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Abstract

We present a general approach to justify the random phase approximation for the homogeneous Fermi gas in three
dimensions in the mean-field scaling regime. We consider a system of N fermions on a torus, interacting via a
two-body repulsive potential proportional to N _%. In the limit N — oo, we derive the exact leading order of the
correlation energy and the bosonic elementary excitations of the system, which are consistent with the prediction
of the random phase approximation in the physics literature.
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1. Introduction

In the 1940s, experiments on the cohesive energy and specific heat of alkali atoms' showed a large
discrepancy with theoretical calculations based solely on the Hartree—Fock approximation [3], further
complicated by the fact that second-order perturbation theory failed because it yielded infinities. Moti-
vated by this unfortunate situation, Bohm and Pines in four seminal papers [11, 12, 13, 32] introduced
the random phase approximation (RPA) as a useful tool for studying the properties of a high-density
electron gas moving in a background of uniform positive charge, called jellium. In the Bohm—Pines RPA
approach, the electron gas could be decoupled into collective plasmon excitations and quasi-electrons
that interacted via a screened Coulomb interaction. The latter fact justified the independent particle ap-
proach commonly used for many-body fermion systems. Their work was also in good agreement with
experimental data, the culmination of which was the experimental detection of plasmons [42, 17].

The microscopic derivation of the RPA has led to notable work by theoretical physicists since the
1950s. In 1957, Gell-Mann and Brueckner [20] derived the correlation energy of the electron gas in the
high density limit by using a formal summation of a particular class of Feynman diagrams. Although
each diagram is divergent in itself, it turned out that the sum is finite. This diagrammatic picture further
suggested that the main contribution to the ground-state energy came from the interaction of pairs of
fermions, one from inside and one from outside the Fermi ball. Shortly thereafter, Sawada [36] and
Sawada—Brueckner-Fukuda—Brout [37] interpreted these pairs as bosons and obtained the correlation
energy by diagonalizing an effective Hamiltonian which is quadratic with respect to the bosonic particle
pairs. Since then, the random phase approximation has become a cornerstone in the physics of condensed
matter and nuclear physics [34], also playing a significant role in bosonic field theory [26], in the quark-
gluon plasma [4 1] and especially in computational chemistry and materials science. Although originally
proposed for an electron gas, it is applicable to a wide variety of fermionic systems.

When calculated in the Hartree—Fock approximation, the cohesive energy of metals is off by an order of magnitude compared
to experiments on alkali metals, as described in [33 , p. 80]. The same is true for the specific heat, as theoretically calculated in [3].
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The complete derivation of the RPA from first principles, namely from the microscopic Schrodinger
equation, has, however, long been a major open problem in mathematical physics. Recently, some
rigorous results on the correlation energy have been derived in the mean-field regime for small interaction
potentials by Hainzl-Porta—Rexze [24] (perturbative results) and by Benedikter—Nam—Porta—Schlein—
Seiringer [4, 5, 6] (non-perturbative results).

The aim of the present paper is to justify the RPA for a large class of interaction potentials in the
mean-field regime, addressing not only the ground state energy but also the excitation spectrum. As we
will explain below, the correlation structure of Fermi gases can indeed be described correctly by treating
appropriate pairs of fermions as bosons. The corresponding bosonic Hamiltonian can be handled by
Bogolubov’s diagonalization method, thus putting the description in the physics literature [20, 36, 37]
on a firm mathematical footing. Although this general point of view has been employed in [24, 5, 6], we
will provide a new bosonization approach to fermionic systems which enables us to not only extend the
study on the ground state energy initiated in [24, 5, 6] but also obtain all bosonic elementary excitations
predicted in the physics literature, thus justifying the RPA in the mean-field regime. In the long run,
we expect that the tools developed in our work will pave the way towards the Coulomb gas in the
thermodynamic limit.

1.1. Model

We consider a system of N (spinless) fermions on the torus T3 = [0, 271]3 (with periodic boundary
conditions), interacting via a bounded potential V : T> — R. The system is described by the Hamiltonian

N
Hy = Hin + kg Hi = D (=A) +kp D0 V(6 —x;), (L.1)
i=1 I<i<j<N
which acts on the fermionic space
N
Hy=/\b, b=L2(T). (1.2)

Here, the coupling constant k;l > 0 corresponds to the interaction strength. We will focus on the mean-

1
field regime k;l ~ N73, where the kinetic and interaction energies are comparable. More precisely, we
assume that

4r -
N = |Br| = ?k§(1+o(1)kﬁm), Br = B(0,kg) NZ?, (1.3)
namely, the Fermi ball Br is completely filled by NV integer points. In this case, the kinetic operator Hiy
has a unique, non-degenerate ground state which is the Fermi state

WEs = /\ Up, up(x)= (27r)_%eip'x. (1.4)

PEBF

More generally, the eigenstates of Hyi, can be written explicitly in terms of the plane waves (i) pez
However, the spectrum of the interacting operator Hy is highly nontrivial, and its computation often
requires suitable approximations.

We assume that V is of positive type, namely, its Fourier transform satisfies V > 0 with

ZVkeik'X with Vk=/ V(x)e ** dx. (1.5)
i)
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Under our assumption, Hy is a self-adjoint operator on Hy with domain D (Hy) = D (Hyy) =
/\N H? (T3) . Moreover, Hy is bounded from below and has compact resolvent. We are interested in
the asymptotic behavior of the low-lying spectrum of Hy when N — oo and kg — oo.

One of the most famous approximations for fermions is the Hartree—Fock theory, where one restricts
the states under consideration to the set of all Slater determinants g; A g2--- A gy Wwith { g[}f\i 1
orthonormal in L? (T3). The precision of the Hartree—Fock energy is an interesting subject, which has
been studied for Coulomb systems by Bach [1] and Graf-Solovej [22]. In general, the Hartree—Fock
minimizer could be different from the Fermi state yrs; see [21] for an estimate for Coulomb systems.
However, in the mean-field model that we are considering here, the Hartree—Fock minimizer coincides
with ¥rs; see [0, Theorem A.1] for a precise statement. Thus, to obtain the correction to the ansatz of
plane waves, we have to understand the correlation structure of the system.?

To go beyond the ansatz of plane waves, the first step is the extraction of the energy of the Fermi state.
For computational purposes, it is convenient to use the second quantization language. For every p € Z3,
we denote by ¢}, = ¢*(up), ¢ = c(up) the fermionic creation and annihilation operators associated to
the plane-wave state u,. These operators act on the fermionic Fock space

o N
Fo)=PH A (1.6)
N=0

and obey the canonical anticommutation relations (CAR)
{epicqt = {C;’CZ} =0, {CP’CZ} =0pq PqEL, )
where {A, B} = AB + BA. The Hamiltonian operator Hy in (1.1) can be expressed as
k—l
_ * F > * *
HN = Hkin + kFlHim = Z |p|2cpcp + m Z Z Vka+qu_quCp. (18)

pez3 keZ3 p,qeZ?

Thanks to the CAR (1.7), it is straightforward to see that the Fermi state obeys, for all p € 73,

R Yrs p € Br
cpCp¥rs = 1 (P)Yrs = {0 e Be. (1.9)
where 1, (-) denotes the indicator function of the Fermi ball Br. Thus, the kinetic energy of the Fermi
state is
(Wrs, Hanrs) = Y 1pIP (wes, chepwms) = D 1 (PIpP gl = > Ipl. (1.10)

pez3 pez3 PEBF

Hence, we can define the localized kinetic operator H,, : D (Hxin) C Hy — Hpy by

Hy, = Hyin — (Urs, HxinYrs) = Z |P|2C;Cp - Z |P|2CpC;~ (1.11)
PEBY, PEBF

We refer to this operator as being ‘localized’ since extracting (Y'rs, HyintyFs) in this manner can be seen
as changing the point of reference from the vacuum state Q to the Fermi state s, so H}, can be seen
as a kind of expansion of Hyij, around ¢ps.

Note that it is clear from the first identity in (1.11) that H;, is nonnegative since s is the ground
state of Hyy,. However, the positivity of Hl:in is unclear from the second identity in (1.11) since the

2The Slater determinants are the least correlated states among all fermionic wave functions (they are eigenfunctions of non-
interacting Hamiltonians).
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difference of two operators which are nonnegative may not have a sign. The resolution of this apparent
paradox lies in the underlying Hilbert space: in the N-body space H, we always have

N = Z Cpep = Z (1=cpc),) + Z cpcp = |BF| - Z CpCp+ Z Cplp- (1.12)

pez3 PEBF PEBY. PEBF PEBE

Therefore, the assumption |Br| = N implies the particle-hole symmetry

Ng = Z chep = Z cpcs, onHy, (1.13)

PEBY PEBF

namely, the excitation number operator (which counts the number of particles outside the Fermi state)
coincides with the hole number operator (which counts the number of holes inside the Fermi state).
Consequently, the kinetic operator in (1.11) can be rewritten as

Hiw= Y llpP=2lchep+ D lIplP = 2lepe;, (1.14)

peB‘ pPEBF

for any £ € [sup ,cp, |p|*, inf,epe [p|?], which is clearly nonnegative.
For the interaction operator, it is convenient to use the factorized form

Hip = Z Z ch ¢k cqC
2(27()3 p+k~q-k~9*p
keZ? p,qez?

Z Vi (dT (e % )*dI' (e %) = N), (1.15)
kez3

2(2 )3

where

dI'(e7**) = Z <u,,,e_”" c »Cq = Z Op.g—kC, »Cq = Z c* »Cpk- (1.16)

p.qeZ? p.q€Z? pez?

