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ORDER COMPARISONS ON CANONICAL ISOMORPHISMS
MITSURU NAKAI

Consider a nonnegative Hoélder continuous 2-form P(z)dxdy (z = x + iy)
on a connected Riemann surface EB. We denote by P(R) the linear space
of solutions u# of the equation du = Pu on R and by PX(R) the subspace
of P(R) consisting of those u# with a certain boundedness property X.
We also use the standard notations H(R) and HX(R) for P(R) and PX(R)
with P = 0. As for X we take B to mean the finiteness of the supremum
norm |u| = supg|ul, D the finiteness of the Dirichlet integral D(u) =

j du N* du, E the finiteness of the energy integral E(u) = j (du N* du
R R

+ u*(z)P(z)dxdy), and their nontrivial combinations BD and BE. Let
Q@dxdy be another 2-form of the same kind. We say that PX(R) is
canonically isomorphic to QX(R) if there exists a linear isomorphism T
of PX(R) onto QX(R) such that # and Tu have the same ideal boundary
values for every u in PX(R) in the sense that |u — Tu| is dominated by
a potential on R, i.e. a nonnegative superharmonic function whose greatest
harmonic minorant is zero. In the pioneering work [14] concerning
canonical isomorphisms, Royden proved the following order comparison
theorem: If there exists a constant ¢ > 1 such that

(1) ¢'P(2) < Q) < ¢P(?)

on hyperbolic R except possibly for a compact subset K of R, then PB(R)
and QB(R) are canonically isomorphic. In this connection we wish to
discuss the following two questions:

1°. Is the condition (1) also sufficient for PX(R) and QX(R) to be
canonically isomorphic for X = D, E, BD, and BE?

2°, In the affirmative case how large can we malke the exceptional
set K in 1) for X =B, D, E, BD, and BE?
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We shall actually show that the answer to 1° is affirmative. To give
the complete answer to 2° is probably very difficult. In this paper we
shall considerably enlarge the class of exceptional sets as follows. Let
W be an open subset of R with an analytic relative boundary oW and
consider the relative class HX(W ; W) ={u e HX(W) N C(R) ; u|R — W =0}
for X = B,D, and BD. The Heins injection A;: HX(W;oW) — HX(R)
is given by Azu = lim,_, H?. We say that a subset K of R is X-negligible
(X = B,D, and BD) if either R is parabolic or there exists a W with
K C R — W such that 2;: HX(W ;W) — HX(R) is surjective. We will
see that a subset K of hyperbolic R is B-negligible (BD-negligible, resp.)
if and only if there exists a potential (Dirichlet finite potential, resp.)
p such that p > 1 on K. Such a simple characterization for D-negligible
sets is not available. We only know that if there exists a Dirichlet finite
potential p harmonic outside a compact set of B such that p > 1 on K,
then K is D-negligible. By these criterions we see that compact sets are
trivial examples of our negligible sets. The purpose of this paper is to
contribute to the solution of questions 1° and 2° as follows:

ORDER COMPARISON THEOREM. Let R be a hyperbolic connected
Riemann surface. If (1) is valid on R except possibly for a B-negligible
subset of R, then PB(R) and QB(R) are canonically isomorphic; if (1) is
valid on R except possibly for a BD-negligible subset of R, then PBD(R)
(PBE(R), resp.) and QBD(R) (QBE(R), resp.) are canonically isomorphic;
if (1) is valid on R except possibly for a D-negligible subset of R, then
PD(R) (PE(R), resp.) and QD(R) (QE(R), resp.) are canonically tso-
morphic.

We excluded parabolic R since in such a case PX(R) = {0} for every
X =B,D,E,BD,BE and P # 0, and HX(R) = {constants}. In nos. 1-4,
we shall prove that the theorem is true if the exceptional set in (1) is
empty. We consider canonical injections: PX(R)— QX(R) and reduc-
tion operators: PX(R)— HX(R) as preparations for considering canonical
isomorphisms. The notion of quasipotential will be introduced and prove
to be useful; at least it is a convenient terminolgy. In nos. 5-7, the
surjectiveness of canonical extensions PX(W;oW) — PX(R) will be dis-
cussed. After these preparations, the proof of our order comparison
theorem will be given in no. 8. Although our main concern in this paper
is the order comparisons, we will append a sketch of the other kind of
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important criterion, the integral comparisons, for the existence of canoni-
cal isomorphisms in nos. 9-10. The first integral comparison theorem
in no. 9 generalizes those thus far known. The second one in no. 10
completely characterizes the surjectiveness of reduction operators: PX(R)
— HX(R) for X = B,BD, and BE. Methodologically the use of the com-
pactification theory of Riemann surfaces would give more clearer gec-
metric intuitive insight to the whole discussion in this paper. However
to make the description as elementary as possible we will intentionally
avoid its use even if it is preferable.

Canonical Injections

1. It will be convenient to include disconnected but separable sur-
faces in our considerations. Therefore we assume that our Riemann
surface R is either connected or an open subset of a connected Riemann
surface. By a regular open set we mean a finite union of closure dis-
joint regular regions in B. We use the notation 2 for regular open sets.
The totality {2} of regular open sets 2 of R forms a directed net by
inclusions converging to R. A 2-form P(z)dxdy (z = x + 1y) on R is said
to be Holder continuous if, for each parametric disk (U, z), there exist
constant K = K(U, 2) € (0, o) and a =a(U, 2) € (0,1] such that | P(z) — P(z,)|
< K|z, — #,]* for every pair of points 2z, and z, in U. We say that
P(z)dxdy is nonnegative, P(z)dzxzdy > 0 or P(z) > 0 in notation, if, for
each parametric disk (U,z), P(z) > 0 for every z in U. These are well
defined since such properties are invariant under the change of local
parameters. In particular the order P(z)dzdy > Q(z)dxdy or P(z) > Q(2)
can be defined between two 2-forms by (P(z) — Q(z))dxdy > 0. The 2-form
P(z)dxdy is (identically) zero if, for each parametric disk (U, z), P(z) =0
in U. We simply denote this by P = 0. Nonnegative Holder continuous
2-forms on R will be denoted by P(r)dxdy, Q(z)dxdy, etc.

