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ZERO MULTIPLIERS OF BERGMAN SPACES 

BY 

SHELDON AXLER 

ABSTRACT. This paper proves that if p < s, then 0 is the only function 
that multiplies a Bergman If space into a Bergman V space. 

Fix a positive integer N, and let G be an open, connected, nonempty subset of C^. 
Let dA denote the usual Lebesgue measure on CN, normalized so that the unit ball has 
measure 1. Let w be a positive continuous function defined on G, and we consider the 
Lebesgue spaces LP(G, w dA) of complex valued functions g defined on G such that 

\g\p w dA < oo. 
JG 

For 0 < p < oo, the Bergman space Lp
a(G, w dA) is defined by 

Lp
a{G, w dA) = {g E LP(G, w dA): g is analytic on G}. 

Let p < s. Then the only function on G which multiplies LP(G, w dA) into 
LS(G, w dA) is 0 (see Proposition 1). If g is a function on G which only multiplies the 
Bergman space Lp

a(G, w dA) into LS(G, w dA), then g need not be zero (for precise 
conditions on g for the case where G is a polydisk, see the Theorem in [3]). But what 
if g is also required to be analytic? Can we conclude that the only analytic multiplier 
of Lp

a(G, w dA) into LS(G, w dA) is zero? Clearly we need to eliminate the possibility 
that the spaces involved are trivial, so from now on we assume that G and w are such 
that Lp

a(G, w dA) has dimension greater than 1 for each 0 < p < oo. The main result 
of this paper (Theorem 4) is that 0 is the only analytic function multiplying 
Lp

a(G, wdA) into U{G, w dA). 

A major tool used in the proof of Theorem 4 is the Fredholm alternative from 
operator theory. Except for the case where G has a very smooth boundary and w is well 
behaved, I have been unable to prove Theorem 4 without using operator theory. It 
seems that using the Fredholm alternative allows one to avoid dealing with the problems 
that arise from the geometry of G. 

If p > 1, then LP(G, w dA) is a Banach space; this fails for p < 1. For fixed /?, 
whether or not an analytic function is in Lp

a(G, w dA) depends upon the growth rate 
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of the function near the boundary of G, so in this context the distinction between 
p < 1 and/? > 1 seems unnatural. Thus it is worthwhile to do the small amount of extra 
work necessary to allow/? to be any positive number. I would like to thank Joel Shapiro 
for supplying the reference which shows that the Fredholm alternative is valid even 
where p < 1. 

This paper studies questions of when gLp
a(G, w dA) is contained in Ls

a(G, w dA) for 
p < s; for comparison we give some references to the case where p > s. For p = s, 
it is well known that gLp

a(G, w dA) is contained in Lp
a(G, w dA) if and only if g is a 

bounded analytic function on G; see for example Lemma 11 of [2]. Information 
concerning what happens when p > s can be found in [1] and [4]. 

The following proposition is presented for purposes of motivation and comparison; 
it deals with measurable functions, while Theorem 4 deals with analytic functions. 

PROPOSITION 1. Suppose 0 < p < s ^ oo and g is a complex valued function defined 
on G such that 

gLp(G, w dA) C LS(G, w dA). 

Then g = 0 almost everywhere on G. 

PROOF. Clearly g is measurable. If the conclusion is false, then there is a positive 
number t such that the set G, defined by 

Gt = {z E G:\g(z)\ > t} 

has positive measure. Now 

(g\Gt)L
p(Gt, w dA) C U(Gt, w dA), 

and so 

Lp(Gt, wdA) CZ/(G„ wdA). 

However, by Theorem 1 of [6], this is impossible, and thus we are done. 

For 0 < p < oo and g E LP(G, w dA), define \\g\\p by 

\\g\\P = (jjg\p w dA)"*. 

For/, g E LP(G, w dA), the distance d(f, g) from/to g is defined to be | | / - g\\p for 
1 < p < oo and | | / - g\\p for 0 < p < 1. As is well known, d defines a metric on 
LP(G, w dA) which makes LP(G, w dA) (and thus Lp

a(G, w dA)) into a topological 
vector space. The following lemma shows that the functions in each bounded subset of 
Lp

a{G, w dA) are uniformly bounded on each compact subset of G. 

