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Abstract

Let SBe, jVc, J/ and & denote respectively the variety of groups of exponent dividing e, the variety of
nilpotent groups of class at most c, the class of nilpotent groups and the class of finite groups. It follows
from a result due to Kargapolov and Curkin and independently to Groves that in a variety not containing
all metabelian groups, each poiycyclic group G belongs to jV'&'. We show that G is in fact in ^Vc^,
where c is an integer depending only on the variety. On the other hand, it is not always possible to
find an integer e (depending only on the variety) such that G belongs to «/P3&e, but we characterize the
varieties in which that is possible. In this case, there exists a function / such that, if G is (/-generated,
then G e jYj^SBe. So, when e = 1, we obtain an extension of Zel'manov's result about the restricted
Burnside problem (as one might expect, this result is used in our proof). Finally, we show that the class
of locally nilpotent groups of a variety "¥ forms a variety if and only if ~V l"l ^Af C (J/,, &&<,) n {S
for some integers c',e'.

2000 Mathematics subject classification: primary 20E10, 20F18.

1. Introduction

If c and e are positive integers, we denote by 3Be the variety of groups of exponent
dividing e and by ^Vc the variety of nilpotent groups of class at most c. Also,
t/V = (Jr>o ^ denotes the class of nilpotent groups and & denotes the class of finite
groups. Recall that &JV is included in JV'&'. More precisely, ^-^Yc is included in
Jfc+\& for any c > 0. Indeed, if G contains a finite normal subgroup H such that
G/H e JVC, it is easy to see that the centralizer of H in G has finite index and belongs
to <sVc+\. Moreover, it is not difficult to show that any finitely generated group in
belongs to jY^ [9, Section 1.5].
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394 G. Endimioni [2]

Let F be the free group of countably infinite rank. If W is a subset of F, we denote
by V( W) the variety of groups defined by the set of laws w = 1, with w € W.

First suppose that W is not included in F". By a result due to Kargapolov and Curkin
[10] and independently to Groves [8], for every integer r > 0, there exist integers
c, e depending on V(W) and r such that each soluble group C e f ( f f ) with derived
length r belongs to SB^cBSe. We do not know if c and e can be chosen depending
on y(W) only (Proposition 2 and Theorem 2 below will give partial answers to this
problem). Observe that each polycyclic group G e V(W)is nilpotent-by-finite since
&rf C JTP.

Conversely, consider a variety "V{ W) in which each polycyclic group is nilpotent-
by-finite. Since there exist metabelian polycyclic groups which are not nilpotent-
by-finite, the variety of metabelian groups is not included in V( W); thus W is not
included in F". So we have:

PROPOSITION 1. For a variety ~f{ W) defined by a set of laws w — 1 (w e W), the
following assertions are equivalent:

(i) each polycyclic group in ~V (W) belongs to jY'&\
(ii) W g F".

This result leads to the following questions for a variety Y( W) satisfying one of
the previous assertions:
(1) Does there exist an integer c such that each polycyclic group in "¥( W) belongs

(2) Does there exist an integer e such that each polycyclic group in ~f (W) belongs
to jVme!

In the next section we shall see that the first question has a positive answer (Theo-
rem 1). It is not always the case for the second question but it is possible to characterize
the varieties in which the answer is positive; furthermore, in this case, we shall show
that each polycyclic group in V( W) belongs in fact to ^98* for some integers c', e'
(Theorem 2). Such bounds are global bounds, namely they are independant of the
number of generators of considered groups. In Section 3 we shall see local bounds,
that is, depending on the number of generators.

REMARK. Instead of question (2), one can put the following question (for a variety
r(W) such that W g F"):

(2') Does there exist an integer m such that each polycyclic group in Y( W) belongs
to ^J?m, where &m is the class of finite groups of order at most ml

Suppose that such a m exists and consider a polycyclic group G € y(W). Denote
by Fit(G) the Fitting subgroup of G and put a = \G : Fit(G)|. For any integer n > 0,
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the cartesian product G" — G x • • • x G is polycyclic and belongs to f{ W); thus
\Gn : Fit(G")| < m. Since Fit(C) = Fit(G)n, we obtain a" < m (for any integer
n > 0) and so a = 1. Therefore, the previous question has a positive answer if and
only if each polycyclic group in y(W) is nilpotent (and so we can take m = 1).

