ZERO MULTIPLIERS OF BERGMAN SPACES

BY

SHELDON AXLER

ABSTRACT. This paper proves that if p < s, then 0 is the only function that multiplies a Bergman L^{p} space into a Bergman L^{s} space.

Fix a positive integer N, and let G be an open, connected, nonempty subset of \mathbb{C}^N . Let dA denote the usual Lebesgue measure on \mathbb{C}^N , normalized so that the unit ball has measure 1. Let w be a positive continuous function defined on G, and we consider the Lebesgue spaces $L^p(G, w \, dA)$ of complex valued functions g defined on G such that

$$\int_G |g|^p w \, \mathrm{d} A < \infty.$$

For $0 , the Bergman space <math>L^p_a(G, w \, dA)$ is defined by

 $L^p_a(G, w \, \mathrm{d}A) = \{g \in L^p(G, w \, \mathrm{d}A): g \text{ is analytic on } G\}.$

Let p < s. Then the only function on G which multiplies $L^p(G, w \, dA)$ into $L^s(G, w \, dA)$ is 0 (see Proposition 1). If g is a function on G which only multiplies the Bergman space $L^p_a(G, w \, dA)$ into $L^s(G, w \, dA)$, then g need not be zero (for precise conditions on g for the case where G is a polydisk, see the Theorem in [3]). But what if g is also required to be analytic? Can we conclude that the only analytic multiplier of $L^p_a(G, w \, dA)$ into $L^s(G, w \, dA)$ is zero? Clearly we need to eliminate the possibility that the spaces involved are trivial, so from now on we assume that G and w are such that $L^p_a(G, w \, dA)$ has dimension greater than 1 for each $0 . The main result of this paper (Theorem 4) is that 0 is the only analytic function multiplying <math>L^p_a(G, w \, dA)$ into $L^s(G, w \, dA)$.

A major tool used in the proof of Theorem 4 is the Fredholm alternative from operator theory. Except for the case where G has a very smooth boundary and w is well behaved, I have been unable to prove Theorem 4 without using operator theory. It seems that using the Fredholm alternative allows one to avoid dealing with the problems that arise from the geometry of G.

If $p \ge 1$, then $L^p(G, w \, dA)$ is a Banach space; this fails for p < 1. For fixed p, whether or not an analytic function is in $L^p_a(G, w \, dA)$ depends upon the growth rate

Received by the editors May 29, 1984.

AMS Subject Classification (1980): 30H05, 32A30, 46E10.

The author was supported in part by the National Science Foundation.

[©] Canadian Mathematical Society 1984.

of the function near the boundary of G, so in this context the distinction between p < 1 and $p \ge 1$ seems unnatural. Thus it is worthwhile to do the small amount of extra work necessary to allow p to be any positive number. I would like to thank Joel Shapiro for supplying the reference which shows that the Fredholm alternative is valid even where p < 1.

This paper studies questions of when $gL_a^p(G, w \, dA)$ is contained in $L_a^s(G, w \, dA)$ for p < s; for comparison we give some references to the case where $p \ge s$. For p = s, it is well known that $gL_a^p(G, w \, dA)$ is contained in $L_a^p(G, w \, dA)$ if and only if g is a bounded analytic function on G; see for example Lemma 11 of [2]. Information concerning what happens when p > s can be found in [1] and [4].

The following proposition is presented for purposes of motivation and comparison; it deals with measurable functions, while Theorem 4 deals with analytic functions.

PROPOSITION 1. Suppose 0 and g is a complex valued function definedon G such that

$$gL^p(G, w \,\mathrm{d} A) \subset L^s(G, w \,\mathrm{d} A).$$

Then g = 0 almost everywhere on G.

PROOF. Clearly g is measurable. If the conclusion is false, then there is a positive number t such that the set G_t defined by

$$G_t = \{z \in G : |g(z)| > t\}$$

has positive measure. Now

$$(g|G_t)L^p(G_t, w dA) \subset L^s(G_t, w dA),$$

and so

$$L^{p}(G_{t}, w dA) \subset L^{s}(G_{t}, w dA)$$

However, by Theorem 1 of [6], this is impossible, and thus we are done.

