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SUFFICIENCY CONDITIONS FOR THE EXISTENCE OF 
TRANSVERSALS 

E. C. MILNER AND S. SHELAH 

1. I n t r o d u c t i o n . A transversal of a family of non-empty sets &~ = (Fv: v £ / } 
is a 1-1 m a p 

<p:I^S(^) = U F, 

such t h a t <p(v) £ Fv (v £ / ) . A number of problems in combinatorial ma the ­
matics reduce to the question of whether or not a certain family of sets has a 
transversal . An up- to-date account of this theory is to be found in the book 
by Mirsky [9]. T h e best known result of this kind is the following theorem. 

T H E O R E M . If &~ = (Fv : v £ / ) is either a finite family or an arbitrary family 
of finite sets, then & has a transversal if and only if 

(1.1) I U Fv\ > | / | 

holds for all finite sets J C I-

This was proved for finite J ^ by P . Hall [7] (and in an equivalent graph 
theoretical formulation by J . Kônig [8]) and for an a rb i t ra ry family of finite 
sets by M. Hall [6]. We shall refer to (1.1) as Hall ' s condition. If J^~ is an 
infinite family with infinite sets, then the problem of finding necessary and 
sufficient conditions for the existence of a transversal assumes a different 
complexity and remains unsolved. Rado and J u n g [12] observed t h a t if J^~ has 
jus t one infinite member, say Fvo, then there is a t ransversal if and only if 
(1.1) holds and 

F90 <t U U F, 

where ^ is the set of critical subsets of / , i.e., / £ ^f if and only if / is a finite 
subset of I for which equal i ty holds in (1.1). Brualdi and Scrimger [3] and 
Folkman [5] considered the more general problem of a family containing an 
a rb i t ra ry finite number of infinite sets. More recently, Nash-Will iams [10] 
conjectured a condition which is both necessary and sufficient for an a rb i t r a ry 
countable family of sets to have a transversal , and this was proved by Damerel l 
and Milner [4]. T h e conditions given by these au thors are no t so easily s ta ted 
and the reader is referred to the original papers . 
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EXISTENCE OF TRANSVERSALS 949 

That there can be no entirely elementary set of conditions which are neces­
sary and sufficient for an arbitrary family of sets to have a transversal may 
perhaps be illustrated by considering the two families 

-^S = (a + 1 : co S OL < coi) and J S = (a : co ^ a < coi). 

Here co denotes the first infinite ordinal, coi the first uncountable ordinal and 
an ordinal a. = {/3 : /3 < a} is regarded as the set of all smaller ordinals. Clearly 
J^~i has a transversal since a G OL + 1. However, Ĵ ~2 has no transversal. For, 
if <p(a) G OL (co S OL < coi), then by a theorem of Alexandroff and Urysohn [1] 
on regressive functions, there is some y < coi such that (p(a) = y for un-
countably many a: < coi. The family J S gives a partial answer to [9, Problem 3, 
p. 220].) It is difficult to imagine any criterion involving inequalities between 
cardinals of sets which will be delicate enough to distinguish between the 
families J S and J S . 

In view of the difficulty just mentioned it seems of interest therefore to have 
conditions which, though not necessary, are at least sufficient to ensure the 
existence of a transversal in a family having infinite members. In this con­
nection Professor L. Mirsky asked if the following condition (which is a kind of 
dual of the finiteness condition in M. Hall's theorem) is sufficient for the 
existence of a transversal : each member of &~ is infinite and each element 
x G S{^) belongs to only a finite number of sets F G ^~. 

If j r = (Fv . v ç / ) is a family, we write F G & if F = Fv for some v G L 
The cardinality of the family is \!F \ = | I | . For any set A, put^(A) = 
(FP: p £ I, A C\ Fv ?± 0) and write ^ (x) instead of ^({x}). Mirsky's 
question is answered affirmatively by the following theorem. 

THEOREM 1. / / the family of nonempty sets ^ satisfies 

(1.2) \F\^\^{x)\ forallF t^andx £ S(^), 

then Ĵ ~ has a transversal. 

Dr. C. J. Knight conjectured that the following, more local type of condition, 
is also sufficient for a transversal. We write &~ G ^ if and only if the members 
of #~ are nonempty and 

(1.3) \F\^\^(F)\ ( F f J ) . 

The main result proved in this paper settles Knight's conjecture. 

THEOREM 2. If &~ G $f, then &~ has a transversal. 

A common weakening of the conditions (1.2) and (1.3) is the condition 

(1.4) |*1 ^ \#~(x)\ (x G S ( J O , F G &{x) i.e., x G F G ̂ ) . 

