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Lightness of Induced Maps and
Homeomorphisms

Javier Camargo

Abstract. An example is given of a map f defined between arcwise connected continua such that C( f )

is light and 2 f is not light, giving a negative answer to a question of Charatonik and Charatonik.

Furthermore, given a positive integer n, we study when the lightness of the induced map 2 f or Cn( f )

implies that f is a homeomorphism. Finally, we show a result in relation with the lightness of C(C( f )).

1 Introduction

Let f : X → Y be a map between continua. J. J. Charatonik and W. J. Charatonik [2]

studied the relations between the following three statements:

(i) f is light;

(ii) C( f ) is light;

(iii) 2 f is light.

They proved that (iii) implies (ii) and (ii) implies (i) and showed examples where the

other implications do not hold. Also, they asked the following question.

Question 1.1 ([2, 5.1]) Let f : X → Y be a map between arcwise connected continua.

Are lightness of the induced maps C( f ) and 2 f equivalent conditions?

In the Section 3, we give a map f : X → Y such that X is an arcwise connected

continuum, C( f ) is light, but 2 f is not light, giving a negative answer to Question 1.1.

We study the lightness of the induced map Cn( f ) for any n ∈ N, and the interre-

lation with the lightness of 2 f and f . We show that if Cn( f ) is a surjective and light

map for some n ≥ 2, then f is a homeomorphism.

Finally, in the Section 4, we show that if f is a confluent map such that C(C( f )) is

light, then f is a homeomorphism.

2 Definitions

If (X, d) is a metric space, then given A ⊂ X the closure of A is denoted by ClX(A).

The cardinality of A is denoted by |A|. The symbol N denotes the set of positive

integer. A continuum is a nonempty, compact, connected and metric space. A map

is assumed to be a continuous function. The symbol A  B means that A ⊂ B and

A 6= B. Given a continuum X, we consider the following hyperspaces of X:
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(i) 2X
= {A ⊂ X : A is closed and nonempty};

(ii) Cn(X) = {A ∈ 2X : A has at most n components}, n ∈ N.

Here, 2X is topologized with the Vietoris topology [6, p. 3], which is generated by the

collection of sets 〈U1,U2, . . . ,Ul〉, where U1,U2, . . . ,Ul are open sets in X and

〈U1,U2, . . . ,Ul〉 = {A ∈ 2X : A ⊂
l
⋃

i=1

Ui and A ∩Ui 6= ∅ for each i}.

The set Cn(X) is a subspace of 2X . The reader may see [6, 7] for general informa-

tion about hyperspaces.

Let f : X → Y be a map between continua. Then the function 2 f : 2X → 2Y given

by 2 f (A) = f (A) for each A ∈ 2X , is called the induced map between 2X and 2Y .
The function 2 f |Cn(X) is denoted by Cn( f ) and it is called the induced map between

the hyperspaces Cn(X) and Cn(Y ). In [6, p. 106], it was shown that 2 f is a map. Since

2 f (Cn(X)) ⊂ Cn(Y ), Cn( f ) is a map between Cn(X) and Cn(Y ), for each n ∈ N.

Definition 2.1 Let f : X → Y be a map between continua. Then f is said to be

(i) light if f −1( f (x)) is totally disconnected for each x ∈ X;

(ii) monotone if the inverse image of any point in Y is connected;

(iii) confluent if for each subcontinuum Q of Y , each component of f −1(Q) is

mapped onto Q by f ;

(iv) weakly confluent if for each subcontinuum Q of Y , there exists a component P

of f −1(Q) such that f (P) = Q.

Notice that by definition every monotone map is confluent, every confluent map

is weakly confluent, and every weakly confluent map is surjective. Moreover, it is easy

to prove that f is a weakly confluent map if and only if Cn( f ) is surjective, for any

n ∈ N [3, Proposition 1].

3 Lightness of the Induced Map Cn( f )

The next proposition is a generalization of [11, (1.212.3) p. 158].

Proposition 3.1 Let f : X → Y be a map between continua and let n ∈ N. Then

Cn( f ) is light if and only if for each two points A and B of Cn(X) such that A  B and

each component of B intersects A, we have that f (A)  f (B).