Note that for any k € Z3 = Z3\ {0}, we have

dr (e *)yps = Z CpCprk¥rs = Z CpCp+k¥Fs (1.17)

pez3 peL_i

since the summand cj, Cp+k¥Fs in (1.17) does not vanish if and only if p € L_i, where the lune

Ly=Bsn(Br+k)={peZ’||p-kl <kr <|pl} (1.18)
will play an important role in our analysis. In particular, using (1.9) and the CAR again, we find that for
all k € Z3,

—ik- 2 * 2

lar e sl = > llepepmtrs| = > 1= 1Lkl =Ll (1.19)
PELk peL_i

Thus, the interaction energy of the Fermi state is given by

N(N-1).
2(2m)3

D Ve (Ll = N), (1.20)

kez?

(YEs, Hinyrs) =

0F 2(2 )3
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where we see the direct and exchange energies (involving \70 and {Vk }z0, respectively). We can define
the localized interaction operator

r _ _ 1 % —ik-x\* —ik-x
Hf, = ,»m—<wps,H1-m¢/Fs>—mkégvk(dr(e )*dT (e %) = |L]). (1.21)

In summary, with H,, and H;  defined in (1.11) and (1.21), we can write

Hy = Eps + H], + k' H,,, Ers = (Yrs, HNUFs) . (1.22)

Note that in the prior works [24, 5, 6], the localization procedure was carried out by employing what
is known as the particle-hole transformation, which maps the Fermi state ¢gs to the vacuum; see, for
example, [0, Eq. (1.20)] for an analogue of (1.22). However, in the present paper we do not follow this
approach since we prefer to work on the N-body Hilbert space.

1.2. Random phase approximation

In this subsection, we explain the ideas of the bosonization approach to the random phase approximation.
On the one hand, in the original approach [11, 12, 13, 32], Bohm and Pines considered fluctuations of
density in the momentum representation where the plasma momenta and the effective particle momenta
of different wavelengths &,/ are coupled by phases ¢!(x=**i summing over the ‘random’ particle
positions x;. The assumption that the phases average toward zero for a large number of particles is
originally called the ‘random phase approximation’. On the other hand, after the work of Sawada [36]
and Sawada—Brueckner—Fukuda—Brout [37], the term RPA has been widely used in the physics literature
in the context of a quasi-bosonic Hamiltonian, where a quasi-boson consists of a particle-hole pair. The
quasi-bosonic approach is used not only for Coulomb gases but also in a much broader context, especially
in nuclear matter (for a standard textbook, see [18, p. 156] for Coulomb gases and [18, pp. 540-543] for
nuclear matter).

In the present paper, we will focus on building a mathematical formulation of the quasi-bosonic
approach for general potentials and eventually apply this theory to regular potentials. In the long run, we
hope that this general theory will also be helpful for singular potentials, in particular for Coulomb gases
where the next-order correction to the bosonization picture matters (in [15], we used the formulation
provided in the present paper to find the analogue of the Gell-Mann—Brueckner formula for the mean-
field Coulomb gas, which shows how important it is to carry the non-bosonic part in the calculation at
least to the leading order).

Now let us explain the bosonization argument in detail. Roughly speaking, the RPA suggests that the
fermionic correlation can be described by a Hamiltonian which is quadratic in suitable bosonic creation
and annihilation operators. To explain the heuristic bosonization argument, let us decompose further
the interaction terms in (1.21) by defining, for every k € Z2,

dr(e™**) =d((Pp, + Ppe )e " *(Pp, + Pps)) = B + B* + Dy, (1.23)

where Pp,. and Pge are projections in the one-fermion Hilbert space and

By =dr(Pg,e " Pge ) = Z (u,,,PBFe"'k"‘PB;uq> CpCq = Z € pkCps (1.24)
p.q€eZ? peLi
Dy =dI'(Pp.e **Pp,) +dF(PB;e_"k'xPB;;) = Z CpiCpt Z CpiCp-
pEBrN(Bp+k) PEBLN(BL+k)
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Note that for all £ € Zg, we have D}i =D_; and
[Bk,B_] = [B_x,Di] = [B;.Dy] =0, (1.25)

which can be seen from the identity [dI'(X),dI'(Y)] = dI'([X,Y]) and (1.24). Due to the symmetry
between k and —k, it is convenient to introduce the set?

Z3 = ({x1 > 0} U{x; =0,x2 > 0} U {x; =x2 = 0,x3 > 0}) N Z} (1.26)
such that
ziu(-7) =2 Zin(-2Z}) =0. (1.27)

Using this notation and the assumption Vi = V_i, we can rewrite the interaction operator in (1.21) as

- ’ kil (7 23 D * * (D D%
5 Hi = 5 23 Vic ((Br+ By + Di) (Br+ B+ Di) = Ll
kezZ;

Vik.! k7! - |
- HE - F o]+ =£ Vi |B:Dy + D By + =D*D; |, 1.28
kZZ-;( int (271_)3 | k|) (271,)3 kZZ:} k k k k k 2 k k ( )
€Ly €L

where for each k € Zi, we denote

ka_l ~ ~ * /o~ ~. ~ N =
Hi = 2y (B B (Bt B+ (B By (B 7))
ka;;l U <. 5 o o
= 2wy (Bl Bid +{BLy Biy +2B,BL, +2B4By) (1.29)

Now let us introduce the quasi-bosonicity. From the CAR (1.7), it is straightforward to see that

[Bk’gl] = [B;;’E}k] = 0’ [B‘]WB‘;] = |Lk| 6k,l - Z Cp—lc*p_k - Z c;_k+lcp
pEeLNLy peLin(Ly-l+k)
(1.30)

for all k,[ € Z3, where [A, B] = AB — BA. Hence, on states with few excitations (e.g., the expectation

value of N is much smaller than |Ly| ~ min{|k|k%., k3.}), the rescaled operators B}, = |L |2 By obey
the commutation relations

[B%-Bi] = [(B)" (B)] =0, [B. (B))'] ~ 6. (1.31)

for all k,1 € Z3, in direct analogy with the canonical commutation relations (CCR) obeyed by a set of
bosonic creation and annihilation operators az, ay indexed by ZE,

lak,ai] = |a;.a;] =0, |ak,a]] =6k, (1.32)

Since the relation [B/, (I?;)*] ~ Ok, is only approximate, we call these operators quasi-bosonic.

In view of the quasi-bosonicity of these operators, in the form (1.28) of H; , we call the first sum
on the right-hand side of this equation the bosonizable terms, while the second sum constitutes the
non-bosonizable terms which are regarded as error terms. The bosonizable part Hi/;t can be viewed as a

quadratic Hamiltonian in the bosonic setting, which can be diagonalized by Bogolubov transformations.
3The exact definition of Z2 is not important, only that it satisfies Z3 U (—Zi) =Z}andZ3 n (—Zi) =0.
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This is the spirit of what we will do, but there is a catch: the kinetic operator H/, cannot be written in
terms of By. The solution is to further decompose the operators By, by defining the excitation operators

3
brp = c;kcp, bz,p = c”;,c,,_k, keZ), pelL. (1.33)
The name is due to the fact that the action of b}, » is to create a state at momentum p € BY, and annihilate

a state at momentum p — k € Bp.
Since Hi’;t is quadratic in terms of By, it is also quadratic in terms of b’;{ » namely,

Okkzl . Viky! .
+ Z Z 2(27)3 (BkpPlrg + D-kogbip) + Z Z 2(27)3 (b2k pbig + brab-k.p)-
peLli geLl g peL_k qeLli
(1.34)

The reason that the operators by, ,, are preferable to the operators By is that they satisfy the following
commutation relation with the kinetic operator (see (1.74) below)

’ * 1
[Hiin D p) = 20k b o Akp = 5 (PP = Ip = KI%). (1.35)

Note that A, > 3 (first, A¢,, > 0 since p € Li; moreover, |p|* — |p — k|? is an integer as p, k € Z?).
This is to be compared with the bosonic setting: if the operators a; obey the CCR (1.32), then

IZ sla;‘al,a’;(l = gray. (1.36)
I

Therefore, viewing b} p a8 being analogous to a bosonic creation operator, we get

Hipx D0 > 20pby bep = . ( > 2 b b+ Y Zﬂ_k,pb’jk’pb_k,p). (1.37)

kez3 PELy kez? pelk peL i

Combining (1.34) and (1.37), we arrive at a Hamiltonian quadratic in terms of the operators by ,,, which
could be treated in the bosonic interpretation. Note that by ,¥rs = 0 for all k € Z3 p € L, and hence,
the Fermi state plays the role of the bosonic vacuum.

