Note on the Polynomials which satisfy the Differential Equation

$$
x \frac{d^{2} y}{d x^{2}}+(\gamma-x) \frac{d y}{d x}-\alpha y=0
$$

By Neil M‘Arthur, M.A., B.Sc.
(Read and Received 16th January 1920).
§1. Laguerre has shown that if $\frac{1}{1-t} e^{\frac{x t}{1-t}}$ be expanded in ascending powers of t,

$$
\frac{1}{1-t} e^{\frac{x t}{1-t}}=\Sigma f_{n}(x) \frac{t^{n}}{n!},
$$

where $f_{i n}(x)$ is a polynomial of degree n, satisfying the differential equation

$$
\begin{equation*}
x \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}-n y=0 \tag{1}
\end{equation*}
$$

A result which differs only in the substitution of $-x$ for x is given by Abel.*

Equation (1) is a special case of the equation

$$
\begin{equation*}
x \frac{d^{2} y}{d x^{2}}+(\gamma-x) \frac{d y}{d x}-\alpha y=0 \tag{2}
\end{equation*}
$$

of which one solution is $y=F(\alpha, \gamma, x)$, where

$$
F(\alpha, \gamma, x)=1+\frac{a}{\gamma} x+\frac{\alpha(\alpha+1)}{\gamma(\gamma+1)} \frac{x^{2}}{2!}+\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)} \frac{x^{3}}{3!}+\ldots
$$

This solution reduces to a polynomial if α is a negative integer, and it will be shown that the theorem of Abel and Laguerre can be extended to this polynomial.

$$
\begin{equation*}
\text { §2. Let } y=\frac{1}{(1-t)^{p}} e^{\frac{t^{1-t}}{1-t}}, \tag{3}
\end{equation*}
$$

[^0]then
\[

$$
\begin{align*}
& \frac{\partial y}{\partial x}=\frac{t}{1-t} y, \frac{\partial^{2} y}{\partial x^{2}}=\frac{t}{(1-t)^{2}} y, \\
& \frac{\partial y}{\partial t}=\left[\frac{p}{(1-t)^{p+1}}+\frac{x}{(1-t)^{p+2}}\right] e^{\frac{x t}{1-t}} \\
&=\frac{p(1-t)+x}{(1-t)^{2}} y \ldots \ldots \ldots \ldots . . \tag{4}\\
& \therefore x \frac{\partial^{2} y}{\partial x^{2}}+(p+x) \frac{\partial y}{\partial x}-t \frac{\partial y}{\partial t}=0 .
\end{align*}
$$
\]

Hence if $f(n, p, x)$ be the coefficient of $\frac{t^{n}}{n!}$ in the expansion of y in ascending powers of t, namely

$$
\begin{equation*}
y=\Sigma f(n, p, x) \frac{t^{n}}{n!} \tag{5}
\end{equation*}
$$

then $f(n, p, x)$ satisfies the differential equation

$$
\begin{equation*}
x \frac{d^{2} f}{d x^{2}}+(p+x) \frac{d f}{d x}-n f=0 \tag{6}
\end{equation*}
$$

Comparing with equation (2) we have

$$
\begin{align*}
f(n, p, x) & =k F(-n, p,-x), \\
& =k\left[1+\frac{n}{p} x+\frac{n(n-1)}{p(p+1)} \frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{p(p+1) \ldots(p+n-1)}\right]^{*} \tag{7}
\end{align*}
$$

By actually expanding the two factors of y, as given by (3), we see that the coefficient of x^{n} in $f(n, p, x)$ must be unity. Hence

$$
\begin{equation*}
k=p(p+1) \ldots(p+n-1) \tag{8}
\end{equation*}
$$

§3. Recurrence Formulae.

From (3) and (5) we have

$$
\Sigma f(n, p, x) \frac{t^{n}}{n!}=(1-t) \Sigma f(n, p+1, x) \frac{t^{n}}{n!},
$$

whence we deduce

$$
\begin{equation*}
f(n, p, x)=f(n, p+1, x)-n f(n-1, p+1, x) . \tag{9}
\end{equation*}
$$

[^1]In like manner if

$$
\begin{align*}
f(n, 1, x)=f_{n}=n![1+n x & +\frac{n(n-1)}{1^{2} \cdot 2^{2}} x^{2} \\
& \left.+\frac{n(n-1)(n-2)}{1^{2} \cdot 2^{2} \cdot 3^{2}} x^{3}+\ldots \frac{x^{n}}{n!}\right] \tag{10}
\end{align*}
$$

then

$$
\begin{aligned}
\Sigma f(n, p+1, x) \frac{t^{n}}{n!} & =(1-t)^{-p} \Sigma f_{n} \frac{t^{n}}{n!}, \\
& =\left[1+p t+p(p+1) \frac{t^{2}}{2!}+\ldots\right] \Sigma f_{n} \frac{t^{n}}{n!} .
\end{aligned}
$$

whence

$$
\begin{equation*}
f(n, p+1, x)=f_{n}+n p f_{n-1}+\frac{n(n-1)}{1.2} p(p+1) f_{n-2}+\ldots \tag{11}
\end{equation*}
$$