Proof Suppose first that there are two points A and B in Cn(X) such that A  B,

each component of B intersects A, and f (A) = f (B). Hence, there is an order arc α
from A to B in Cn(X) [7, Theorem 1.8.20]. Clearly, Cn( f )(α) = { f (A)}. Therefore,

Cn( f ) is not light.

Now we assume that Cn( f ) is not light. Thus, there is a nondegenerate sub-

continuum A of Cn(X) such that Cn( f )(A) = {D} for some D ∈ Cn(Y ). By [7,

Lemma 6.1.1],
⋃

A ∈ Cn(X). Since A is nondegenerate, there is A ∈ A such that

A 6=
⋃

A. Moreover, each component of ∪A intersects A, by [5, Lemma 3.1]. There-

fore, A  
⋃

A and f (A) = f (
⋃

A) = D.
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We use the following simple two facts.

Fact 3.2 If f : X → Y is a light map and A is a proper subcontinuum of X, then

f |A is also light.

Fact 3.3 Let f : X → Y be a map between continua such that there exists a point

y ∈ Y where f −1(y) is not connected. If P and Q are two different components of

f −1(y), then there is an open subset W of Y such that y ∈ W and, P and Q belong

to different components of f −1(W ).

Remark 3.4 Notice that since Cn( f ) = 2 f |Cn(X), we have that if 2 f is light, then

Cn( f ) is light, by Fact 3.2. Let m < n. It is not difficult to prove that Cm( f ) =

Cn( f )|Cm(X). Thus, if Cn( f ) is light, then Cm( f ) is light.

The next theorem shows a necessary and sufficient condition for the lightness of

Cn( f ) for any n ≥ 2.

Theorem 3.5 Let f : X → Y be a map between continua and let n ≥ 2. The following

are equivalent conditions:

(i) For every two nondegenerate and disjoint subcontinua P and Q of X, we have that

f (P) \ f (Q) 6= ∅ and f (Q) \ f (P) 6= ∅;

(ii) Cn( f ) is light.

Proof Suppose that f satisfies (i). We show that Cn( f ) is light. Let A and B be points

of Cn(X) such that A  B and each component of B intersects A. Let A1,A2, . . . ,Am

be disjoint subcontinua of X such that A = A1∪A2∪· · ·∪Am for some m ≤ n. Since

A  B, without loss of generality, we may suppose that A1  B1 for some component

B1 of B. We prove that f (B1) \ f (A) 6= ∅.
First, we show that f (B1) \ f (A1) 6= ∅. Since A1  B1, there is a nondegenerate

subcontinuum L1 in B1 \ A1 by [9, Corollary 5.5]. Clearly, L1 ∩ A1 = ∅. Since f

satisfies (i), f (L1) \ f (A1) 6= ∅. Therefore, f (B1) \ f (A1) 6= ∅.
Now we suppose that f (B1) \ f (A1 ∪ A2 ∪ · · · ∪ Ak) 6= ∅, for some

k ∈ {1, 2, . . . ,m− 1}.

We prove that f (B1) \ f (A1 ∪ A2 ∪ · · · ∪ Ak ∪ Ak+1) 6= ∅.
We show first that

(3.1) B1 \ ( f −1( f (A1 ∪ A2 ∪ · · · ∪ Ak)) ∪ Ak+1) 6= ∅.

Suppose that B1 ⊂ f −1( f (A1 ∪ A2 ∪ · · · ∪ Ak)) ∪ Ak+1. Since A1  B1, B1

is a continuum, and Ai is a component of A for each i ∈ {1, 2, . . . , k + 1}, we

have that B1 \ (A1 ∪ A2 ∪ · · · ∪ Ak+1) 6= ∅. Hence, by [9, Corollary 5.5], there

exists a nondegenerate subcontinuum K of B1 \ (A1 ∪ A2 ∪ · · · ∪ Ak+1). Since

B1 ⊂ f −1( f (A1 ∪ A2 ∪ · · · ∪ Ak)) ∪ Ak+1,

(3.2) K ⊂ f −1( f (A1 ∪ A2 ∪ · · · ∪ Ak)) \ (A1 ∪ A2 ∪ · · · ∪ Ak).
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Thus, it is easy to show that

(3.3) K = ( f −1( f (A1)) ∩ K) ∪ ( f −1( f (A2)) ∩ K) ∪ · · · ∪ ( f −1( f (Ak)) ∩ K).