LEMMA 2. Let 0 < p < oo, and let K be a compact subset of G. Then there is a 
constant c < oo such that 

\f(z)\ < c\\f\\p for al l / in Lp
a(G, wdA). 
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PROOF. Temporarily fix z E K, and let 0 < r < °° be such that the closed ball V of 
radius r centered at z lies in G. Let b denote the supremum of w~Vp over V. Iff is 
analytic on G, then \f\p is subharmonic, so (see [9], Proposition 1.5.4 and equation (2) 
on page 20) 

|/(z)|<r"^(J |/|"CM),/P 

**r-"'|l/l|p. 
Since K is compact, we can choose an r for each z in # so that br~Nlp remains bounded, 
giving the desired result. 

A linear map M from a topological vector space X to a topological vector space Y is 
called compact if there is an open set E in X containing 0 such that the closure ofM(E) 
in Y is compact. Compact operators will play a crucial role in the proof of Theorem 4. 

For / and h analytic functions on G, define the multiplication operator Mh by 
Mh(f) = hf It will be clear from the context which spaces we intend to be the domain 
and range of Mh. 

Suppose that s, t, and/? are positive numbers such that (\/s) + (1 /0 = (l/p). Let 
/ E LS(G, w dA) and h E V{G, w dA). Then a slight generalization of Holder's 
inequality (see [5], pages 84-85) shows that hf E LP(G, w dA) and 

\\hfl s II4II/II,. 

This inequality shows that Mh is a continuous map from LS(G, w dA) to LP(G, w dA). 
The following lemma shows that far more is true if h is analytic and we restrict the 
domain to the Bergman space Ls

a(G, w dA). 

LEMMA 3. LetO < p < s < oo, and letO < t < oo be such that (1/s) + (I/O = (1//0, 
and let h be a function in L!

a(G, w dA). Then 

Mh:L
s
a(G, w dA) - • Lp

a(G, w dA) 

is compact. 

PROOF. We will see that the image under Mh of the unit ball of Ls
a(G, w dA) has a 

compact closure in Lp
a(G, w dA). To do this, let {/,} be a sequence in the unit ball of 

Ls
a(G, w dA). We need to show that {hfn} has a subsequence which is convergent in 

Lp
a(G, w dA). 
By Lemma 2, {/„} is uniformly bounded on each compact subset of G, and so {/„} 

is a normal family. Thus there is an analytic function/defined on G and a subsequence 
of {/,} (for convenience, replace {/„} with the subsequence) such that/, converges to 
/uniformly on each compact subset of G. In the case where s = oo, we clearly have 
/ E Ls

a(G, w dA). For the case where s < oo, Fatou's Lemma shows that 
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f \f\s wdA= \ lim \fn\
s w dA < lim-inf | \fn\

s w dA < 1, 
-'G •'G •'G 

s o / E Ls
a(G, w dA) in either case. 

Now let e be a positive number. Let A' be a compact subset of G such that 

\h\' w dA < e. 
JG~K I 

Since /„ tends to/uniformly on K, there is a positive integer M such that 

I |A(/„ " f)\p w dA < e for all n> M. 
Let n > M. Then 

f \hfn - hf\> wdA=\ \h(fn - f)\p w dA + f \hfn - hf\p w dA 
•'G JK JG~K 

<e + (f |A|'WdAr'||/B-/||î 

< e + e ' " | | / „ - / | | : . 

Thus we see that hfn converges to hf in Lp
a(G, w dA), and so we are done. 

We are now ready to prove the main result of this paper. 

THEOREM 4. Let 0 < p < s < <*>, and /ef g 6e an analytic function defined on G such 
that 

gL
p
a(G,wdA)CLs

a(G,wdA). 

Then g — 0. 

PROOF. First we need to verify that Lp
a{G, w dA) is a complete metric space. So let 

{/„} be a Cauchy sequence in Lp
a(G, w dA). From Lemma 2, we see that for each 

compact set K C G, the sequence {/J^} is a Cauchy sequence in the space of 
continuous functions on K. Thus there is an analytic function/defined on G such that 
fn converges to / uniformly on each compact subset of G. As in the proof of 
Lemma 3, Fatou's Lemma implies that/E Lp

a(G,wdA). Now for e > 0, let M be such 
that 

\fm -fn\
pwdA<e for all n,m> M. 

