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SUMMARY

During the southern hemisphere winter of 2006 New Zealand experienced a significant increase in

the number of reported cases of Campylobacter infection. In total, 112 Campylobacter isolates

from eight district health boards (DHBs) located across New Zealand were submitted for PFGE,

MLST and Penner serotyping analysis. Distinct clusters of Campylobacter isolates were identified,

several of which were composed of isolates from up to five different DHBs located on both the

North and South islands of New Zealand. One sequence type, ST-474, was identified in 32 of the

112 isolates and may represent an endemic sequence type present in New Zealand. The spatial

pattern of genotypes, combined with the generalized increase in notifications throughout the

country is consistent with a common source epidemic, most likely from a source contaminated

with the dominant sequence types ST-474 and ST-190 and may also represent widely distributed

stable clones present in New Zealand.

INTRODUCTION

Campylobacter jejuni and Campylobacter coli are the

most commonly identified bacterial agents of gastro-

enteritis in the developed world [1]. The majority of

Campylobacter infections appear to be sporadic with

relatively few outbreaks being reported, although this

may be due to inadequate ascertainment of related

cases [2]. The predominant source of the infectious

agent is thought to be food. However, the widespread

distribution of Campylobacter spp. in the environ-

ment suggests that other sources may be important.

New Zealand has one of the highest rates of cam-

pylobacteriosis recorded in the developed world [3].

The notification rate in 2006 was 383.5/100 000,

which is at least threefold higher than seen in other

industrialized countries [4]. The causes of the in-

creased incidence in New Zealand have yet to be

identified, although, as found elsewhere in the world,

poultry consumption has been identified as a risk

factor [4–8]. The seasonality and age distribution of

cases are similar to those found elsewhere [3, 9, 10].

To identify potential sources of contamination and

transmission routes of Campylobacter spp., the dis-

tribution of individual strains within the environ-

ment and the relationship between strains must be

determined. Attempts to do this in New Zealand

using pulsed-field gel electrophoresis (PFGE) have

suggested possible transmission routes such as animal

faeces and water but definitive answers require a

more detailed knowledge of the population structure

[11].
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The characterization of Campylobacter popu-

lations has undergone significant improvements in

recent years with the development of a number of

genotypic methods [12]. Many studies have utilized

variation in macrorestriction profiles or flagellin

gene (flaA) sequence to identify possible outbreaks

and examine sources of infection [5, 13, 14]. How-

ever, the large degree of genetic variation seen in

both the PFGE and flaA sequence profiles has

limited the application of these methods for popu-

lation studies of C. jejuni and C. coli. The develop-

ment of a highly portable multi-locus sequence

typing (MLST) scheme for C. jejuni and C. coli has

provided significant information on the population

structure of C. jejuni and C. coli isolates in human

clinical samples, animal hosts and the environment

[15–18]. A limited number of clonal complexes (CC)

have been detected and host-specific sequence types

(ST) and alleles identified. The current C. jejuni/

C. coli MLST database containing strain and

sequence information is composed mainly of isolates

from a limited number of countries (http://pubmlst.

org/campylobacter/).

During May and June of 2006 New Zealand

experienced an increase in the number of reported

campylobacteriosis cases [19]. This unexpected rise

in cases observed by the majority of New Zealand

district health boards (DHBs) (Fig. 1) prompted

this investigation. In total, 112 human isolates of

Campylobacter were collected from eight DHBs

within a 2-month period and characterized by PFGE,

MLST and Penner serotyping.

