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Abstract

Given a sequence of bounded random variables that satisfies a well-known mixing
condition, it is shown that empirical estimates of the rate function for the partial sums
process satisfy the large deviation principle in the space of convex functions equipped with
the Attouch–Wets topology. As an application, a large deviation principle for estimating
the exponent in the tail of the queue length distribution at a single-server queue with
infinite waiting space is proved.
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1. Introduction

Let {Xn, n ≥ 1} be a stationary process whose random variables take values in a bounded
subset of R. Define the partial sums process {Sn, n ≥ 1} by Sn := X1 + · · · + Xn and assume
that {Sn/n, n ≥ 1} satisfies the large deviation principle (LDP) (on the scale 1/n) with a rate
function I that is the Legendre–Fenchel transform of the scaled cumulant generating function
(SCGF)

I (x) = sup
θ∈R

(θx − λ(θ)), where λ(θ) = lim
n→∞

1

n
log E[exp(θSn)]. (1)

If we are given observations X1, X2, . . . , but the statistics of the process {Xn, n ≥ 1} are
unknown, how would we estimate the rate function I? One way is to form an estimate of λ and
take its Legendre–Fenchel transform.

A scheme for estimating λ was proposed to Neil O’Connell by Amir Dembo (private
communication). The scheme is described by Duffield et al. [10], who used it for a problem in
ATM networking, where, when combined with theorems of Glynn and Whitt [15], it provided
an online measurement-based mechanism for estimating the tail of queue length distributions.
For the success of this approach see, for example, [6] and [18].

The scheme is this: we select a block length b sufficiently large that we believe the blocked
sequence {Yn, n ≥ 1}, where Yn := X(n−1)b+1 +· · ·+Xnb, can be treated as being independent
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and identically distributed (i.i.d.), and then use the empirical estimator

λn(θ) = 1

b
log

1

n

n∑
i=1

exp(θYi). (2)

After estimating λ, we propose taking its Legendre–Fenchel transform to form an estimate
In of I . We will call both λn and In empirical estimates. The purpose of this note is to consider
the large deviations in estimating λ and I when the empirical laws of {Yn, n ≥ 1} satisfy the
LDP. A sufficient condition for our theorems to hold is that {Xn, n ≥ 1} satisfy the mixing
condition (S) of [5].

In Section 2, the LDP is proved for empirical estimators. As the random variables {Yn, n ≥ 1}
are assumed to be bounded, for SCGF estimates the topology of uniform convergence on
compact subsets is natural, but it is not appropriate when estimates of a rate function are
considered. For example, it is reasonable to desire that the rate functions In(x) := n|x|
converge to I (x), which is 0 at x = 0 and ∞ otherwise. Clearly, this is not the case in the
topology of uniform convergence on bounded subsets, but it is in the Attouch–Wets topology.

For rate functions, we consider the space of lower-semicontinuous convex functions
equipped with the Attouch–Wets topology [1], [2], which we denote by τAW. A sequence
{fn, n ≥ 1} converges to f in τAW, i.e. τAW − lim fn = f , if, given any bounded set A ∈ R×R

and any ε > 0, there exists an Nε such that

sup
x∈A

|d(x, epifn) − d(x, epif )| < ε for all n > Nε,

where epif = {(a, b) : b ≥ f (a)} denotes the epigraph of f and d is the Euclidean distance.
A good reference for τAW is [3]. Another reason for choosing τAW is that the Legendre–Fenchel
transform is continuous and, thus, the LDP for {In, n ≥ 1} can be deduced, by contraction,
from the LDP for {λn, n ≥ 1}.

In Section 3, as an application, the original motivation for the introduction of the estimator
λn is considered. We prove the LDP for estimating the exponent in the tail of the queue length
distribution at a single-server queue with infinite waiting space. In the simplest model, for
Bernoulli random variables, it gives a serious warning: on the scale of large deviations, if the
exponent is overestimated then it is likely to be extremely overestimated.

2. The large deviations of estimating rate functions

Let � be a closed, bounded subset of R, and let M1(�) denote the set of probability
measures on � equipped with the weak topology induced by Cb(�), the class of bounded,
uniformly continuous functions from � to R. With this topology, M1(�) is Polish. Let
conv(R) denote the set of R-valued lower-semicontinuous convex functions over R equipped
with the topology of uniform convergence on bounded subsets, and let conv(�) denote the set of
(R ∪ {∞})-valued lower-semicontinuous convex functions over the smallest closed interval
containing � and equipped with τAW.

