 
others (1980) used a numerical model to reconstruct a 
climate scenario that could have led to the current tempera­
ture field in bore hole T020. Their model included vertical 
advection and diffusion, as does our Equation (4), with the 
additional processes of strain heating and horizontal 
advection. The horizontal temperature gradient was held 
constant with height, but the horizontal velocity profile 
varied with depth according to the steady-state solution of 
Nye (1952). Additionally, the vertical velocity decreased 
from the surface in their model proportionally to the 
decrease in horizontal velocity. They concluded that the 
temperature distribution in bore hole T020 could have been 
caused by a 2.5°C cooling in the decade of the 1940s, 
followed by a 1.0°C warming in 1969. 

Analysis of the temperature profile is based on the fact 
that the lower part of the measured profile is well 
represented by a steady-state solution whose parameters are 
eH = -8.35°C, A = 0.32 m/year, and B = -o.0175°C/ m 
(Fig. 10). These numbers closely match those of Hooke and 
others (1980) except for B, which is of greater magnitude 
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Fig. 10. Comparison of the observed temperature profile in 
bore hole T020 of Bames Ice Cap in 1979 ( dashed curve) 
"":,ith a steady-state temperature profile for eH = -8.35 ° C, 
A = 0.32 m/year. and B = -o.0175°C/ m (so lid curve). 
The total depth of ice at the bore hole is 369 m , in which 
the actual measurements extend downward to 91 m above 
the bed. 

in the current case, probably because the current solution 
does not include strain heating. If the ice-temperature pro­
file was indeed in steady state with these conditions at 
some time in the past, the deviations from that steady state 
in the current profile suggest that the bore hole is 
responding to a large cooling which has since partly 
reversed. If we assume that a column has responded to two 
step-function changes in surface temperature, the Fourier 
coefficients at a time T after the last change can be 
expressed as 

where ck are the Fourier coefficients that would result from 
a unit step-function increase in surface temperature, t.e is 
the initial change in temperature, T) is the fraction of LIB 
by which the temperature changed back at the second 
change, and t.T is the time between the two surface­
temperature changes. Matching this solution to an observed 
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pattern of temperature deviations requires that we estimate 
three parameters: T, t.T, and t.B, with T) being a direct 
function of LIB and the observed difference between the 
current surface temperature and the temperature with which 
the lower part of the bore hole is in steady state. These 
parameters are determined by minimizing a weighted differ­
ence between the two kinds of Fourier coefficients, 

where N is a truncation value, chosen here to be 12. For 
the current case, the values t.B = -2.6°C and T) = 0.49 for 
changes preceding the measurement by 35 and 8.1 years, 
respectively, produce a good match with the observed data 
(Fig. II). 
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Fig. 11 . Comparison of the observed departure from a steady 
state with the 1979 surface temperature in bore hole T020 
(solid curve) and the departure from steady state produced 
by assuming a step-function decrease in surface temperature 
of 2.6°C in 1944 followed by a rise of 1.3°C in 1971 
(dashed curve). 

These calculations show what can be done with the 
analytic solution using real bore-hole data. They support the 
results from the numerical model of Hooke and others 
(1980). Our backwards extrapolation is insensitive to the 
smallest temperature variations near the surface of the bore 
hole, as small temperature variations deeper in the bore hole 
have as great an effect on the Fourier coefficients. Had it 
been necessary to assume VarIatIOns in A or B, the 
backwards extrapolation would have been more awkward . 
For real bore-hole studies, the solution provides an 
economical, automatic means of obtaining first guesses for 
the climate changes. The few tunable parameters allow for 
simple exploratory analysis of a bore-hole temperature 
profile . Had the sequence of studies been different, Hooke 
and others might have found our solution useful for limit­
ing the range of possibilities needed for consideration in 
their more general numerical model. For the analysis of a 
real bore-hole profile, a more general treatment may be 
needed to allow vertical velocity variations other than the 
linear variation and to include the effects of horizontal 
advection. 

A finite-difference analogue for general strain-rates 
Our inference of response times in terms of the lowest 

eigenvalue can be generalized using the finite-difference or 
finite-element analogue of our differential equation. For 
example , we assume a vertical velocity profile given by 
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v(z) (33) 

where k ~ I. Examples of such vertical velocity profiles are 
shown in Figure 12, where A and H are as used for bore 
hole T020. The first eigenvalue of the solution for any of 
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Fig. 12. Vertical velocity profiles produced by Equation (33) 
for values of k = 1. 2. 3. and 4. using A = 0.32 m / year 
and H = 369 m. 
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Fig. 13. Values of the first eigenvalue versus the exponent k 

of Equation (33). calculated as matrix eigenvalues using 
second-order finite differences. 

these velocity profiles can be accurately approximated by 
the first eigenvalue of the matrix of a finite-difference 
solution. In this case, the grid spacing is I m, which is the 
actual spacing of the original measurements, and the simplest 
second- order difference approximation, iJit ,; (iJii-l + iJii+l 
2iJii)/h2, is used to develop the matrix. The case k = I 
reproduces the theoretical eigenvalue, 2.7, and increasing k 
leads to increases in the eigenvalue, and hence decreases in 

response time (Fig. 13), confirming the qualitative expect­
ation that the greater downward velocities shown in Figure 
12 should lead to faster responses. The limit k ... GO produces 
a simpler differential equation whose solution provides direct 
expressions for the eigenvalues, but this is not especially 
useful, as this limit is approached neither rapidly nor 
monotonically. 

SUMMARY 

We have developed an analytic solution to the problem 
of transient temperature variations in a vertical column of 
ice, using assumptions similar to those used in the steady­
state solution of Robin (1955). This solution can be used to 
test numerical models of temperature in a bore hole. Effects 
of discretization can be analyzed, as shown here for the 
difference in propagation of surface-temperature variations 
between a true step function and a discrete grid. The effect 
of discretization is to increase the initial response of the 
temperature profile to applied surface-temperature changes, 
but this effect fades with time. 

The analytic solution clarifies the balances and scales of 
competing physical processes. The effects of advection and 
diffusion have clearly separated areas of dominance, with 
diffusion being a sufficient approximation for small-scale 
perturbations in the temperature field, and advection placing 
an upper limit on the response time of the ice sheet as a 
whole. 

For the analysis of a real bore-hole profile, a 
numerical model is more flexible, but the analytic approach 
may suggest simple solutions using a few tunable 
parameters. When a real bore hole approximately satisfies 
the constraint of a constant vertical strain-rate, this solution 
can be used as an exploratory tool for limiting the 
possibilities in the difficult task of backwards reconstruction 
of climatic forcing. The procedure can be used for more 
general strain-rates using a finite-difference approximation 
to the linearized energy-balance equation. For example, the 
lowest eigenvalues were found for the matrix analogue of 
the differential equation. 
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