We write Ĵ ~ G <^£ if the members of #~ are nonempty and (1.4) is satisfied. 
Thus a strengthening of both Theorems 1 and 2 is 
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950 E. C. MILNER AND S. SHELAH 

T H E O R E M 3. If F G *£, then F has a transversal. 

Suppose F = (Fv : v G I) G i f . Let J be a finite set, J C i", and let F' 
be the sub-family (7% : v G J ) . For p G {1, 2, . . . , | J | } , pu t 

np = \{v £J: \F,\ =p}\, mp = \{x G 5 ( J r / ) : ^ ' ( x ) ! = p}\. 

Considering the number of pairs (x, F) with x G F G J^"', |,F| ^ p, we obta in 
by (1.4) the inequali ty 

Wi + 2^2 + . . . + pnp g mi + 2m2 + . . . + £m p (1 S p S | / | ) . 

I t follows t h a t 

wi + TZ2 + . . . + nv g wi + ra2 + . . . + mv (1 ^ p ^ | J | ) , 

and hence (1.1) holds. I t follows from this t h a t «èf is a sufficient condition for a 
family of finite sets to have a t ransversal . T h e condit ions «if and J ^ are easily 
seen to be equivalent if all the members of F are infinite sets and therefore, 
oaf is also sufficient (by Theorem 2) for a family of infinite sets to have a 
transversal . In an early version of this paper we left Theorem 3 as an open 
question since we could not prove the special case 

(1.5) if F is a countable family of countable sets and & Ç oSf, then F has 
a transversal. 

In fact, (1.5) and Theorem 2 implies the complete result s ta ted as Theorem 3 
(see § 6) . Shelah [13] has since proved (1.5) and a simpler proof ôf this result 
is given in [2]. In § 7 we prove an even stronger result (Theorem 4) . 

Theorem 3 has an interesting formulation in te rms of b ipar t i te graphs . 
A bipar t i te graph is a triple T = (X, A, Y) with ver tex set X U Y 
(X, Y disjoint sets) and edge set A C {{x, y] : x G X, y G Y}. Le t v(z) = 
\{u G X W Y : {u, z) G A}| (z G X U Y) be the valency function of T. Then 
Theorem 3 is equivalent to the following s t a t emen t : If T = (X, A, Y) is a 
bipartite graph such that v{x) > 0 for x £ X and v(x) ^ v(y) whenever x c l , 
y G Y and {x, y) G A, then there is a matching from X into F , i.e. there is a 1-1 
function <p : X —> Y such that {x, cp(x)} G A (x G X). 

2. N o t a t i o n . Capi ta l letters denote sets and the cardinal power of A is 
\A\. Small Lat in and Greek letters denote ordinal numbers unless s ta ted other­
wise. As usual, an ordinal a is the set {ft : /? < a} of all smaller ordinals. A 
cardinal number is an initial ordinal, i.e., a is a cardinal if (3 < a => |/3| < |a | . 
T h e let ters K, X, /x always denote infinite cardinals. K+ is the successor cardinal 
of AC. 

F will always denote the family of non-empty sets (Fv : v G I) with index 
set / . We write \F \ = \I\ and S(F) = \JvÇiIFv. We shall abuse the usual 
terminology of sets by applying it to families of sets, bu t this should no t lead 
to any confusion. Thus , we write A G F if A = Fv for some v G / . We write 
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A, B G J^", A 9^ B to mean that ^4, B are different members of J^", i.e., 4̂ = F^ 
B = Fv and \x 9^ v (even though we may have A = B in the usual set theoreti­
cal sense). # " ' = (F, : z> G F) is a subfamily of #" , and we write J ^ C ^ , 
if F C ^; in this case we also write #~ — # " ' = {Fv : v £ I — F). We write 
f ' C C ^ if ^~" = (G,:ve I) and G, C ^ > G I ) . The family j F ' = 
(F„ : y Ç / ' ) is disjoint from J^" if I F\ F = 0; it is strongly disjoint from Ĵ ~ if 
it is disjoint and in addition S(#~) H 5 ( ^ ' ) = 0. If ^~, &~' are disjoint, then 
#~V #"' = {F9:v£ IKJ F). 

A transversal of Ĵ ~ is an 1-1 function <p : I —> S(^r) such that <p(z>) G 7% 
0 G / ) . Let Trans ( ^ ) be the set of all transversals of J ^ If cp G Trans ( J r ) , 
^ G Trans ( ^ " ' ) , then range (cp) = {̂ OO : v G /} and <£>, ^ are said to be 
disjoint if range (<̂ ) Pi range (\f/) = 0. Thus, if #", J^"' are disjoint families 
and <p, (p' are disjoint transversals of Ĵ ~ and &~ ' respectively, then <p W <p' G 
Trans (#~ U #~') . 