MATERIAL AND METHODS

As part of the investigation into the increase in

Campylobacter reports, isolates were requested from

laboratories serving the major New Zealand DHBs

and eight responded (Fig. 2). All isolates came from

diarrhoeic patients (60 females, 52 males) with ages

ranging from 0 to 93 years (Table 1). DHBs were

asked to submit consecutive isolates excluding repeat

isolates and isolates from families. A total of 112

Campylobacter isolates were characterized (five C. coli

and 107 C. jejuni). All isolates were grown on 5%

(sheep blood) Columbia Blood agar plates at 42 xC
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Fig. 1. The number of campylobacteriosis reports in the district health boards of New Zealand, May 2003–2006. C&C,
Capital & Coast ; BOP, Bay of Plenty ; m, 2003; &, 2004;2, 2005; %, 2006.
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Fig. 2. The location of the eight district health boards in
New Zealand that sent Campylobacter isolates for typing

and subtyping analysis.
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for 48 h in microaerophilic conditions and speciated

following standard microbiological procedures.

MLST was performed as described previously [16].

Chromosomal DNA was prepared from freshly

grown cultures by boiling for 10 min followed by

centrifugation of the disrupted cells. The supernatant

was decanted to a fresh tube and used for amplifi-

cation. The amplifications were performed in a 25 ml

volume reaction using Applied Biosystems AmpliTaq

Gold mastermix (Applied Biosystems, Auckland,

New Zealand) and 5 pmol of each primer. Products

were sequenced on an ABI 3130XL automated

DNA sequencer using ABI BigDye v3.1 (Applied

Biosystems) following the manufacturer’s instruc-

tions. Sequence data was collated and alleles assigned

using the Campylobacter PubMLST database (http://

pubmlst.org/campylobacter/). Novel alleles and se-

quence types were submitted for allele and sequence-

type designation as appropriate.

PFGE analysis was performed as described pre-

viously [20]. Isolates were prepared and digested with

SmaI and run under standard PulseNet conditions.

Salmonella Braenderup H9812 strain restricted with

XbaI was run as a size standard. Patterns were clus-

tered using BioNumerics v4.6 (Applied Maths,

Ghent, Belgium). A second restriction enzyme, KpnI,

was used for further discrimination of isolates with

indistinguishable SmaI patterns. PFGE clusters were

defined using the BioNumerics software at 95%

similarity using an optimization of 0.5% and a po-

sition tolerance of 1.5%. Patterns were compared

with those in the PulseNet Aotearoa New Zealand

Campylobacter database containing 1600 SmaI

PFGE patterns and 505 KpnI PFGE patterns from

isolates obtained from diverse sources throughout

New Zealand since 2001.

The sequence types identified by MLST were as-

signed to clonal complexes using the eBURST3 pro-

gramme [21, 22]. Isolates were defined as belonging to

a clonal complex if they shared four or more alleles

with the central or founder sequence type. Penner

serotyping was performed using a panel of 43 C. jejuni

antisera produced in-house according to the method

of Penner & Hennessy [23].

RESULTS

The 107 C. jejuni and five C. coli isolates received

were characterized using PFGE, MLST and Penner

serotyping. MLST analysis identified 25 sequence

types including four that had not previously been

recognized and another three that had been identified

in New Zealand isolates only. One new aspA allele

was identified in three C. coli isolates (ST-2397)

(Table 1). Over one quarter of the isolates were

ST-474 (32/112 isolates), 18 were ST-190 and nine

were ST-354. ST-190 isolates were identified in all

DHBs and ST-474 isolates in seven of the eight DHBs

(Table 2). Over half the isolates (59%) belonged to

two clonal complexes, CC ST-21 (32 isolates) and CC

ST-48 (34 isolates).

The PFGE typing data identified isolates from

throughout New Zealand with indistinguishable

PFGE patterns (Table 1). Within the 112 isolates, 17

PFGE groups of two isolates or more (81 isolates)

were identified, and of these 17 groups, 15 had isolates

from two or more DHBs (74 isolates). PFGE analysis

showed that 23 of the 32 ST-474 isolates belonged to

three clusters (cluster J 7 isolates, cluster K 9 isolates

and cluster L 7 isolates) with isolates from multiple

DHBs. Digestion of the isolates with a second enzyme

KpnI indicated that isolates within these clusters were

indistinguishable. Similarly, among the 18 ST-190

isolates, three clusters of 10, 3 and 3 isolates were

identified (Table 1). Again, digestion with the second

enzyme showed that isolates within each cluster were

indistinguishable. Comparison with the PulseNet

Aotearoa New Zealand Campylobacter database

showed that six of the 17 SmaI clusters (B, K, L, M, P

and S; Table 1, Fig. 3) had patterns not previously

seen in New Zealand. Comparison of the SmaI PFGE

patterns from each of the clusters showed that the CC

ST-48 patterns were more closely related to each other

than to other cluster patterns, as were the CC ST-21

patterns (Fig. 3).