JG 

If n > M, then another application of Fatou's Lemma shows that 

f | / - fn\
p w d A < lim-inf f \fm - fn\

p w dA < e. 
JG ^ JG 

Thus/n converges to / in Lp
a(G, w dA), and so Lp

a(G, w dA) is complete. 
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Consider the multiplication operator 

Mg:L
p
a(G, w dA) -> Ls

a(G, w dA). 

Since we know that Lp
a(G, w dA) and Ls

a(G, w dA) are complete, the Closed Graph 
Theorem (see [8], Theorem 2.15, for a version that applies when p < 1) can be used 
to show that Mg is continuous. To do this, suppose/, converges to / in LP(G, w dA) 
and gfn converges to v in Ls

a(G, w dA). By Lemma 2,/„ converges pointwise to /on 
G, and similarly gfn converges pointwise to v on G. Thus v = gf, and so Mg is 
continuous. 

Let 0 < t < oc be such that (\/s) + (1/0 = (l/p). Let h be a nonzero function in 
L'a(G, w dA). By Lemma 3, the multiplication operator 

Mh:L
s
a(G, w dA) -» Lp

a(G, w dA) 

is compact. Let E be an open subset of Ls
a(G, w dA) containing 0 such that Mh(E) has 

compact closure in Lp
a(G, w dA). Let F = M~X(E). Since Mg is continuous, F is an open 

subset of Lp
a(G, w dA) containing 0. Also, (MhMg)(F) is contained in Mh(E), and so 

Mgh = MhMg:L
p
a(G, w dA) -* Lp

a(G, w dA) 

is a compact operator. 
Let/be a nonzero function in Lp

a(G, w dA). Suppose the conclusion of the theorem 
is false, so g is also nonzero. Fix a point z in G such that g, / , and h are all nonzero 
at z. Every function in the range of the multiplication operator 

Mgiz)m-gh:L
p
a(G, w dA) -> Lp

a{G, w dA) 

is zero at z. In particular,/is not in the range of this operator, so Mg{z)h(z)-gh is not onto. 
Since Mgh is a compact operator, Mg(z)h(z)-gh is a nonzero scalar times a compact 
perturbation of the identity operator. But Mgiz)h(z)-gh is not onto, so the Fredholm 
alternative (which holds even if p < 1; see [10], Theorem 1) implies that Mg(z)h{z)-gh 

is not injective. However, every nonzero multiplication operator is clearly injective on 
Lp

a(G, w dA), so g(z)h(z) — gh must be identically zero. 
So gh is a constant function for each h E Va{G, w dA). Since the dimension of 

L'a(G, w dA) is greater than 1, this can happen only if g = 0. Thus we have completed 
the proof. 

In addition to its use in the proof of Theorem 4, Lemma 3 has another interesting 
application. The classical Hardy spaces Hp of the unit disk in the complex plane have 
the property that if p j= s, then there is an infinite dimensional subspace X of Hp D Hs 

which is closed in both Hp and Hs. For example, take X to be the set of functions in 
H] whose Taylor coefficients vanish outside a fixed lacunary sequence (see [7], 
page 203, for a clean statement of the theorem needed for this example). The following 
theorem shows that in this respect the Bergman spaces behave differently from the 
Hardy spaces. 
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THEOREM 5. Suppose that fG w dA < °°. Let 0 < p < s < °°, ara/ let X be a subspace 
ofLp

a(G, wdA) H Ls
a(G, wdA) which is closed in both Lp

a(G, wcL4) am/Z4(G, wcL4). 
77ze« X is finite dimensional. 

PROOF. Let Xp (respectively, Xs) denote X with the topology it inherits as a subspace 
of Lp

a(G, w dA) (respectively, Ls
a(G, w dA)). Applying Lemma 3 with h = 1 shows 

that the inclusion of Ls
a(G, w dA) into Lp

a(G, w dA) is a compact operator. Thus there 
is an open subset E C Ls

a(G, w dA) with 0 G £ such that the closure of E in 
Lp

a{G, w dA) is compact. Thus the closure of E D Xp is compact in Xp. 
As in the proof of Theorem 4, the Closed Graph Theorem implies that the identity 

map from Xp to Xs is continuous. Thus E D Xp is open in Xp. Thus Xp is a locally 
compact topological vector space, and so by Theorem 1.22 of [8], we can conclude that 
X is finite dimensional, as desired. 
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