Claim 3.6 If i ∈ {1, 2, . . . , k}, then f −1( f (Ai))∩K is closed and totally disconnected.

Let j ∈ {1, 2, . . . , k}. Clearly, f −1( f (A j)) ∩ K is closed. Suppose that

f −1( f (A j)) ∩ K has a nondegenerate component R. Notice that R ∩ A j = ∅, by

(3.2). But, R and A j contradict condition (i). Therefore, f −1( f (Ai)) ∩ K is totally

disconnected and Claim 3.6 is proved.

Notice that f −1( f (Ai)) ∩ K is 0-dimensional for each i ∈ {1, 2, . . . , k}, by [10,

Theorem 4.7]. Since K is a finite union of 0-dimensional and closed sets, K is

0-dimensional by [10, Theorem 5.2] (see (3.3)). But this contradicts the fact that

K is a nondegenerate continuum. Therefore, we have that (3.1) is true.

Let Lk be a nondegenerate subcontinuum of B1\( f −1( f (A1∪A2∪· · ·∪Ak))∪Ak+1)

[9, Corollary 5.5]. Clearly, f (Lk)∩ f (A1 ∪A2 ∪ · · · ∪Ak) = ∅. Thus, Lk and Ak+1 are

nondegenerate subcontinua of X such that Lk ∩Ak+1 = ∅. Hence, f (Lk) \ f (Ak+1) 6=
∅ by condition (i).Since f (Lk) ⊂ f (B1), f (B1) \ f (A1 ∪ A2 ∪ · · · ∪ Ak+1) 6= ∅.

Thus, f (B1) \ f (A) 6= ∅. Since f (B1) ⊂ f (B), f (B) \ f (A) 6= ∅ and f (A)  f (B).

Therefore, Cn( f ) is a light map, by Proposition 3.1.

Conversely, we suppose that condition (i) does not hold. Let A and B be nonde-

generate subcontinua of X, such that A ∩ B = ∅ and f (A) ⊂ f (B). Let a ∈ A and

n ≥ 2. We define P and Q in Cn(X) by P = {a} ∪ B and Q = A ∪ B. Clearly, P  Q,

each component of Q intersects P and f (P) = f (Q). Therefore, Cn( f ) is not light by

Proposition 3.1.

The next corollary follows from Theorem 3.5.

Corollary 3.7 Let f : X → Y be a map between continua and let n and m be positive

integers greater than 1. Then Cn( f ) is light if and only if Cm( f ) is light.

By Theorem 3.5 and [2, Corollary 5.5], we have the following proposition.

Proposition 3.8 Let f : X → Y be a map between continua. Consider the following

conditions:

(i) 2 f is light;

(ii) Cn( f ) is light for every n ≥ 2;

(iii) C( f ) is light;

(iv) f is light.

Then (i) implies (ii), (ii) implies (iii), and (iii) implies (iv).

The reader can find examples where the other implications are not true in [2].

Regarding the implications: (ii) implies (i) and (iii) implies (ii) the reader needs to

use Theorem 3.5 to find the appropriate examples.

Theorem 3.9 Let f : X → Y be a weakly confluent map between continua and let

n ≥ 2. If Cn( f ) is light, then f is a homeomorphism.
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Proof We prove that f is monotone. Suppose that there are two points p1 and p2 of

X such that f (p1) = f (p2). Since Cn( f ) is light, f is light by Proposition 3.8. Thus,

{p1} and {p2} are components of f −1( f (p1)).
By Fact 3.3, there is an open subset W of Y such that f (p1) ∈ W and both p1

and p2 belong to different components of f −1(W ). Let P1 and P2 be nondegenerate

subcontinua of f −1(W ) such that p1 ∈ P1 and p2 ∈ P2 [9, Corollary 5.5]. Since f is

light, f (P1) and f (P2) are nondegenerate subcontinua of W.
Let K = f (P1) ∪ f (P2). Since f (p1) ∈ f (P1) ∩ f (P2), K is a subcontinuum of

W . Since f is weakly confluent, there exists a component Q of f −1(K) such that

f (Q) = K. Notice that since p1 and p2 belong to different components of f −1(W ),

we have that either Q ∩ P1 = ∅ or Q ∩ P2 = ∅. Clearly, f (P1) ⊂ f (Q) and

f (P2) ⊂ f (Q). But this contradicts the fact that Cn( f ) is light by Theorem 3.5.