Penner serotyping identified 15 different serotypes

with the four-complex accounting for 32% of the

isolates. All ST-190 isolates except one (untypable)

belonged to serogroup 2 and all ST-474 isolates be-

longed to the four-complex serogroup. Isolates with

identical sequence types and indistinguishable PFGE

patterns using both restriction enzymes had identical

serogroups (Table 1) except for one of the 10 isolates

from ST190 cluster F.

DISCUSSION

Outbreaks of campylobacteriosis are rarely identified

in relation to the number of cases reported. In 2005,

13 839 cases of campylobacteriosis were reported in

New Zealand, yet only 47 Campylobacter-associated

outbreaks were reported involving 252 cases [3]. This
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Table 1. Subtyping data from New Zealand isolates (isolates are ordered by sequence type)

ERL no. Sex Age (yr) Submitting DHB ST CC Serotype SmaI KpnI Species

ERL06-2307 M 52 C&C (N) 5 ST-353 4c C. jejuni
ERL06-2420 M 12 Waikato (N) 21 ST-21 2 E C. jejuni
ERL06-2261 M 71 BOP (N) 42 ST-42 23,36 N C. jejuni
ERL06-2304 M 22 C&C (N) 42 ST-42 23,36 N C. jejuni
ERL06-2332 M 8 Otago (S) 42 ST-42 23,36 C. jejuni
ERL06-2340 M 12 Otago (S) 42 ST-42 23,36 C. jejuni
ERL06-2357 M 35 Canterbury (S) 45 ST-45 42 M C. jejuni
ERL06-2423 F 0 Waikato (N) 45 ST-45 UT M C. jejuni
ERL06-2268 F 44 Waikato (N) 45 ST-45 42 P C. jejuni
ERL06-2377 M 24 Otago (S) 45 ST-45 57 C. jejuni
ERL06-2295 M 22 C&C (N) 48 ST-48 4c C. jejuni
ERL06-2329 F 48 BOP (N) 50 ST-21 1c A 10 C. jejuni
ERL06-2305 F 6 C&C (N) 50 ST-21 1c A 10 C. jejuni
ERL06-2359 F 62 Canterbury (S) 50 ST-21 1c A 10 C. jejuni
ERL06-2330 M 26 Otago (S) 50 ST-21 1c A 10 C. jejuni
ERL06-2372 M 51 Otago (S) 50 ST-21 1c A 10 C. jejuni
ERL06-2378 F 71 Southland (S) 50 ST-21 1c A 10 C. jejuni
ERL06-2339 M 1 Otago (S) 50 ST-21 1c A 10 C. jejuni
ERL06-2351 F 73 Canterbury (S) 50 ST-21 1c C. jejuni
ERL06-2257 F 18 C&C (N) 52 ST-52 5 B 11 C. jejuni
ERL06-2298 F 32 C&C (N) 52 ST-52 5 B 11 C. jejuni
ERL06-2341 M 61 Otago (S) 52 ST-52 5 B 11 C. jejuni
ERL06-2272 F 52 Waikato (N) 52 ST-52 5 B 11 C. jejuni