2. Global bounds

Recall that an n-Engel group is a group satisfying the law [x,n_y] = 1, where
[x,ny] is defined by [x,oy] = x and [x,ky] = [[x,k_{ _y], y] for all k > 0, with
[x,y] = x~{y~lxy. If n is a set of primes, a FI-free group is a group without
elements of order p € Yl. We shall denote by )/, (G) the j th term of the lower central
series of a group G.

LEMMA 1. Let V( W) be a variety such that W g F". Then there exist a finite set
of prime numbers Fl and an integer n (depending on the variety only) such that each
Tl-free nilpotent group in V( W) is n-Engel.

PROOF. By [6, Lemma 4], y(W) has a law of the form

[x,myYl[x,m+lyr---[x,m+t-iyYlv(x,y) = l ( m , * > l , v(x,y)eF"),

where the exponents eu ... , ek are not all zero (we may assume that ex ^ 0). Let n
be the set of prime numbers dividing et and let G be a 2-generated fl-free nilpotent
group in y(W). It suffices to prove that the nilpotency class of G is bounded by
an integer n depending only on y(W). Let /u. be the nilpotency class of G. Put
A = )/v(G), where s is the least integer > (/z + l)/2. Notice that s < 1 + (n + l)/2
and that A is abelian. For any a e A j e G . w e have

[a,m y]ei[a,m+i yY2 • • • [a,m+*-i yYkv(a, y) = l.

But v(a, y) belongs to (a, y)" = {1}, so

Notice that [a,my] belongs to ym+v(G). Now suppose that [a,„, y]1"1' belongs to
yra+v+;(G) for some integer j > 0. By raising to the e(th power, the previous
relation gives

{a,my]^\a,m+xyY^ •••[a,m+k.l yYk* = 1.

Since [a'e, y] = [a', y]e for any a' € A, we may write

[a,myf>+'[[a,my]'\yY---[[a,myf',k-lyYt = 1
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and so [a,myYl+i belongs to ym+s+j+l(G). Therefore, it follows by induction that
[a,m yY< belongs to ym+s+j (G) for any integer j > 0. By taking j such that m +
s + j > fi, we obtain [a,m y]*1' — 1 and so [a,my] = 1 since G is Fl-free. Hence,
by [15, Proposition D], there exists an integer / depending only on m such that
[a,yt,... ,y,] = 1 for all a € A and all yu ... , y, e G. In particular, we have

[ x i , . . . ,xs,y y,] = 1 for all xx xs,yu... ,y, 6 G; thus n + 1 < s + t.
Since s < 1 + (/x +1)/2, we obtain /x < t + (ix +1)/2 and so [i < 2t, as required. •

Aplying Lemma 1 and [3, Corollary 1] we may state

COROLLARY 1. Let y(W) be a variety such that M( g F". Then there exist a finite
set of prime numbers FT and an integer c {depending on the variety only) such that
each Tl-free nilpotent group in V( W) belongs to ^Yc.

As a consequence we obtain

PROPOSITION 2. Let V{ W) be a variety such that W g F". Then there exists
an integer c (depending on the variety only) such that each soluble group in y(W)
belongs to &jVc9Be, where & is the class of periodic groups and where e is an integer
depending on^i W) and on the derived length of G.

PROOF. Let G be a soluble group in ^ ( W). By the result of Kargapolov, Curkin
and Groves quoted above, there exist normal subgroups K < H < G such that K and
G/H belong to SSe (where e depends on V( W) and on the derived length of G), H/K
being nilpotent. Denote by L the normal subgroup of H containing K such that L/K
is the torsion subgroup of H/K; thus H/L is a torsion-free nilpotent group. Hence,
by Corollary 1, H/L belongs to ^Yc, where c is an integer depending only on ~f(W).
Since L is periodic, the proposition is established. •

Now suppose that G is polycyclic in the preceding proof. Then L and G/H are
finite. Thus H 6 &jVc and so H € JVC& since any finitely generated group of &' J/c

belongs to jYc& [9, Section 1.5]. Therefore, G is in J/c& and we can state

THEOREM 1. Let Y(W) be a variety such that W £ F". Then there exists an
integer c (depending on the variety only) such that each polycyclic group in y/(W)
belongs to jVc^.