Therefore, f is monotone. It is not difficult to show that a monotone and light map

between continua is a homeomorphism and the proof is complete.

In [2, Example 4.5], a map f between continua is given such that C( f ) is light,

surjective and f is not monotone.

Corollary 3.10 Let f : X → Y be a weakly confluent map between continua. If 2 f is

light, then f is a homeomorphism.

Proof Since 2 f is light, Cn( f ) is light for each n ≥ 2 by Proposition 3.8. Now the

corollary follows from Theorem 3.9.

By Theorem 3.5 and [2, Corollary 5.7], we have the following result.

Theorem 3.11 Let X be an arcwise connected continuum, let f : X → Y be a map

between continua and let n ≥ 2. Then Cn( f ) is light if and only if C( f ) is light.

Theorems 3.9 and 3.11 imply the following corollary.

Corollary 3.12 Let X be an arcwise connected continuum and let f : X → Y be a

weakly confluent map. If C( f ) is light, then f is a homeomorphism.

A dendroid is an arcwise connected and hereditarily unicoherent continuum. A

point p in a dendroid X is called a ramification point, if X \ {p} has three or more

components. A dendrite is a locally connected dendroid. For general information

about dendroids or dendrites, the reader may see [7, 9].

Proposition 3.13 Let Y be a dendrite with only a finite number of ramification points,

and let f : [0, 1]→ Y be a surjective map. If C( f ) is light, then f is a homeomorphism.

Proof We prove that f is monotone. Suppose that there are two different points a

and b in [0, 1] such that f (a) = f (b). Since f is light (see Proposition 3.8), {a} and

{b} are components of f −1( f (a)). Suppose that a < b. Observe that f ([a, b]) is a

nondegenerate subdendrite of Y [9, Corollary 10.6].

Let c ∈ [a, b] such that f (c) is an end point and different from f (a) = f (b).

Since Y has only a finite number of ramification points, there exists a point y0 ∈
Y such that the arc from y0 to f (c), denoted by β, is a free arc in Y . Notice that

β ⊂ f ([a, c]) ∩ f ([c, b]). Let t0 = max{ f −1(y0) ∩ [a, c]}. It is easy to show that
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f ([t0, c]) = β. Hence, [c, b]  [t0, b] and f ([c, b]) = f ([x0, b]). Thus, C( f ) is not

light by Proposition 3.1. Hence, f is monotone and a light map. Therefore, f is a

homeomorphism.

Theorem 3.14 Let f : X → Y be a map, where X is an arcwise connected continuum

and Y is a dendroid with only a finite number of ramification points. If C( f ) is light,

then f is a homeomorphism.

Proof We prove that f is monotone. Suppose there exist two points a and b in X

such that f (a) = f (b) and a and b belong to different components of f −1( f (a)).

Let α be an arc in X, where a and b are the end points of α. Since C( f ) is light,

C( f )|C(α) is light by Fact 3.2. It is easy to show that C( f )|C(α) = C( f |α). Hence, f |α
is a homeomorphism by Proposition 3.13. This contradicts the fact that f (a) = f (b).

Thus, f is monotone. Since C( f ) is light, f is light by Proposition 3.8. Therefore, f

is a homeomorphism.

Corollary 3.15 Let f : X → Y be a map, where X is an arcwise connected continuum

and Y is a dendroid with only a finite number of ramification points. Then the following

are equivalent:

(i) 2 f is light;

(ii) Cn( f ) is light, for some n ≥ 2;

(iii) C( f ) is light;

(iv) f is a homeomorphism.