ERL06-2343 M 19 Canterbury (S) 53 ST-21 2 C 12 C. jejuni
ERL06-2345 F 28 Canterbury (S) 53 ST-21 2 C 12 C. jejuni
ERL06-2347 F 77 Canterbury (S) 53 ST-21 2 C 12 C. jejuni
ERL06-2358 F 3 Canterbury (S) 53 ST-21 2 C 12 C. jejuni
ERL06-2355 M 11 Canterbury (S) 53 ST-21 2 C. jejuni
ERL06-2267 F 77 Waikato (N) 61 ST-61 4c C. jejuni
ERL06-2309 M 8 C&C (N) 190 ST-21 2 D 1 C. jejuni
ERL06-2327 F 33 Lakes (N) 190 ST-21 2 D 1 C. jejuni
ERL06-2336 M 48 Otago (S) 190 ST-21 2 D 1 C. jejuni
ERL06-2258 F 18 BOP (N) 190 ST-21 2 E 2 C. jejuni
ERL06-2291 F 32 C&C (N) 190 ST-21 2 E 2 C. jejuni
ERL06-2275 M 15 Waikato (N) 190 ST-21 2 E 2 C. jejuni
ERL06-2364 M 3 Canterbury (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2367 M 4 Canterbury (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2369 M 15 Canterbury (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2331 M 22 Otago (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2342 F 86 Otago (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2374 F 23 Otago (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2376 F 20 Otago (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2356 M 2 South Canterbury (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2334 F 2 Southland (S) 190 ST-21 UT F 3 C. jejuni
ERL06-2337 F 30 Southland (S) 190 ST-21 2 F 3 C. jejuni
ERL06-2249 F 17 Lakes (N) 190 ST-21 2 C. jejuni
ERL06-2274 M 1 Waikato (N) 190 ST-21 2 C. jejuni
ERL06-2260 F 44 BOP (N) 257 ST-257 11 G 4 C. jejuni
ERL06-2289 M 76 BOP (N) 257 ST-257 11 G 4 C. jejuni
ERL06-2571 F 62 BOP (N) 257 ST-257 11 G 4 C. jejuni
ERL06-2354 F 39 Canterbury (S) 257 ST-257 11 G 4 C. jejuni
ERL06-2365 F 28 Canterbury (S) 257 ST-257 11 G 4 C. jejuni
ERL06-2328 M 52 BOP (N) 354 ST-354 UT H 5 C. jejuni
ERL06-2255 M 71 C&C (N) 354 ST-354 UT H 5 C. jejuni
ERL06-2290 M 57 C&C (N) 354 ST-354 UT H 5 C. jejuni
ERL06-2297 M 60 C&C (N) 354 ST-354 UT H 5 C. jejuni
ERL06-2270 F 49 Waikato (N) 354 ST-354 UT H 5 C. jejuni
ERL06-2418 F 76 Waikato (N) 354 ST-354 UT H 5 C. jejuni
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Table 1 (cont.)