Given an element ν of M1(�), we define its SCGF by

λν(θ) := 1

b
log Eν[eθx] := 1

b
log

∫
�

eθx dν, θ ∈ R,

and its rate function by
Iν(x) := sup

θ∈R

(θx − λν(θ)).
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The following assumption is in force from now on.

Assumption 1. For fixed b, the blocked random variables {Yn, n ≥ 1} take values in �, and
the empirical laws {Ln, n ≥ 1} defined by

Ln := 1

n

n∑
i=1

δYi
, n ≥ 1,

satisfy the LDP in M1(�) with good rate function H .

For an empirical law Ln, we define the empirical estimates λn := λLn and In := ILn . Note
that λn thus defined agrees with the estimator in (2).

Theorem 1, below, can be paraphrased as follows: the large deviations of observing an
empirical SCGF or rate function are just the large deviations of observing the empirical law
that maps to them.

Theorem 1. (Empirical estimator LDP.) The empirical estimators {λn, n ≥ 1} satisfy the LDP
in conv(R) with the following good rate function:

J (φ) =
{

H(ν) if φ = λν, where ν ∈ M1(�),

∞ otherwise.

The empirical estimators {In, n ≥ 1} satisfy the LDP in conv(�) with the following good rate
function:

K(φ) =
{

H(ν) if φ = Iν, where ν ∈ M1(�),

∞ otherwise.

Proof. The first part follows by applying the contraction principle (see [7, Theorem 4.2.1])
and by the uniqueness of moment-generating functions (see, for example, [4]). Define the
function f : M1(�) → conv(R) by f (ν) := λν . Straightforward analysis shows that f is
continuous. Let νn → ν in M1(�). For fixed θ ∈ R, the function x �→ exp(θx) is an
element of Cb(�). Thus, νn(exp(θx)) → ν(exp(θx)) and, as the logarithm is continuous,
f (νn)(θ) → f (ν)(θ). However, f (νn)(θ) is convex in θ , so pointwise convergence implies
uniform convergence on bounded subsets.

As f (ν)(θ) is real valued, [3, Lemma 7.1.2] ensures that f (νn) → f (ν) in conv(R) equipped
with τAW. Thus, the second part follows by applying the contraction principle, since the
Legendre–Fenchel transform from conv(R) to conv(�) is continuous (see [3]), and by the
uniqueness of the Legendre–Fenchel transform.

Remark 1. A sufficient condition for Theorem 1 is that {Xn, n ≥ 1} satisfies the mixing
condition (S) of [5]. This condition ensures that {Sn/n, n ≥ 1} satisfies the LDP with the good
rate function given in (1). Moreover, by inclusion of σ -algebras, {Yn, n ≥ 1} also satisfies (S)
so that [5, Theorem 1] proves the LDP for {Ln, n ≥ 1} in the τ topology. As the τ topology
is finer than the weak topology and the proof of Theorem 1 is by contraction, condition (S)
suffices for it to hold.

If {Yn, n ≥ 1} is genuinely i.i.d. with common law µ then, by Sanov’s theorem, H(ν) is
the relative entropy H(ν | µ). As the relative entropy H(ν | µ) has a unique zero at ν = µ,
[17, Theorems 2.1 and 2.2] ensure that the laws of λn converge weakly to the Dirac measure at
λµ = λ, and the laws of In converge weakly to the Dirac measure at Iµ = I .
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If {Yn, n ≥ 1} is a Markov chain that satisfies the uniformity condition (U) of [8] then, by
[8, Theorem 4.1.43 and Lemma 4.1.45], the good rate function H has a unique zero at the
stationary distribution µ. Thus, the laws of λn converge weakly to the Dirac measure at λµ.
This is obviously an issue if λµ and λ do not coincide, as can be seen in the following example.