A recurrence formula which affects n only can be obtained from (4),

$$
(1-t)^{2} \frac{\partial y}{\partial t}-[p(1-t)+x] y=0 .
$$

Differentiating this n times by the theorem of Leibniz and noting that

$$
\begin{equation*}
\left(\frac{\partial^{n} y}{\partial t^{n}}\right)_{t=0}=f(n, p, x), \text { by }(5), \tag{12}
\end{equation*}
$$

we find
$f(n+1, p, x)=(2 n+p+x) f(n, p, x)-n(n+p-1) f(n-1, p, x) \ldots$
§4. Laguerre* has shown that the polynomial $f_{n}(x)$ forms the denominator of the $n^{\text {th }}$ convergent to a continued fraction for the function

$$
e^{x} \int_{x}^{\infty} \frac{e^{-x}}{x} d x
$$

It can be proved that $f(n, p+1, x)$ is similarly related to

$$
x^{p} e^{x} \int_{x}^{\infty} \frac{e^{-x}}{x^{p+1}} d x
$$

and that the numerator of the convergent whose denominator is $f(n, p+1, x)$ also satisfies a linear differential equation of the second order. The continued fraction in question has been given

[^2]by Professor Nielsen.* His method, however, does not suggest the differential equations, so that the following outline seems worth giving. The method followed is a modified form of Laguerre's.
§5. Let
\[

$$
\begin{align*}
S & \equiv 1-\frac{p}{x}+\frac{p(p+1)}{x^{2}}-\frac{p(p+1)(p+2)}{x^{3}}+\ldots+\frac{p(p+1) \ldots(p+2 n-1)}{x^{2 n}}, \\
& =\frac{\phi}{f}+\frac{1}{x^{2 n}} \frac{k}{f} \quad \ldots \tag{13}
\end{align*}
$$
\]

where ϕ, f, R, are polynomials in x of degree $n, n,(n-1)$, respectively. That a unique expression of the latter form exists for S can be shown by the method of undetermined coefficients.
S satisfies the differential equation,

$$
\begin{equation*}
\frac{d S}{d x}-\frac{p+x}{x} S+\frac{a}{x^{2 n+1}}+1=0 \tag{14}
\end{equation*}
$$

where $a=p(p+1) \ldots(p+2 n)$.
Hence

$$
\begin{aligned}
& \frac{\phi^{\prime} f-\phi f^{\prime}}{f^{2}}-\frac{2 n}{x^{2 n+1}} \frac{R}{f}+\frac{1}{x^{2 n}} \frac{R^{\prime} f-R f^{\prime}}{f^{2}} \\
& -\frac{p+x}{x}\left(\frac{\phi}{f}+\frac{1}{x^{2 n}} \frac{R}{f}\right)+\frac{a}{x^{2 n+1}}+1=0
\end{aligned}
$$

When this identity is multiplied by $x f^{2}$, the part which is a polynomial in x must vanish. Taking, as we are entitled to do, the coefficient of x^{n} in f, and therefore in ϕ, as unity, we find in this way,

$$
\begin{equation*}
x\left(\phi^{\prime} f-\phi f^{\prime}\right)-(p+x) \phi f+x f^{2}+(a-b)=0, . . \tag{15}
\end{equation*}
$$

where b is the coefficient of x^{n-1} in R.
Writing (15) in the form

$$
\frac{\phi^{\prime} f-\phi f^{\prime}}{f^{2}}-\frac{p+x}{x} \frac{\phi}{f}=-\frac{a-b}{x f^{2}}-1
$$

we have a linear differential equation of the first order in $\frac{\phi}{f}$ whose solution, as given by the usual rule, is

$$
\begin{equation*}
\frac{e^{-x}}{x^{p}} \frac{\phi}{f}=\int_{x}^{\infty} \frac{e^{-x}}{x^{p}} d x+(a b) \int_{x}^{\infty} \frac{e^{-x}}{x^{p+1} f^{2}} d x \tag{16}
\end{equation*}
$$

[^3]$\frac{\phi}{f}$ will therefore be the $n^{\text {th }}$ convergent to a continued fraction for
$$
x^{y} e^{x} \int_{x}^{\infty} \frac{e^{-x}}{x^{p}} d x
$$
if we can prove that
\[

$$
\begin{equation*}
r_{n}=\operatorname{Lt}_{n \rightarrow \infty}(a-b) \int_{x}^{\infty} \frac{e^{-x}}{x^{p+1} f^{2}} d x=0 . \tag{17}
\end{equation*}
$$

\]

§6. The differential equations for f and ϕ.
The form of equation (15) shows that
(i) f has no repeated zero, since a common factor of f and f^{\prime} would be a factor of $(a-b)$.
(ii) ϕ and f have no common factor.