Theorem 2 below shows that Theorem 1 fails if 'polycyclic' is replaced by 'finitely
generated soluble'; in fact, Theorem 2 characterizes the varieties such that Theorem 1
remains true after this replacement. Before stating this theorem, we define the notion
of efficient word, introduced by Black.

Let F2 denote the free group of rank 2 generated by x and y; this group will be
considered as a subgroup of the free group F of countably infinite rank. We shall write
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{xFl) (respectively {yF2)) the normal closure of {x} (respectively {y}) in F2. Clearly,
since F't = (xF2) n (vf2>, each element w € F^ may be written in the forms

w = w'Yly~'xaiyl = w" Ylx-'y*x' {w' 6 (xF2)', w" e

where r, s, r, u, a,-, $, are integers (r < 0 < s, t < 0 < u). In [1], Black says that a
word io e F^ is efficient if u> £ (JCF2)' D (yFz)' and if the set [ar,... ,as,p, £„}
generates the ring of integers (that is, ar,... ,as,P,,... , fiu are coprime). Note
that the first condition is redundant: if w € {xFl)' n (yF2)', it follows easily from
the independence of left-normed basic commutators in F'JF'-l that a, = ft = 0
(for all i,j) and so ar,... ,as,fi,,... , f}u cannot be coprime. The independence of
left-normed basic commutators shows also the uniqueness of the expressions w —
w'Y[i

iZ
s
ry-ixa-yi (u/ 6 (xFi)') and w = wT \\£x~*y*xl (w" € (yF2)').

We shall say that w = 1 is an efficient law if and only if w is an efficient word. A
characterization of varieties satisfying an efficient law is given by the following

PROPOSITION 3. Fora variety V(W), the following assertions are equivalent:

(i) W £ F'p F" for any prime p.
(ii) There exists in V( W) an efficient law.

PROOF, (i) implies (ii). By [6, Lemma 4], there exists in V( W) a law of the form

w = [x,myYl[x,m+1yF---[x,m+k-1y]«v = l (m,k>l, v e F2"),

where the exponents e\,... , e* are coprime. In the usual way, consider {xF2)/(xFl)'
as a module over the polynomial ring 1\T\, namely, for u e (xF2) and P — XnT

n +
h X, T + Xo e 1[T], we put

Pu = y~nu^"yn • • . y-i u^'yU^0.

In particular, we have

w = (e,(F - l)m + e2(T - l ) m + l + • • • + ek(T - l)"+*-')jc.

The polynomial Q = ex{T - \)m + e2{T - l )m + 1 + • • • + ek(T - l ) m + t - ' may be
written in the form

where e'm+k_v ... , e\, e'o are coprime integers. In other words,
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with v' e {xFl)'. Clearly, it follows that w is an efficient word.
(ii) implies (i). Suppose that W c F'pF" for some prime p. Since F'pF"

is a fully-invariant subgroup of F, we have w e F'p F" for each law w = 1 of
Y(W). Therefore, if w € F'2, then we have necessarily w = w' Y]'iZs

ry~'xa'y', with
w' € (xF2)' (respectively w = w" YYH", x~'y0ix', with io" € {yFl)'), where/7 divides
each exponent ar,... ,as (respectively fi,,... , /?„). Hence w cannot be an efficient
word. •

REMARK. We have a similar result for a Milnor law, a concept introduced by Point
[13]: W £ F'pF" (for any prime p) if and only if there exists a Milnor law in V( W)
[7, Proposition].

The next result gives various characterizations of varieties in which every polycyclic
group is in J/SSe, for some fixed integer e.

THEOREM 2. For a variety y(W), the following assertions are equivalent:

(i) There exists a positive integer e such that each polycyclic group in y(W)
belongs to jY38e.

(ii) There exists a positive integer e such that each finitely generated soluble group
in V{ W) belongs to jY@e.

(iii) Each finitely generated soluble group in V( W) belongs to JV^.
(iv) W % F'PF" for any prime p.
(v) There exist positive integers c',e' such that each soluble group in y(W)

belongs to J/^SB^.
(vi) There exist positive integers c", e" such that each finite group in V( W) belongs

to ^Vc»3S^.