We denote by P? the solution of the Dirichlet problem of the equa-
tion du = Pu on 2 with a continuous boundary values ¢ on the relative
boundary 22, i.e. P?e P(2) N C(2) with P?|aR = ¢, where P(2) is the
linear space of C? solutions of du = Pu on £. By the limiting process
we can define P? even for upper- or lower- semicontinuous functions o.
We also use the standard notation H? and H(£) for P; and P(2) with
P=0. Let G,(2,0 be the harmonic Green’s function on 2. If £ is
connected, then there is no question about its definition. If 2 = (UJr, £,

https://doi.org/10.1017/50027763000015580 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015580

70 MITSURU NAKAI

with 2; connected and 2, N 2, = ¢ (1 # J), then G,(2,0) = G,(2,0) for
2,ef; and Go(2,0) =0 for ze 2, and (e 2, (i +# 7). Then

(2) P2 =H? — —1—I G(-,QP(QOP)dédy ,
2o

where { = & 4 iy, and the Dirichlet integral D,(P7) :j dP? N« dP? is
2

given by

(3)  Do(P)) = Dy(H]) + —Zl;fQXQGQ(z,C)P,f,’(z)Pf(C)P(z)dxdyP(C)d&dv

(cf. e.g. [9,10]). Since the energy integral E,(u) = E5(w) = D,(u) +
Luz(z)P(z)dxdy is the variation whose Euler-Lagrange equation is du = Pu,
we have the so-called energy principle (Dirichlet principle):
(4) E,(P?) = min (E,(w);ue C(Q) N C*(Q),u|d2 = ¢) ,

where C¥ is the class of weakly differentiable functions (cf. e.g. [1]).
Another simple but important fact which will be used repeatedly is that
| and u U 0 = max (u,0) are subharmonic for every ue P(R). Since
du =Py >0 in {u > 0}, v U 0 = u is subharmonic in {u > 0}, and so is
#uUO0=0 in {# <0}. The submean value property is clearly valid at
each point of {u = 0} for # U 0. Therefore w U 0 and (—w) U 0 are sub-
harmonic on R, and sois|u| =2 U 0 + (—uw) U 0. A potential p on R is
a nonnegative superharmonic function whose greatest harmonic minorant
is zero. If 2 C &, then 0 < Hy' < Hy and lim,_, H? is a nonnegative
harmonic function on R dominated by p. Thus lim,_, HS = 0 and actually
this is the defining property for a nonnegative superharmonic function
p to be a potential. A function f on R will be referred to as a quasi-
potential if | f| is majorated by a potential p = p,. Clearly the class of
quasipotentials (potentials, resp.) forms a linear (additive, resp.) space.
Since [P?| < P, < Py < Hj with p = p;, we have
(5) limP¢ =1limP?, =0

2R 2R
for every upper- or lower- semicontinuous quasipotential f on R. The
following fact will also be used repeatedly: If f is a quasipotential such
that | f| is subharmonic, then f = 0. This follows from (5) and the ine-
quality |f| < HE,.
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We denote by PB(R) the subspace of P(R) consisting of solutions u
with the finite supremum norms: |u| = ||#|z = supg|u| < co. The no-
tation PD(R) is used for the subspace consisting of solutions u with the
finite Dirichlet integrals D(u) = Dz(u) < oo. The subspace PE(R) consists
of solutions % such that the energy integrals F(u) = Ep(u) = E5(u) < oo.
Similarly PBD(R) = PB(R) N PD(R) and PBE(R) = PB(R) N PE(R).
Contrary to PB(R) and PD(R), the scale E for which every solution in
PE(R) is finite varys according to P. We use the standard notations
HX(R) for PX(R) with P=0 (X =B, D, E, BD, BE). In this case
E(u) = D(u) and thus e.g. HE(R) = HD(R). We denote by PX(R)* the
subset of PX(R) consisting of nonnegative solutions. It is of fundamental
importance that PX(R)* generates PX(R) for X =B, D, E, BD, and BE (cf.
e.g. [14],[7],12]). We say that PX(R) and QX(R) (X = B,D,E,BD, BE)
are canonically isomorphic if there exists a linear isomorphism 7T of
PX(R) onto QX(R) such that u — Tu is a quasipotential for every u e PX(R).
The operator T is unique, order preserving, and isometric, and will be
referred to as the canonical isomorphism. In fact, if T’ is another such
operator, then |Tu — T'u| < | — Tu| + |4 — T'u| and thus |Tu — T"u| is
a quasipotential. Since |Tw — T'u| is subharmonic, Tu = T'u for every
ue PX(R). Suppose e PX(R)*. Since Tu > u — |u — Tu|, Q2 > 0, and
Qf, =Tu, we have Tu > Q% — Qf,_r,, > — Q% _r, on £2. On letting 2R,
we conclude by (5) that Tu > 0, i.e. Tu e QX(R)*. For general u e PX(R),
observe that |Tu|<|u|+ |u — Tu|. Since HP, < |ul.q < ||©|, by the
maximum principle for subharmonic functions we see that [Tu| < H7,, <
llul| + HE, _ro on 2. Again by (5) we conclude that | Tu| < ||ju||. Similarly
|| <|Tul + |u—Tu| implies |u| < Hf, <||Tu| + Hf,_r, and then |[u|| < || Tu].
Therefore ||Tu| = ||u| < oo.