Differentiating (15) to get rid of the unknown term b, we have

$$
\begin{gathered}
x\left(\phi^{\prime \prime} f-\phi f^{\prime \prime}\right)+\left(\phi^{\prime} f-\phi f^{\prime}\right)-(p+x)\left(\phi^{\prime} f+\phi f^{\prime}\right) \\
-\phi f+2 x f f^{\prime}+f^{2}=0,
\end{gathered}
$$

or
$\left[x \phi^{\prime \prime}+(1-p-x) \phi^{\prime}-\phi+f+2 x f^{\prime}\right] f=\left[x f^{\prime \prime}+(1+p+x) f^{\prime}\right] \phi$.
By virtue of (i) and (ii) this identity can only be true if

$$
\begin{gathered}
x f^{\prime \prime}+(1+p+x) f^{\prime}=k f \\
x \phi^{\prime \prime}+(1-p-x) \phi^{\prime}-\phi+f+2 x f^{\prime}=k \phi
\end{gathered}
$$

where k is a constant. Since the coefficient of x^{n} in f and ϕ is unity, we obtain $k=n$.

Hence the differential equation for f is

$$
\begin{equation*}
x f^{\prime \prime}+(1+p+x) f^{\prime}-n f=0 \tag{18}
\end{equation*}
$$

whence $f=f(n, p+1, x)$, as defined by (7).
The differential equation for ϕ is then

$$
\begin{equation*}
x \phi^{\prime \prime}+(1-p-x) \phi^{\prime}-(n+1) \phi+f+2 x f^{\prime}=0 \tag{19}
\end{equation*}
$$

where f has the above value.

§ 7. Convergency.

To establish (17) we require the value of b. This is obtained by equating the coefficients of x^{n-1} in

$$
x^{2 n} . S \cdot f(n, p+1, x)=x^{2 n} \phi+R .
$$

We find, using (14),

$$
\begin{aligned}
a-b & =\frac{n!(p+n)!}{(p-1)!} \\
r_{n} & =\frac{n!(p+n)!}{(p-1)!} \int_{x}^{\infty} \frac{e^{-x}}{x^{p+1} f^{2}} d x .
\end{aligned}
$$

From (7) it is evident that f^{\prime} is positive for positive values of x, so that f is an increasing function of x for $x>0$.

Hence

$$
\begin{aligned}
0<r_{n} & <\frac{n!(p+n)!}{p!} \cdot \frac{1}{x^{p+1} f^{2}} \int_{x}^{\infty} e^{-x} d x, \\
& <\frac{n!(p+n)!}{p![(p+1) \ldots(p+n)]^{2}} \frac{e^{-x}}{x^{p+1}},
\end{aligned}
$$

where $f(x)$ has been replaced by $f(0)$.

$$
\text { i.e. } \begin{aligned}
0<r_{n} & <\frac{n!}{(p+1) \ldots(p+n)} \frac{e^{-x}}{x^{p+1}}, \\
& <\frac{p!}{(n+1) \ldots(n+p)} \frac{e^{-x}}{x^{p+1}} .
\end{aligned}
$$

and therefore $\underset{n \rightarrow \infty}{\operatorname{Lt}} r_{n}=0$.
§8. The recurrence formulae for f and ϕ.
We have seen, (12), that

$$
f_{n+1}=(2 n+p+1+x) f_{n}-n(n+p) f_{n-1},
$$

when $f_{n} \equiv f(n, p+1, x)$.
It can be shown that

$$
\phi_{n+1}=(2 n+p+1+x) \phi_{n}-n(n+p) \phi_{n-1} .
$$

As the proof is somewhat lengthy, in the form in which I have obtained it, it is not given here.

These relations enable us to form the continued fraction whose $n^{\text {th }}$ convergent is $\frac{\phi_{n}}{f_{n}}$. We find

$$
\int_{x}^{\infty} \frac{e^{-x}}{x^{p}} d x=\frac{e^{-x}}{x^{p}}\left[1-\frac{p}{x+p+1-x+p+3-} \frac{p+1}{x+p+5} \frac{2(p+2)}{x]} .\right.
$$

But

$$
\int_{x}^{\infty} \frac{e^{-x}}{x^{p}} d x=\frac{e^{-x}}{x^{p}}-p \int_{x}^{\infty} \frac{e^{-x}}{x^{p+1}} d x .
$$

Hence

$$
\int^{\infty} \frac{e^{-x}}{x^{x+1}} d x=\frac{e^{-x}}{x^{p}}\left[\frac{1}{x+p+1-x+p+3-} \frac{p+1}{x+p+5-\ldots}\right]
$$

which is Nielsen's result.
If the $n^{\text {th }}$ convergent to the second continued fraction be $\frac{g_{n-1}}{f_{n}}$, the differential equation for g_{n-1} is

$$
x \frac{d^{2} g}{d x^{2}}+(1-p-x) \frac{d g}{d x}-(n+1) g+2 f^{\prime}=0
$$

which is rather simpler than the corresponding equation for ϕ.

[^0]: * Laguerre, ©uvres, T. I., p. 436. Abel, ©

[^1]: * The result requires modification if p is a negative integer. In this case the second solution of (6) is required to express the coefficients for which $n>-p$.

[^2]: * Loc. Cit., p. 428.

[^3]: *Theorie des Integrallogarithmus. Leipzig (1906); p. 45,