PROOF, (i) implies (ii). This is a consequence of [12, Theorem 1].
(ii) implies (iii). This is obvious.
(iii) implies (iv). Suppose that W is included in F'p F" for some prime p and

consider the restricted wreath product G = (I/pi.) i Z. This group is metabelian and
satisfies the law [x, y]p = 1; thus G lies in ^ ( W). Moreover, G is finitely generated
but G is not nilpotent-by-finite (in fact, it is not polycyclic). Therefore y(W) does
not satisfy (iii).

(iv) implies (v). [7, Proposition].
(v) implies (vi). In fact, we know that (iv) and (v) are equivalent [7, Proposition].

Hence we may assume that W % F'pF" for any prime p. By Proposition 3, there
exists an efficient law in V(W) and so the result follows from a theorem of Black [1].

(vi) implies (i). Since a polycyclic group is residually finite, the implication is
clear. •
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Among the varieties satisfying some assertions of Theorem 2, one can quote the
varieties defined by a non-trivial monoidal law, namely a law of the form

u(Xf, . . . , X n ) = u ( * , , . . . , X n ) ,

where u(xl%... ,xn) and v(x{,... ,xn) are distinct elements of the monoid freely
generated by A:,, . . . ,xn (see [3] or [11]).

In general, the integers e and e' occuring in Theorem 2 are distinct. In other words,
if G' is nilpotent for each polycyclic group G of a variety (for some fixed integer e), it
is not always possible to bound the nilpotency class of G' by an integer c depending
on the variety only. For example, if q is a prime-power, the variety y defined by the
law xq = 1 satisfies the first assertion of Theorem 2 (with e — 1); nevertheless, by
Razmyslov's Theorem [16], there is no bound for the nilpotency class of finite groups
ofnfq > 3.

However, as we shall see in the next section (Theorem 3), if G is generated by d
elements, the nilpotency class of G' may be bounded by a function of d. When e = 1,
this question is clearly connected with the restricted Burnside problem.

3. Local bounds and restricted Burnside problem

In 1989, Zel'manov [19, 20] solved the restricted Burnside problem. More pre-
cisely, he proved that for any prime-power q = pa, there exists a function / such
that, for any positive integer d, the nilpotency class of every (/-generated finite group
satisfying the law xq = 1 is at most/ (d). By reduction theorems, the solution of the
restricted Burnside problem follows, namely: up to isomorphism, for any fixed inte-
gers d, e > 0, there are only a finite number of ^-generated finite groups of exponent
dividing e.

Zel'manov's proof also affords a solution of a problem posed in [18] (see [15,
Proposition D]): for each positive integer n, there exists a function / such that, for any
positive integer d, the nilpotency class of every ^-generated nilpotent n-Engel group
is at most/(*/).

Notice that each polycyclic group satisfying the law xq — 1 (where q is a prime-
power) or the law [x,n y] = 1 is nilpotent (the second case is a consequence of a
well-known result of Gruenberg [14, Result 12.3.3]).

More generally, consider a variety of groups y in which every polycyclic group is
nilpotent. A finitely generated non-nilpotent soluble group has a finite non-nilpotent
homomorphic image [14, Result 15.5.3]; hence each finitely generated soluble group
of Y is nilpotent (this also can be deduced from Theorem 2). So the previous
statements lead to the following question: does there exist a function / (depending
on y) such that, for any positive integer d, the nilpotency class of each d-generated
soluble group of y is at most / (d)l
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As a consequence of Theorem 3 below, Corollary 2 will give an affirmative answer
to this question.

THEOREM 3. Let e be a positive integer and let ¥ be a variety of groups such that
every poly cyclic group off is in ^¥ 9Se. Then there exists a function f such that, for
any positive integer d, every d-generated soluble group off belongs to ^Yfid)38e.

In order to prove this theorem, we need a preparatory lemma.

LEMMA 2. Let e be a positive integer and let ~f be a variety of groups such that
every polycyclic group off is in ^' 9Se. Then there exists a function g such that, for
any positive integer d, the derived length of every d-generated soluble group off is
at most g(d).

