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ON A THEOREM OF BOVDI 

M, M. PARMENTER 

1. Introduction. If p is a prime, we call an element x ^ 1 of a group G 
a generalized ^-element if, for every n ^ 1, there exists r ^ 0 such that 
xpr G Gni where Gn is the nth term of the lower central series of G. Bovdi [1] 
proved that if G is a finitely generated group having a generalized ^-element, 
and if C\nA

n(Z(G) = 0 where A(Z(G)) is the augmentation ideal, then G 
is residually a finite ^-group. 

We recall that if R is a ring, then the nth dimension subgroup of G over 
R, denoted by Dn(R(G)), is defined to be {g | g - 1 G An(R(G))}. In this 
note, we show that if G is finitely generated, then C\nDn(Zp

A (G)) = 1 «=> 
DnA

n(ZP
A (G)) = 0 <=> G is residually a finite ^?-group. Here ZP

A is the ring 
of £-adic integers. As a preliminary result, we obtain the structure of Dn(R(G)) 
in terms of Dn(Z(G)), where R is a commutative ring with unity such that 
(R, + ) is torsion free. 
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2. Dimension subgroups. We first state a lemma which was proved by 
Sandling [7, Corollary 6.5]. 

LEMMA 1. If Ris a commutative ring with 1 containing Q, the field of rational 
numbers, then Dn{R(G)) = Dn(Q(G)). 

THEOREM 2. (cf. [7, Theorem 6.1]). Let R be a commutative ring with 1 such 
that (R, + ) is torsion free and let G be a group. Let ir = {q \ q is a prime natural 
number with qR = R}. Then Dn(R(G)) = ^(G mod Dn(Z{G))), the torsion 
ir-subgroup of G modulo Dn(Z(G)). 

Proof. If 7T consists of all primes, then Lemma 1 says that Dn(R(G)) = 
Dn(Q(G)) and it is well known [2] that Dn(Q(G)) = T(G mod Dn(Z(G))), 
the torsion subgroup of G modulo Dn(Z(G)). Therefore, we assume that there 
is a prime not in w. 

Let x£ Tr (Gmod Z>n(Z(G))). Then xq - 1 £ An(Z(G)) for some 7r-num-
ber q. Hence q(x - 1) + . . . + (x - l)q 6 An(Z(G)) Q Aw(i^(G)), since 
(R, + ) is torsion free. Since q is invertible in R, we get x —• 1 G An(R(G)), 
hence x G Dn(R(G)). 
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Now assume that x G Dn(R(G)), i.e., that x - 1 G An(R(G)). We recall 
that a map f:G—> Q/Z is called a Z-polynomial map of degree ^n — 1 [5] 
if the Z-linear extension of / to Z(G) vanishes on AW(Z(G)). We will also 
denote this extension by / . Now let S^R be the ring of fractions constructed 
from R using the multiplicative system 5 = {x\x is not a zero-divisor in R}. 

We note that since (R, + ) is torsion free, we have a copy of Z in S. Form 
the i2-module S^R/R and define a: Q -^S^R/R by a(q) = q + R. This 
makes sense since we have a copy of 0 in S^R. Then Kera = {q\q G R} = 
{a/6 | 6 is a 7r-number}, where a/6 is considered in lowest terms. Hence, 
Z C Ker a, and we have a Z-homomorphism â: O/Z —» S~XR/R with 
Kerâ = {a/6 + Z|6 is a 7r-number}. 

Now l e t / : G —> 0 / Z be any polynomial map of degree ^ ^ — 1 and let 
y = 5><(*<i - 1) . . . (xin - 1) G An(R(G)). Thinking of a o / extended 
i^-linearly, we see that (a o / )y = 0, since â is a group homomorphism and 
/ vanishes on An(Z(G)). Hence, 5 o / vanishes on An(R(G)) and, in parti­
cular, / (# — 1) G Kerâ and has denominator a 7r-number. 

Now, I claim that there exists a 7r-number k± with &i(x — 1) G AW(Z(G)). 
Assume that this is not true, and consider the subgroup (x — 1 + AW(Z(G))) 
of the abelian group A(Z(G))/AW(Z(G)). Since O/Z contains elements of all 
orders, we could then construct a homomorphism p: (x — 1 + An(Z(G))) 
—*Q/Z with p(x — 1 + An(Z(G))) having denominator not a 7r-number (here we 
use the fact that not all primes are in w). Since Q/Z is divisible, we can extend 
p to p: A(Z(G))/AB(Z(G) -> Q/Z. Now define / : G -> Q/Z by /(g) = 
p(g ~" 1 + AW(Z(G))). It is clear that / is a Z-polynomial map of degree 
^ n — 1 with f(x — 1) = f{x) having denominator not a 7r-number. This con­
tradicts the conclusion of the previous paragraph. 

Hence, there exists a 7r-number k± with k\{x — 1) G An(Z(G)). When 
n = 1, the theorem holds trivially since Di{Z{G)) = G, so assume that 
n > 1. In that case, we have 

a** - 1 = ^ ( x _ ! ) + . . . + ( * _ i)*i g A2(Z(G)). 

If n = 2, the theorem is proved. If not, repeat the argument with xkl, which 
is in Dn(RiG)), and obtain a 7r-number k2 with ^ 2 ( ^ 1 — 1) G AW(Z(G)). 

Therefore, x*** - 1 = feat**1 - 1) + . . . + (**i - l)*2 G Amin<4-n>(Z(G)). 
Continuing this argument, we obtain a j-number / = k\k2 . . . kt with 
xl - 1 G AW(Z(G)). Hence * G 7;(G mod Dn(Z(G))) as required. 

