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Abstract. The Julia set B for an N'th degree polynomial T and its equilibrium
electrostatic measure /x are considered. The unique balanced measure on B is
shown to be ix. Integral properties of /J. and of the monic polynomials orthogonal
with respect to /J., Pn, n = 0 ,1 ,2 , . . . , are derived. Formulae relating orthogonal
polynomials of the second kind of different degrees are displayed. The measure ju
is recovered both in the limit from the zeros and from the poles of the [N" — 1/Nn]
Pade approximant to the moment generating function to /A. For infinitely many
polynomials of each degree N the zeros and poles all lie on an increasing sequence
of trees of analytic arcs contained in B. The properties of these Pade approximant
sequences support conjectures of George Baker which have not previously been
tested on measures supported on sets nearly as complicated as Julia sets spread out
in the complex plane.

0. Introduction
This paper centres on the Julia set B for a complex polynomial of degree N > 2,

T ( z ) = z N + k 1 z " - 1 + --- + kN

(see [12], [15], [18], [19]). Let

T°(z) = z, Tn{z) = T°T"-\z),

n = 1,2,.... B is the set of points where {T"(z)}^=0 is not normal. B is compact
and perfect. T-1(B) = B. B may be connected, disconnected, or totally disconnected.
Except in special cases no lines are tangent to B.

Associated with B are: the electrostatic measure n on B with n-(B) = 1, [8], [12];
the monic n'th degree polynomials Pn(z), n = 0 ,1 ,2 , . . . , which are orthogonal
under the Hermitian inner product

</,*> = f(z)g(z).
J B

the polynomials of the second kind,

P(
n
1)(z)=\ Pn+l{z)~P"+liw) d»(w);

JB Z-W
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and the Pade approximants (see [1]) for the moment generating function

f d^M
JB z-w

We will derive properties of the above functions. For a subclass of polynomials T
with real coefficients, we relate subsequences of the orthogonal polynomials and
Pade approximants to the geometry of the Julia set B and associated trees of
analytic arcs. In particular, we give examples of Pade approximants supporting
conjectures of George Baker and others ([1]). We derive properties of fi in § 1 and
of polynomials i*,1^., in § 2. In §§3 and 4, we generalize [4], [6] relating the
geometry of some Julia sets to orthogonal polynomials and Pade approximants. In
contrast to §§ 1-4 dealing with iV'th degree polynomials, we include in an appendix
a result we have only proved so far for N = 2. When the Julia set B is real, we
calculate upper and lower bounds on norms of Pn.

The study of orthogonal polynomials on Julia sets is of interest for a variety of
reasons. Overall, this area of research involves and relates a wide range of mathemati-
cal topics including analytic function theory, ergodic theory, orthogonal polynomials
and spectra of operators, [7], moment theory, and iterated maps and dynamical
systems. It is also related to models in mathematical physics including models for
chaotic phenomena and turbulence in deterministic systems [13], model Schrodinger
equations for crystal structures involving almost-periodic potentials [9], and Ising
model lattice gases [3].

Some related results concerning the calculation of moments and Pade
approximants are described in [10] and [11], using the Bottcher equation as the
basic mechanism. Such an approach does not apply to arbitrary rational functions,
whereas the one given in the present paper does, [2].

1. Properties of the measure fi
The first part of this section is a uniqueness theorem for the balanced measures
introduced in [5]. Next we derive a consequence of /* being balanced which we call
quick mixing. We use quick mixing to obtain general integral formulae. We shall
often use a shorthand notation for integrals involving fi:

= [ f(z)dfi(z).
JB

For example, </, g) = /(/£).
The following definition and theorem 1 give an alternative description of the

electrostatic equilibrium measure n discussed by Brolin [12].
A probability measure o- on B is a balanced measure for T if

for each Borel subset S of C and each branch TJ1, j= 1, 2 , . . . , N of T.