Example 1. Let {Xn, n ≥ 1} be a Markov chain taking values {−1, +1} with transition matrix

π =
(

1 − α α

β 1 − β

)
, where α, β ∈ (0, 1). (3)

Then λ can be calculated using techniques described in [7, Section 3.1]:

λ(θ) = log[ 1
2 ((1 − α)e−θ + (1 − β)eθ +

√
4αβ + ((1 − α)e−θ − (1 − β)eθ )2)]. (4)

If we choose b = 1 then {Ln, n ≥ 1} satisfies the LDP, and the laws of λn converge weakly to
the Dirac measure at the SCGF of the stationary distribution

log

(
β

α + β
e−θ + α

α + β
eθ

)
. (5)

Note that (4) and (5) only agree if α + β = 1, in which case the Markov chain is in fact
Bernoulli.

For this Markov chain, the rate function H can be determined by simplifying the expression
given in [8, Equation (4.1.38)]. It is finite if ν = (1 − c)δ−1 + cδ1, in which case

H(ν) =
⎧⎨
⎩−(1 − c) log(1 − α + αK) − c log

(
1 − β + β

K

)
if c ∈ [0, 1),

− log(1 − β) if c = 1,

where

K = −αβ(1 − 2c) + √
(αβ(1 − 2c))2 + 4αβc(1 − α)(1 − β)(1 − c)

2α(1 − β)(1 − c)
.

Thus, J (φ) is finite and is equal to H(ν) if φ = λν , where λν(θ) = log((1 − c) exp(−θ) +
c exp(θ)), and K(φ) is finite and equal to H(ν) if φ = Iν , where

Iν(x) = 1
2 (1 − x) log

(
1 − x

2(1 − c)

)
+ 1

2 (x + 1) log

(
x + 1

2c

)
.

3. An application in queueing theory

Let Xn denote the difference, at time n, between the amount of work that arrives and the
amount of work that can be processed at a discrete-time single-server queue with infinite
buffer. Denote by Qn the amount of work left to be processed by the server (the queue length)
immediately after time n. The queue length evolves according to Lindley’s recursion

Qn+1 = max{Qn + Xn+1, 0}, (6)

where the maximum is necessary because the queue length cannot be negative. Assuming
{Xn, n ≥ 1} to be stationary, the existence of a stationary solution to the recursion (6) is proved
in the famous work of Loynes [19]. The distribution of each individual random variable in
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the solution is given by Q := max{0, supt≥1
∑t

i=1 Xi}. Alternatively, Q can be thought of as
the supremum of a random walk, starting at 0, with increments process {Xn, n ≥ 1}. Under
our assumptions on {Xn, n ≥ 1}, the distribution of Q has logarithmic asymptotics (see, for
example, [11], [14], and [15])

lim
q→∞

1

q
log P[Q > q] = −δ,

where δ is determined by the large deviations rate function

δ = sup{θ : λ(θ) ≤ 0} = inf
x>0

xI

(
1

x

)
.

The great novelty of the approach of Duffield et al. [10] was to employ the following estimator
for δ based on λ estimates: δn := sup{θ : λn(θ) ≤ 0}. In [10] a central limit theorem for
{δn, n ≥ 1} is proved. Our aim is to prove the LDP, which we will do by contraction.

Lemma 1. The function g : conv(R) → [0, ∞) ∪ {∞} defined by

g(φ) := sup{t ≥ 0 : φ(t) ≤ 0},
where the supremum over the empty set is defined to be 0, is continuous at all φ such that
φ(0) = 0 and no χ > 0 exists such that φ(x) = 0 for all x ∈ [0, χ ].

Proof. Let φn → φ in conv(R). There are three cases to consider: g(φ) = ∞, 0 < g(φ) <

∞, and g(φ) = 0. First, assume that g(φ) = ∞ and φ(t) < 0 for all t > 0. Given α > 0,
let 0 < ε < −φ(α); then, as φn → φ uniformly on [0, α], there exists an Nε such that
φn(α) < φ(α) + ε < 0 for all n > Nε. Thus, given α > 0, there exists an Nε such that
g(φn) > α for all n > Nε.

Now, assume that g(φ) ∈ (0, ∞), let g(φ) > ε > 0, and let

γ < min(φ(g(φ) + ε), −φ(g(φ) − ε)).