In the case where R is the ring of £-adic integers, we obtain the following: 

COROLLARY. Let K = {p\p is prime, xv G Dn(Z(G)) for some x G G — 
Dn{Z{G))}. Then r W ? n ( Z / ( G ) ) = 2>„(Z(G)). 

As far as the corresponding problem for powers of the augmentation ideal 
is concerned, we have the following: 

PROPOSITION 3. Let x G A(Z(G)) satisfy x G An(Zp
A(G)) for all p. Then 

x G An(Z(G)). 
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Proof. Le t wp be the natural map : Q/Z -^QP
A/ZP

A, where QP
A is the field 

of ^-adic numbers. L e t / : G —> Q / Z be any polynomial map of degree ^n—l. 
Then (TTP of)(x) = 0 for all p as before, since x 6 An(Zp

A(G) for all p. As 
before, we are thinking of irp of extended ZP

A-linearly. However, Ker wp = 
{a/b + Z\b is not divisible by p) and fix) 6 Ker ^ for all p. Hence, 

fix) = 0 in Q/Z. This says, as in the proof of Theorem 2, t ha t x G A n (Z(G)) , 
since if x g AW(Z(G)), then there exists p: A Z ( G ) ) / A W ( Z ( G ) ) - * Q / Z with 
p(x + AW(Z(G))) ^ 0. This follows from the divisibility of Q/Z. However, 
if we de f ine / : G —>Q/Z by fig) = p(g — 1 + AW(Z(G))), we obtain a poly­
nomial map w i t h / ( x ) ^ 0, which is a contradiction. Hence x Ç AW(Z(G)). 

T h e last section of this proof is essentially in [6]. 

Note. When G/Gn is torsion of finite exponent e, it is not difficult to see 
t ha t if x 6 A(Z(G)) satisfies x Ç A W (Z / (G) ) for all £|e, then x £ AW(Z(G)). 

3. M a i n t h e o r e m . We require some preliminary lemmas. 

LEMMA 4 [7]. Let G be finitely generated, nilpotent and ir-torsion free, where 
7T is a collection of primes, and where not every prime is in ir. Let w' be the set 
of primes not in ir, Then G is residually a finite -K' -group. 

L E M M A 5 [3]. Let G be a nilpotent p-group of finite exponent. Let R be a com­
mutative ring with 1 satisfying C\np

nR = 0. Then f \A w ( i ? (G) ) = 0. 

LEMMA 6. Let G be residually a nilpotent p-group of finite exponent and let R 
be as in Lemma 5. Then r\nA

niRiG)) = 0. 

Proof. This is essentially found in [4]. Let x £ r \ A w ( i ? ( G ) ) . Say x = 5 ^ a ^ 
with gi = 1. Since the class of nilpotent ^-groups of finite exponent is closed 
under subgroups and direct products, we can find H <d G such tha t G/H is 
a nilpotent ^?-group of finite exponent and such t ha t gigf1 is not in H for 
all i ?*j. By projecting to RiG/H), we see t ha t x £ HnA

niRiG/H)) = 0, 
by Lemma 5. However, by the choice of H, this implies t ha t x = 0. Hence, 
nnA

n(R(G)) = 0 as required. 

T H E O R E M 7. Let G be finitely generated. Then the following conditions are 
equivalent: 

(i) n . „ A » ( Z / ( G ) ) = 0 ; 
(ii) f V D „ ( Z / ( G ) ) = 1; 

(iii) G is residually a finite p-group. 

Proof, (i) => (ii) is immediate. Now we assume (ii) and prove (iii). By 
Theorem 2, DniZp

AiG)) = Tw ( G m o d D n ( Z ( G ) ) ) , where T = \q\q is prime, 
q 9* p\. Hence, G / Z \ ( Z / ( G ) ) is 7r-torsion free. By Lemma 4, G / A z ( Z / ( G ) ) 
is residually a finite ^-group. Since C\nDniZp

A (G)) = 1, G is residually a 
finite ^-group. Hence, (ii) => (iii). 

(iii) => (i) is a special case of Lemma 6. This completes the proof. 
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We also observe the following: 

PROPOSITION 8. Let G have a generalized p-element. Then 

r \A»(Z(G)) = 0 « * n n A » ( Z / ( G ) ) = 0. 

Proof. It has been shown by Mital [4] that if G has a generalized ^-element, 
then r\nA

n(Z(G)) = 0 =» G is residually a nilpotent ^-group of finite ex­
ponent. By Lemma 6, C\nA

n(fLv
h {G)) = 0. The other direction is trivial. 

4. Lie dimension subgroups. In [7], Sandling introduced the concept of 
lie dimension subgroups of G. Given a, b £ R(G), define (a, b) = ab — ba. 
Given subsets .4, £ of R(G), define (4 , 5 ) = {(a, b) \ a G A, b Ç 5 } . Then 
the lie powers A(n) of the augmentation ideal A(R(G)) are defined inductively: 

(i) A<« = A 
(ii) AW = (A*"-», A)U(G). 
Define the wth lie dimension subgroup DM (R (G) ) to be {g\g — 1£ A(w) (i? (G) )}. 

Then it is proved in [7] that {D(n)(R(G))\ form a descending central series and 
that Gn g D(n)(R(G)) ^ Dn(R(G)). Using similar arguments to those used in 
the proofs of Theorem 2 and Proposition 3, and using some results of [7], 
we can obtain: 

THEOREM 2'. Let R be a commutative ring with 1 such that (R, + ) is torsion-
free and let IT = {q\q is prime and qR = R}. Then D(n)(R(G)) = G2 r\ TT (G 
mod DM(Z(G))), for n ^ 2. 

PROPOSITION 3'. Let x 6 A(Z(G)) safcs/y x 6 A<n>(Z/(G)) > r a// p. Z t o 
x G AW(Z(G)). 
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