THEOREM 1. There is a unique balanced measure for T on B. It is the electrostatic
equilibrium measure fj..
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Proof. Let a be a balanced measure for T on B. In order to apply a result of Brolin,
we cover B with a grid of arbitrarily small square regions Q such that fi(dQ) = 0
for each square region Q. It is sufficient to show fi(Q) == o-(Q) for an arbitrary grid
square. Let / be the characteristic function for such a Q. Since o- is balanced we
have, [5],

<r(Q) = I f(z)d<r(z)= I -J- I / (T^z ) ) <**(*)•
J B J B J> / = I

Iterating we obtain

<r(Q) = f ^ X /(77"(z)) dtr(z), (1)

where T;
 m, / = 1, 2 , . . . , Nm are the branches of the inverse of Tm. Brolin ([12,

proof of theorem 17.1]) showed that

_LNm f
Nm ,=i ' JB

uniformly for z e B as m -» oo. Hence we can let m -* oo in (1) to finish the proof:

/(H>)

B

Demko [14] has proved recently the existence of balanced measures in a very general
setting.

Brolin [12] proved that T is mixing on B with respect to fi. We show now that
H and T satisfy a related property which we call quick mixing, indicated by the
following theorem.

THEOREM 2. If fe lJ(B, /i) and Q is a polynomial of degree less than N", then

[ f
B JB

In shorthand notation,

= f f(z)dfi(z) f Q(z)dfL(z). (2)
JB JB

Proo/. Using the balanced property of ju. we showed [5] that

f z'/(T(z))d/*(z)=!f [ f(z)d^z), (3)
J B JV J B

where the symmetric function S, = — /fey~Z/=i k/Sj, / = 1, 2 , . . . , N — 1, with fc;- the
coefficient of zN~' in T. We can also allow / = 0 in (3) setting S0 = N. Here as
elsewhere, we use the notation T" for the n'th iterate of T; however, when we wish
to denote a power of a function, we shall always use a parenthesis - for example
(T2)3 means the second iterate of T raised to the third power.

The set 9 of polynomials of the form

i-o
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contains a polynomial of each degree 0 , l , . . . , iV" — 1 so Q lies in the span of 9".
It is sufficient to assume O e # . We may use (3) repeatedly to complete the proof:

•
>=0

Theorem 2 simplifies a variety of integral calculations as the following theorem
illustrates.

THEOREM 3. IffeL\B,tx) then

| Pl(z)f(T"(z))dn(z) = O
J B

where I < Nn+1, JV" does not divide I, and Pi is an orthogonal polynomial defined in
the introduction.

Proof. We can expand

^ D / T^n \
/ — 2 *• m \ 1 J I ' m ,

m=0

where 7rm is some polynomial of degree <N". Using quick mixing, we find
[l/N"]

I((P,)(/oT"))= I I(Pmf)I(TTm). (4)
m=0

We can let / = Pt, j = 0,1, 2 , . . . , [//AT] in (4) so ([5]) / ° T" = PjN-. We can use
the orthogonality of PjN" and Pt to obtain

so I(vj) = 0, / = 0 ,1 ,2 , . . . , [//AT]. On substitution into (4), the theorem follows.
D

Theorem 3 allows an easy proof of theorem 4.

THEOREM 4. Let m ̂  n. Then

JB
1 = 0 (5)

and also

0 = (Re (PN»), Re (PN-»)) = (Re (PN»), Im (PN-))

7/ T has real coefficients, then

<RedV),Im(JV)> = 0.

Proo/. Take «> m and (5) is a special case of theorem 3 with f(z) = z. The next
line of orthogonality relations follows using the facts that both the inner products
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of PN" with PN"' and of PN" with PN™ are 0. Finally, if the coefficients of T are real
then S, IX, and P, are symmetric across the real axis and

0 = Im (/(|P,2)) = (Re (P,),Im (P;)>. D

Remark. In the special case T(z) = zN, /A is a uniform measure on the unit circle
and all the integrals reduce to classical orthogonality relations for

Re(/V(ew))=cos(JV"0) and Im (PN™(e'e)) = sin (Nmd).

The theorem gives us a broad class of generalizations.