2. To study the existence of canonical isomorphism, it is convenient
to consider a canonical injection T = Ty, of PX(R) into QX(R) (X =
B,D,E,BD,BE). It is a linear operator from PX(R) into QX(R) such
that 4 — T'u is quasipotential for every u ¢ PX(R). It is actually injective.
If Tu = Tv, then |u — v|<|u — Tu| + |v — Tv| shows that the sub-
harmonic function | — »| is a quasipotential and hence v = v. By exactly
the same proof as in the last part of no. 2 we see that the canonical
injection is unique, order preserving, and isometric. If Tp,p, and Tp, p,
exist for X, then Tp p, exists for X and
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(6) Tr,r = Trypso Ty, -
In fact, T = Tp, p,° Tp,r, is a linear operator from P, X(R) into P,X(R).

TPa,Px

P.X(R) — PX(R)

Trar l A
3, P2

P,X(R)
Let we P,X(R) and set v=Tp,pu e P,X(R). Since|u— Tu|<|u— Tp, pu|
+ |v — Tp,p,v|, v — Tu is a quasipotential and thus T is the canonical
injection Tp,p,. To determine pairs (P, Q) such that T, » exists is very
important but a difficult problem. For our present purpose we will
only prove that pairs (P,Q) with P > Q have this property, which is
originally obtained by Royden [14] and in abstract setting by Loeb [4]
for X = B (cf. also Maeda [5], Glasner-Katz [2]). It is convenient to
discuss first the existence of Tp = T, p, which is in particular referred
to as the reduction operator. The term is employed by Singer [16] to
suggest that the operator T» reduces the study of the class PX(R) to
that of more manageable class HX(R). In this context, it is also im-
portant to determine P such that T, is surjective, i.e. PX(R) is canoni-
cally isomorphic to HX(R). For X = B,BD, and BE, a complete answer
is known (c¢f. Appendix, no. 10). For X = D and E, we only have partial
informations (cf. Singer [17], [11]). Here we only prove that the reduc-
tion operator Tp always exists uniquely for every P. Let ue PX(R).
If X =D or E, then D(u) < o and the harmonic decomposition of Royden-
Brelot (cf. e.g. [1], [15]) assures that lim,_ ., H? ¢e HD(R). If X = B, then
let 4 =u — u, with u,e PB(R)* (:=1, 2). Since {H]} is increasing,
|H] | < |lugll, and Hf = H;, — H7,, we also conclude that lim,_, HY ¢ HB(R).
Therefore the linear operator T, of PX(R) into HX(R) can be defined by

(7) Tpu = lim H?
2R

for every we PX(R) (X = B,D,E,BD,BF). To see that (7) is actually
the reduction operator, let u = u, — u, with u;e PX(R)* ({1 =1,2). Let
h; be an arbitrary harmonic function with z, > u,. By the subharmonicity
of u;, w, < H?, < h; and thus Tpu; < h;. This means that T,u, is the
least harmonic majorant of u,. Therefore Tpu; — u, is a potential (2 = 1,2)
and |u — Tpu| < |u, — Tpruy| + |u, — Tpu,| and a fortiori v — Tpu is a quasi-
potential.
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Besides (7) the following representation of T, is also useful. We
define the harmonic Green’s function Gz(2,0) on a Riemann surface R
as follows. Let R =, R, be the decomposition into connected com-
ponents R,. Thus R, is a connected Riemann surface. For 2z,{ e R,, let
Gr(2,0) = Gg,(2,0) the usual harmonic Green’s function on R, if R, is
hyperbolic and Gz(z,{) = 4o if R, is parabolic. For ze¢ G, and (e R,
(n + m), we set Gp(2,8) = 0. Therefore

Gr(2,0) = 1lim G,(z,0)

2-R

Let we PX(R). Then
(8) Tow = u + if G-, QUOPQ)dEdy .
2r J»

More precisely if P %= 0 on R, and PX(R,) contains a nonzero function
then Gz(2,8) # oo for z and ¢ in R,. Since P? = u, we see by (2) that

H? = u + ij Gol-, OUOPQdedy .
2 Ja

If we PX(R)*, then the integrand is increasing with respect to £ and
therefore the Lebesgue-Fatou theorem implies that

Tow=u+ L j (lim G2(-, YO PO dedy .
2rJR o-Rr

Since PX(R)* generates PX(R), we see the validity of (8). By (3) we
also have

(9) D) = D(Tpu) + EIELXRGR(%C)U(Z)M(C)P(z)dxdyP(C)dEdv

for we PX(R) such that the integral has definite meaning. This is the
case for ue PX(R)* for every X and for ue PX(R) (X = D,E); and if
ue PX(R) (X = D,E), then each term in (9) is finite. By the energy
principle (Dirichlet prineciple)

(10) {u, upy = J-RXRGR(Zy Du(RuQP(R)dedyP(O)dédy > 0

as soon as the integral is definite. The quantity is referred to as the
P-Green energy and the relation (10) is known as that the Green kernel
is of positive type in the Green potential theory.
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If the canonical injection T, , of PX(R) into QX(R) exists, then,
since | Ty, pu — u| and | To(Ty, pu) — Ty »u| are quasipotentials, the inequality
[To(Tg,pu) —u| < |To(To,p4) — T, pu| + | Ty, pu — u| shows that u — To(Ty, p%)
is a quasipotential. Therefore, by the uniqueness of the reduction oper-
ator,

Tp
PX(R) —— HX(R)

re | g

QX(R)

the linear operator Tyo Ty, from PX(R) into HX(R) must be the reduc-
tion operator T,p, i.e.