For ^ C 5 ( ^ 0 , let &' (A) denote the subfamily of J ^ 

.^"(4) = (FP: v G J, 4 C\FV ^ 0). 

In particular, for a singleton we write J^~(x) instead of ^({x} ). J^~has property 
J f , ^ Ç Jf, if and only if 

(2.1) |F| ^ 1^(77)1 ( F Ç ^ ) , 

and#~ G i f if and only if 

|F| ^ |«^(*) | (* G S ( ^ ) , F G ^ ( x ) i.e., x e F £ ^). 

If X is an infinite cardinal we write 

j r x = {Fv. „ G / f | ^ | = x ) # 

J ^ < \ J ^ \ J ^ > \ #"^x are similarly defined. For x G 5 ( ^ ) put 

p*(x) = inf{\F\ : F É ^ W I . 

Thus «F G i f if and only if P i ,(x) è |«^(*) | (x G 5 ( J r ) ) . We usually write 
S = 5 ( J r ) , and then 

5X = {x G 5 : PJF(X) = M-

S<x , 5 - x are similarly defined. 
A \-component of Ĵ ~ is a minimal non-empty subfami ly^ C ^~=x such that 

.4 G Jf, B G ̂ ~ =x(^4) =*B e JÏ?. 

Let J^~=x = (F9 : v £ h). Consider the graph S^x on the index set I\ in which 
}p, o-} is an edge if and only if p, a G I\, p 9* o* and FPC\ Fa 9^ 0. Then J ^ = 
(F„ : i/ G J ) is a X-component of J ^ exactly when J is the vertex set of a 
connected component of the graph ^ \ . Two different X-components of &~ are 
strongly disjoint subfamilies of ^ . A large \-component of ^ is a minimal non-
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952 E. C. MILNER AND S. SHELAH 

empty subfamily ffl C ^ such that 

A ^ye,AC\BC\S^ ^ 0 = > £ C j r . 

Thus every set A G £F is a member of a large X-component of & ; two large 
A-components are disjoint subfamilies of #~ but they are not in general strongly 
disjoint. 

If £F G o£f, then for any Â ^ w , the valency of a vertex v in the graph ^\ 
described above is at most X and hence the vertex set of a connected component 
has cardinality at most X, i.e. if ffl is a X-component of J^~, then \3f\ ^ X. 

Suppose i^~ is a family of sets such that (2.1) holds and 

(2.2) \A r\ S ^\ ^ X for A G &*. 

Now (2.1) implies that each element x G 5 -x is a member of at most X different 
sets of the family J^ . Therefore, by (2.2), there are at most X2 = X different 
sets B G ^ such that A (^ B (^ S =x ^ 0. This implies that every large 
X-component of &~ also has cardinality at most X. 

The cofinality of the cardinal X, is the least cardinal p, = cf (X) such that X 
can be expressed as the union of p subsets each of cardinal less than X. X is 
regular if cf (X) = X and singular if cf (X) < X. 

A set of ordinals C C X is stationary in X if for every regressive function 
/ : C —> X (i.e.,/(7) < y for y G C — {0}), there is 70 such that 

I h £ C:f(y) = 70ÎI = X. 

We use the well-known result (e.g. [11]) that if X > œ is regular then the set 
C = J 7 < X : 7 i s a limit ordinal} is stationary in X. A set C C X is cofinal in X 
if for every x G X there is y G C such that x ^ y. 

3. Elementary lemmas and proof of Theorem 1. We need the following 
well-known fact. 

LEMMA l.If\#~\£\£ \F\ (F G ^ " ) , then there are sets g(F) C F (F G #~) 
such that \g(F)\ = X and g(F1) Pi g(F2) = 0 for Fu F2 G &~ and F1 ^ F2. 

Proof. We may assume that ^ = (Fv : v < a ) , a ^ X. Let (vp : p < X) be any 
sequence of ordinals such that *>p < a(p < X) and \{p < \ : vp = v}\ = \ 
{v < a). Now by transfinite induction we can choose elements xp G Fvp — 
{xa : a < p] and the lemma holds with g(Fv) = {xp : p < X and vp = z>} 
(? < a). 

Since a family of non-empty pairwise disjoint sets obviously has a trans­
versal, we have the following corollary. 

COROLLARY 1. If \F\ ^ X ̂  \#"\ (F G ^ ), *Aew Trans ( ^ ) 5* 0. 