2. Orthogonal polynomials of the second kind and Pdde approximants
We prove a recursion relation for P(mN-i and P(m-i and a corresponding relation
for Pade approximants to G(z) about oo. The Pade approximant denoted by [m/n]
has numerator polynomial P of degree at most m and denominator polynomial Q
of degree at most n, where these satisfy

P(z)-G(z)Q(z) = +1

THEOREM 5.

mN-l j y m-1

1 Z"""1 \
= —n\ I! T'(T>(z))P(Ji)-1(r"(z)) (8)

N" \/=o /

COROLLARY. Pade approximants to JBd/i(w)/(z— w) satisfy

0 (9)

and

[mN" - l/mJV](z) = —-1 —^—1 [ m - l/m](T"(z)). (10)

Proof. We can rewrite

l) / ^ f fmN(z)-PmN

Pm(T(z))-Pm(T(>v))
Z— H>

since Pn(T(z)) = PwN(z) ([5]). Using the balanced property of /x yields

But
N ! r ( z )

and (7) follows directly, and (8), by induction.
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When the Julia set lies on the real line, the corollary is a consequence of the
theorem and the fact that the [n-l/n] Pade approximant can be written as, [1],

With some further analysis the formalism used when the Julia set is real can be
adapted for when B is in the complex plane. The coefficients in Pade approximants
to G are obtained from linear equations involving the moments J w" d/j.(z), n =
0 ,1 ,2 , . . . . The reduction formula (3) allows us to calculate each moment, and
they all are polynomials in the coefficients of 7! Consequently, the coefficients in
the Pade approximants are all rational functions of the coefficients of T. For each
degree N there is an open set in RN of coefficient vectors (ki,k2,...,kN) such
that the Julia set for T is a generalized Cantor set in U, see theorem 6. On this
open set in real parameter space, the corollary holds, saying that the rational
functions on both sides of (9) and (10) are equal. Hence, they agree for any complex
values of (kt, k2,..., kN). •

Remark. Note that non-trivial situations where infinite subsequences of Pade
approximants can be calculated and analyzed in detail are rare. We now have
concrete examples of Pade approximants associated with totally singular measures
supported not only on subsets of lines and circles, but also on complicated sets in
the plane.

3. Geometry of B when T has real coefficients and real critical points
In this section we lead up to a discussion of trees of analytic arcs associated with
some connected Julia sets. The trees are contained in B for some T. First we collect
some basic possibilities in:

THEOREM 6. Let B denote the Julia set for

where kltk2,... ,kN are real, and T has a largest real fixed point a = T(a). If N is
odd let b be the smallest real fixed point. IfN is even let b be the smallest real pre-image
of a. Then a and b are the largest and smallest real points on B.

Suppose that all the roots zs of T are real. We distinguish three cases:
(1) T{Zj) € [b, a] for j = 1,2,.. . , N-1. Then B is connected. Let Io = [b, a],

Ik = T-\lk^),k = l,2,...,
CO

K = U h-

Then Ik is a finite tree of analytic arcs and Be K c BKJ {bounded components of the
complement of B}.

(2) T(Zj) & [b, a] for some j . Then B is not connected.
(3) T(Zj) £ [b, a] for j = 1, 2 , . . . , AT-1. Then B <= [b, a] and is totally discon-

nected.
Proof. Clearly if x> a, limn_oo T"(x) = oo. Since f'{a)a 1, the fixed point a lies on
B, [12]. A similar argument holds when x < b.
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(1) Suppose T(Zj)e[b,a], j = 1,2,. . . , N —1. By this assumption all branch
points of T"1 lie on [b, a] = /0, so T~l(I0) = 7i will be a tree of analytic arcs. Because
the endpoints of /0 are fixed points in Jo or the pre-image of a fixed point in Io,
/i => /0. Hence if we define inductively

we find that It is a tree of analytic arcs containing /,_!. Now let

a-b( 1\ a + b
H ( ) ( + ) +

which maps D0 = {z:\z\>l} conformally onto the complement of 70. Because of
the location of the branch points of T"1 on / o

c /y we may define inductively
one-to-one analytic functions Ht on Do, / = 1, 2 , . . . , by

where Hj(z) = ((a - b)/4)N~'z + O(l) at oo, and the image of H, is the complement
of Ij.

From the normalization at oo and the monotonicity of the images, Hk converges
to a one-to-one analytic function, call it H, on Do. As discussed by Fatou [15], the
boundary of H(D0) is B. From the monotonicity we obtain

oo

K = U I)•c B u {bounded components of the complement of B}.

That B c K follows since K is closed and contains the pre-images of all orders of a
(see [12]).

In (2) and (3) some or all of the branch points of T"1 are attracted to oo so the
conclusions about disconnectedness follow from [12]. Finally we note that in case
(3) T\[b, a])a [b, a]soBc[b, a]. O

We now show that there are infinitely many cases when B is the closure of the
union of the trees Ij.