PROOF. Consider a d-generated soluble group G 6 "f. By Theorem 2, there exist
positive integers d, e' depending on V only such that G e J\fdSSe. Hence G contains
a normal subgroup H e J/^ with G/H e SS^. By Zel'manov's solution of the
restricted Burnside problem, the derived length of G/H is bounded by an integer
g\ (d, e') (depending only on d and e'). Since the derived length of H is bounded by
[log2 c'] + 1, the derived length of G is at most [log2 c'] + l+ gi(d, e'). •

PROOF OF THEOREM 3. Let f be a variety satisfying the hypothesis of the theorem
and let d be a positive integer. Let Sf-S(d) be the variety of all soluble groups of derived
length at most g(d), where g is the function defined in Lemma 2. Consider the
relatively free group Td of rank d of the variety V n &g(d). It follows from Theorem 2
that Td belongs to JfSBe\ so there exists a positive integer c such that Td belongs
to the variety ^Yc38e. By Lemma 2, each d-generated soluble group G e t lies in
V n &g(d)- Hence G is a homomorphic image of Td, and so G € Jfc38e. Since c
depends only on ~y and d, the theorem is proved. •

In the particular case where e = 1, Theorem 3 yields

COROLLARY 2. Let ~f be a variety of groups in which every polycyclic group is
nilpotent. Then there exists a function f such that, for any positive integer d, every
d-generated soluble group off is nilpotent of class at most f (d). In particular, there
exists an integer n depending only on "f such that every soluble group off is n-Engel
(we can take n = f (2)).

In [4], Burns and Medvedev prove for each n > 0 the existence of integers d, e'
such that (^38,,) fl (38^^) contains every n-Engel soluble group. Therefore, by
using this result and the second part of Corollary 2, we obtain
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COROLLARY 3. Leff be a variety of groups in which every polycyclic group is
nilpotent. Then there exist positive integers d, e' such that every soluble group of "¥
belongs to {J^S,,) n (S

Notice that for a variety V and for an arbitrary positive integer e, the condition
'every finite soluble group of V is in J/SSe' does not imply the condition 'every finite
group of V is in J/£8^ [5]. On the other hand, the conditions 'every finite soluble
group of V is nilpotent' and 'every finite group of "V is nilpotent' are equivalent: this
follows from Schmidt's Theorem [14, Result 9.1.9]. Hence, as another consequence
of Corollary 2, we have

COROLLARY 4. In a variety in which every polycyclic group is nilpotent, each
finitely generated residually finite group is nilpotent.

This result may be considered as an extension of a theorem of Wilson [17], stating
that each n-Engel finitely generated residually finite group is nilpotent.

4. Locally nilpotent groups of a variety

For convenience, denote by 2)e the class of varieties in which every polycyclic
group belongs to JfS8e. Furthermore, let X be the class of varieties f in which, for
any positive integer d, the nilpotency class of J-generated nilpotent groups is bounded
(the bound depending on d and "V only). It is easy to see that a variety "V belongs to
X if and only if the class of locally nilpotent groups of V is a variety.

By Corollary 2, X contains 2) i. However, these classes are distinct: for example,
if m > 1 is a fixed odd integer, the dihedral group D2xm satisfies a law of the form
[JC,2_y] = [x,k y], with k > 2 [2, Proposition 1]. Clearly, a nilpotent group satisfying
this law is 2-Engel, and so of nilpotency class at most 3 [14, Result 12.3.6]. Thus the
variety defined by the law [x,2 y] = [*>* y] belongs to X; but since the dihedral group
D2xm is not nilpotent, this variety is not in 2)i.

Now consider a variety "P, defined by a set of laws w = 1 (w G W, where W is a
subset of the free group F), andSuppose that W is included in F'p F" for some prime
p. Since the wreath product G = (1/pZ) i (J./p"Z) is a metabelian group satisfying
the law [x, y]p = 1, this group is in V for all positive integers n. Moreover, G is a
2-generated nilpotent group of class > p" — 1 [17, Result 2.2]. Hence Y is not in X. In
other words, we have proved that if V belongs to X, then W is not included in F'p F"
for any prime p; it follows from Theorem 2 that "V belongs to 2)f for some integer
e. Thus X is included in [Je>0 ?)<•• 1° fact> ^ is a strictly smaller class than [Je>0 2)c•
Indeed the variety JY\SS2 belongs to 2}2- This variety contains all dihedral groups, in
particular D2xV. But since the nilpotency class of these groups is not bounded, the
variety J/\S82 is not in X.
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In short, we have 2 ) i C l C U,>o ?)*• t n e inclusions being strict. The following
result gives a characterization of varieties V € X

THEOREM 4. For a variety "V, the following assertions are equivalent:

(i) V belongs to X.
(ii) There exist positive integers c', e' {depending on f) such that every nilpotent

group off belongs to (^38,) D

Before proving this theorem, we establish two lemmas.