For $0 and <math>g \in L^{p}(G, w \, dA)$, define $||g||_{p}$ by

$$\|g\|_{p} = \left(\int_{G} |g|^{p} w \mathrm{d}A\right)^{1/p}.$$

For $f, g \in L^p(G, w \, dA)$, the distance d(f, g) from f to g is defined to be $||f - g||_p$ for $1 \le p < \infty$ and $||f - g||_p^p$ for 0 . As is well known, <math>d defines a metric on $L^p(G, w \, dA)$ which makes $L^p(G, w \, dA)$ (and thus $L^p_a(G, w \, dA)$) into a topological vector space. The following lemma shows that the functions in each bounded subset of $L^p_a(G, w \, dA)$ are uniformly bounded on each compact subset of G.

LEMMA 2. Let $0 , and let K be a compact subset of G. Then there is a constant <math>c < \infty$ such that

$$|f(z)| \leq c ||f||_p$$
 for all f in $L^p_a(G, w \, \mathrm{d}A)$.

PROOF. Temporarily fix $z \in K$, and let $0 < r < \infty$ be such that the closed ball V of radius r centered at z lies in G. Let b denote the supremum of $w^{-1/p}$ over V. If f is analytic on G, then $|f|^p$ is subharmonic, so (see [9], Proposition 1.5.4 and equation (2) on page 20)

$$|f(z)| \leq r^{-N/p} \left(\int_{V} |f|^{p} \, \mathrm{d}A \right)^{1/p}$$
$$\leq br^{-N/p} \left(\int_{V} |f|^{p} \, w \, \mathrm{d}A \right)^{1/p}$$
$$\leq br^{-N/p} \|f\|_{p}.$$

Since K is compact, we can choose an r for each z in K so that $br^{-N/p}$ remains bounded, giving the desired result.

A linear map M from a topological vector space X to a topological vector space Y is called compact if there is an open set E in X containing 0 such that the closure of M(E) in Y is compact. Compact operators will play a crucial role in the proof of Theorem 4.

For f and h analytic functions on G, define the multiplication operator M_h by $M_h(f) = hf$. It will be clear from the context which spaces we intend to be the domain and range of M_h .

Suppose that s, t, and p are positive numbers such that (1/s) + (1/t) = (1/p). Let $f \in L^s(G, w \, dA)$ and $h \in L^i(G, w \, dA)$. Then a slight generalization of Hölder's inequality (see [5], pages 84-85) shows that $hf \in L^p(G, w \, dA)$ and

$$\|hf\|_{p} \leq \|h\|_{t} \|f\|_{s}$$

This inequality shows that M_h is a continuous map from $L^s(G, w \, dA)$ to $L^p(G, w \, dA)$. The following lemma shows that far more is true if h is analytic and we restrict the domain to the Bergman space $L^s_a(G, w \, dA)$.

LEMMA 3. Let $0 , and let <math>0 < t < \infty$ be such that (1/s) + (1/t) = (1/p), and let h be a function in $L'_a(G, w \, dA)$. Then

$$M_h: L^s_a(G, w \, \mathrm{d}A) \to L^p_a(G, w \, \mathrm{d}A)$$

is compact.

PROOF. We will see that the image under M_h of the unit ball of $L_a^s(G, w \, dA)$ has a compact closure in $L_a^p(G, w \, dA)$. To do this, let $\{f_n\}$ be a sequence in the unit ball of $L_a^s(G, w \, dA)$. We need to show that $\{hf_n\}$ has a subsequence which is convergent in $L_a^p(G, w \, dA)$.

By Lemma 2, $\{f_n\}$ is uniformly bounded on each compact subset of G, and so $\{f_n\}$ is a normal family. Thus there is an analytic function f defined on G and a subsequence of $\{f_n\}$ (for convenience, replace $\{f_n\}$ with the subsequence) such that f_n converges to f uniformly on each compact subset of G. In the case where $s = \infty$, we clearly have $f \in L^s_a(G, w \, dA)$. For the case where $s < \infty$, Fatou's Lemma shows that

1985]

$$\int_G |f|^s w \, \mathrm{d}A = \int_G \lim |f_n|^s w \, \mathrm{d}A \leq \liminf \int_G |f_n|^s w \, \mathrm{d}A \leq 1,$$

so $f \in L_a^s(G, w \, \mathrm{d}A)$ in either case.