THEOREM 7. Let 9~ be the set of all monk N'th degree polynomials T with real
coefficients such that ifT'(z) = 0 then zeBnU. There are infinitely many polynomials
in 3~ whose coefficients are all arbitrarily close to those of the Chebychev polynomials
of degree N on [-2, 2]. If T&ST, then the complement of B is connected, and B = K
where K is described in theorem 6.

Remark. We see that B has a very special structure when T e 3~, but this restriction
on T is satisfied in many cases of interest. Real iterated maps of an interval have
received much study. The hypothesis of real coefficients for T allows us to restrict
attention to the real line, if we desire, and the condition on the critical points of T
ensures that T maps the interval [b, a] into itself. Grebogi, Ott, and Yorke [16]
have studied the mixing properties of a quadratic T&2T. Jakobson [17] has also
considered the case N = 2 and his work shows that if T(z) = (z-A)2 then T is in
?f for a set of A values of positive measure.
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Proof of theorem 7. Let

where C is the N'th degree Chebychev polynomial on [-2, 2]. We shall show that
there are values of d > 1 arbitrarily close to 1 such that Td e 3~. Let p0 be a fixed
point of Td other than ±a. For d close enough to 1, p0 is repulsive and therefore
in B. There is a branch R of TJ1 with a as a fixed point such that the points
pk = i?(pk_!), k = 1, 2 , . . . , converge to a as k-*<x>. All the points ±pk lie on B and
are continuous functions of d and have magnitude <a for d a 1. The magnitude of
the local maxima and minima of Td are all equal and increase to a continuously as
d-» 1+, so they pass through an infinite number of the points pn in the process.
When the local maxima or minima equal Pn, Tde ST.

Next we show that for TeST there can be no bounded component D of the
complement of B, so the complement of B consists of the one component containing
oo. If D exists, Sullivan [21] has shown that there exist j , k> 0 such that

T'+k{D) = T'(D).

T'(D) must then either (i) contain a branch point for T, or (ii) be a rotation domain.
For Te ST all branch points lie in B, so (i) is impossible. Possibility (ii) is excluded
because all iterates of the branch points lie on the real line.

Theorem 6 and the non-existence of a bounded domain D allow us to draw the
final conclusion in theorem 7, that K = B. •

A simple consequence of theorem 7 together with Mergelyan's Theorem [20], is
that for T in ST, the set of orthogonal polynomials {Pn} is dense in the continuous
functions on B. Hence, the orthogonal polynomials are also dense in L2(B, n).

4. Pade approximants and orthogonal polynomials in relation to the geometry of B
We start with several properties of orthogonal polynomials PN" and end with a
description of the asymptotic distribution of zeros and poles for a sequence of Pade
approximants to the moment generating function for /A.

THEOREM 8. IfTis an even or odd polynomial, then PN« attains its maximum modulus
on B on a set containing at least N" +1 points, « = 0,1, 2 , . . . .

Proof. Let Mn be the set of points at which PN» attains its maximum modulus,
n = 0 , 1 , 2 , . . . . If T is even or odd, then B is symmetric about 0, and Pl{z) = z.
Mi will at least contain two opposite points, so the theorem is true for P^.

Suppose the theorem is true for PN»-> so Mn-i has at least Nn~1 + 1 points.

so

Mn contains at least N(Nn~1 + l) points counting multiplicity and at least

not counting multiplicity, so the proof by induction is complete. •

https://doi.org/10.1017/S0143385700002108 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002108


Geometry, electrostatic measure and orthogonal polynomials 517

Remark. The conclusion of theorem 8 is necessary for PN" to be a Chebychev
polynomial, but not sufficient. It follows from [6] that when T(z) = z 2 - A, P2

N(z)
is a Chebychev polynomial on B, (namely, the unique polynomial of degree 2N and
leading coefficient one, with minimum supremum norm over B). This proof can
easily be generalized to the case where T(z) = zN — A, or even where T is a
composition of such functions with differing values of N and A.

Remark. If no multiple points occur in the first n steps, we see that Mn contains
2N" points or more. No multiple points will occur if T'(z) is not a point of B with
maximum modulus for any root z of T" and for / = 1, 2 , . . . n. On the other extreme,
our lower bound Nn +1 for points in Mn is sharp if T is the JV'th degree Chebychev
polynomial for the interval [-2,2].