LEMMA 3. Let x be a nilpotent element of a ring A. Suppose that for some integers
a,k, Po,... , pk (a, k > 0), we have the relations

axk = Po*k + Pixk+l + ••• + pkx
k+k = 0.

Let a = p\' ... p\' be the factorization of a into a product of distinct prime powers
and put € = et + • • • + €,. Then, if there exists an integer j e [0,... , k} such that a
and Pj are coprime, we have xk+fk = 0.

PROOF. The result is obvious if a = 1.

Suppose that a = p is prime (and so e = 1). Lety be the least integer of {0, . . . , k]
such that a and /3; are coprime. Thus we have the relation

P j X
k + J + P j + l x k + J + l + ••• + p k x k + k = 0 .

For any integer P'j such that PJP'J = 1 (mod p), it follows that

x k + J + p J + l p ' j X
k + j + l +••• + p k p ' j x k + k = 0 .

By a standard argument, since x is nilpotent, we obtain xk+j = 0 and so xk+k = 0.
Now suppose that e > 1 and proceed by induction on e. Consider a prime p

dividing a and denote by Ap the set of elements a e A such that pa = 0. Clearly, Ap

is an ideal of A. Writing a' = a / p , we have in the ring A/Ap the relations:

a'xk = p ^ k + p { x k + ] + ••• + p k x - k + k = 0 .

It follows from the inductive hypothesis that the equality x~k+(e~])k = 0 holds in A/Ap.
Therefore, we have in A the relations

pxl+(<-l)k = fl^+C-D* + 0iJtA+(€-l)*+l + . . . + pkX^<-l>k+k = 0.

Since in this case the result is established, we obtain x
k+((~l)k+k = x

k+fk — 0, as
required. D
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LEMMA 4. Let c', e' be positive integers. Then, there exists an integer m = m(c\ e')
such that, for any nilpotent group G € (j/dS$J) fl (SS^J/J) and for any H < G, we
have [h,m y] G H'for all he H,y 6 G.

PROOF. Let H be a normal subgroup of a nilpotent group G e (jYd 88,,) n (38* jVd).
Denote by A the ring of all endomorphisms of the abelian group H/H'. For y € G, the
endomorphism y € A is defined by y(h) = y~lhy (h € / / ) ; thus (y — l)(/i) = [h, y].
Notice that, G being nilpotent, y — 1 is nilpotent. Moreover, since G belongs to
(J^38,) n (dSjjYj), we have the relations [h,d+ly

e'] = [h,dyY = 1. Thus, we
obtain in A:

By using the relation (ye> - 1 ) ' + 1 = (((y - 1) + l)e' - l ) c + 1 , the first of these equations
can be written in the form

Po(y - Dc' + foiy- D'"+l + • • • + Pk(y - D'"+t = 0,

where k = e'(c' + 1) — c' and where fi0,... , /Jk are integers, with ffk = I (and
/30 = 0). Hence we may apply Lemma 3: there exists an integer m = m(c', e') such
that (y — l)m = 0. In other words, [h,m y] belongs to H', as required. •

PROOF OF THEOREM 4. (i) implies (ii). If f belongs to X, the nilpotency class of
each 2-generated nilpotent group of V is bounded by an integer n. In particular, each
nilpotent group of "V is n-Engel. Hence the conclusion follows from the result of
Burns and Medvedev [4] already used in the proof of Corollary 3.

(ii) implies (i). By [15, Proposition D], it is enough to prove that each nilpotent
group of Y is n-Engel for some integer n depending only on "f. Consider a 2-
generated nilpotent group G e y. Since G belongs to ^38?, the derived length
of this group is bounded by an integer r = r{d', e'). Denote by G 0 ) the y'th term of
the derived series of G and apply Lemma 4; so there exists m = m(c', e') such that
[h,my] 6 Gu+l) for all/i € G0)^_y e G. From an immediate induction, it follows that
[.x,i+(r_i)m y] belongs to G(r) for all x, y 6 G, and so [x,Wr-\)m y] — 1- Therefore,
each nilpotent group of y is n-Engel (for n = 1 + (r — l)m), and the theorem is
proved. •
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