Now $\alpha^2 + \beta^2 + \gamma^2 = \Sigma^2 - 2 > 0$, so $8\Sigma^2 - 3 > 13 > 0$, so (since $\Sigma > 0$) $8\Sigma^2 + 8\sqrt{3}\Sigma - 3 > 0$, so $\Sigma > \sqrt{3}$.

The reader may wish to repeat the argument using $A \geq H$.

Finally, note the corollaries

$$\sin A \sin B \sin C < \frac{3\sqrt{3}}{8} \quad \text{and} \quad \cos A \cos B \cos C < \frac{1}{8}.$$

References

J. A. SCOTT

1 Shiptons Lane, Great Somerford, Chippenham SN15 5EJ

90.78 Watt quadrilaterals and the 2005 IMO

In [1], we defined a *Watt quadrilateral* as a quadrilateral with a pair of opposite sides of equal length. There, we proved a number of results concerning Watt quadrilaterals, several concerning circumcircles of various triangles.

The following problem was set (using slightly different notation) at the International Mathematical Olympiad of July 2005.

Problem

Let $ABCD$ be a convex Watt quadrilateral with BC and AD equal but not parallel. Consider two interior points, K_i in BC and J_i in DA, such that $BK_i = DJ_i$. Let AC and BD meet at U. Let AC and J_iK_i meet at V_i, and BD and J_iK_i meet at W_i. Show that the circumcircles of triangle UV_iW_i, as J_i and K_i vary, have a common point other than U.

Before proceeding, we remark that we have found it convenient, in our Maple code and elsewhere, to regard t as a parameter, and to have

$$\frac{|DJ_i|}{|DA|} = t = \frac{|BK_i|}{|BC|},$$

The J and K of [1] (e.g. Property 6) correspond to $t = \frac{1}{2}$ in J_i and K_i. See also Figure 1. Other notation we use from [1] includes:

- F and G denote the midpoints of AC and of BD respectively.
- Q' is defined as the point of intersection of the perpendicular bisectors of AC and BD.

The set of points $\{Q', F, U, G\}$ is concyclic, and UQ' is a diameter.
Various solutions of the IMO problem are now available on the web. The function of this note is to call attention to [1], some results of which readers might wish to use in constructing their own solutions to the IMO problem.

Here are various results:

• For any t, the point Q' is on the circumcircle of UV_iW_i. (There are many ways to organize the proofs. One algebraic approach involves using the fact that, if the cross ratio of four complex numbers is real, the four numbers are concyclic. To prove the result about Q', this is applied to the complex numbers, z_u, z_v, z_q', z_w, the notation being that of §4.1 of [1].)

• The point Q' is the second point of intersection of the circumcircles of AUD and of BUC. Triangles $AQ'D$ and $CQ'B$ are congruent.

• The circumcentres of the triangles UV_iW_i are collinear, and this line of circumcentres is the perpendicular bisector of UQ', the radical axis of circles $UV_iQ'W_i$ and circle $UFQ'G$.

• Q' is on the perpendicular bisector of J_iK_i.

• The midpoint of J_iK_i is on the line joining the midpoint F of AC to the midpoint G of BD.

• Let J be the midpoint of AD and K be the midpoint of BC. Then the midpoint of V_iW_i lies on the line JK.

It was reasonable for the IMO, for competition purposes, to specify $ABCD$ as a convex quadrilateral, and K_i and J_i interior points on BC and DA respectively. However the Watt quadrilateral is a linkage [1] and the problem property is more general. It persists even if $ABCD$ is not convex and/or J_i and K_i are not interior points. The reader is invited to explore these options, perhaps using approaches outlined in [1].
90.79 Two proofs of a Pythagorean-like theorem

In [1] there are several proofs of the following theorem: if C is a point on the base of isosceles $\triangle ABD$ such that $BA = BD = c$, $BC = a$, $AC = b$ and $DC = d$, then $c^2 = a^2 + bd$. (See Figure 1).

Figure 1

In [1] and republished in [2] $\angle ACB$ was obtuse, but [3] showed that the result also holds when $\angle ACB$ is acute. If the angle is a right angle, then the formula reduces to the Pythagorean theorem. Darvasi used Heron's formula to derive the result and Hoehn used the intersecting chords theorem, the law of cosines, Pythagoras theorem, and Stewart's theorem to provide his four proofs.

In this note we first prove the result by using Ptolemy's theorem. This theorem is stated in [4] as follows: in a cyclic quadrilateral, the product of the diagonals is equal to the sum of the products of the two pairs of opposite sides.

First proof

For this proof we construct lines through points B and C parallel to DA and DB, respectively, to form parallelogram $BECD$ (see Figures 2(i) and 2(ii)). Also draw EA. Using properties of isosceles $\triangle BDA$, parallel lines, and parallelogram $BECD$, we obtain $\angle EBA \cong \angle BAD \cong \angle BDA \cong \angle BEC \cong \angle ECA$ and $CE = DB = AB$. Therefore $\angle BEC \cong \angle EBA$ and $\triangle BAC \cong \triangle ECA$ by the SAS congruence theorem for triangles.