(11) TP = TQ ° TQ,P .
We also have an analogue of (7): If Ty, for X exists, then

12) To,pu = lim Q2
2-R

for every ue PX(R). In fact, Q7 = Q7, ., + Qi 7, .. and (5) imply the
relation. From (11) it follows that Ty, from PX(R) into QX(R) exists
if and only if

(13) TH(PX(R)) C To(QX(R)) ,

and in this case Ty pr = T3'o Tp. The necessity is clear by (11). Con-
versely, if (18) is valid, then the inverse T5' of Ty from T,(QX(R)) onto
QX(R) can be defined on To(PX(R)). Let ue PX(R) and set v = Tpu and
w=Tive QX(R). Then |u — T3(Tru)|=u—wl <|w—v|+|u—2vl =
|lw — Tow| + |u — Tpu| shows that u — T;(Tpu) is a quasipotential for
every ue PX(R). Therefore the operator T;'o Tp is the canonical injec-
tion from PX(R) into QX(R). From this we see that if the canonical
injections Ty p and Tp o exist for X, then they are canonical isomorphisms,
te. Tpo=Tg's and Tqpr = T3, In this case, we see by (13)

14) To(PX(R)) = To(QX(R))
and
(15) Top=T30Tp, Tpo=T:0oTg

are both surjective. Actually (14) is a necessary and sufficient condition
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for PX(R) and QX(R) to be canonically isomorphic. In particular, if Tp
and T, are surjective, then PX(R) and QX(R) are canonically isomorphiec.

3. We are ready to prove that if P > Q, then the canonical injec-
tion T, pr from PX(R) into QX(R) exists (X = B,D,E,BD,BE). Since
P> Q implies 4 = P2 < Q2 for ue PX(R)*, u < Q2 < H? < Tpu and {Q%}
is increasing. Therefore

Tu = lim Q2
2-R

exists and w — Tu is a quasipotential in view of |4 — Tu|=Tu — u <
Tou —u=|u — Tpu| for every u ¢ PX(R)*. Since PX(R)* generates PX(R),
this is also true for every e PX(R) and T is a linear operator from
PX(R) into Q(R). We only have to show that Tu e QX(R) in order to
conclude that T = Ty . If X = B, then |Q| < |u| and Tue QB(R). If
X = E, then, by the energy principle and Q < P,

E4Q)) < Ej(w) < Eg(w) < ER(w) .

Therefore, since dQ2 AN*dQ? — dTu N* dTu, the Fatou lemma yields
E¢(Tu) < E%(w) and Tu ¢ QE(R). Finally let v e PD(R). We wish to show
that Tu e QD(R). For this purpose we may assume that uec PD(R)*.
Then, by Q < P, 0 <u = P? < Q2 Thus F(Q? < E%(w) implies that

Do(Q2) < Do) — j (Q2EyQ@)dedy + j w@QEdwdy
< Dy(u) — jgu%z)@(z)dxdy + LW(Z)Q(z)dxdy = D,(u) .

Hence D,(Qf) < Dy(u) < Di(u) and the Fatou lemma yields Dp(Tw) <
Dg(u), i.e. Tue @D(R). Next we prove that PX(R) and (¢cP)X(R) are
canonically isomorphic for every ¢ > 0. We only have to show this
for ¢ < 1. For, if ¢ > 1, then (¢cP)X(R) is canonically isomorphic to
(¢’ (cP))X(R) = PX(R) since ¢c* < 1. Then, since P > cP, the canonical
injection T,p p exists and by (13),
Tp(PX(R)) C T.p((cP)X(R)) (C HX(R)),

and by (14) we only have to show that this inclusion is improper, i.e.
any he T .p((cP)X(R)) belongs to Tp(PX(R)). Since T.p is order preserv-
ing and (¢cP)X(R)* generates (cP)X(R), we may assume that h =T v >0
with v e (¢cP)X(R)*. For brevity set @ = ¢P. Observe that 0 < P? <
QY =wv, P} = P} + P} r,, and {P}} is decreasing. Thus
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0<u=1limP? =limP? <o
2-R 2-R

exists and ue P(R)*. By (8)
_ 1 .
h=v+ —z;fRG,x ,Ov(©eP(O)dedy
and in particular
[ G, 00 P@agdy < oo

Therefore, since G,(-,)P2() < Gr(-,0)v() and h = lim,_, H?, by apply-
ing the Lebesgue dominated convergence theorem to

2 _ po 1 . 2
HY = P} + 5 IRGQ( , OPZ(QP(L)dedy
as Q — R, we obtain
_ 1 .
h=wu+ o J.RGR( , QUQPQ)dEdy .

If X =B, then |P?| < |v| implies |u]| < o and a fortiori u e PB(R)"*.
Since 7 — u is a potential, we must have Tpu = h. If X = E, then the
energy principle implies that

EZ(P)) < ER((eP))) = ER(v) < ¢'BF(v) < ¢ BT (W) .

The Fatou lemma yields EL(u) < o and uwe PE(R)*. Similarly as above
h = Tpu. Finally let X = D. By (9) and (10)

D(v) = D(h) + %LXRGR(&C)v(Z)v(C)cP(Z)dmdycP(C)dédv

and we have {v,v)% < . Thus {u,u)r = cXu,u)y < ¢ v, v)y% < co.
Again by (9), D(w) = D(h) + (1/2r){u,uy% < oo. Therefore v e PD(R) and
as before h = Tpru. Combining two main assertions in this no., we
maintain:

PROPOSITION. If there exists a constant ¢ > 1 such that ¢ 'P < Q < cP
on R, then PX(R) and QX(R) are canonically isomorphic for X =B,D,E,BD,
and BE.