Overview of the heuristic assumptions behind the random phase approximation
In the physics literature [36, 37], the RPA entails two assumptions:

1. That the excitation operators bz’ , b, p in (1.33) can be treated as bosonic creation and annihilation
operators, and that the operators by ,, and b; , with k # [ can be considered as acting on independent
Fock spaces. Mathematically, we thus expect that the approximate canonical commutation relations
(CCR)

[bk,p’bl,q] [bk p’bzq] =0, [bk,p’b;iq] X 0k10p.q (1.38)
should hold in an appropriate sense.
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2. That the operator in (1.22) can be approximated by an effective Hamiltonian which is quadratic
in terms of b; and by p. This is already true for the interaction part »; kez3 H . in (1.34), and in the
RPA, the non- bosomzable terms

k 1
(27T)3

1
Z Vi (B Dy + DBy + 5D D (1.39)
keZ?

are simply dropped. Moreover, the kinetic operator H}, is not exactly of the desired form, but it can be
replaced by the right side of (1.37). All this leads to the effective Hamiltonian

Viky!
D Hpogi= ) (2 D Apbi by +2 D Ak pbty b+ HE - an |Lk|) (1.40)

kez? kez? \ peLi PEeL i

acting on the bosonic Fock space B, .3 F* (2 (Lx U L_g)).
Consequently, since the operators by, and b; , with k # [ are considered as acting independently, we

can diagonalize separately each quadratic bosonic Hamiltonian Hpog x by a Bogolubov transformation
Uy on F* (€% (Ly U L_y)) such that

-1

0, .
2 ;3 |Li| +2 LE ) (eps Exeq)by ,bi.q, (1.41)
pELEUL i

UkHBog,kU;: =2tr (Ek - hk) -
where for every k € Z3, we denote the following quantities on £>(Ly):

~ 1 1 ka‘
Ey = (h]i (hk +2PVk) h]i)za hkep = /lk,pep, ka = |Vk><Vk|, Vi = 2(27T)3 Z €p (1.42)
pEeLy

with (ep)per, the standard orthonormal basis of 2(Ly).
Summing over k, we obtain the correlation energy (see Proposition 7.1)

ka Ak,p
. ’ dt, 1.43
corr Z 2(2 )3 |L k|) Z A ( (27T)3 = /li,p +£2 ( )

kez?
where F(x) = log (1 +x) — x. All in all, the RPA thus suggests that up to a unitary transformation, we
expect that

tr (Ek - hk)

Hy ~ Ees+ Ecor+2 ) Y (ep, Exeg)by brp. (1.44)
kez3 p-g€L

at least on states with few excitations.

Prediction of the correlation energy and the excitation spectrum
Equation (1.44) leads immediately to the following approximation for the ground state energy

info (Hy) ~ Efs + Ecorr, (1.45)
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which coincides with [37, Eq. (34)],* where the authors derived it from the effective operator of equation
(1.40) and also explained the connection to the original work of Gell-Mann—Brueckner [20]. See also
[35, Eq. (9.54)] and [18, Eq. (12.53)] for this expression of the ground state energy.

More importantly, (1.44) also suggests that the excitation spectrum of Hpy could be described in
terms of the eigenvalues of 2E}, which correspond to the bosonic elementary excitations and can be
explicitly computed.

Indeed, for every eigenvalue € of Ey, we may find an eigenvector w € £2(Ly) such that

- 1 1 1 1
ew = Egw =h? (he + 2Py ) hiw = hiw + 2(h2vi, w)h} vi. (1.46)
But either € is also an eigenvalue of A or €? — hi is invertible. In the latter case, we can write
1 1
w =2(h2vi, wy(€® — hy) "' h}vi, (1.47)

1 1
and taking the inner product with /; v, and cancelling the factors of (h; v, w) yields

A~

ka_l Ak
1=2(vi, hi (€2 = h2) vy = —E£ LA 1.48

pEeLy
which appears in [37, Eq. (6)]. The sum can be rewritten as

Viek! 2
- KF > K] . (1.49)
2(2m)3 2 (12)?
PBr (e~ k- p)* = ($IKP)

The formula (1.49) allows to compute all eigenvalues of E, x outside the spectrum of A.
In the physically relevant case of the Coulomb potential where ka;1 is replaced by 4re?|k|2,

12

one can immediately derive the famous plasmon frequency from (1.49): for k| < k;.~, the largest

eigenvalue € is proportional to k;/ 2 (see [14, Eq. (2.27)-(2.54)] for a detailed explanatlon), and its

leading order behavior can be computed easily in the thermodynamic limit (including also a factor of 2
for the electron spin states)

,  4me? € e? 3 2
€ = 207 sdp ~ 2 )zVol(B(O kp)) = —kF =2nne”, (1.50)
3 |
BOM) (e~ k- p)? - (1kp)

where n = % = #k% is the number density of the system. Recalling that the relevant operator is 2E

rather than Ej, and that 2’% = 1, this yields an excitation energy of

drne?

2e ~ 2V 2nne? = = liwplasmons (1.51)

where wplasmon = Vdrne2m~! is called the plasmon frequency in [33, Eq. (3-90)] and [18, Eq. (15.16) -
(15.18)]. Note that the Coulomb potential is special as it makes the right-hand side of (1.51) independent
of k. See also [4, 14] where (1.51) was discussed.

Establishing the above heuristic computation is a longstanding problem in mathematical physics. In
the present paper, we will give a rigorous formulation for the operator approximation (1.44) and then

4Provided one reglaces (27r) with the volume Q of the box, includes a spin factor and inserts the Coulomb potential,
Vikp! = 4me? k|
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use this to justify the prediction of the correlation energy and the bosonic elementary excitations for a
wide class of bounded potentials in the mean-field regime.

1.3. Main results

Our first result is the following rigorous formulation of the operator approximation (1.44).

Theorem 1.1 (Operator formulation of the RPA). Let V : T° — R obey Vi > 0 and V_j = Vi for all
k € Z?, and assume furthermore that ;.73 Vilk| < oo. Consider the Hamiltonian Hy given in (1.1)
with N = |Bf|. Let the operators H,,, N, Ex — hy be definedin (1.11), (1.13), (1.42). Let the energies
Egs, Ecorr be defined in (1.22), (1.43). Then there exists a unitary transformation U : Hy — Hy such
that

UHNZ/[* = EFS+Ecorr+Heﬂ'+5L[7 (152)

where the effective operator Hoy : Hn — Hy is

Hep = Hi+2 3. 3 {eps (B = hideq) by ybig (1.53)
kez3 P-q€Llk

and the error operator &y : Hy — Hpn obeys the operator inequality: for every constant € > 0,
1
6 < Ok (K N HY, + Hy + kr )k — oo, (1.54)

The unitary operator in Theorem 1.1 is given explicitly as i = e7 e*, where K and J are given in
(1.78) and (1.85), respectively (the transformations ¢* and e are studied in detail in Sections 5 and 9).

Remark 1.1. The operator Ng H, on the right-hand side of (1.54) is nothing but the ‘bosonic kinetic
operator’, due to the following remarkable identity (see Proposition 10.1):

237 3 Akpbi pbip = NeH,. (1.55)

kez? peLly

Thus, in Theorem 1.1, we control the error in the random phase approximation using only the fermionic
and bosonic kinetic operators, which is very natural.

Remark 1.2. In the expansion (1.52), Egg is of order k3, and Ecorr is of order kp. As we will argue
below, when we apply this to the low-lying eigenstates with energy Ers + O(kFr), the expectation of

the effective Hamiltonian Heg in (1.53) is of order kg, while the error term &, in (1.54) is of order
1—ﬁ+e

Ok ) = o(kr).

In order to put Theorem 1.1 to good use, we need some a priori estimate on the low-lying eigenstates
of the Hamiltonian Hy . We have the following:

Theorem 1.2 (A priori estimate for eigenstates). Let V and U be as in Theorem 1.1. Let ¥ € D (H, )

be a normalized eigenstate of Hy with energy (¥,HyY) < Egs + kkp for some constant x > 0
independent of k. Then,

(W, (H{yy + K N, ) W) < Cler 12
for a constant C > 0 depending only on V. The same bound holds with ¥ replaced by U'Y.
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Remark 1.3. Thanks to the inequality Ng < H];m (see [6, Lemma 2.4] and also Proposition 2.1 below),
Theorem 1.2 implies that for an eigenstate ¥ of Hy with energy (¥, Hy¥) < Egs + O(kF), we have

(P, NeY) < (¥, H[,¥) = O(kp). (1.56)

Thus, the number of excitations is much smaller than the total number of particles (kp ~ N I3« N ).
While (1.56) has been derived in [24, 6] for every state with energy (¥, Hy'¥) < Eps + O(kFp) (at least
for a class of potentials V), the improved bound in Theorem 1.2 is deeper, and the eigenstate assumption
plays a crucial role in the proof.

From Theorems 1.1 and 1.2, we can deduce immediately the asymptotic formula (1.45) on the ground
state energy up to an error o(kr). Indeed, the energy upper bound is given by the trial state /s,
while the energy lower bound follows from the obvious operator inequality Ej > hy. Moreover, our
approach is quantitative, and we can derive (1.45) with explicit error estimates.

Theorem 1.3 (Ground state energy). Let V be as in Theorem 1.1. Then for all € > 0,

1nfo-(HN)—EFS+Ecorr+0(k 94”), kp — 0.

Here are some remarks concerning Theorem 1.3.

Remark 1.4. The method of our proof can be adapted to give the upper bound under the weaker
condition ;73 V]§|k| < oo (see [8, Appendix A] for a derivation of the upper bound under this weaker
condition). Additionally, under this condition it can be shown that

—Z/ (ka ﬂk,p )
(2n)3 = /li’p+t2

kez3 Ly

|k|/ ((2 )zl(t))dt+0(kF) (1.57)

kez3

where F(x) = log(1+x) —x and I(t) = 1 — ttan™! (t‘l) (this essentially amounts to replacing the
Riemann sum by the integral and can be done by following either the proof of [5, Eq. (5.15)] or the
analysis in Appendix A; the condition ), V,f|k| < oo ensures that the main contribution comes from
|k| ~ O(1)). Hence, Theorem 1.3 implies that

1nfo-(HN)—Eps+— L |/ ((2 )zl(t))dt+o(kF) (1.58)

kez?