ERL no. Sex Age (yr) Submitting DHB ST CC Serotype SmaI KpnI Species

ERL06-2421 F
58

Waikato (N) 354
ST-354 UT H 5 C. jejuni

ERL06-2363 F 19 Canterbury (S) 354 ST-354 UT C. jejuni
ERL06-2417 M 30 Waikato (N) 354 ST-354 UT C. jejuni
ERL06-2366 F 1 Canterbury (S) 436 UA UT C. jejuni
ERL06-2375 F 40 Southland (S) 436 UA 4c C. jejuni
ERL06-2422 M 1 Waikato (N) 436 UA UT C. jejuni
ERL06-2288 F 49 BOP (N) 474 ST-48 4c J 6 C. jejuni
ERL06-2253 F 23 C&C (N) 474 ST-48 4c J 6 C. jejuni
ERL06-2250 F 18 Lakes (N) 474 ST-48 4c J 6 C. jejuni
ERL06-2265 F 39 Waikato (N) 474 ST-48 4c J 6 C. jejuni
ERL06-2271 F 51 Waikato (N) 474 ST-48 4c J 6 C. jejuni
ERL06-2416 M 39 Waikato (N) 474 ST-48 4c J 6 C. jejuni
ERL06-2424 M 57 Waikato (N) 474 ST-48 4c J 6 C. jejuni
ERL06-2256 F 22 C&C (N) 474 ST-48 4c K 7 C. jejuni
ERL06-2292 M 54 C&C (N) 474 ST-48 4c K 7 C. jejuni
ERL06-2293 M 25 C&C (N) 474 ST-48 4c K 7 C. jejuni
ERL06-2296 M 28 C&C (N) 474 ST-48 4c K 7 C. jejuni
ERL06-2287 F 30 Lakes (N) 474 ST-48 4c K 7 C. jejuni
ERL06-2326 M 52 Lakes (N) 474 ST-48 4c K 7 C. jejuni
ERL06-2551 M 21 Lakes (N) 474 ST-48 4c K 7 C. jejuni
ERL06-2373 F 12 Otago (S) 474 ST-48 4c K 7 C. jejuni
ERL06-2266 F 24 Waikato (N) 474 ST-48 4c K 7 C. jejuni
ERL06-2308 F 36 C&C (N) 474 ST-48 4c L 8 C. jejuni
ERL06-2313 F 46 C&C (N) 474 ST-48 4c L 8 C. jejuni
ERL06-2368 F 78 Canterbury (S) 474 ST-48 4c L 8 C. jejuni
ERL06-2370 F 22 Canterbury (S) 474 ST-48 4c L 8 C. jejuni
ERL06-2338 M 26 Otago (S) 474 ST-48 4c L 8 C. jejuni
ERL06-2415 F 85 Waikato (N) 474 ST-48 4c L 8 C. jejuni
ERL06-2419 M 0 Waikato (N) 474 ST-48 4c L 8 C. jejuni
ERL06-2361 M 61 Canterbury (S) 474 ST-48 4c Q 13 C. jejuni
ERL06-2352 M 0 South Canterbury (S) 474 ST-48 4c Q 13 C. jejuni
ERL06-2412 F 19 BOP (N) 474 ST-48 4c S 14 C. jejuni
ERL06-2306 F 24 C&C (N) 474 ST-48 4c S 14 C. jejuni
ERL06-2310 M 50 C&C (N) 474 ST-48 4c C. jejuni
ERL06-2312 F 93 C&C (N) 474 ST-48 4c C. jejuni
ERL06-2325 M 1 Lakes (N) 474 ST-48 4c C. jejuni
ERL06-2549 M 15 Lakes (N) 474 ST-48 4c C. jejuni
ERL06-2262 F 2 Waikato (N) 474 ST-48 4c C. jejuni
ERL06-2259 F 36 BOP (N) 530 UA 23,36 C. jejuni
ERL06-2286 F 24 Lakes (N) 583 ST-45 6 C. jejuni
ERL06-2353 F 70 Canterbury (S) 1581 UA UT C. coli
ERL06-2344 F 73 South Canterbury (S) 2026 ST-403 35 C. jejuni
ERL06-2371 F 24 Southland (S) 2343 ST-48 UT C. jejuni
ERL06-2413 F 29 BOP (N) 2345 ST-206 1c C. jejuni
ERL06-2335 F 43 Otago (S) 2345 ST-206 1c C. jejuni
ERL06-2362 M 18 Canterbury (S) 2347 UA 8,17 C. jejuni
ERL06-2252 F 52 C&C (N) 2397 ST-828 37 R 9 C. coli
ERL06-2254 M 46 C&C (N) 2397 ST-828 37 R 9 C. coli
ERL06-2269 F 45 Waikato (N) 2397 ST-828 37 R 9 C. coli
ERL06-2311 M 58 C&C (N) 2398 UA 42 C. jejuni
ERL06-2360 M 11 Canterbury (S) 2534 UA UT C. coli
ERL06-2263 M 73 Waikato (N) 2535 UA UT M C. jejuni
ERL06-2273 M 53 Waikato (N) 2535 UA 41 P C. jejuni
ERL06-2294 M 27 C&C (N) 2535 UA UT C. jejuni

DHB, District health board; ST, Sequence type ; CC, clonal complex; N, North Island; S, South Island; C&C (N), Capital &
Coast DHB; BOP (N), Bay of Plenty DHB; UA, unassigned; UT, untypable.
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suggests either a significant under-reporting of out-

breaks or a very large number of sporadic cases.