LEMMA 2. J / ^ G J f arcd | ̂  | ^ Ko, *Ae» Trans ( J ^ 5* 0. 
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Remark. T h e condition F G J ^ can be replaced by the weaker hypothesis 
^ G ££, bu t the proof is much more difficult in this case (see [1 ; 13]). 

Proof of Lemma 2. We may assume t h a t J ^ " = (Ft : i < r ) , where r ^ co. 
Let n < T and suppose t ha t elements p( i ) 6 F* have been chosen for i < n. 
Since Fw G F(Fn) and # ~ G J f , we have t h a t 

\{i<n:Fi£&'(Fn))\ < \Fn\ 

and hence there is <p(n) G Fn — {<p(i) : i < n\. This defines a transversal ^ of 
F by induction. 

L E M M A . 3. Let ^ ' G j f . / / é^fter (i) | F | g Ko /or all F ^ F or (ii) | F | = X 

/o r a// i7 G J r , *&e» T rans ( # " ) ^ 0. 

Proof. If (i) holds pu t /x = co; if (ii) holds pu t /x = X. Then F is the union of 
its /x-components & i (i G / ) which are pairwise strongly disjoint. Since 
\@i\ = M a n d ^ i G J ^ it follows, from Lemma 2 in the case /x = co and from 
Corollary 1 in the case /x > co, t h a t T rans (& t) 9e 0. Lemma 3 follows since 
the @ t are strongly disjoint. 

Proof of Theorem 1. T h e hypothesis implies t h a t there is a cardinal number m 
such t h a t | F | ^ m ^ \F(x)\ for all 7? G ^ and * G 5 ( J r ) . Let F' be any 
subset of F of power m [F G ^ ~ ) . Then i t will be enough to show t h a t the 
family F1 = (F' : F G ^ O C C ^ has a transversal. If m is finite then 
T rans (F') ^ 0 by Hall 's theorem. If m is infinite, then for F' G ^ ' and 
x G Fr we have 

| # ~ ' ( x ) | ^ | # ~ ( x ) | rg m = IFI 

i.e., J*"' G J ^ . Therefore, since the members of ^ ' all have the same cardi­
nali ty, it follows from Lemma 3 (ii) t h a t T rans (Ff) ^ 0. 

4. A s t r e n g t h e n i n g of J # \ I t will be convenient to consider the following 
strengthening of c o n d i t i o n ^ . We write F G J ^ + if and only if the following 
three conditions are satisfied: 

( i ) J r G J f , 
(ii) A G F>» => | 4 H 5 ^ | < /i, 

(iii) X > co, A G &\ A C\ S<x 9*0=* A C 5<x. 
I t follows from (ii) and (iii) t ha t ii A G F x and -4 Pi 5<x F^ 0, then X is a 

limit cardinal. 

L E M M A 4. Let F G J f + , A G ^ \ i H 5 < ^ 0. 77*^ cf (X) = co. 

Proof. T h e hypothesis implies t h a t X is a limit cardinal. Suppose t h a t 
cf (X) = K > co. Le t (Xa : a < K) be a closed increasing sequence of ordinals with 
X = lima<KXa. By (ii), for each limit ordinal a < K there is an ordinal f(a) < a 
such t h a t 

\A r\ s^°\ ^ x/(tt). 
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The set of limit ordinals a < a is a stationary subset of K. Hence there is /3 < K 
such tha t / (a ) = /3 on some cofinal set U C K. Since £/ is cofinal in K, it follows 
that 

|4 H 5=x«| S A* for all a < K. 

By (iii), and the fact that the sets S-Xa increase with a, we have 

Acs
<x=u s<Xa. 

This gives the contradiction \A \ S A/3+ < X. 

Before stating the next lemma, we remind the reader that J ^ C ^• 

LEMMA 5. Let J G {jf , i f } , ̂  G , / . 7 7 ^ /Aere ^ f i C C ^ w ^ 

( O J S ^ G / , 
(ii)^"i>" GJf+ . 

(iii) #"1=" and^i>œ are strongly disjoint. 

Proof. We shall define sets g(F) C ^ for T7 G J ^ by induction on the cardi­
nality of F. For F G J ^ " put g (F) = F. Now let X > co and assume that g (F) 
is defined for F G ̂ ~< x . Let 4̂ G ̂ ~x. Then we define g {A) as follows. 

For co S M < X, put A (/x) = {* G A : x G g(5) for some B G ̂  ="}, and 
for /z ^ X put A (/x) = A. Then 4 (/x) C A (K) for /* ^ K. Put 

CO*) = ^ ( M ) - U A(K). 

