J. Austral. Math. Soc. (Series A) 65 (1998), 284-288

A NOTE ON SPECIAL INVOLUTIONS

W. D. MUNN

(Received 19 December 1997; revised 7 June 1998)

Communicated by D. Easdown

Abstract

The algebra consisting of those linear transformations of a complex inner product space that have a formal adjoint is shown to possess a special involution. Two earlier results concerning special involutions are then generalized.

1991 Mathematics subject classification (Amer. Math. Soc.): 16S50, 16W10.

For a given complex inner product space V, the set of all linear transformations of V that have a formal adjoint constitutes a complex algebra and is shown to possess an involution that is special in the sense of Easdown and Munn (Theorem 1). It follows that the standard involution on a C^* -algebra is special (Corollary 1) – a result first noted by Hofmann – and that hermitian conjugation is a special involution on the algebra of all $I \times I$ row-finite and column-finite complex matrices, where I is an arbitrary nonempty set (Corollary 2). By combining Corollary 1 with a result of Barnes, it is proved that the natural involution on the l^1 -algebra of an inverse semigroup is special (Theorem 2).

Let * be an involution on a semigroup S (that is, a permutation of S such that, for all a, b in S, $(ab)^* = b^*a^*$ and $a^{**} = a$). We say that * is *special* if and only if, for each nonempty finite subset T of S,

$$(\exists t \in T)(\forall u, v \in T) \quad t^*t = u^*v \Rightarrow u = v.$$

This definition is clearly equivalent to the one given originally in [2]. An involution [a special involution] on a complex algebra R is a mapping $* : R \to R$ that is an automorphism of (R, +) and an involution [a special involution] on (R, \cdot) , with the further property that, for all $a \in R$ and all $\lambda \in \mathbb{C}$ (the complex field), $(\lambda a)^* = \overline{\lambda} a^*$,

^{© 1998} Australian Mathematical Society 0263-6115/98 \$A2.00 + 0.00

where $\overline{\lambda}$ denotes the complex conjugate of λ . Examples of special involutions include hermitian conjugation on the algebra of all $n \times n$ complex matrices [2] and the natural involution on the complex semigroup algebra of an inverse semigroup [3]. Both of these are generalized here. By a *star subalgebra* of a complex algebra R with an involution * we mean a subalgebra S of R such that $a^* \in S$ for all $a \in S$. Observe that if * is special and S is a star subalgebra of R then * induces a special involution on S.

In the theorem below we examine a certain subalgebra of the algebra of all linear transformations of a complex inner product space, namely the subalgebra consisting of all elements that possess a 'formal adjoint'.

THEOREM 1. Let V be a complex vector space that admits an inner product $\langle | \rangle$, let L(V) denote the algebra of all linear transformations of V and let

$$A(V) := \{a \in L(V) : (\exists b \in L(V)) (\forall x, y \in V) \langle ax | y \rangle = \langle x | by \rangle \}.$$

Then

- (i) A(V) is a subalgebra of L(V),
- (ii) to each $a \in A(V)$ there corresponds a unique $a^* \in A(V)$ such that, for all $x, y \in V$, $\langle ax | y \rangle = \langle x | a^* y \rangle$,
- (iii) the mapping * : $A(V) \rightarrow A(V)$, $a \mapsto a^*$ is a special involution.

PROOF. (i) This is routine.

(ii) Let $a \in A(V)$. Suppose that $b, c \in L(V)$ are such that, for all $x, y \in V$, $\langle ax|y \rangle = \langle x|by \rangle = \langle x|cy \rangle$. Then, for all $y \in V$, $\langle (b-c)y|(b-c)y \rangle = 0$ and so (b-c)y = 0. Thus b = c. This establishes the existence of a unique $a^* \in L(V)$ such that, for all $x, y \in V$, $\langle ax|y \rangle = \langle x|a^*y \rangle$. Then, for all $x, y \in V$,

$$\langle a^*x|y\rangle = \overline{\langle y|a^*x\rangle} = \overline{\langle ay|x\rangle} = \langle x|ay\rangle$$

and so $a^* \in A(V)$. (This argument shows also that $a^{**} = a$.)

(iii) It is easily checked that * is an involution on A(V): we must prove that it is special.

Let T be a nonempty finite subset of A(V). Write

$$U := \{a - b : a, b \in T\}.$$

We show first that there exists a linear functional χ on A(V) such that

(1) $(\forall a \in A(V)) \quad \chi(a^*a)$ is real and nonnegative,

(2) $(\forall u \in U) \quad \chi(u^*u) = 0$ implies u = 0.

If $U = \{0\}$ we take χ to be the zero mapping. Suppose, therefore, that $U \neq \{0\}$. Let u_1, u_2, \ldots, u_n be the nonzero elements of U. For each $r \in \{1, 2, \ldots, n\}$, choose $x_r \in V$ such that $u_r x_r \neq 0$. We define $\chi : A(V) \rightarrow \mathbb{C}$ by

$$(\forall a \in A(V)) \quad \chi(a) := \sum_{i=1}^n \langle a x_i | x_i \rangle.$$

It is clear that χ is linear. To establish (1), we simply note that, for any $a \in A(V)$,

$$\chi(a^*a) = \sum_{i=1}^n \langle a^*ax_i | x_i \rangle = \sum_{i=1}^n \langle ax_i | ax_i \rangle;$$

further, (2) holds, since, for $r \in \{1, 2, ..., n\}$,

$$\chi(u_r^*u_r)=\sum_{i=1}^n \langle u_r x_i|u_r x_i\rangle \geq \langle u_r x_r|u_r x_r\rangle > 0.$$

Choose $t \in T$ such that $\chi(t^*t) = \max{\chi(a^*a) : a \in T}$. Suppose that $t^*t = a^*b$, where $a, b \in T$. We complete the proof by showing that a = b. Since $t^*t = (a^*b)^* = b^*a$, we have that $(a - b)^*(a - b) = a^*a + b^*b - 2t^*t$. Hence, by (1) and the choice of t,

$$0 \le \chi((a-b)^*(a-b)) = \chi(a^*a) + \chi(b^*b) - 2\chi(t^*t) \le 0$$

and so $\chi((a - b)^*(a - b)) = 0$. But $a - b \in U$. Hence, by (2), a = b.