A result similar to ours, namely, the bound (1.58) for all potentials satisfying >, Vi|k| < oo, has been
independently obtained in [8], based on a refinement of the method in [5, 6].°> The bound (1.58) was
proved earlier in [5, 6], under the additional assumption that the Fourier coefficients Vk be finitely
supported and that ||V||,1 be sufficiently small. For small V, the logarithm of equation (1.58) can be
expanded for

1 -log(2)

o (Hy) ZEFS—W

kr Z V21k| (1+0 (Vi) + 0 (kr), (1.59)
keZ?
which was first proved in [24].

Remark 1.5. A further refinement of our method allows a derivation of a rigorous energy upper bound
for all potentials satisfying ;. \7]3 < oo; see [15]. This covers the case of the Coulomb potential

Vi = 4me?|k|~2, where the correlation energy is given by the left-hand side of (1.57) which is of order
kr log kr plus a correlation exchange correction of order kg (the correlation exchange contribution

SNote that the conventions of the Fourier transform and scaling of Hp; in [5, 6, 8] differ from ours.
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comes from the fact that the purely bosonic picture is not exact; it is different from the exchange energy
which is part of Ers). In particular, for the Coulomb potential, the right-hand side of (1.57) diverges,
whereas the left-hand side does not, and hence the discrete form in (1.57) is arguably more fundamental
than the continuous form. It is interesting that in our method the discrete version of the correlation
energy always appears naturally.

Besides containing the information of the ground state energy, another decisive consequence of the
operator statement in Theorem 1.1 is that it allows us to obtain all bosonic elementary excitations
predicted in the physics literature. We have the following:

Theorem 1.4 (Bosonic elementary excitations). Let V and U be as in Theorem 1.1. Let ¥ € Hy be a
normalized wave function such that Ng¥ =¥ and (¥, H,, ¥) = O(kF). Then for all € > 0, we have
1—J7+5

<\P,UHNU*\P> :EFS+Ec0rr+<\P, Heff|/\/E=1 ql>+0(kp )’

where

Heilye1 =2 ) > {ep. Exeg)by ,big = U| @D 2Ex |07 (1.60)
kez3 p-g<€Li kez?

on the space {¥ € Hy | Ng¥ = ¥}, and

U: @ L3(Ly) > {¥Y e Hy | Np¥ = ¥} (1.61)
kez?

is a unitary isomorphism defined by

U@‘Pk = Z by (i) Yrs = Z Z (€ps i)y ,YEs. (1.62)

kezZ? kez? kez3 peLi

Recall that all eigenvalues of Ey can be computed explicitly from the spectrum of hj and (1.49).
From Theorem 1.1 and Theorem 1.4, we may say that up to the unitary transformation I/, the RPA is
exact for the {Ng = 1} eigenspace of the effective Hamiltonian H.g. To our knowledge, this is the first
rigorous derivation of the bosonic elementary excitations from first principles.

Remark 1.6. For every fixed k € Zﬁ, in the limit kr — oo, most eigenvalues of E r are of order kp,
but the lowest eigenvalue of Ey is of order o(kf ). This absence of a one-body spectral gap corresponds
to the expected fact that the excitation spectrum of k;l Hy becomes continuous in the limit kp — oo.
Therefore, in principle, it is very difficult to extract useful information by analyzing the full spectrum
of Hy . The significance of Theorem 1.4 is to offer a nontrivial statement on the bosonic excitations by
analyzing exactly the spectrum of the effective Hamiltonian instead of looking directly at the spectrum
of H N -

Remark 1.7. In Theorem 1.4, the restriction to the Ng = 1 eigenspace is important. Obviously, the
effective Hamiltonian (1.53) does not coincide with that in the heuristic formula (1.44). Hence, it is
natural to ask what to make of the assumption of the RPA that the effective Hamiltonian should behave
like a diagonalized bosonic Hamiltonian. To approach this question, we note that using (1.55), we can
rewrite the effective Hamiltonian in (1.53) as

Her=2 ) > {ep Exeg)by ybig — (Nu = 1) Hj,. (1.63)
kez? P.g€Li

Since this operator commutes with Az, we can restrict Heg to the eigenspaces of Ng. Doing so, we
see that the trivial eigenspace {Ng = 0} = span (¥rs) exactly corresponds to the ground state energy
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which is already addressed in Theorem 1.3. For the first nontrivial eigenspace {Ng = 1}, we do indeed
obtain the expected operator

Helgr =2 D0 D\ (eps Exeq)by ,big, (1.64)
kez3 p-q€Ll

as in the heuristic formula (1.44). Moreover, the second identity in (1.60) tells us that Heg|y,,.-; can be
diagonalized explicitly on {Ng = 1}, which is important for applications.

More generally, we can also consider the higher excitation sectors {Ng = M} for M € N.

Theorem 1.5 (Higher excitations). Let VandU be as in Theorem 1.1. Let1 < M < O(kp). Let¥Y € Hy
be a normalized wave function such that NgW = MY and (P, H;. W) < O(kp). Then for all € > 0, we
have

1
l-g;+e€

(W, UHNU"Y) = Egs + Ecore + (¥, Het|noeps P) + O (k. ™),
where

Hetlpport =2 ) ). {eps (Bx = (1= M7 hi)eg)by big.
kez? P-q€Lli

Remark 1.8. For M > 2, the operator Hef|ns,.—p; in Theorem 1.5 cannot be diagonalized explicitly
as in (1.60). The quasi-bosonic property is insufficient to guarantee that it is diagonalizable, even
approximately. Understanding the behaviour of H.g on higher eigenspaces and reconciling the RPA thus
appears to be an interesting but nontrivial task. Some progress in this direction was done in [14] where
the norm ||(Heg — Me)W|| was estimated for suitable trial states.

1.4. Proof strategy

Now let us explain some key ingredients of the proof. Following [37], our approach consists of studying

pair-excitations bz, = ¢},Cp-k, Where ¢, annihilates a particle with momentum p — k (i.e., creates
a hole in the Fermi ball), and ¢}, creates a particle outside the Fermi ball. These operators by, . b’]‘(’p
satisfy the bosonic commutation relations in an appropriate sense. This enables the use of a quasi-
bosonic Bogolubov transformation to diagonalize the original fermionic operator. A main achievement
of the present work is the analytical elaboration of this bosonic picture.

In [5, 6], adifferent, collective bosonization approach was developed by averaging the pair-excitations
bz’p on ‘patches’ near the surface of the Fermi ball, thus realizing strengthened versions of the bosonic
commutation relations which make the comparison with the purely bosonic computation significantly
easier. In the present paper, we show that the bosonization idea can be implemented directly for pairs of
fermions without such an averaging procedure. In our opinion, this new approach is conceptually closer
to the physics of the problem and more transparent for applications. In particular, it allows us to obtain all
bosonic elementary excitations as in Theorem 1.4. Moreover, the new method is potentially applicable
to Coulomb systems, where the correlation exchange correction to the purely bosonic computation plays
an important role; see [15] for a rigorous ground state energy upper bound.

In the context of interacting Bose gases, Bogolubov transformations based on another approximate
CCR have been used to study the excitation spectrum; see, for example, [38, 23, 9, 25]. However, for
the fermionic problem considered in the present paper, the approximate CCR holds in a very different
setting and requires distinct estimation techniques.
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Now let us provide further details.

Bosonization method
The driving concept of the random phase approximation is the bosonization of fermionic pairs. We must
therefore argue why the excitation operators

bi,p = c*p_kc,,, b’;{’p =cpCp-k, P €Lg=(Br+k)\BF (1.65)

obey an approximate CCR. Consider for simplicity the case k = [: then computation shows that for any
P-4 € Lk, [bip, b gl = [} . b} ] =0, but

[bk,p, b’,‘(’q] =0p.q—Op.q(chep+ c,,_kc;_k). (1.66)

In general, thanks to Pauli’s exclusion principle (¢},¢p, ¢pc), < 1), the error term in (1.66) satisfies the
simple bound 6, 4 (c},cp + € p—k c;_k) < 26,4, but this is even bigger than the leading term §,, ;. The
key observation is that although these errors terms can not be considered to be small individually, they
are so on average. For instance,

Z Sp.qg(chep +cp_kc;_k) = Z Cplp + Z cp_kc;_k <2NEg, (1.67)

P-q €L PELi PELi

where N is the ‘excitation number operator’ defined in (1.13). Thus, for states where the expectation
value of NVg is much smaller than Zp.gely Op.g = Lkl ~ min{| k| k2 ,k;}, one may expect that
the contribution of the non-bosonic error terms are also smaller than the leading bosonic behaviour.
Justifying this idea rigorously is one of the main results of this paper.

Note that unlike the works [24, 5, 6], we do not employ the ‘particle-hole transformation” R, which
maps Yrs to the vacuum, so that we always work directly on the space H .