Proof. Since Q > ¢ 'P,T,_.p,o exists. In view of that (¢'P)X(R)
and PX(R) are canonically isomorphic, Tp .-.p exists and therefore by (6),
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TP,Q TQ,P
QX(R) —— PX(R) PX(R) —— QX(R)
Tc—lP,Q Tp,c—lp TcP,P TQ,cP
(c'P)X(R) (cP)X(R)

Trq = Tpe-1po Terp,q exists. Similarly T, , exists (see the above dia-
grams) and therefore PX(R) and QX(R) are canonically isomorphic.
Q.E.D.

Canonical Extensions

4. For convenience we say that an open subset W of R is normal
if each point z of the relative boundary oW of W posesses a parametric
disk U at z such that U N oW is a diameter of U. Hereafter we always
use W for normal open subsets of R. Consider the linear spaces

P(W ;W) ={ueP(W) N C(R); u|R — W = 0}
and
PX(W;oW) = {ue PX(W) N C(R); u|R — W = 0}

for X =B, D, E, BD, and BE. A linear operator 1= 1, = A% from
PX(W;oW) into PX(R) is said to be a canonical extension if u — Au is
a quasipotential on R for every wec PX(W;oW). We write H(W ; W),
HX(W;oW), and Ay for P(W;oW), PX(W ;oW), and 2, with P = 0. As
PX(R), PX(W ;0W) is generated by PX(W;oW)* (cf. e.g. [9]). Similarly
as in nos. 1 and 2, we see that the canonical extension is unique, in-
jective, order preserving, and isometric. We next prove that the canoni-
cal extension 2, always exists for X = B,D,E, BD, and BE and for any P.
First let uw e PX(W ; 0W)*. Since u is subharmonicon R, u < P? < P2 < HY
for Q. If X=25B, then 0 < P? <|u|. If X =F, then E5(P?) <
Ef(u) < E%(u). If X = D, then E5(P?) < Ef(w) implies that

D,(P?) < Do(w) — Ig((P{Z (®)* — w(2)P(2)dxdy

Since (P2(z))?* — u*(z) > 0, D,(P?) < D,(u) < Dgp(u). In the latter two
cases, the harmonic decomposition of % yields the convergence of {HZ?}.
Therefore

(16) Apt = lim P?

2-R
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exists and belongs to PX(R) for every ue PX(W;aW)* and hence for
every ue PX(W ;9W). Thus 1 = 4, is a linear operator from PX(W ;oW)
into PX(R) (X =B,D,E,BD,BE). Againletuec PX(W ;oW)* and ke H(R)
with v <h. Then u<P? < H? <H?=h implies that iyu=1lim, . H?<h
and thus Azu is the least harmonic majorant of u. Therefore Azu — u
is a potential. Since |u — Apu| = Apu — u < AxU — U, U — ApU i a quasi-
potential. For general u e PX(W ; 0W), let u = u, —u, with u, ¢ PX(W ; dW)*
(¢=1,2). Then |u — 2pu| < |u, — Apu;| + |4, — Apu,| shows that u — 2pu
is a quasipotential, i.e. 1, is the canonical extension.

5. We denote by P/(R)(P'(W;oW), resp.) the subspace of P(R)
(P(W ; 0W), resp.) generated by PR)*'(P(W;oW)*, resp.). Let y = x»
be the characteristic function of W, i.e. x|/W =1 and x|]R — W =0. We
define an operator p = pp = p%, which will be referred to as the canoni-
cal restriction, by

amn upv = lim PY N4
Q-R

on W and ppv =0 on R — W. We use py for pp with P=0. This is
a linear operator from P/(R) into P'(W;oW). To see that pp is well
defined, let v = v, — v, with v,e P(R)* (¢=1,2). Since 0 < P}? < v,
and P02|W = 0, {P729} forms a decreasing net and thus lim,_. P}’
exists and belongs to P(W;aW)* if it is extended to R by setting zero
onR — W. From P/? = P¥ne — P¥ne, the existence of (17) in P'(W ; W)

follows. Observe that PX(R) ¢ P/(R) and PX(W ; oW) C P'(W; oW). The
merit of considering pp lies in the following relation:

(18) ([lp o Zp)u =U

for every ue PX(W;oW) (X =B, D, E, BD, BE). To prove this, it is
sufficient to assume that u e PX(W;oW)*. Since PJ"? = P},"? = u,

b
PX(W ;W) ———— PX(R)
tpodp =id, l /
P(W 3 0W) “r
Prog =y + P02 .. On the other hand, 0 < P}Qf% ., < Pl...— 0 as

Q2 — R. Therefore pp(Apu) = u. The relation (18) neither means that
1r(PX(R)) € PX(W;dW) nor that up is injective on PX(R) unless 2, is
surjective. It only means that pp(2(PX(W;0oW)) = PX(W;oW) and pp
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is injective on 1,(PX(W ; 0W)). In this sense it is interesting to determine
W such that A% : PX(W ;0W)— PX(R) is surjective. HKxcept for the case
X = B the problem seems to be very difficult (ef. [13]). Here we only
give a sufficient condition.