Proof (i) implies (ii) and (ii) implies (iii) follows from Proposition 3.8. If C( f ) is

light, then f is a homeomorphism by Theorem 3.14. Finally, it is known that since f

is a homeomorphism, 2 f is a homeomorphism. Therefore, 2 f is light and our proof

is complete.

The next example shows that the condition Y has only a finite number of ramifi-

cation points may not be removed.

Example 3.16 There is a map f : [0, 1] → X, where X is a dendrite such that 2 f is

light and f is not a homeomorphism.

Let X1 = {(x, 0) : −1 ≤ x ≤ 1}. Define f1 : [0, 1]→ X1 such that:

• f1(0) = f1(1) = (−1, 0) and f1( 1
2
) = (1, 0);

• f1|[0, 1
2

] and f1|[ 1
2
,1] are homeomorphisms.

Now let X2 = X1 ∪ J11, where J11 = {(0, y) : − 1
2
≤ y ≤ 1

2
}, i.e., J11 is an arc whose

midpoint divides X1 into two equal parts, and the size of J11 is half of the size of X1.

Notice that X2 has four maximal free arcs. We divide [0, 1] into 8 equal parts, i.e.,

{[ i
8
, i+1

8
] : i = 0, 1, . . . , 7}, and define f2 : [0, 1] → X2 an a surjective map, such

that:

• f2(0) = f2(1) = (−1, 0) and f2( 1
2
) = (1, 0).

• f2|[ i
8
, i+1

8
] is a homeomorphism from [ i

8
, i+1

8
] onto a maximal free arc of X2, for

each i = 0, 1, . . . , 7. We do this counter clockwise.
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Figure 1

Figure 1 may clarify the definition of f2.

It is important to note that if f2(t) is an end point of X2 different of (−1, 0), then

f −1
2 ( f2(t)) = {t}.

We do one more step. Let X3 = X2 ∪ ( J21 ∪ J22 ∪ J23 ∪ J24), where for each

i ∈ {1, 2, 3, 4} J2i is an arc whose midpoint divides each maximal free arc of X2 into

two equal parts, and the size of J2i is half of the size of the arc which it divides. The

continuum X3 has 16 maximal free arcs. We divide [0, 1] into 32 equal parts, i.e.,

{[ i
32
, i+1

32
] : i ∈ {0, 1, . . . , 31}} and define f3 : [0, 1] → X3 to be a surjective map

such that:

• f3( i
8
) = f2( i

8
) for each i ∈ {0, 1, . . . , 8};

• f |[ i
32
, i+1

32
] is a homeomorphism from [ i

32
, i+1

32
] onto a maximal free arc of X3, for

each i ∈ {0, 1, . . . , 31}. We do this counter clockwise (see Figure 2).

0 1

f3

X3

f3( 1
2

)

f3( 1
4

)

f3( 3
4

)

f3(0)

f2(1)

Figure 2

Inductively, suppose we have defined a dendrite Xn−1 and a surjective map

fn−1 : [0, 1]→ Xn−1,

such that Xn−1 has 4n−2 maximal free arcs and fn−1|[ i

2(4n−2)
, i+1

2(4n−2)
] is a homeo-

morphism from [ i
2(4n−2)

, i+1
2(4n−2)

] onto a maximal free arc of Xn−1, for each i ∈

{0, 1, . . . , 2(4n−2) − 1}. Let Xn = Xn−1 ∪ { Jn−1i : 1 ≤ i ≤ 4n−2}, where Jn−1i
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is an arc whose midpoint divides each maximal free arc of Xn−1 into two equal

parts, and the size of Jn−1i is half the size of the arc which it divides, for each

i ∈ {1, 2, . . . , 4n−2}. We divide [0, 1] into 2(4n−1) equal parts, i.e., {[ i
2(4n−1)

, i+1
2(4n−1)

] :

0 ≤ i ≤ 2(4n−1)− 1} and define fn : [0, 1]→ Xn an a surjective map, such that:

• fn( i
2(4n−2)

) = fn−1( i
2(4n−2)

), for each i ∈ {0, 1, . . . , 2(4n−2)};
• fn|[ i

2(4n−1)
, i+1

2(4n−1)
] is a homeomorphism from [ i

2(4n−1)
, i+1

2(4n−1)
] onto a maximal free

arc of Xn, for each i = 0, 1, . . . , 2(4n−1)− 1. We do this counter clockwise.