Since |^4(X)| = X, there is a smallest cardinal, say X0, such that co ^ X0 ^ X 
and |i4(X0)| ^ X0. 

Case 1. If |C(X0)| ^ Xo, let g (A) be any X0-subset of C(X0). 
Case 2. If |C(X0)| < Xo, put 

g(A) = U A(K)-A(O>). 
0)<K<XO 

Notice that if Case 2 holds, then X0 > co (since C(co) = 4̂ (co)) and so \A (co)| < 
co and hence |gC4)| = X0. Thus, in either case, |gC4)| = X0 and 

(4.1) g(A)CA(\0). 

The family J^~i = (g(A) : A G ̂ ) has the required properties. 
To prove this we first show that 

(4.2) i Ç ^ x G ^ i H i , pi(x) ^ M =» x G 4 (M), 

where 5i = S(«^"i) and pi = pj^. From the hypothesis that pi(x) ^ /x, it 
follows that there is some F G ^~ such that x G g(^) and \g(F)\ S v*. 

(i)' If \F\ ^ ju, then x U W by the definition of A (/*). 
(ii)' If |F| > M, then g OF) C F (ft) by (4.1) and hence there is B G ^ " 

such that x G g(^0- This again implies that x G A (/x), and (4.2) follows. We 
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now verify that #~i has the required properties. Let C G J r i - a ' , x G C. There is 
A £ ^~ such that C = g{A) and x£A.ll\A\ S co, then C = 4̂ and we have 

(a) \C\ = M| è | ^ ( i 4 ) | è |^" i (C) | i f / = j f and 
(b) |C| = M| ^ | # » | ^ | ^ i ( * ) l if / = i f . Suppose M| > co. Then 

|C| = co and C C -4(cu). Hence there i s 5 £ F ^ such that re G g(£) = 5 . 
Then, since J f C i f , « = |C| ^ | 5 | è | ^ ( * ) | è | ^ i ( * ) | and also 

|^"i(OI = I U^i(x)\ <co= \C\. 

This proves (i). 
Let X > co, C G ^ V S x G C. There is 4 G ^ s u c h that C = g {A) C A (X) C 

5-x . Thus pjsr (X) ^ X and so x is a member of at most X sets B G ^~ and hence 
at most X sets g(B) G ^ S . It follows that |#~i(C)| ^ X2 = \C\ and hence 

r ^ G jr. 
Now suppose C G J S ^ . There is X > n such that C = g (A), A G ^~x . 

Since |C| > /x, it follows from the definition of g {A) that M(/x)| < M- There­
fore, by (4.2), 

|cnsi^| g M (M) I < M. 

Now let X > co, C G ^ V , C H S i < x ^ 0. There is A G ^~" such that 
C = g (-4) and K ^ X. Now C C A (X) and from the definition of g (A), either 

(a) g(A)r\A(n) = 0 for co g M < X or 
(b)g(A) C U*<,<x4(/x). 

Now (a) is false by (4.2) and the assumption that C P\ Si<x 9e 0. So (b) holds. 
But if x G A (p.) C\ Si, then pi(x) ^ M by the definition of A(IJL). Hence 
g(^4) C 5i<x . This proves (ii). 

Finally, suppose C G ^v**. Then C = g (A ) for some A G ^"> w and from 
the definition of g (A), we have C P\ 4 (co) = 0 . Therefore, by (4.2), pi(x) > co 
for all x G C. This proves t h a t ^ i - " and J ^ i ^ and strongly disjoint. 

5. Proof of Theorem 2. We shall prove the result by induction on 

M ( ^ ) = inf JM : 1*1 ^ M for all F G ^ } . 

By Lemma 3 (i) the theorem is true if M ( ^ ~ ) = to. Now assume that X > co 
and that 

(5.1) # " ' G Jf, M(^ r /) < X => Trans (^"') ^ 0. 

Let # " G Jf, M ( ^ ) = X. We have to prove that Trans ( J H 5* 0. Since 
f i C C ^ and Trans ( J S ) ^ 0 =» Trans (^") ^ 0, we may assume by 
Lemma 5 that J S G J ^ + (and that J S - " = 0, but we do not use this fact). 
We shall consider separately the three cases (1) X a successor cardinal, (2) X a 
regular limit cardinal, (3) X a singular limit cardinal. 

Case 1. X = fx+: Since Ĵ ~ G JT + , it follows from Lemma 4, that Ĵ ~x and 
c^"<x are strongly disjoint families (since cf (X) > co). Now ^~< x = J ^ has 
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a transversal by (5.1) and #~x has a transversal by Lemma 3 (ii). Hence 
<F = ^ <x \j JTx a i s o ^ a s a transversal. 