A priori estimates
As explained above, to apply the bosonization method, we need to show that the expectation of Ng
against low-lying eigenstates of Hy is much smaller than |Ly| ~ min {k% |k|, k%}

Using the condition 3, 3 Vi |k| < oo and a variant of Onsager’s lemma, we can prove that

Hpy > EFfs +H]2m—CkF. (1.68)
Consequently, if ¥ is any eigenstate for Hy satisfying (¥, Hy W) < Egs + Ckp, then

(W, H,,¥) < Ckp. (1.69)

in

Since H,. . > NE, which was already explained in [6], this implies that (¥, Ng¥) < Ckr < |Lg|.
For V sufficiently small, this bound was first proved in [24] (by a different method), and it was also used
in [6]. In practice, we will also need a stronger a priori estimate, namely,

(P, k' NeH[, W) < Ckr (1.70)

as stated in Theorem 1.2. This we will obtain by employing a bootstrapping argument for eigenstates,
inspired by the ‘improved condensation’ in the context of Bose gases in [38, 23, 29, 30]. In [6], an
analogue of equation (1.70) was proved for a modified ground state by using a ‘localization in Fock
space’ technique. In comparison, our estimate of equation (1.70) is obtained in a far more direct fashion
and yields a uniform bound for all low-lying eigenstates. In particular, thanks to (1.69) and (1.70),
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the operator estimate in Theorem 1.1 leads to direct consequences on the ground state energy and the
excitation spectrum of Hy .

Removing the non-bosonizable terms
An important ingredient of the RPA is that the non-bosonizable terms

ki] > D* D *
2(2’;)3 Z}Vk (2Re (B, + B_y) Dy + DiDy) (1.71)
k

are negligible to the leading order of the correlation energy. Here, we offer a direct estimate for these
terms, which is simpler than the strategy proposed in [6] and does not require a smallness condition
on V. More precisely, in Theorem 2.4, we will prove that the non-bosonizable terms are bounded by
o(1) (k;lN eHy, +H, +kr), and hence, the expectation against the low-lying eigenstates of Hy is of
order o(kp) due to the a priori estimates mentioned before.

Bosonization of the kinetic operator and the excitation number operator

Concerning the bosonizable terms, while the interaction terms can be interpreted directly as a quadratic
Hamiltonian in the quasi-bosonic picture as in (1.34), the treatment of the kinetic operator is more
subtle. In fact, (1.37) does not hold as a direct operator approximation. Instead, we will justify it by
appealing to the commutator relation

|t b = |2 30 Apbi b iy - (1.72)
kez3 peLi

This commutator relation ensures that the difference

Hy 22 Z Ak pby pbk.p (1.73)

kez3 peLi

is essentially invariant under the Bogolubov transformations introduced later, which is sufficient for our
purpose. The approximation (1.72) is a consequence of the exact commutation relation (1.35): For every
p € Ly = BS. N (BF + k), by the CAR, we have

[ kln’ ] Z |q| c, Cq’c Cp- k] Z |Q|2 [CqC:;,C;Cp,k]

qE€Bg q€BF
Z |‘Z| c; an Cp k — Z |q| Cp [Cqu,Cp k]
q€Bg qE€BF
2 2
= Z lq|” 6q,pcqcp—k — Z 1917 8g.p—kCpCp-k
qEBY, qEBF
2 x 2 2 2 *
= 1pPepepr = Ip = kPepepi = (IpP = Ip — k1) by, (1.74)

A similar strategy was used in [6], although the analysis there is more complicated due to the averaging
technique of the ‘patches’. In particular, the operators on ‘patches’ in [6] do not obey the exact commutator
relation [Hl:m, z’p] = 2, pbz,p’ and so the kinetic operator has to be handled by an additional
linearization argument.
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Note that in the same manner of the dispersion relation in (1.74), we also have

[Ne. bip] = Z [ceqchprep] = Z (g leq-chep] + e ¢ rep]eq)

qE€By qEBY,
= Z (cq (= C;—k{cq’ cpt+{cq C;—k}cp) +(- C*p—k{cz’cp} + {027C;—k}cp)cq)
qEBY,
=~ Z (‘Sq,pC;—k)cq = _C;—kcp =—brp (1.75)
qEBY.

forall k € Z2 and p € Ly. This means that Az plays the same role as the number operator in the bosonic
picture.

Bogolubov transformation I
We will estimate the contribution of high momenta separately and only diagonalize the effective operator
in (1.40) for low momenta. For this reason, we define a cutoff set

Sc=B(0,ky)NZ3, (1.76)
where y € (0, 1] will be optimized later. For a given kg, we then diagonalize only
Hlg= ) (2 DT Apbi by +2 D Ak pbty b+ H{;t) (1.77)
keSc pELy peL_y

and treat the remaining terms with k € Z3\Sc as an error term. As B (0, k%) N Z3 forms an exhaustion
of Z3, all terms are thus nonetheless diagonalized in the limit k — oo.

Inspired by the exact bosonic diagonalization (see Theorem 3.1 for details), we take the diagonalizing
Bogolubov transformation to be of the form e’ for a generator K : Hy — Hy defined by

K= Z ( Z Z (ep, Kie—q) (bk,pb—k,q - bfk,qb};,,)) , (1.78)

keSc \peLy geLl_x

where the transformation kernels Ky : €2(Ly) — ¢2(Ly), k € Zi, are defined by

NI—=

1
1 _1 1\2 _1
K :—Elog (hk2 (hk (hk +2ka)h,§) hk2) (1.79)
with g, P,, as defined in equation (1.42). With this choice, we find that

e’CHéffe"C ~ tr(Ex —hi) +2 Z <ep, Ekeq> b’,‘(ypbk,q) (1.80)

keScU(-Sc) ( P-q€Lg
for
Ey = e Kepye ke (1.81)

and by the commutation relation of equation (1.72), that

FlH, -2 Y Y bl by |e s, -2 > Y by b, (182)

keScU(-Sc) peLi keScU(-Sc) peLi
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so by the equations (1.77), (1.80) and (1.82), noting also that <ep, hkeq> =0p,qdk,p»

FVH . + Z H-kt ek

kin in
keScU(-Sc)
~H v > e Ec=h)+2 Y (e (Ex - hi)eq) bz’pbk,q) : (1.83)
keScU(-Sc) pP.q€Lli

On the right side of (1.83), the constant ¥ cs. u(—s.) tr (Ex — hy) captures correctly the leading
order of the correlation energy E..;. However, although E} is isospectral to

1
~ 1 1 1 1\2
Ex=hie ep? = (h,g(hk +2PVk)h,§) > Iy, (1.84)

the operator Ey — /iy is not non-negative. Thus the term2 3., .1, <ep, (Ex — hy) eq> b’,‘c’pbk,q —akind
of second quantization of E; — hy — cannot be ignored for the lower bound.

The Bogolubov transformation used in this part is analogous to that of [6]. It was proved in [6] that
if V is small, then the quantization of Ex — hx can be controlled by H}, , leading to the desired lower
bound on the ground state energy. In order to treat an arbitrary potential, we will instead utilize a second
Bogolubov transformation which effectively replaces E by Ey in (1.83).

Bogolubov transformation II
We define the second Bogolubov transformation e for a generator 7 : Hy — Hy defined by

J = Z Z (epsJkeq) by pbr.g, (1.85)

keScU(-Sc) p.q€Ly

where J; = log (Uy) denotes the (principal) logarithm of the unitary transformation Uy : £2(Ly) —
£?(Ly,) defined by

1 1\2 _1
Ukz(h,gezkkh,i) h,?e®k. (1.86)

This is precisely the unitary transformation which satisfies

1

1 1 1 Nz _
UKEU; = h}e *Kep? = (h,i(hk + 2ka)h,§) = Ex, (1.87)

as is easily verified. This transformation acts such that

IS (e,,,Ekeq>b};’pbk,q)e_‘7z > {epsEreq) by pbrgs (1.88)
P.q€Lly P-q €Ly

and thanks to the relation of equation (1.72), also

eI Hiw=2 D Dl Apbibip|ed HL =2 > Y Ak by ybip, (1.89)
keScU(-Sc) peELy keScU(-Sc) peLy
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so all in all,

T K| g k| ,-K, -7
e’ e~ | Hy, + Z Hi e e
keScU(-Sc)

Y wEch+H s > Y (e (Bu-he) by ybrg. (190)
keScU(-S¢) keScU(-Sc) p.q€Lk

As Ej — hy > 0, the last term can now be dropped and the energy lower bound concluded. The cutoff
Sc can be removed at the end without serious difficulties. On the technical level, the second Bogolubov
transformation is an important new tool to remove the smallness condition of [6], thus enabling us to
work with a significantly larger class of interaction potentials. In the independent work [8], the idea of
using the second Bogolubov transformation has also been introduced to refine the method in [5, 6].

Elementary excitations

The key ingredient to obtain all bosonic elementary excitations is the formula (1.60) in Theorem 1.4.
To prove this, note that Hef|,,—; commutes with Vg and the total momentum P = 3, | 73 pcj,cp, 50
we may restrict Heg to the simultanous eigenspaces of Mg and P, which are

{¥ e Hy | NeW =W, PY = kW} = span(b_,yes)per, = {bp(@)0rs | ¢ € LP(L)}.  (1.91)
It turns out that the mapping Uy : L>(Ly) — {¥ € Hy | Ng¥ = ¥, P¥ = k¥} defined by
Urg = by (9)rs, ¢ € L*(Ly) (1.92)
is a unitary isomorphism with the property that
Hettl pry=1 = U (RER)Us. (1.93)

Summing over different momenta k’s, we obtain the transformation U introduced in (1.62).

In summary, our approach is different from the previous works [24, 5, 6] in many aspects. On the
conceptual level, our direct bosonization method (i.e., working directly with the operators by ,, instead
of averaging them on ‘patches’) allows us to stick closely to the heuristic argument of the physics
literature and to obtain not only the ground state energy but also all bosonic elementary excitations, thus
leading to the first complete justification of the RPA in the mean-field regime.