It is important to emphasize that for every interval [ i
4n−1 ,

i+1
4n−1 ], there exists a point

t ∈ [ i
4n−1 ,

i+1
4n−1 ] such that fn(t) is an end point of Xn for each i ∈ {0, 1, . . . , 4n−1−1}.

Thus, f −1
n ( fn(t)) = {t}. Also, if fk(t) is an end point of Xk, then fm(t) = fk(t) for

every m > k and fm(t) is an end point of Xm.
Let X = lim

←−
{Xn, φn}, where φn : Xn → Xn−1 defined by

φn(x) =

{

x if x /∈ Ji ,

pi if x ∈ Ji , where {pi} = Jn−1i ∩ Xn−1.

Remember that Xn = Xn−1 ∪ { Jn−1i : i ∈ {1, 2, . . . , 4n−2}}. Since φn is mono-

tone, for each n ∈ N, X is a dendrite [7, Corollaries 2.1.14, 2.1.26]. Let I =

lim
←−
{[0, 1]n, ϕn}, where [0, 1]n = [0, 1] and ϕn : [0, 1] → [0, 1] is defined such that

φn ◦ fn = fn−1 ◦ ϕn for each n ∈ N. It is possible to check that ϕn is monotone, for

each n ∈ N. Thus, I is homeomorphic to [0, 1].
Let f : I → X be defined by f

(

{tn}
∞
n=1

)

= { fn(tn)}∞n=1. Then the map f is a

surjective map by [7, Theorem 2.1.48]. Clearly, f is not a homeomorphism.

Claim 3.17 The set {t ∈ I : f −1( f (t)) = {t}} is dense in I.

Let U be an open subset of I. Then there exists a positive integer n such that

[ i
4n−1 ,

i+1
4n−1 ] ⊂ U for some i ∈ {0, 1, . . . , 4n−1 − 1}. Hence, there exists a point

t ∈ [ i
4n−1 ,

i+1
4n−1 ] such that fk(t) = fn(t) and fk(t) is an end point of Xk for every

k ≥ n. Furthermore, f −1
k ( fk(t)) = {t} for every k ≥ n. Therefore, f −1( f (t)) = {t}

and the claim is proved.

Finally, we prove that 2 f is light. Let A and B be points in 2I such that A  B

and each component of B intersects A. It is not difficult to show that there is an

open subset U of I such that U ⊂ B \ A. By Claim 3.17, there is t ∈ U such that

f −1( f (t)) = {t}. Thus, f (t) ∈ f (B) \ f (A). Therefore, f (A)  f (B) and 2 f is a

light map, by [2, (3.6) p. 183].

The idea of the next example is similar to [2, Example 5.2]. It gives a map f

defined between arcwise connected continua such that Cn( f ) is light for every n ∈ N

and 2 f is not light, giving a negative answer to [2, Questions 5.1 and 5.9].

Example 3.18 Let C be the Cantor set and let Z = C × [0, 1]. Let ρ be the Cantor

function from C onto [0, 1] defined in [4, Figure 3-19, p.131]. We define the relation

R on Z by

(x1, y1)R(x2, y2) if and only if(x1, y1) = (x2, y2)
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or

(y1 = y2 = 1 and ρ(x1) = ρ(x2)).

Let X = Z/R. Clearly, X is a dendroid (in particular, it is arcwise connected).

Similarly, let Y = Z/R ′, where R ′ is a relation on Z defined by

(x1, y1)R ′(x2, y2) if and only if(x1, y1) = (x2, y2)

or

(y1, y2 ∈ {0, 1} and ρ(x1) = ρ(x2)).

Notice that R ⊂ R ′. Let f be the natural map from X onto Y induced by the

quotient maps qR and qR ′ , i.e., f ◦ qR = qR ′ . Let A and B be the closed subsets of X

defined by

A = (C × {0}) ∪ {( 1
4
, 1)} and B = (C × {0}) ∪ qR({(x, 1) : x ∈ C}).