Case 2. Xa regular limit cardinal: By Lemma 4, since cf (X) > co, the families 
^~x and jF"<x are strongly disjoint. Now Ĵ ~x has a transversal by Lemma 3 (ii) 
and so is enough to show that J^~<x has a transversal. 

Let ,4 G J F < \ PutXo = A,Xn+1 = U {£ G ^ J H I n ^ 0} (w < «), 
-X" = Un<o»Xn. Then, by induction on n, we have \Xn\ < X (n < co) and hence 
\X\ < X. Hence the X-component of J^<x containing A, & (A) = 
(5 G ^"< x : B r\ X ?* 0), has cardinality < X. Since X is weakly inaccessible, 
it follows that n(& (A)) < X and hence & (A) has a transversal by (5.1). 
Since ^ " < x is the union of all its X-components which are pairwise strongly 
disjoint, it follows that Trans (#~<x) p* 0. 

Case 3. cf (X) = K < X: Let (\a : a ^ K) be a continuous increasing sequence 
of cardinals, 

K < X0 < Xi < . . . < XK = X = lim X«. 
a</c 

Denote by ^ a the set of all the large Xa-components of J^~, and let *$ = U « ^ ^ a . 
If ^ G ^ « , then | ^ | ^ Xa and we may write 

g?x« = {Gv :v < ${&)) 

where £{&) is some initial ordinal ^ Xa. For any ordinal /3 put 

^ / ^ _ / < ^ ^ < 0 > , if/3 ^ É ( ^ ) , 
^ W - j g ^ if0>£(g?). 

If ^ , ^ ' G <*?, ^ ^ ^ ' and 0, 0' are ordinals, then 

(5.2) ^ ( / 3 )H ^'(/3') = 0. 

For, there are a , a ' ^ such that ^ 6 <^a, ^' G ^ « ' . If a = ar then ^ and ^ ' 
are disjoint since a set F G ^~X« is a member of exactly one large Xa-component; 
if a 7e a then ^ X a and ^ / x « / are disjoint since members of these families have 
cardinalities Xa and Xa> respectively. 

For a ^ K put 

i^** = U U ^(AT) , J ^ * * =J^ < X « U ^ « * . 

I t is easy to see that 

(5.3) ^ a r = U ^ « * * 
a<ao 

if a0 is a limit ordinal. For, if A G J^"0 , then there is a large Xao-component 
^ ê ^ and y < «o so that 4 G ^(X7) and hence A G ^ 7 +i** . We also 
remark that (pu t J^+ i* =3r*) 

(5.4) |<5 G ^«+1* : A H S ^ 0) | ^ Xa (a ^ K, 4 G ^ ) . 

For, to each p ^ K there is at most one large Xp-component containing A, and 
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if \B\ = Xp and A, B are members of different large Ap-components then 
A H B = 0. T h u s |(B e ^a+i* \AC\B ^ 0 ) | ^ K • \a = \a. 

We are going to define functions <pa for a ^ K by transfinite induction so t h a t 
(i) (pa is a transversal of ^<**, and 

(ii) (pa is an extension of ipy for y < a. 
Then <pK will be a transversal of J^~ = #~K** as required. 

Let ao t* K- and assume tha t cpa has already been defined for a < a0 so t h a t 
(i) and (ii) hold. If a0 = 0, then ^"«o** = #~=xo has a transversal ^0 by (5.1). 
If ao is a limit ordinal, then <pao = \Jça is a transversal of ^"«o** of the required 
kind by (5.3) and (ii). I t only remains to define <pao in the case when a0 is a 
successor ordinal, say a0 = « + 1. 

Firs t we show t h a t 

(5.5) \A r\ range (*>a)| ^ \a (A £#~). 

We may assume A £ J ^ > ^ . Then | 4 H ^ x « | < X« and each element x £ A C\ 
S-Xa is a member of a t most Xa different sets 5 G ^ . Therefore, 

\(B G J ^ x « :A C\B yé 0 ) | ^ \ a . 

This and (5.4) proves (5.5). 
P u t 

Then #~a+i** is the disjoint union of #"«**, J ^ and J S . T h e members of J ^ 
all have cardinali ty Xa+i and so, by (5.5) and Lemma 3 (ii), there is a transversal 
\f/i of J S which is disjoint from <pa. We shall extend çd = <£>a U \f/i to a t rans­
versal of J ^ + i * * by selecting suitable elements from each set F £ ^~2. We 
do this component by component. 