Although our general ideas are very transparent, to realize the whole procedure on a rigorous basis,
we will need to develop several new estimates to justify all of the approximations made. In the rest of
the paper, we will show how to implement the proof strategy rigorously.

Outline of the paper. In Section 2, we prove some general estimates involving the kinetic operator
Hyin and bound the non-bosonizable terms. In Section 3, we review the theory of bosonic Bogolubov
transformations; in particular, we review how one may explicitly define a Bogolubov transformation
which diagonalizes a given positive-definite quadratic Hamiltonian. We then apply the bosonic theory
to our study of the Fermi gas where we implement the diagonalization procedure in the quasi-bosonic
framework. This is done by introducing the quasi-bosonic quadratic Hamiltonian in Section 4 and the
quasi-bosonic Bogolubov transformation ¢* in Section 5 (these notations mirror the exact bosonic
ones as closely as possible such that the bosonic theory is easily transferred to the quasi-bosonic
setting). In this way, the quasi-bosonic analysis reduces to that of a collection of exact bosonic quadratic
Hamiltonians plus correlation exchange terms — error terms which arise due to the deviation from the
exact CCR. In Section 6, we estimate the exchange terms, reducing the analysis of these to the associated
one-body operators of the bosonic problem. The one-body operators are studied separately in Section 7.
In this part, we will need several estimates of Riemann sums, which are collected in the Appendix.
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We complete the analysis of the transformation e in Section 8, where we prove that H,, and NE are
stable under the transformation ¢*. In Section 9, we introduce the second unitary transformation e
The analysis of this transformation is essentially similar to the first one, except that we require new
one-body operator estimates which are somewhat more difficult. Finally, we conclude the proofs of the
main theorems in Section 10.

2. Removal of the non-bosonizable terms

In this section, we collect several basic estimates concerning the operator Hy which can be obtained
without using Bogolubov transformations. Recall the decomposition (1.22)

Hy = Eps + H}, +kp'H\.  Ers = (Urs, HNUrs) - 2.1

We will bound the interaction operator H in terms of the kinetic operator Hy, and then prove a priori
estimates for eigenstates of Hy which are parts of Theorem 1.2.
Recall the following result from [6, Lemma 2.4] concerning the kinetic operator Hlim in (1.11).

Proposition 2.1. We have H|, > Ng with N given in (1.13).

Proof. Since |p|? is an integer for p € Z3, our assumption |By| = N implies that

inf [p|*>— sup |p|* > 1. (2.2)
peBE PEBF
Therefore, in (1.14), we can choose ¢ such that ||p|> — | > 1/2 for all p € Z7. m|

Next, we consider the bosonizable terms in Hi’m. The following result is a minor extension of [24,
Lemma 4.7] (see also [6, Appendix B] for a simplified proof).

Proposition 2.2. For all k € Z2, the operator By, in (1.24) satisfies that

E;;Ek < CkFHl’( Ekgz < CkF(Hli +|klkF),

in’ in

where the constant C > (0 is independent of k and k.

Proof. As argued in [24, 6], for any ¥ € Hy, it follows from the triangle and Cauchy-Schwarz
inequalities that

~ 2
||Bk‘{‘H = Z c;_kcp'l‘ < Z c;_kc,,‘l’” < ;Z /l;lp\/z Akp c;_kc,,‘P‘ , (2.3)
PELk €Ly PELy pEL

where Ax, = 5(|pI* = |p — k|?). Using (1.14) and Pauli’s exclusion principle [|cpllop < 1. [Ic} llop < 1.,
we find that

2 1 2
> An|epien®] =3 D (0P =t 1o = k2= 1) e ¥ 2.4)
pELk PELk
1 1 2
<3 2 PP =clllep P+ 5 Y 1o - k= 21|l
PELk pELk

1 1 1
3 2, P =atllep¥lF g 3 P —clley ¥ = 5 (. Hga¥)
pEBS PEBF

Thus, it remains to show that 3’ ,¢;, /lzlp < Ckp. For |k| ~ O(1), this bound was already proved in

[24, 6]. For completeness, we will establish this bound for all k € Z3 in the Appendix (Proposition A.2).
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Thus, in summary,
D* D 1 -1 ’
BiBi < 3 ( > /lk’p)H]Qm < CkpH],.
pELy

Then the bound for By Bz follows from the fact that

(B Byl = 1Ll = > €hep= D) cprchyy < Lil < ClK|KG.

PELk PELk
In the last estimate, we used |Ly| < C k% |k| for all k € Z3 (see Proposition A.1 for details).
For the non-bosonizable terms in Hi’m, it was proved in [5, Eq. (5.1)] that

D;Dy <4NE.

21

(2.5)

(2.6)

@.7)

However, this bound is not optimal for low-lying eigenfunctions (for which Ng ~ k). In order to

remove the non-bosonizable terms completely, we need the following improvement.

Proposition 2.3. For all k € Z2 and any 0 < A < ék%, the operator Dy in (1.23) satisfies
2
DDy < C (k7' A+ k3 (log k) Tk | (A + [k)NE + CA2NEHY,

for a constant C > 0 independent of k, kr and A.

o . 2
In applications, we will eventually choose A = k Fy /1k|* for some constant y € (0, 1/9).

Proof. Fork € Z: we write Dy = D}< + Di as in (1.24), namely,

1 * 2 *
D, = Z Cq-kCq> Dy = Z Cq-kCq- (2.8)
q€BrN(Br+k) qeBGN(BY+k)
By the Cauchy—Schwarz inequality,
DDy <2((DY)’ D} +(D})'D}). 2.9)
We will estimate (D}()*D}< in detail, with the estimate of (Di)*Di being similar. We have
(D,1<)*Dl = Z c;cp,kcz_kcq = Z (6p,qcp,kc;_k - cp,kcqc;cz_k)
P-qE€BFN(BF+k) P-q€BFN(BF+k)
= Z Cp—kCpy = 3 Z (cp_kcqcpcq_k +h.c.). (2.10)
pEBFﬁ(BF+k) ]),qEBFﬂ(BF+k)
Here, we used k # 0 so that ¢, and c*p anti-commute. By the definition of Ng in (1.13),
Z CpokCyy < Z cpch = Np. 2.11)

pEBpN(Bp+k) PEBF
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Moreover, by the Cauchy—Schwarz inequality, for all €, > 0, we get

+

* %
Z (cp,kcqcpcq_k + h.c.)
P-q€BFN(BF+k)

N =

IA
N —

Z (epcp_kcqc c A cq kcpc cq )
P-q€EBFN(BF+k)

IA
N =

(epCp_iCt _coct + €. corc’_ cpct)
pPep—ktpkCqCq T €p Cq-kCqiptp
P-q€BFN(BF+k)

1 ¥ - *
- Z (Epcp_kcp_k+eplcpcp)NE. (2.12)
pEBrN(Bp+k)

IA

By taking €, = 1, we obtain immediately (D,lc)*D1 <N, é, which, together with a similar bound for
Di, leads to (2.7). To improve on this, we have to choose €, differently.

Recall that in (1.14) we can choose { € [sup,,cp,. |p|2,infp53; |p|?] such that ||p|> —= £| > 1/2 for
all p € Z*. For any A > 0, we can split

Br N (B +k) =S, ;US; ... (2.13)
where

Sea={peBrn(Br+k) |max{|lp|* - ¢l llp - kI* = £} < 4},
Sk.sa=1{p € Be 0 (Bp +k) | max {||p|* - £|.|lp — kI* = ]} > 4} . (2.14)

Choosing €, = 1 for p € S,l< 2 and using [|c},[lop < 1, we get

-1 1
— Z (epc,,_kc‘;_k +€, c,,c;‘,) < |Sk,/l|' (2.15)
PESi 4

Choosing €, = v||p — k|2 = £|//lIp]* = ¢| for p € Sk . 1> We have

* -1 *
Z (epcp_kcp_k +e€, cpcp)
pes!

k,>A
1
= (lp = kP = Zlepicyy + 1P = Llepcs)
psZ VilpP = ¢l 1lp = kP = £ :
o 2NV2
< > <||p kP2 = Clep-rcyi + 1P - Clepcy) <~ Hisn (2.16)
peS1

Here, we used that among two factors ||p|*> — | and [|p — k|? — £|, there is at least one > A due to the
assumption p € S/ ST and the other one is trivially > 1/2. In summary,

* 1.0
(D)*Dy < |S; 4 WEg + CATTH), N (2.17)
Similarly, we have

(D3)'D? < |S? /llNE+C/l H/. NE, (2.18)
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where

Si,/l ={p € B5. N (BS +k) | max {||p|> = ¢l llp — kI* = |} < A}

The desired conclusion of D’;(D « follows from the bound
2 2.2
ISkl + 1741 < CIKIT' A+ k"3 (log kp) Tk | (A + |k])

whose proof can be found in Proposition A.4 in the Appendix.

2.1. Estimation of the non-bosonizable terms

23

(2.19)

(2.20)

Now we are ready to remove the non-bosonizable terms, namely, the terms involving operators Dy in

the decomposition (1.28) of the interaction operator:

Vik7! k7! e 1

1y _ k F F * * 2y

kg Hiy = 323 (Hint (27)3 |Lk|) + P kEZS Vi (Bka + Dy Bi + 2Dka) )
€Z; €73

2.21)

where H. i’;t is defined in (1.29). Moreover, for technical reasons, we will also impose a momentum cutoff

in the bosonizable terms. Recall the set S¢ in (1.76). Define

ka_l

— ’ k F

ExB = kFlHint - E (Hint - (2n)3 |Lk|)-
keSc

Proposition 2.4. Let 3, 73 Vi |k| < co. Then for all y € (0,1/9) in Sc, we have
+EnB < Ckl_;)//z (H]iin + k;:lNEH]im + kF).