6. In this no, we always assume that R is connected. To discuss the
surjectiveness of 1p, we introduce three kinds of negligible sets. A subset
K of R is said to be X-negligible (X = B, D, and BD, resp.) if either R
is parabolic or there exists a normal open subset W suchthat KC R —W
and A;: HX(W ;W) — HX(R) (X = B, D, and BD, resp.) is surjective.
We shall try to restate the concept in a more intuitively understandable
term. First

A subset K of hyperbolic R is B-negligible if and only if there exists
a potential p on R such that p > 1 on K.

If A;: HB(W; 6W)— HB(R) is surjective with K C R — W, then
h=pyle HB(W ;W) 0 < h <1, and Azh = 1. Since % is subharmonic,
p =1 — h is superharmonic. On the other hand p =1 — k = |h — Agh)|
is a quasipotential and thus p is a potential. Clearly p =1>1 on K.
Conversely assume the existence of such a p. By multiplying » by a
suitable constant and by choosing W suitably, we can assume that p >1
on R — W. Let he HB(R)*. Then clearly pyhe HB(W;oW). Observe
that 0 < h — yyh < ||h||p implies 0 < HY"? — HV02 < ||k|jp. On letting
Q2—-R, 0< h— pzh < | h|p on W and trivially on R — W, and a fortiori
h — pgh is a quasipotential on R. By |h — Az o ugh| < |pgh — 2x(ugh)|
+ |k — pzh| we see that the subharmonic function |A — Ay opugzh| is a
quasipotential and thus Az o pzh = h. Since HB(R)* generates HB(R),
we conclude that 15: HB(W ; W) — HB(R) is surjective. If we use the
term of the compactification theory (ef. e.g. [1], [15]) we can restate the
above assertion as follows: K is B-negligible if and only if the closure
of R — K in the Wiener compactification of R is a neighborhood of the
Wiener harmonic boundary. Next we prove

A subset K of hyperbolic R is BD-negligible if and only if there
exists a Dirichlet finite potential p on R such that p > 1 on K.

If 2;: HBD(W ;0W) — HBD(R) is surjective, then k = pyl belongs
to HBD(W;oW), 0< h <1, and Azh =1. As above, p=1—h is a
potential, p =1>1 on K, and D) = D(h) < co. Conversely assume
the existence of such a » on R. On replacing »p by »p N 1 = min (p, 1),
we may assume that 0 < p<1lonRand p=1on K. Let he HBD(R)*.
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By the above, uyhe HB(W; 0W) and Ay(pzh) = h. Since HBD(R)* gener-
ates HBD(R), we only have to show that D, (uzh) < co. Since Dn((1 — p)h)
< o0, by the harmonic decomposition of (1 — p)h (cf. e.g. [1], [15]) we
see the existence of k =lim,., H{"S, in HBD(W ;3aW). Observe that
0<h—QA—ph<|k||p implies 0 < HY"? —H{"8, < ||k|p and a fortiori
0<h—Fk < |hlp. Thus |k — prh| < | — u(uh) |+ | Rl|p, ie. [k — pghl|
is a quasipotential. Since |k — pzh| is subharmonic, we conclude that
uah = ke HBD(W ; 9W). Note that

(19) D(ph) < Diph) .

In terms of compactifications (cf. e.g. [1], [15]), we see that K is BD-
negligible if and only if the closure of R — K in the Royden compactifica-
tion of R is a neighborhood of the Royden harmonic boundary. From these
two characterizations and the first two trivial inclusions it follows that

{compact sets} C {D-negligible sets}
C {BD-negligible sets} C {B-negligible sets} .

Although we do not give explicit examples here, it is not hard to see that
the above inclusions are all strict. We are not successful in potential
term characterization of D-negligible sets and only give the following
sufficient condition:

A subset K of hyperbolic R is D-negligible if there exists a Dirichlet
finite potential p on R harmonic outside a compact set such that p> 1 on K.

The set K, = {ze R; Gx(2,0) > ¢ > 0} for any ¢ is an example of a
D-negligible set since p = (Gz(-,8) N ¢)/e for large ¢ is a potential as
stated above. To prove the assertion suppose that pe H(R — 2,). Since
p is a potential supp_,, » = sup,;o,» = ¢ < co. On replacing p by p N ¢,
we may assume that p is bounded. On applying the regularization we can
also assume that pe C¥(R) N H(R — 2,). Let he HD(R)* and h, =h A n
= the greatest harmonic minorant of » and n. Then D(k,) < D(h), h,1h,
and D(h, — h) — 0 (cf. e.g. [15]). Let p, =p — HJ for 2 D £, and let
ke HD(R). By the Green formula

Do@al) = — [ pokd*d(p,h)
=~ pokarap, - | avs A= awe
20 2Je

- —f poked*dp + I phdl N* dk .
2 2
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By the Fatou lemma we conclude as £ — R that
(20) D(pk) < ||k|Pe,D() + |pIPDK) .

By the second characterization above, pgh, e HD(W ;oW). By (19) and
(20) we have

D(#th - #ther) < D(p)”hn - hn+p“2!Jo + HPHZD(hn - hn+p) .

Therefore u = lim, ., pzh, € HD(W ; 0W) and D(u — pyh,) — 0 as n — co.
On the other hand, DQAzu — h,) = D(Agu — Agpgh,) < DU — pyh,) shows that
D@(gu — h) =0, i.e. 2zu + a = h with a constant a. Take e e HBD(W ; oW)
with Aze = a. Then 2,;(u + ¢) = h. Since HD(R)" generates HD(R), we
conclude that iy: HD(W ; W) — HD(R) is surjective.