Now let ϵ be a positive number. Let K be a compact subset of G such that

$$\int_{G\sim K} |h|^t w \, \mathrm{d}A < \epsilon$$

Since f_n tends to f uniformly on K, there is a positive integer M such that

$$\int_{K} |h(f_n - f)|^p \ w \ \mathrm{d}A < \epsilon \ \text{for all} \ n > M.$$

Let n > M. Then

$$\int_{G} |hf_{n} - hf|^{p} w \, \mathrm{d}A = \int_{K} |h(f_{n} - f)|^{p} w \, \mathrm{d}A + \int_{G \sim K} |hf_{n} - hf|^{p} w \, \mathrm{d}A$$
$$< \epsilon + \left(\int_{G \sim K} |h|^{t} w \, \mathrm{d}A\right)^{p/t} ||f_{n} - f||_{s}^{p}$$
$$\leq \epsilon + \epsilon^{p/t} ||f_{n} - f||_{s}^{p}.$$

Thus we see that hf_n converges to hf in $L^p_a(G, w \, dA)$, and so we are done.

We are now ready to prove the main result of this paper.

THEOREM 4. Let 0 , and let g be an analytic function defined on G such that

$$gL_a^p(G, w \, \mathrm{d}A) \subset L_a^s(G, w \, \mathrm{d}A).$$

Then g = 0.

PROOF. First we need to verify that $L_a^p(G, w \, dA)$ is a complete metric space. So let $\{f_n\}$ be a Cauchy sequence in $L_a^p(G, w \, dA)$. From Lemma 2, we see that for each compact set $K \subset G$, the sequence $\{f_n | K\}$ is a Cauchy sequence in the space of continuous functions on K. Thus there is an analytic function f defined on G such that f_n converges to f uniformly on each compact subset of G. As in the proof of Lemma 3, Fatou's Lemma implies that $f \in L_a^p(G, w \, dA)$. Now for $\epsilon > 0$, let M be such that

$$\int_G |f_m - f_n|^p \ w \ \mathrm{d}A < \epsilon \ \text{for all } n, m > M.$$

If n > M, then another application of Fatou's Lemma shows that

$$\int_G |f-f_n|^p w \, \mathrm{d}A \leq \liminf_m \int_G |f_m-f_n|^p w \, \mathrm{d}A \leq \epsilon.$$

Thus f_n converges to f in $L^p_a(G, w \, dA)$, and so $L^p_a(G, w \, dA)$ is complete.

240

[June

Consider the multiplication operator

$$M_{g}: L^{p}_{a}(G, w \, \mathrm{d}A) \to L^{s}_{a}(G, w \, \mathrm{d}A).$$

Since we know that $L_a^p(G, w \, dA)$ and $L_a^s(G, w \, dA)$ are complete, the Closed Graph Theorem (see [8], Theorem 2.15, for a version that applies when p < 1) can be used to show that M_g is continuous. To do this, suppose f_n converges to f in $L_a^p(G, w \, dA)$ and gf_n converges to v in $L_a^s(G, w \, dA)$. By Lemma 2, f_n converges pointwise to f on G, and similarly gf_n converges pointwise to v on G. Thus v = gf, and so M_g is continuous.

Let $0 < t < \infty$ be such that (1/s) + (1/t) = (1/p). Let h be a nonzero function in $L'_a(G, w \, dA)$. By Lemma 3, the multiplication operator

$$M_h: L^s_a(G, w \, \mathrm{d}A) \to L^p_a(G, w \, \mathrm{d}A)$$

is compact. Let *E* be an open subset of $L_a^s(G, w \, dA)$ containing 0 such that $M_h(E)$ has compact closure in $L_a^p(G, w \, dA)$. Let $F = M_g^{-1}(E)$. Since M_g is continuous, *F* is an open subset of $L_a^p(G, w \, dA)$ containing 0. Also, $(M_hM_g)(F)$ is contained in $M_h(E)$, and so

$$M_{gh} = M_h M_g : L^p_a(G, w \, \mathrm{d}A) \to L^p_a(G, w \, \mathrm{d}A)$$

is a compact operator.