Here, the constant C > 0 depends only on V (in particular, it is independent of k, kr and A).

We write X <Y for two operator inequalities X <Y and -X <.

Proof. For the bosonizable terms, by (2.6), Proposition 2.2 and Proposition 2.1, we can bound

< ZEZék +Ng < CkFHliin

+({B}, By} - |Li]) = i(zézék = D= ) cpaChy
PELk PELk

for all k € Z3. Moreover, by the Cauchy—Schwarz inequality,
+(By By + B_iBy) < |kI7' By B + k"2 By By < Clk|"*kp (H, + kr)
for all k € Z3. Combining (2.23) and (2.24), we find that

‘71(1671
k F
+ E (Him—(zﬂ)3 [ L]

keZ3\Sc

< C(Hfy+kr) Y Vilk|'?
keZ3\Sc
< C(H{yy + kp)kg?? " Vlkl.
keZ?
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For the non-bosonizable terms, by the Cauchy—Schwarz inequality and Proposition 2.2, we have

+ (BiDy + Dy By) < k2 ?|k|1B, By + K2 |k|7' DE Dy < Chy"PIk|H, + K 1k|7' DEDy, (2.26)

and hence,
= > Vi (ByDx+ DB+ DyDy) < Cky " PHY + Y Ve(kl Pk + )DLk, (227)
kez3 kez3

Let us decompose the sum on the right-hand side of (2.27) into the high-momenta |k| > k;/ % and the

low-momenta |k| < k%/ 2. For the high-momenta, from the simple bound (2.7), we get

D VP + )DDk < CRPNE S Vilkl. (2.28)
keZd, |k|>k) kez3

For the low-momenta, using Proposition 2.3 with A = k7. ! |k|?, we have

DDy < C (K7 + kLI (log ki) F il + k32 (tog k) Fi ) [KINGs + Che? P kI

in’

(2.29)
and hence,
( 3)2 3
Z VkD D, <C ZVk|k| k (lngF)3NE+k NEHk
kez3, k| <k} kez?
< Ck"? (kpNg + NeHy,) (2.30)
for all y € (0, 1/7). Moreover, using Proposition 2.3 with 1 = k?/|k|4, we have
1 ¥
Kk DDy < € (k‘p + kS (log k) Sk + k2 1K P2P (log kF)ikff) |k NE
+ kP INEHY,, (2.31)

and hence,

Z Vik? k17! D} Dy <C(ZV|k|

( K27 (log k) I N + ko NigHY, )

kez3, |k|<k}? kez?
< Ck* (ke Ng + NgHY, ) (2.32)
for all y € (0, 1/9). Inserting (2.28), (2.30) and (2.32) in (2.27) and using Proposition 2.1, we conclude
that
k—l

D Vi (ByDy+ DBy + DyDy) < Ckp (Hyy, + ki Ny, ) (2.33)

(27T)3 .

keZ;
for all y € (0, 1/9). The conclusion follows from (2.25) and (2.33). O
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3. Overview of bosonic Bogolubov transformations

In this section, we review the general theory of quadratic Hamiltonians and Bogolubov transformations
in the exact bosonic setting. Later, in the remainder of the paper, the analysis here will be adapted to
handle the quasi-bosonic case where error terms have to be estimated carefully.

The study of bosonic quadratic Hamiltonians goes back to Bogolubov’s 1947 paper [10] where he
proposed an effective Hamiltonian to describe the excitation spectrum of weakly interacting Bose gases.
An important property of quadratic Hamiltonians is that they can be diagonalized by suitable Bogolubov
transformations; see, for example, [2, 31, 16] for recent results in the infinite dimensional cases. For
our application, we will only focus on the situation where the one-body Hilbert space is real and finite
dimensional. Historically, the diagonalization problem in finite dimensions can be solved abstractly by
using Williamson’s theorem [43]. We refer to [27] and [16, Section 2] for systematic discussions on the
finite dimensional case.

In the present paper, we will need an explicit construction of the diagonalizing transformations so
that we can adapt this to the quasi-bosonic operators. Such an explicit construction can be found in [23],
which was also used in the fermionic context in [5, 6] and will be recalled below. Here, we will offer a
slightly different treatment of Bogolubov transformations, in that we will view quadratic operators on
Fock spaces as the fundamental object of study rather than the creation and annihilation operators.

Notation. We will denote by V a finite-dimensional real Hilbert space and let n = dim (V). The bosonic
Fock space associated to V is

) N
Fr(V) = @@ (3.1)
0 Sym

where ®§;m V denotes the space of symmetric N-fold tensor products of V. To any element ¢ € V,
there are associated two operators on F* (V): the annihilation operator a(¢) and the creation operator
a* (). These are (formal) adjoints of one another and obey the canonical commutation relations (CCR):
forany ¢,y € V,

l[a(e).a ()] = [a"(@).a” )] =0, [alg).a” )] ={e.¥). (3.2

Additionally, the mappings ¢ +— a(¢), ¢ — a*(p) are linear.®

3.1. Quadratic Hamiltonians

Similarly to how we can to any ¢ € V associate the two operators a(¢) and a*(¢), we may also associate
two types of symmetric operators on F* (V) to any symmetric operator on V. For the definition, we let
(e;)[, denote an orthonormal basis of V. Given any symmetric operator A : V — V, we then define the
operator Q1 (A) on F* (V) by

n
Q1(A) = Z (ei, Aej) (a”(ei)ale;) +a(ej)a*(ei)), (3.3)
i,j=1
and likewise, for any symmetric operator B : V — V, we define the operator O, (B) by

n

02(B) = Z ei,Bej) (a*(e;)a”(e;) +alej)a(e;)). 3.4

i,j=1

oIf V is a complex Hilbert space space, the mapping ¢ +— a(¢) is anti-linear which complicates the exposition. In our quasi-
bosonic application, although the relevant Hilbert spaces are complex, all relevant operators have real matrix elements, and hence,
it suffices to restrict to the case of real spaces as in this section.
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These definitions are independent of the basis chosen, and we can write equivalently
Q1(4) = Y (@' (Aep)ale;) +ale))a’ (Aey) (3.5)
i=1

02(B) = ) (a” (Bey) a*(e;) +ale;)a (Bey)) .

i=1

Thus, for real, symmetric A, B : V — V, we can define a quadratic Hamiltonian on F* (V) by

H = Q1(A) + 0:2(B). (3.6)

Note that by the CCR, we may express Q(A) as

01(4) =2 )" (e, Aej)a*(eiale)) +tr(A) = 2dT'(A) +tr(A), (3.7)

ij=1

where dI"(A) denotes the second quantization of A : V — V. Sometimes in the literature, in particular
in infinite dimensions, quadratic Hamiltonians are defined by dI"(A) + Q»(B), which is the same to our
definition up to the constant tr(A). Here, we prefer to use Q(A) instead of dI"(-); the reason for this is
that the relations of Proposition 3.4 below are symmetric in the Q’s.

Note that the basis-independence is a nice property of the real space setting. In general, if V is a
complex Hilbert space and B is symmetric, then the definition of Q,(B) in (3.4) may depend on the
basis. In fact, we can obtain a basis-independent formulation in the complex case, but the mapping
B — (Q>(B) is not to be defined for symmetric linear operators B, but rather symmetric anti-linear
operators B to make up for the fact that in the complex case the assignment ¢ — a(y) is also anti-
linear. This is unimportant for our application, which is why we only consider real Hilbert spaces in this
section, for the sake of simplicity.

3.2. Bogolubov transformations

In this subsection, we review an explicit construction of a Bogolubov transformation U : F* (V) —
F* (V) that diagonalizes the quadratic Hamiltonian H = Q1(A) + Q»(B), namely,

UHU* = 0, (E) (3.8)

for areal, symmetric operator E : V — V. Such a construction is well known; see, for example, [16] for
a recent review. We consider a unitary transformation &/ = ¢* where K is an anti-symmetric operator
on F* (V) of the following form:

K= % i (ei.Kej) (a(en)ale;) —a(ej)a"(er)) = %2(61(1@061(6:‘) —a’(ep)a’(Kep)). (3.9)

i,j=1

Here, K : V — V is a symmetric operator (called the transformation kernel) and (e;)!, denotes any
orthonormal basis of V (as with Q1 (-) and Q,(-) this definition is independent of the basis).
In this subsection, we discuss the following:

Theorem 3.1. Let A, B : V — V be real, symmetric operators such that A + B > 0 (namely, A+ B > 0
and A — B > 0). Consider the Bogolubov transformation ¢’ where K is given in (3.9) with

K= —%mg((A—B)-% ((A —B)%(A+B)(A—B)%)% (A—B)-i).
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Then
¢“(Q1(A) + Q2(B))e™ = 01(E) = 2dT(E) + t(E),
where
E=e¢X(A+B)eX = K(A-B)e XK.

Moreover, the diagonalizing K is uniquely determined by this.

In the following, we will prove Theorem 3.1 by using a generalization and simplification of the
argument used in [23, 5]. We will first discuss the action of the Bogolubov transformation with a general
kernel K and then explain where the diagonalization condition comes from.