7. In the definition of negligible sets we presupposed that E is con-
nected. The connectedness is not an essential restriction because we only
have to consider componentwise if R is not connected. If R is parabolic,
then R itself is of degenerate character but does not quite mateh our
definition in terms of the surjectiveness of A;. In this case HX(R) =
{constants} and HX(W;oW) = {0} for X =B, D, BD if R — W % ¢ (cf.
e.g. [15]). From () in no. 2, it follows that PX(R) = {0} and PX(W ;W)
= {0} for X =B,D,E,BD,BE if R is parabolic and P % 0. This un-
pleasant situation can be conventionally resolved if we includes nonnega-
tive constants into the class of potentials when R is parabolic. However,
instead of providing such an artificial convention, we would rather avoid
parabolic surfaces. The role of negligible sets is clarified by the

PROPOSITION. Let W be a normal open set in a hyperbolic connected
Riemann surface R. If R — W is B-negligible, then 2, : PB(W ;W) — PB(R)
is surjective for every P; if R — W is D-negligible, then 2p: PX(W ; oW)
— PX(R) (X = BD, BE) is surjective for every P;if R — W is D-negligible,
then Ap: PX(W ;W) - PX(R) (X = D, E) is surjective for every P.

Proof. Suppose that R — W is B-negligible. Take a potential p on
Rsuchthatp > 1on R — W. LetuePB(R)*. Clearly ppue PB(W ;aW).
Observe that 0 < u — ypu < [|u||p on R. Thus 0 < PN — PO < lu|ip
and a fortiori 0 < u — ppu < ||u||p, i.e. 4 — ppu is a quasipotential. By
[ — Ap o ppu] < |pupu — Ap(upw)| + |4 — ppul, we see that the subharmonic
function |4 — 2p o ppu| is a quasipotential and therefore ipo ppu = u.
Since PB(R)* generates PB(R), Ap: PB(W ;oW) — PB(R) is surjective.
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Next suppose R — W is BD-negligible. As in no. 6, take a Dirichlet finite
potential p suchthat 0 <p <1 and p=1on R— W. Let ue PBY(R)"*
(Y =D,E). Since R — W is B-negligible, ypu ¢ PB(W ; dW) and Apupu = u.
Since PBY(R)* generates PBY(R), we can conclude the surjectiveness of
Ap: PBY(W ; 0W) — PBY(R) if we show Y(upu) < oo (Y = D,E). First
let we PBD(R)*, i.e. D(u) < oo, Observe that

w=Tou— L j G-, DUWOPQ)dedy ,
2r J R

PIof Lppthy, Guao(e, OPYRS < Gr(+,Qu(), and HYOP — pyTru since yuu

Tt
— ywT»u is a quasipotential. By the Lebesgue dominated convergence
theorem,

Pros = BI0 = o Gunal, OPER2OPQdsdy
2rJwua
implies that
o = T = = G-, Oprn@PQO ey -
2ndw
Since D(u) = D(Tpw) + (1/2x) u, ups < oo, Tpu e HBD(R), and a fortiori the

surjectiveness of 1y implies that D(u;Tru) < co. Therefore, by 0 < ppu <u,
we see that

D(up) = Dy Tr0) + 2—1n<ﬂpu, o
< Dl o) + 5 1% < o
Y4

Next let EP(u) < co. Since D(u) < co by the above we have D(upu) < co.
Therefore 0 < ppu < uw implies that

E?(up) = D(upi) + jR(#Pu@))ZP(c)dedr;
< D(upu) + ij(z;)P(C)dsdn
< D(ppw) + E¥(u) < oo .

Finally suppose that R — W is D-negligible. Since PX(R)* generates
PX(R), we only have to show that u,ue PX(W;oW) and Apupu = u for
every ue PX(R)* (X = D,E). By exactly the same proof as above we
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see that pyue PX(W;3W). In the above proof, D(u;Tru) < co followed
from the surjectiveness of Ay: HBD(W ;oW) — HBD(R). In the present
case it follows from that of Ay: HD(W;oW)— HD(R). Thus we only
have to show that Apupu = u. Set ppu = pyTpru — p, where p = (1/2r)

J Gy (-, Qupu@P)dédy is a quasipotential since it is dominated by
a /zx)f Gr(-, OuQ@P@)dédy, a potential. Observe that

P2, = Hf,, — ij G-, OPL(OPE)dedy
2rJa
= Hiyry, — HE — 2—1n [ 6., 0PsPQAs .

Since 0 < P?, < u and lim,_.p H] = 0, the Lebesgue dominated conver-
gence theorem yields

Apptath = ATt — —l—j G-, Opppu P dEdy .
2R

ie. Tpapppu = AgpuyTpu. Since Ay: HD(W;0W) — HD(R) is surjective,
2apaTpu = Tpru and thus Tpipppu = Tpru. The injectiveness of T’ implies
that Appru = u. Q.E.D.

8. We now complete the proof of our order comparison theorem
stated in the introduction. If R is parabolic, then HX(R) = {constants}
(X = B,D,BD) (cf. e.g. [15]) and by (8 in no. 2 PX(R) = {0} for P 0
and X = B,D,E,BD and BE. Thus the comparison question is of inter-
est only for the case R is hyperbolic. Suppose (1) is valid on R except
for a B-negligible set K. Let W be a normal open subset of R such
that R — W D K and R — W is B-negligible. Since (1) is valid on the
whole W, a Riemann surface, Proposition 3 assures that there exists the
canonical isomorphism T§ , of PB(W) onto QB(W). By using (12), it is
not hard to see that Ty , may be considered as a linear isomorphism of
PB(W ; 0W) onto QB(W ;3W). By Proposition 7, 250 T§ » o up is a linear
isomorphism of PB(R) onto QB(R). To see that 2go T% popup = Ty p is
the canonical isomorphism of PB(R) onto QB(R), we have

PB(W ; oW) —*2_, PB(R)