Le t *e = {& „ : a < T}. Le t o- < r and suppose we have already defined a 

transversal %, say, of &,,* = UP<<r^P(Xa) — jF~a** U J S which is disjoint from 

<£</. If 

i G ^ ' = ^ , ( X a ) - (&* KJ^** W J S ) , 

then | 4 | > Xa+i. Therefore, | 4 C\ S=x«+1| < \a+1 and so 

\A H range ^ i | ^ Xa. 

Also, by (5.4) we have 

\A H range ( x ) | â Xa. 

These two inequalities together with (5.5) show t h a t 

(5.6) \A H range (<pa U ^ U x ) | < W i (^ 6 ^ ' ) -

Since | ^ ' | ^ Xa < \A\ (A £ ^ ' ) , i t follows from (5.6) and Corollary 1 t h a t &' 
has a transversal %' disjoint from ^ a U f i U %• I t follows, by transfinite 
induction on a < r, t h a t J S has a transversal ^ 2 disjoint from <pa W \pi. Then 

https://doi.org/10.4153/CJM-1974-089-8 Published online by Cambridge University Press

file:///AC/B
https://doi.org/10.4153/CJM-1974-089-8


958 E. C. MILNER AND S. SHELAH 

<Pa+i = ^« U ^i U ^2 is a transversal of J^~a+i** which extends <pa. This com­
pletes the proof of Theorem 2. 

6. Proof of Theorem 3. We assume the special case of this theorem (proved 
in [13; 2]): 

(6.1) if ^~' is a countable family of countable sets, then 

&T' ç. i f =» Trans (&*') A 0. 

Now let Ĵ ~ be an arbitrary family satisfying condition ££. By Lemma 5 
there i s ^ i C C ^ s u c h that J S ^ a n d #"i> w are strongly disjoint, J S - " £ i f 
and i ^ e Jf+. 

The co-components of <̂ ""i=w are countable and strongly disjoint and every 
such component has a transversal by (6.1).^{x* has a transversal by Theorem 
2. Therefore J S , and hence J^", has a transversal. 

7. A generalization. We shall now prove a generalization of Theorem 3 
using a different idea. A family Ĵ ~ has property SP if and only if the following 
three conditions are satisfied: 

SPX.^<- G i f ; 
^ 2 . |«^"x(*)l ^ \forx G S ( ^ " ) and X ^ co; 
^ 3 . / / X is inaccessible and x Ç 5 ( J r )> //^w {M < X : ^"(x) A 0 | /<> 
a non-stationary subset of X. 

It is clear that if ^ " £ «£?, then «^" Ç ^ (if X inaccessible, x £ 5 ( ^ ) and 
J ^ x ) ^ 0, then |{M < X : ^ ( x ) j* 0}| ^ K). It is also easy to verify that 

(7.1) tf^G 0> andg(F) C F, |g(/0| = |F | (F G ^ ) , / A c » 

^ i = <g(F) : F G &) G ^ . 

THEOREM 4. ^ G ^ =* Trans ( J O ^ 0. 

Proof of Theorem 4. For each infinite cardinal ju, the /-i-components of J ^ a r e 
pairwise strongly disjoint. Every such component has cardinality S v- and so, 
by Lemma 1, the M-sets of a /x-component can be replaced by subsets of power n 
which are pairwise disjoint. By (7.1) the family thus obtained still enjoys 
property ^ . So we may assume without loss of generality that 

(7.2) if X ^ co and A, B 6 &~\ A A B, then A Pi B = 0. 

As in the proof of Theorem 2, we shall prove the theorem by transfinite 
induction on M ( J O - If M ( J O = co, then J r 6 -if and Trans ( J O ^ 0 by 
Theorem 3. Suppose M ( J O = X > CO. 

Case 1. X = /c+: By (7.2) the members of J ^ having power K+ are pairwise 
disjoint. Therefore, if we replace every such set by a subset of power co, the 
resulting family J O , say, has p r o p e r t y ^ and M ( ^ ~ I ) = *. Thus Trans ( J O ) A 
0 by the induction hypothesis and hence Trans ( J O A 0. 
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Case 2. X = ^{^) is singular: Let cf (X) = K < X, and let (Xp : p ^ K) be 
a closed increasing sequence of ordinals 

K < Xo < . . . < X* = X = lim Xp. 

Form a new family J S . from Ĵ ~ by replacing each set A G Up^*^~Xp by a 
subset g(^4) C A of power /c. Any element x G 5 ( J r ) belongs to at most K 
new sets of power K and so J S £ ^ . We may as well assume that &~ = J S , i.e. 