Unfortunately the volume of Campylobacter isolates

normally precludes routine subtyping for identifi-

cation of related cases and may hide the true extent of

outbreak-related cases. Recent studies using MLST

Table 2. Sequence types (ST) identified in individual district health boards (DHBs)

ST BOP C&C Canterbury Lakes Otago S. Canterbury Southland Waikato Total

5 1 1
21 1 1

42 1 1 2 4
45 1 1 2 4
48 1 1

50 1 1 2 3 1 8
52 2 1 1 4
53 5 5
61 1 1

190 1 2 3 2 5 1 2 2 18
257 3 2 5
354 1 3 1 4 9

436 1 1 1 3
474 2 10 3 6 2 1 8 32
530 1 1

583 1 1
1581 1 1
2026 1 1
2343 1 1

2345 1 1 2
2347 1 1
2397 2 1 3

2398 1 1
2534 1 1
2535 1 2 3

Total 11 25 21 9 15 3 5 23 112

BOP, Bay of Plenty DHB; C&C, Capital & Coast DHB.
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Fig. 3. The PFGE patterns of the 17 clusters identified using SmaI. The KpnI patterns are also shown. ST, Sequence type; CC,
clonal complex; UA, unassigned.
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and PFGE subtyping methods have shown that

within human Campylobacter strains there is a clear

temporal distribution of isolates [2, 24, 25]. In New

Zealand, PFGE subtyping of all isolates received by a

single clinical laboratory over two short time periods

identified a significant number of clusters [2]. Distinct

clusters defined using both SmaI and KpnI PFGE

patterns were identified in different isolation periods

suggesting outbreaks may be more common than

previously thought. Similarly, studies characterizing

isolates by MLST, one from urban and rural com-

munities in the United Kingdom [25] and one

from New South Wales, Australia [24], also identified

a temporal distribution of clonal complexes. The

lower discriminatory power of MLST precludes

identification of potential outbreaks per se but

clearly indicates clusters of related isolates present

within a collection. In this study we have identified

distinct clusters within a discrete time-frame but

from isolates distributed across the length of New

Zealand.

Two restriction enzymes (SmaI and KpnI) were

used for the confirmation of individual clusters and

MLST was included as an alternative confirmatory

technique providing unequivocal data on the re-

lationship of the isolates. It has previously been

shown that isolates from a number of confirmed out-

breaks were indistinguishable by four subtyping

methods including MLST, PFGE and Penner sero-

typing [26]. Isolates in all the major clusters (Table 1)

were indistinguishable by PFGE and MLST and

Penner serotyping, although one isolate in ST-190

cluster F had a different serotype. As found pre-

viously ST-257 was only identified with serotype 11

and ST-42 with serotype 23,36 [27].

The sudden and unexpected increase in Campy-

lobacter isolates during the winter of 2006 [19] pro-

vided an opportunity to examine the relationship

and distribution of Campylobacter subtypes across

New Zealand. This increase was specific to New

Zealand and not identified in Australia. The 112 iso-

lates were obtained from eight DHBs, four on the

North Island and four on the South Island (Fig. 2).

The surprising result was the identification of indis-

tinguishable isolates from upwards of five different

DHBs located on both islands (Table 1). This could

be attributed to a generalized increase in exposure to

multiple sources associated with a common risk fac-

tor, or a common source outbreak arising from a

single source that was widely distributed throughout

New Zealand. The relative frequency and spatial

pattern of the genotypes, especially the MLST types,

are more consistent with the latter scenario: such a

marked increase in notification, accompanied by the

predominance of indistinguishable strains with a wide

spatial distribution, is consistent with a common

source epidemic. Strains most likely associated with a

common source are ST-474 and ST-190; these were

the most prevalent sequence types, with ST-190

identified in all regions and ST-474 in seven of the

eight regions, and the only sequence types isolated in

the Lakes region (Table 2). Unfortunately the small

numbers associated with each cluster meant that no

significant information on possible sources of infec-

tion could be identified from epidemiological infor-

mation gathered and the rural or urban nature of the

sample was not recorded.