Clearly, A  B and each component of B intersects A. Moreover, f (A) = f (B). Let

α be an order arc in 2X from A to B [7, Theorem 1.8.20]. Clearly, 2 f (α) = { f (A)}.
Therefore, 2 f is not light.

Let P and Q be disjoint and nondegenerate subcontinua of X. Notice that

f |X\(C×{0}) is a bijection. Since P and Q are nondegenerate subcontinua of X,

there are points p ∈ P and q ∈ Q such that {p, q} ⊂ X \ (C × {0}). Hence,

f (p) ∈ f (P) \ f (Q) and f (q) ∈ f (Q) \ f (P). Thus, Cn( f ) is light for n ≥ 2 by

Theorem 3.5. Therefore, Cn( f ) is light for every n ∈ N, by Theorem 3.11.

A map defined between continua f : X → Y is called of order smaller than or equal

to k, if | f −1(y)| ≤ k for every y ∈ Y . The maps of order smaller than or equal to 2

are said to be simple [1, p. 84]. Notice that Example 3.18 gives a map between arcwise

connected continua f of order smaller than or equal to 3.
The next theorem shows that there is not a simple map f , such that Cn( f ) is light

for some n ≥ 2 and 2 f is not light.

Theorem 3.19 Let f : X → Y be a simple map between continua. Then 2 f is light if

and only if Cn( f ) is light for some n ≥ 2.

Proof If 2 f is light, then Cn( f ) is light, by Proposition 3.8. Let f : X → Y be a simple

map between continua. We assume that 2 f is not light. Thus, there exist two points

A and B in 2X such that A  B, each component of B intersects A and f (A) = f (B)

[2, Theorem 3.6].

Let b ∈ B \ A. Let B0 be the component of B such that b ∈ B0. By [9, Corollary

5.5], there is a nondegenerate subcontinuum D of B0 \ A. Since f is simple, f is

light. Hence, f (D) is a nondegenerate subcontinuum of Y . Notice that f (D) ⊂ f (B).

Thus, f (D) ⊂ f (A). Let E = f −1( f (D)) ∩ A. Clearly, f (E) = f (D).
We show that E is connected. Suppose that E is not connected. Then there exist

two closed subsets F1 and F2 of E such that E = F1 ∪ F2 and F1 ∩ F2 = ∅. Observe
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that F1 and F2 are closed subsets of X, and f (D) = f (F1) ∪ f (F2). Since f (D) is

connected, f (F1) ∩ f (F2) 6= ∅. Hence, there are x1 ∈ F1 and x2 ∈ F2 such that

f (x1) = f (x2). Since f is simple, either x1 ∈ D or x2 ∈ D. But this contradicts the

fact that D ∩ A = ∅. Therefore, E is connected.

Finally, D and E are disjoint and nondegenerate subcontinua of X such that

f (D) = f (E). Therefore, Cn( f ) is not light by Theorem 3.5.

In [2, Example 4.5] a simple map f is given such that C( f ) is light and 2 f is not

light.

A continuum X is decomposable provided that it can be written as the union of

two of its proper subcontinua. We said that X is indecomposable if it is not decom-

posable. We said that X is hereditarily decomposable (hereditarily indecomposable) if

each subcontinuum of X is decomposable (indecomposable, respectively).

Proposition 3.20 Let f : X → Y be a surjective map between continua where Y is

indecomposable. If C( f ) is light, then X is indecomposable.

Proof Let f : X → Y be a map between continua where Y is indecomposable. Sup-

pose that X is decomposable. Thus, there are two proper subcontinua A and B of X

such that X = A ∪ B. Clearly, Y = f (A) ∪ f (B). Since Y is indecomposable, either

f (A) = Y or f (B) = Y . Suppose that f (B) = Y . Hence, there exists an order arc α in

C(X) from B to X [6, Theorem 14.6]. It is easy to see that C( f )(α) = {Y}. Therefore,

C( f ) is not light. Similarly, if f (A) = Y.

A similar argument shows the following proposition.