Tg’»Pl lTQ'P
QB(W ; aW) — 2, QB(R)
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to show that u — T} ,u is a quasipotential on R for every u e PB(W ;aW).
We may assume that 4 > 0. Since u — T ,u is a quasipotential on W,
TPu = T§(T§ pu) = he HB(W ;dW). Observe that

w=h— -1—f G (-, OUOP@)dedy
2w Jw
and similarly
TH u = h — —21~ f G (-, OTY pu©QQ)dedy .
TJw

Therefore by u < 2pu = v and TY pu < 2,T4 »u = w,
ju = TEoul < o[ Gu(, DEOPE + wOQE)dEd
2n Jw

< _21; f G(, OOOPQ) + wQQE)dedy
=Tpv — ) + (Tow — w) < o0,

i.e. |u — Ty pu| is dominated by the potential (Tpv — v) + (Tew — w).
By the similar applications of Propositions 3 and 7 as above, the other
part of our comparison theorem can be proven verbatimly.

Appendix: Integral Comparisons

9. The order comparison (1) is very handy in many practical applica-
tions (cf. e.g. [8], [12]). However it is very far from being necessary.
In pursuing the complete condition for the existence of canonical iso-
morphisms it is indespensable to consider the so-called integral compari-
sons. We denote by G4(z, ) the Green’s function of the equation du = Pu
on R. Hence Gz(z,0) = G&(2,8) with P=0. Let W be a normal open
subset. We say that (P, Q) satisfies the condition (B) on W if

jWG;(-,ch(C) _ PQ)|dgdy < oo ,
(B)
j G3(,0IPO — Q) |dsdy < oo .

We say that (P, Q) satisfies the condition (D) on W if
[ 650100 - POIQ — POIdedydedy < eo,

D)
jWXWG%(z,cnP(@ — Q@|-|PQ) — Q©|dedydedy < oo .
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Finally we say that (P, Q) satisfies the condition (E) on W if
(E) [ 1P© — Qldzdy < o .

In our former paper [8] we showed that if (P,Q) satisfies the condi-
tion (X) on R, then PBX(R) and QBX(R) are canonically isomorphic
(X =B,D,E,; BB = B). If we use this in the proof in no. 8 instead
of Proposition 3, then we obtain:

INTEGRAL COMPARISON THEOREM 1. If R — W is B-negligible and
(P, Q) satisfies the condition (B) on W, then PB(R) and QB(R) are canoni-
cally isomorphic; If R — W is BD-negligible and (P, Q) satisfies the con-
dition (D) ((E), resp.), then PBD(R) (PBE(R), resp.) and QBD(R) (QBE(R),
resp.) are canonically isomorphic.

The prototypes of this theorem are found in [6], Maeda [5], Glasner-
Katz [2], etc. The integral conditions for PX(R) and QX(R) (X = D,E)
to be canonically isomorphic are not known. To find them is one of
very important open problem on canonical isomorphisms. It may be
instructive to point out that even if PBX(R) and QBX(R) are canonically
isomorphic, PX(R) and QX(R) need not be canonically isomorphic for
X = D,FE (cf. Singer [17], [11]), although PBX(R) (X = D, E) are dense
in PX(R).

10. The above theorem applied to (P,0) takes the more precise form.

First, since f GZ(-, OP©)dédy < 2r and GE(+,0) < Ga(-,L), the condition
R

(B, [ @at,0P@dzay < oo
implies (B) for (P,0) on W, the condition

Dy j  Gulz, OP@PQdadydedy < oo
implies (D) for (P,0) on W, and condition

(E) JWP(C)dep < oo

trivially implies (E) for (P, 0) on W. Thus the condition (B, for
B-negligible R — W implies the surjectiveness of T,: PB(R) — HB(R).
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The condition (X,) (X = D, E) for BD-negligible R — W implies the sur-
jectiveness of Tp: PBX(R) — HBX(R). Conversely assume Tp: PX(R) —
HX(R) is surjective and let ¢ = T37'1 (X = B,BD,BE). We can choose
a normal open set W such that

{zeR;e(z) > %}C WC{zeR;e(z) > %}
By using relations

l=e+ ij G-, DeQPE)dedy
2r J B

and

D) = o Gale, De@e@P@drdyP@dsdy
Or J RxR
we derive (B, ((D,), resp.) on W if X = B (D, resp.). If X = FE, then

EZ(e) = D(e) + jRe«op(odsdn < oo

implies (E,) on W. Since p =2(1 — e) = —1—I Gz(-,0e@P@)dédy is a
TJR

potential and p > 1 on R — W, R — W is B-negligible. If X =D or E,
then D(e) < o and a fortiori D(p) < oo, i.e. R — W is BD-negligible.
Thus we have shown (cf. [6], Glasner-Nakai [3], Glasner-Katz [2])

INTEGRAL COMPARISON THEOREM 2. The linear spaces PB(R) and
HB(R) are canonically isomorphic if and only if there exists a mnormal
open subset W on which (B, is valid such that R — W is B-negligible;
PBD(R) (PBE(R), resp.) and HBD(R) (HBD(R), resp.) are canonically
isomorphic if and only if there exists a normal open subset W on which
(Dy) (Ey), resp.) is valid such that R — W is BD-negligible.

Again the condition when T,; PX(R) — HX(R) (X = D,E) is sur-
jective has not yet been obtained. Examples are known that T»: PBX(R)
— HBX(R) is surjective but Tp: PX(R) - HX(R) is not for X =D, FE
(Singer [17],[11]). To seek the (complete) condition for T,: PX(R) —
HX(R) (X = D,E) to be surjective seems to be urgently important.
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