Comparison of the PFGE patterns from the two

major sequence-type groups with those in the

PulseNet Aotearoa Campylobacter database showed

that the PFGE patterns of two clusters had not

been seen previously (ST-474 cluster K and cluster

L), one had been seen once (ST-190 cluster D), one

four times (ST-474 cluster J), one 23 times (ST-190,

cluster F) and one 44 times (ST-190 cluster E). It is

clear from the PFGE and MLST data (P. Carter

and S. McTavish, unpublished data) that particular

Campylobacter strains are very stable over a number

of years and continue to cause human infections.

This stability obfuscates the relationship of these

strains in outbreak scenarios and further work

surrounding their epidemiology is required. Identi-

fication of stable strains within Campylobacter

populations using MLST, PFGE, flaA RFLP typing

and AFLP has been reported previously among

human and poultry isolates [5, 28, 29].

One unique strain, ST-474 cluster K, was identified

in four different DHBs and the PFGE patterns had

not previously been seen. The widespread occurrence

of this strain argues against a simple local point

source normally associated with Campylobacter out-

breaks but may reflect the need to look at other

possible reasons such as food distribution within New

Zealand. This scenario is comparable to the wide-

spread dissemination of E. coli O157:H7 through

large-scale food distribution networks in the United

States and highlights the importance of subtyping and

surveillance (e.g. by PulseNet USA) in identifying

such outbreaks.

The MLST data identified a number of commonly

described sequence types that have previously been

associated with human infection. CC ST-21 has been
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identified in isolates from a wide range of sources ac-

counting for up to a third of human isolates

(20–33%) [18, 25, 27, 30] which was also the case in

this study. The other major clonal complex in this

study, CC ST-48, also accounted for approximately

one third of human isolates, comparable with recent

data from Australia [24], although significantly more

than reported previously in other studies (5–10%)

[18, 25, 27, 30]. The majority of the CC ST-48 isolates

in New Zealand were ST-474, which is not a com-

monly identified sequence type internationally. Only

one isolate with this sequence type, a Czech isolate

from chicken, is logged in the MLST database.

Interestingly, the Czech Republic is also reported

to have a very high rate of Campylobacter infection

[31]. It has not been reported in other MLST studies

of Campylobacter isolates. It is present, however, in

significant numbers (about 10% of samples char-

acterized) in human and poultry isolates in New

Zealand and has been isolated from sheep and cows

(N. French and P. Carter, unpublished results). It

may be that this particular sequence type is endemic in

New Zealand but not prevalent elsewhere in the

world. Potentially endemic strains have also been

identified in Australia [24] and Curacao [32]. There

were also four isolates with sequence types that had

been previously identified in New Zealand as novel

sequence types, associated with chicken meat (ST-

2343, one isolate and ST-2345, two isolates) and river

water (ST-2347, one isolate). The SmaI PFGE pattern

of the ST-2343 and ST-2347 isolates were indis-

tinguishable from those seen previously. The two ST-

2345 isolates in this study, however, gave different

patterns to those seen previously. These sequence

types may represent other endemic strains of Campy-

lobacter.

The data presented here regarding the unusual

increase in campylobacteriosis in New Zealand over

the winter of 2006 are consistent with a common

source epidemic associated with endemic strains of

Campylobacter. Clones of Campylobacter identified

by PFGE patterns, MLST and Penner serotyping are

widely distributed throughout New Zealand, some of

which have been identified before and represent stable

clones. The PFGE patterns associated with individual

clonal complexes are closely related, consistent with

the distribution of epidemic strains via an unknown

source. The identification of the New Zealand en-

demic strain, ST-474, and its association with food

sources and serious human illness warrants further

investigation.
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