We note one further special property of PN».

THEOREM 9. PN« is a Faber polynomial for the function F which solves the Bottcher
functional equation at <x>:

(F{z))N=F(T(z)) withF(z) = z + O(l) at oo.

Proof. Immediate from theorem 4 of [5]:

( ( l / N " O(z-2N")). •

Remark. If B is connected, F is a conformal mapping between the regions containing
oo bounded by B and by the unit circle respectively. See [15] and [8] for more on
the Bottcher equation.

We now collect results on Pade approximants and B.

THEOREM 10. Suppose T(z) = zN + klz
N~1 + - • -kN has real coefficients, T'(z) has

all real roots, and the Julia set B for Tis connected. Let G(z) be the moment generating
function for the equilibrium measure /x on B,

G(z)
J B

The [Nn - 1/Nn] Pade approximant to G{z) about oo is

1 n"-o nr'(z)) = 1 9
JV" Tn(z)- • •" ' n

f dfi(w)
)B Z-W '

With the notation of theorems 6 and 7, the zeros of the above numerator are the
points on /„_, where /„ branches. The zeros of the denominator also lie on In. The
residues of the quotient are proportional to the orders of the roots of the denominator.
If T{z)¥= zN, the normalized counting measures for the roots of the denominator
converge weakly to /x as n -» oo. Similarly for the zeros of the numerator. When Te J
the zeros and poles all lie on B.

Proof. The equation for the Pade approximants comes from theorem 5 and its
corollary. The location of the roots and poles follows from the construction of the
In's in the proof of theorem 6. The form of the residues is that of any logarithmic
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derivative. The statements about the measure follow from Brolin's ([12]) construc-
tions of fi. •

Remark. Although Baker [1] has hypotheses about pole control for infinite sequences
of Pade approximants to integrals over general sets in the complex plane, there is
a dearth of theorems and even examples where the integral is not over a subset of
a line or a circle. Theorem 10 supplies detailed information about zeros and poles
for a wide class of examples.

Appendix
We specialize T in this appendix to be T(z) = (z — A)2, A > 2, and we obtain upper
and lower bounds on norms of the orthogonal polynomials. Let

\\Pn\\=(Pn,Pn?, \\Pn\\oo,B = SUPx£B \Pn(Z)\.

THEOREM. Let T(z) = (z-\)2, A>2. Then

f l ) " n = l , 2 , . . . ; (1)

5 = 0 1 2 ' " 2 " ( 2 )

where C = | + V A + | = c2-A.

Proo/. We use results from [4]:

B is real, its largest and smallest points are

A-c and A + c ; A - c > 0 . (3)

P2m(z) = Pm(T(z)). (4)

Pm+l(z) = (z-\)Pm(z)-a2
mPm-l(z), m = 0 , l , 2 , . . . , (5)

where
\-a\m+x-a\m = 0 m= 0 ,1 ,2 , . . . (6)

(7)

(8)

am = a2
2m

From these we can derive [6]

From (7) and (8)

Hence, since at =

\>ah-
we obtain

<

1,

2
" 2 m - l

! > A -

ah
z2"->

2

1,

1

n

i

1

= 0,

1

\ - l

~ -(»-!)• W

In (5) if we take inner products with Pm-X and use orthogonality we obtain

\\Pm\\2 = a2
m\\Pm-A2,

so we may prove (1) using the invariance of T, (4), and (9).
II D II II D ti 1

119 -* 2 I! -* 1 il
" • f > 2 " " 1 " = ~ ~ n ^ = n2 =~^n

a2" a2- a2"

https://doi.org/10.1017/S0143385700002108 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002108


Geometry, electrostatic measure and orthogonal polynomials 519

We need only prove the second inequality in (2). We do so by induction. For n =0
we have from (4) and (3),

ll^lkfl = \\Pl\UB = ||Z~ A||cc,B = C.
Now suppose the theorem is true for n = k — 1. If s is even the theorem is true for
2k + s using the reduction in (4). If s is odd, use (5) with m = 2k + s, let 2; +1 = m,
and use (4), the induction hypothesis, and (8) to obtain the last result required,

1
(Pj+1(T{z)) + ali+1Pj{T(z)))

~~ A oo,B

l+A/i+Ay-1

•
Remark. The combination of the bounds in the theorem tells us that
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