Let f be a nonzero function in $L^p_a(G, w \, dA)$. Suppose the conclusion of the theorem is false, so g is also nonzero. Fix a point z in G such that g, f, and h are all nonzero at z. Every function in the range of the multiplication operator

$$M_{g(z)h(z)-gh}: L^p_a(G, w \, \mathrm{d}A) \to L^p_a(G, w \, \mathrm{d}A)$$

is zero at z. In particular, f is not in the range of this operator, so $M_{g(z)h(z)-gh}$ is not onto. Since M_{gh} is a compact operator, $M_{g(z)h(z)-gh}$ is a nonzero scalar times a compact perturbation of the identity operator. But $M_{g(z)h(z)-gh}$ is not onto, so the Fredholm alternative (which holds even if p < 1; see [10], Theorem 1) implies that $M_{g(z)h(z)-gh}$ is not injective. However, every nonzero multiplication operator is clearly injective on $L_a^p(G, w \, dA)$, so g(z)h(z)-gh must be identically zero.

So gh is a constant function for each $h \in L_a^t(G, w \, dA)$. Since the dimension of $L_a^t(G, w \, dA)$ is greater than 1, this can happen only if g = 0. Thus we have completed the proof.

In addition to its use in the proof of Theorem 4, Lemma 3 has another interesting application. The classical Hardy spaces H^p of the unit disk in the complex plane have the property that if $p \neq s$, then there is an infinite dimensional subspace X of $H^p \cap H^s$ which is closed in both H^p and H^s . For example, take X to be the set of functions in H^1 whose Taylor coefficients vanish outside a fixed lacunary sequence (see [7], page 203, for a clean statement of the theorem needed for this example). The following theorem shows that in this respect the Bergman spaces behave differently from the Hardy spaces.

1985]

S. AXLER

THEOREM 5. Suppose that $\int_G w \, dA < \infty$. Let $0 , and let X be a subspace of <math>L^p_a(G, w \, dA) \cap L^s_a(G, w \, dA)$ which is closed in both $L^p_a(G, w \, dA)$ and $L^s_a(G, w \, dA)$. Then X is finite dimensional.

PROOF. Let X_p (respectively, X_s) denote X with the topology it inherits as a subspace of $L_a^p(G, w \, dA)$ (respectively, $L_a^s(G, w \, dA)$). Applying Lemma 3 with h = 1 shows that the inclusion of $L_a^s(G, w \, dA)$ into $L_a^p(G, w \, dA)$ is a compact operator. Thus there is an open subset $E \subset L_a^s(G, w \, dA)$ with $0 \in E$ such that the closure of E in $L_a^p(G, w \, dA)$ is compact. Thus the closure of $E \cap X_p$ is compact in X_p .

As in the proof of Theorem 4, the Closed Graph Theorem implies that the identity map from X_p to X_s is continuous. Thus $E \cap X_p$ is open in X_p . Thus X_p is a locally compact topological vector space, and so by Theorem 1.22 of [8], we can conclude that X is finite dimensional, as desired.

REFERENCES

1. Rohan Attele, Analytic multipliers of Bergman spaces, to appear in Michigan Math. J.

2. P. L. Duren, B. W. Romberg, and A. L. Shields, *Linear functionals on* H^p spaces with 0 , J. reine angew. Math.**238**(1969), pp. 32-60.

3. William W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. AMS 52 (1975), pp. 237-241.

4. V. L. Oleinik and B. S. Pavlov, *Embedding theorems for weighted classes of harmonic and analytic functions*, J. Soviet Math. 2 (1974), pp. 135–142; a translation of Zap. Nauch. Sem. LOMI Steklov 22 (1971), pp. 94–102.

5. Michael Reed and Barry Simon, *Methods of Modern Mathematical Physics*, Vol. 1, Functional Analysis, Academic Press, New York, 1972.

6. Juan L. Romero, When is $L^{p}(u)$ contained in $L^{q}(u)$? Amer. Math. Monthly **90** (1983), pp. 203–206.

7. Walter Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), pp. 203-227.

8. Walter Rudin, Functional Analysis, McGraw-Hill Book Co., New York, 1973.

9. Walter Rudin, Function Theory on the Unit Ball of \mathbb{C}^n , Springer-Verlag, New York, 1980.

10. J. H. Williamson, Compact linear operators in linear topological spaces, J. LMS 29 (1954), pp. 149-156.

DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY EAST LANSING, MI 48824 USA