COROLLARY 1 (Hofmann). The standard involution on a C*-algebra is special.

PROOF. It is sufficient to consider the case of the C^* -algebra B(V) of all bounded linear operators on a complex Hilbert space V. Clearly B(V) is a star subalgebra of A(V) and the standard involution on B(V) is the restriction of the involution * on A(V). Since * is special, the result follows.

Let *I* be a nonempty set. An $I \times I$ complex matrix $[\alpha_{ij}]$ is said to be *row-finite* if and only if, for all $i \in I$, the set $\{j \in I : \alpha_{ij} \neq 0\}$ is finite (possibly empty). Similarly, $[\alpha_{ij}]$ is *column-finite* if and only if, for all $j \in I$, $\{i \in I : \alpha_{ij} \neq 0\}$ is finite. The set \mathbb{C}_I of all $I \times I$ complex matrices that are both row-finite and column-finite is a complex algebra under the usual matrix operations and is closed under hermitian conjugation.

COROLLARY 2. Let I be a nonempty set. Then hermitian conjugation is a special involution on \mathbb{C}_I .

PROOF. Let V denote the complex vector space consisting of all $I \times \{1\}$ 'column' vectors with at most finitely many nonzero entries. Then the mapping $\theta : \mathbb{C}_I \to L(V)$ defined by $\theta(a)x = ax$ ($x \in V$), where ax is the usual matrix product, is an injective

286

[3]

homomorphism. Moreover, V admits an inner product $\langle | \rangle$ defined by $\langle x | y \rangle = \sum_i \xi_i \bar{\eta}_i$, where ξ_i and η_i denote the *i*th components of x and y respectively; and it is easily seen that, for all $a \in \mathbb{C}_I$ and all $x, y \in V$, $\langle ax | y \rangle = \langle x | a^{\dagger} y \rangle$, where a^{\dagger} denotes the hermitian conjugate of a. Thus, for all $a \in \mathbb{C}_I$, $\theta(a) \in A(V)$ and $(\theta(a))^* = \theta(a^{\dagger})$. But, by the theorem, * is special. Hence, since im θ is a star subalgebra of A(V) and θ is injective, it follows that hermitian conjugation is a special involution on \mathbb{C}_I . \Box

Observe that if I is infinite then im θ above contains unbounded linear operators on V.

Each of these corollaries generalizes the result, due to Lavers [2, Example 4], that, for any positive integer n, hermitian conjugation is a special involution on the algebra of all $n \times n$ complex matrices.

A further application of Theorem 1 arises in the context of certain Banach algebras. Let *S* be a semigroup. We denote by $l^1(S)$ the Banach algebra consisting of all functions $a: S \to \mathbb{C}$ of countable support such that $\sum_{x \in S} |a(x)| < \infty$, where addition and scalar multiplication are the usual pointwise operations, multiplication is convolution, and the norm $\| \|$ is defined by

$$(\forall a \in l^1(S)) \quad \|a\| := \sum_{x \in S} |a(x)|.$$

Now suppose that S is an inverse semigroup; thus, to each $x \in S$ there corresponds a unique element $x^{-1} \in S$ (the 'inverse' of x) such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. It is well known that inversion $(x \mapsto x^{-1})$ is an involution on S. As is readily checked, inversion on S induces an involution [†] on $l^1(S)$ by the rule that

$$(\forall x \in S) \quad a^{\dagger}(x) := \overline{a(x^{-1})}.$$

We now combine Corollary 1 with a result of Barnes [1] to show that ⁺ is special.

THEOREM 2 (Crabb). Let S be an inverse semigroup. Then the involution on $l^1(S)$ induced by inversion on S is special.

PROOF. As above, let [†] denote the involution on $l^1(S)$ induced by inversion on S. By [1, Theorem 2.3], there exists a Hilbert space V and a (continuous) injective homomorphism $\theta : l^1(S) \to B(V)$, the algebra of all bounded linear operators on V, such that, for all $a \in l^1(S)$, $(\theta(a))^* = \theta(a^{\dagger})$, where * denotes the standard involution on B(V). But, by Corollary 1, * is special. Hence, since im θ is a star subalgebra of B(V) and θ is injective, it follows that [†] is special.

This extends [3, Theorem 5.1].

Acknowledgments

I am grateful to K. H. Hofmann and M. J. Crabb for supplying the results in Corollary 1 and Theorem 2 respectively.

References

- B. A. Barnes, 'Representations of the l¹-algebra of an inverse semigroup', *Trans. Amer. Math. Soc.* 218 (1976), 361–396.
- [2] D. Easdown and W. D. Munn, 'On semigroups with involution', *Bull. Austral. Math. Soc.* 48 (1993), 93-100.
- [3] D. Easdown and W. D. Munn, 'Trace functions on inverse semigroup algebras', Bull. Austral. Math. Soc. 52 (1995), 359-372.

Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland U.K. e-mail: wdm@maths.gla.ac.uk