Proposition 3.21 Let f : X → Y be a map between continua where Y is hereditarily

indecomposable. If C( f ) is light, then X is hereditarily indecomposable.

In [2, Example 4.5], a map f between indecomposable continua is given such that

C( f ) is light and f is not monotone.

Question 3.22 Let f be a map between hereditarily indecomposable continua. If C( f )

is light, then does it follow that f is a homeomorphism?

4 Lightness of the Induced Map C(C( f ))

The main result in this section is Theorem 4.2, where we show that if f is a confluent

map and C(C( f )) is light, then f is a homeomorphism. The following result may be

found in [5, Lemma 6.1].

Lemma 4.1 Let f : X → Y be a confluent map. If α is an arc in C(Y ) and β is a

component of C( f )−1(α), then C( f )(β) = α.

Theorem 4.2 Let f : X → Y be a confluent map between continua. If C(C( f )) is

light, then f is a homeomorphism.

Proof Let f : X → Y be a confluent map between continua such that C(C( f )) is

light.
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Let A and B be nondegenerate subcontinua of X such that A ∩ B = ∅. We prove

that f (A)\ f (B) 6= ∅. Suppose that f (A) ⊂ f (B). Without loss of generality, we may

suppose that f (A)  f (B), because if f (A) = f (B), then there is a nondegenerate

continuum A0  A and, since C( f ) is light by Proposition 3.8, we have that f (A0)  

f (A) by Proposition 3.1. Hence, A0 ∩ B = ∅ and f (A0)  f (B). Therefore, we

assume that f (A)  f (B).

Let D be the component of f −1( f (B)) such that A ⊂ D. Since f is confluent,

f (D) = f (B). Observe that if D ∩ B 6= ∅, then B  D. But this contradicts the fact

that C( f ) is light by Proposition 3.1. Thus, D ∩ B = ∅.

Let γ be an order arc in C(X) from A to D [6, Theorem 14.6]. Since f is light,

it is not difficult to show that C( f )(γ) is an arc in C(Y ) from f (A) to f (B). Let ζ
be the component of C( f )−1(C( f )(γ)) such that B ∈ ζ . By Lemma 4.1, C( f )(ζ) =

C( f )(γ). Since ζ is a component, we have either γ  ζ or γ ∩ ζ = ∅.
Notice that γ  ζ contradicts the fact that C(C( f )) is light by Proposition 3.1.

Hence, suppose that γ ∩ ζ = ∅. Notice that γ and ζ are nondegenerate subcontinua

of C(X) and C( f )(ζ) = C( f )(γ). Thus, Cn(C( f )) is not light by Theorem 3.5. Since

C(X) is arcwise connected, C(C( f )) is not light by Theorem 3.11.

Thus, f (A) \ f (B) 6= ∅. Similarly, we show that f (B) \ f (A) 6= ∅. Hence, Cn( f )

is light for some n ≥ 2. Therefore, f is a homeomorphism by Theorem 3.9.

Corollary 4.3 Let f : X → Y be a map between continua where Y is hereditarily

indecomposable. If C(C( f )) is light, then f is a homeomorphism.

Proof Let Y be a hereditarily indecomposable continuum and let f : X → Y be a

map. By [8, (6.11), p 53], f is confluent. Thus, the corollary follows of Theorem

4.2.

Let f (t) = e2πit be a map from [0, 1] to S1. It is not difficult to show that

C( f )|C([0,1])\{{0},{1}} is an injective map. Thus, if A and B are subcontinua of

C([0, 1]) such that A  B, then C( f )(A)  C( f )(B). Therefore, C(C( f )) is light

and, clearly, f is not a homeomorphism.

Question 4.4 Let f be a weakly confluent map. If C(C( f )) is light, then does it follow

that f is a homeomorphism?
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[8] T. Maćkowiak, Continuos mappings on continua. Dissertationes Math. (Rozprawy Mat.)
158(1979), 1–95.

[9] S. B. Nadler, Jr., Continuum Theory, An Introduction. Monographs and Textbooks in Pure and
Applied Mathematics 158, Marcel Dekker, New York, 1992.

[10] , Dimension Theory: An Introduction with Exercises. Aportaciones Matemáticas. Textos 18.
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