(7.3) U i ^ X p = 0. 
p<K 

If A G J r-X p , let Ŝ p (̂ 4 ) be the unique Xp-component of J ^ which contains A ; 
if 4 £ J ^ p , let @P(A) = 0> t h e empty family. Then 

&M) C &M) forp < (7 ^ /c. 

Also, by (7.3), 

&a(A) = U 2^PG4) if a is a limit ordinal ^ K. 
p<a 

Put Sp(4) = S(@P(A))(P ^ K). Since | ^ p ( 4 ) | ^ Xp and | 5 | < Xp 

(B G ^ P ( -4) ) , it follows that |SPC4)| S Xp (p < /c). For J3 G ^~ - ^ P C4) we 
have that either (i) \B\ ^ Xp and B H 5P(4) = 0 or (ii) |£ | > Xp. Therefore, 
by (7.1), 

&*(A) = (B - 5P(^) : B G ^ i M ) - ^ P ( ^ ) ) G & 

for p < K. Now ^o(^4) has a transversal and so does &P*(A) (p < K) since 
/x(^p*(-4)) S Xp+i < X. Therefore, since the families &0(A), @*(A) (p < K) 
are pairwise strongly disjoint, the family 

&'(A) = &M) U U &>*(A) 
P<K 

has a transversal. This clearly implies that the X-component, &K(A), contain­
ing A also has a transversal. This holds for any A £ J^ and so Ĵ ~ has a trans­
versal since the X-components of &~ are strongly disjoint. 

Case 3. X is weakly inaccessible: Since the X-components of Ĵ ~ are strongly 
disjoint, we may assume that ^ has but a single X-component. Then | •^r\ ^ X 
and |S (^" ) | ^ X and so we can assume further that ^ is a family of subsets 
of X. (As usual, an ordinal is the set of all smaller ordinals.) Now by (7.2) 
the members of Ĵ ~ which have power X are pairwise disjoint and, if we replace 
these by subsets of power co, the resulting family still has property £P. Thus 
we can assume that 

(7.4) \A\<\ (A G^~). 

By &%, for each x G X there is a function fx : X —> X such that 

fx(a) Set (a < X), 
x£M\A\)<\A\ (Ae&r(x),\A\>x), 

(7.5) \{a < X : / , («) = 7}I < X (7 < X). 
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We now define a function g : X —» X by putting 

g (a) = sup (aU {y £ X : Q x < a) (3 4 e ^ O O X y G 4 and 

/ . ( | 4 | ) < « ) } ) . 

(If C is a set of ordinals then sup C is the smallest ordinal £ such that /3 > 7 
for all y G C.) We immediately have from the definition of g, (7.5) and ^ 2 , that 

(7.6) a S g (a) ^ g(0) < X for a < 0 < X. 

If a is a limit ordinal such that g(y) < a for all y < a, then g (a) = a. Put 

C = (0) U j a < \ : a a limit ordinal, g (a) = a}. 

Now C is a cofinal subset of X. For if y < X, put a0 = y, an+i = g(a» + 1) 
(w < co). Then y < a = \imn<œan and a G C. Therefore, we may write 

C = {0, :v < X}, 

where 0 = / 3 0 < ^ i < . . . < X = lim„<x/3>. and /?„ is a limit ordinal satisfying 
g(P,) = M * < M-

We will prove that, for 4̂ Ç ^~ there is v = v(A) < X such that 

(7.7) \Ar\[pv,pv+1)\ = \A\. 

Let x be the first element of A. If \A\ ^ x, then /a;(|^4|) g x and hence 
i C f e g ( ^ + 1))- Now there is v < X such that x 6 [#„, /3„+i). Then g(x + 1) 
^ /3„+i = g(@v+i) and (7.7) holds. Now suppose that \A\ > x. There is v < X 
such that ^(|-41) G [0*, /^+i). Hence, there is y such that 

x Ûfx(\A\) < y < / W 

Then ,4 C [x,g(y)). Since g(y) < £„+1 and P, £fx(\A\) < \A\, we again 
obtain (7.7). 

By (7.7) and (7.1) we can replace each set A £ ^ by the subset g {A) = 
A P\ [p„, pv+i) to obtain a family #"1 also with property ^ . For A Ç J ^ if 
^ ( 4 ) is the X-component of J S containing g (A), then ^(^4) is a family of 
subsets of [/3„(A), /3„(A)+i). Thus n(& (A)) < X and so & (A) has a transversal. 
Since different X-components of J^~i are strongly disjoint, it follows that J ^ i 
(and hence J^~) has a transversal. 
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