As φn → φ uniformly on [0, g(φ) + ε], there exists an Nγ such that

φn(g(φ) − ε) < φ(g(φ) − ε) + γ < 0

and
φn(g(φ) + ε) > φ(g(φ) + ε) − γ > 0,

for all n > Nγ . Thus, g(φn) ∈ (g(φ) − ε, g(φ) + ε) for all n > Nγ .
Finally, assume that g(φ) = 0. Given ε > 0, let φ(2ε) − φ(ε) > 2γ > 0. Then there exists

an Nγ such that |φn(t) − φ(t)| < γ for all t ∈ [0, 2ε]. Thus, φn(2ε) > φn(ε) > 0 for all
n > Nγ and, hence, g(φn) < ε.

By a slightly more involved argument, which is similar in spirit, Lemma 1 is also true when
conv(R) is equipped with τAW.

Remark 2. The function g has a discontinuity at φ(t) = 0 for all t . This is an artifact of the
estimation scheme rather than an issue with our choice of topology. For example, if λn(θ) = 0
for all θ , then Yk = 0, k = 1, . . . , n, the queue appears perfectly balanced and, thus, δn = ∞.
However, in the closely similar situation where Yk = ε > 0 for all k, the queue would appear
overloaded, with δn = 0.
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Figure 1: The rate function N(x) for estimating the exponent in the tail of the queue length distribution.
The arrivals minus potential-service is a Bernoulli process taking values in {−1, +1} with mean − 1

2 . The
rate function is 0 at the real value δ = log(3).

In practice, this suggests that care must be taken with SCGF estimates around this disconti-
nuity. For the theory, we introduce an additional assumption to avoid this discontinuity and so
deduce the LDP: we assume that a small open ball around 0 is not contained in �.

Theorem 2. (Decay rate LDP.) If (−ε, ε) /∈ � for some ε > 0, then the sequence {δn, n ≥ 1}
satisfies the LDP in [0, ∞] with good rate function

N(x) = inf{H(ν) : sup{θ : λν(θ) ≤ 0} = x}.
Proof. By Puhalskii’s extension of the contraction principle (see [20, Theorem 3.1.14]),

it suffices to have continuity at φ such that J (φ) < ∞. As (−ε, ε) /∈ �, J (λν) = ∞ for
ν ∈ M1(�) if there exists a χ > 0 such that λν(θ) = 0 for θ ∈ [0, χ ]. Thus, Lemma 1 ensures
that g is sufficiently continuous for us to invoke the extended contraction principle from the
LDP for {λn, n ≥ 1}.

In the case where {Xn, n ≥ 1} is a Bernoulli sequence taking values in {−1, +1} with
P[Xn = 1] = p ∈ (0, 1), the rate function N in Theorem 2 can be calculated explicitly. For
ν = (1 − c)δ−1 + cδ+1,

H(c) := H(ν | µ) = c log
c

p
+ (1 − c) log

1 − c

1 − p
,

and the rate function for {δn, n ≥ 1} is

N(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H

(
1

1 + exp(x)

)
if x > 0,

H
( 1

2

)
if x = 0 and p ≤ 1

2 ,

0 if x = 0 and p > 1
2 .

(7)

This presents a serious warning: although in [10] it was shown that {δn, n ≥ 1} obeys a
central limit theorem, (7) implies that when there is an overestimate of δ, it is likely to be a
large overestimate. To see this, consider Figure 1, where the rate function for estimating δ for
Bernoulli random variables with p = 1

4 is plotted. Overestimation of δ is a serious issue, as it
corresponds to underestimation of the likelihood of long queues.
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For correlated processes {Xn, n ≥ 1}, the block length b also causes problems. Consider
a Markov chain on {−1, +1} with transition matrix given by (3). If α < β then δ =
log((1 − α)/(1 − β)) but, with block length b = 1, the laws of δn converge weakly to the
Dirac measure at log(β/α). In accordance with intuition, if α + β < 1 the chain is positively
correlated and the weak law will be for an overestimate of δ; while, if α + β > 1, the chain is
negatively correlated and the weak law will be for an underestimate of δ.

4. Related work

In other analyses utilizing this estimator, the existence of b such that {Yn, n ≥ 1} is genuinely
i.i.d. is usually assumed. See [16] for distribution-free confidence intervals for measurement of
λ(θ) for fixed θ . For a related question, in the Bayesian context, see [12], [13], and references
therein. For a large deviations analysis of a connection admission control algorithm based on
estimating SCGFs, see [9].
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