Let us start with some basic properties of K.

Proposition 3.2. For any symmetric operator K : V. — V, the operator K defined by (3.9) is an anti-
symmetric operator on F* (V) and obeys the commutators

[K.a(p)] =a” (Kp), [K.a"(¢)]l=a(Kg), VeeV.

Thus, [/C, -] acts on the creation and annihilation operators by ‘swapping’ each type into the other
and applying the operator K to their arguments. From this, one can now deduce that the unitary
transformation ¢ acts on the creation and annihilation operators according to

e“a(@)e™ = a(cosh (K) ¢) +a* (sinh (K) ¢) (3.10)
e a*(p)e™™ = a* (cosh (K) ¢) + a (sinh (K) ¢) ,

since by the Baker-Campbell-Hausdorff formula,

Fa)e™ = aly) + 11 1K al@)] + 57 K. K. a(@)]] + 55 [ K K a(@)]]] ++-

— 1 * 1 2 1 % 3

—a(¢)+ﬁa (Kso)+5a(K go)+§a (K 4,0)+~~~ (3.11)
= 11(2 * IK 1K3

=a (p+5 o+ |+a F (,0+§ (70

=a (cosh (K) ¢) + a* (sinh (K) ¢),

and the identity for e a*(p)e™* then follows immediately by taking the adjoint.

Now let us consider eXQ;(-)e™™ and ¢*Q,(-)e ™. For this, we will first make an observation on
their structure which will greatly simplify computations: namely, we note that the operators Q1 (A) and
0>(B) are both of a ‘trace-form’ in the sense that we can write, say, Q1(A) = 2.i, g (e;, Ae;), where

q (x,y) =a” (y)a(x) +a(x)a” (y) (3.12)

defines a bilinear mapping from V x V into the space of operators on F* (V), similar to how the trace
of an operator T'is tr(T) = 3.1, q (e;, Te;) for g (x,y) = (x, y). This abstract viewpoint is worth noting
because all such expressions are both basis-independent and obey an additional property, which for
the trace is just the familiar cyclicity property. Since we will encounter such ‘trace-form’ expressions
repeatedly during computations throughout this paper, we state this property in full generality. In the
following, we take sesquilinear to mean anti-linear in the first argument and linear in the second (we
note that in the present real case a sesquilinear mapping is of course just a bilinear mapping, but stating
it in this generality will prove useful later).
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Lemma 3.3. Let (V, (-, -)) be an n-dimensional Hilbert space and let q : V XV — W be a sesquilinear
mapping into a vector space W. Let (e;)!L| be an orthonormal basis for V. Then for any linear operators
S, T :V — V, it holds that

Z q(Se;,Te;) = Z q (ST e;, ;).
=1 i1

As a consequence, the expression ).\, q (e;, e;) is independent of the chosen basis.

Proof. By orthonormal expansion, we find that

Zq(Se,,Te ) —Zq Se,,Z(eJ,Te > =Zn:q(zn: (Tei,eJ-)Sei,ej)

j=1 j=1 i=1

=iq( i(euT ej euej) Zq(ST ei,e;). (3.13)
j=1 1

i=

The basis independence follows from the fact that for all unitary transformation U : V — V,

n n n
ZQ(Uei,Uei) =ZCI(UU*€i,€i) =ZCI(€i,€i)~ (3.14)
prt i1 i1

O

The lemma thus allows us to move a mapping from one argument to the other when under a sum,
which will be immensely useful when simplifying expressions. As mentioned, this can indeed be seen
as a generalization of the cyclicity property of the trace, since the lemma implies

n n n n
tr (ST) = e;,STe;) = e;,Te;) = T e;,e;) = e;,TSe;) =tr (TS), .
(ST) (ei, STe;) (s* ) (8T e;, e:) ( ) =t (TS) (3.15)
i=1 i=1 i=1 i=1

but it is important to note that cyclicity is not a general property of trace-form sums; the assignments
A Q1(A) and B — Q>(B) do not obey such a property.
With the lemma, we can now easily derive the commutator of /C with Q1(+) and Q»(-):

Proposition 3.4. For any real, symmetric operators A,B,K : V — V, the operator K defined by
equation (3.9) obeys the following commutators on F*(V):

[K,01(A)] = 02 ({K, A})
[K,02(B)] = 01 ({K, B}) .

Proof. We compute using the commutators of Proposition 3.2 that
n
(K, 01(A)] = Z ([K,a"(Aei)a(ei)] + [K,a(er)a” (Ae;)])
i=1

- Z(a*(Ae,-) [K,a(e;)]
i=1
+[IC, a* (Aey)] alei) +ale) [K,a* (Ae)] + [K, a(er)] a*(Ae;))

= Z (a*(Ae;)a”(Ke;) + a(KAe;)a(e;) +a(e;)a(KAe;) +a”(Ke;)a™(Ae;)). (3.16)
i=1
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As the assignments ¢, ¥ — a(p)a(¥), a*(p)a* (¥) are bilinear, we can apply Lemma 3.3 to see that

[K,01(4)] = Zn: (a* (AK"e;) a*(e;) +a(e;)a ((KA)" e;) +a(e;)a(KAe;) +a* (KA e;) a*(e;))
i=1
znl (a* (AKe;) a*(e;) +a(e;)a (AKe;) + a(e;)a(KAe;) + a*(KAe;)a*(e;))
i=1
= Zn: (a* ((AK + KA)e;) a*(e;) + a(e;)a ((AK + KA)e;)) = 02 ({K, A}), 3.17)
i=1
where we also used that A and K are symmetric. The computation of [/C, Q>(B)] is similar. O

Note the similarity between this result and that of Proposition 3.2. Again we see that that [/C, -] acts
by ‘swapping the types and applying K to the argument’, although now the relevant types are O (+), and
Q2(+) and the application of K is taking the anticommutator.

‘We can now appeal to the Baker-Campbell-Hausdorff formula again to conclude that

FOIUAT = 01(A) + - [K,01(A)] + 51 (K, 1K, Q1 ()] + 57 1K, [K, 1, Q1 (4)]]] +
= 01(A) + 1,02 (K, AN + 3,01 (K. (K, A}) + 5,02 (1K, (K. (K, AV ++-
=Qi A+2l!{K,{K,A}}+~~-)+Q2(%!{K,A}+%{K,{K,{K,A}}}+--- , (3.18)

but to succeed, we must identify the sums of these iterated anticommutators. First, we note that we
can rephrase this in a manner closer to that of equation (3.10) for eXa(p)e ™. One may view the
anticommutator with K as a linear mapping A — {K, A} on the space of operators on V, 5 (V) — denote
this mapping by Ax : B (V) — B (V) (i.e., Ak () = {K, -}). Then we may phrase the above identity as

e®01(A)e™ = Q) (cosh (Ak) (A)) + Qs (sinh (Ax) (A)) (3.19)
and likewise

X0, (B)e™ = Qs (cosh (Ak) (B)) + Q) (sinh (Ak) (B)) (3.20)

so that the arguments again involve hyperbolic functions of linear operators, but now acting on B (V)
rather than V itself. We then note the following ‘anticommutator Baker-Campbell-Hausdorff formula’:

Proposition 3.5. Let (V,{(-,-)) be an n-dimensional Hilbert space, let K : V — V be a self-adjoint
operator and let Ak (1) = {K,-} : B(V) — B (V) denote the anticommutator with K. Then for any
linear operator T : V — V,

> 1
A E m K+ K
e K(T) = %'AK(T) =e Te
m=0
Consequently,

cosh (Ax) (T) = %(eKTeK +e KT1e7K),

sinh(Ag )(T) = %(eKTeK —e K17k,
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Proof. Let (x;)!, be an eigenbasis for K with associated eigenvalues (4;);_;. Denote P; ; = |x;){x;|,
namely, P; jx = (x;,x)x; for all x € V. It is well known that for any orthonormal basis (x;), of V,
the collection (P;, f)?,j:l form an orthonormal basis for (B (V), (-, -)us)- Moreover, for any x € V and
1 <1i,j < n, by self-adjointness of K,

Ak (Pij)x ={K,P;;} x = (xi,x) Kx; + (x;, Kx) x; = (x;, x) ;x5 + (Aixi, x) x; (3.21)
= (/li +/lj) (xi,x)xj = (/li +/lj) Pi,jx.

n

Thus, {P; ;}] ,_, an eigenbasis for Ax with associated eigenvalues (A + /lf)i,jzl'

Hence, it suffices to verify the identity e”% (T) = K TeK with the eigenbasis (P, j)?jzlz
eAK (pl.’j) X = e/li+/le[.’j = it (xi,xyx; = (exix[_’x> eajxj - (er,-,x> erj (3.22)
= <x,~,er> erj = eKPi,jer.

The statements regarding cosh (Ag ) and sinh (Ag ) follow from the identities

cosh(x) = % (e*+e™™), sinh(x)= % (e*—e™), and (-Ag)=Ak. (3.23)

By these formulas, we thus deduce the quadratic operator analogue of equation (3.10):

1 1
ef01(A)e™ = EQl(eKAeK +e Kae ™)+ EQz(eKAeK —eKae™)

1 1
e~ 0r(B)e™* = EQl(eKBeK —eKBe ™Ky 4 zQz(eKBeK +e KBe X)), (3.24)

Diagonalization condition

We can now finally describe how to diagonalize a quadratic Hamiltonian using a Bogolubov transfor-
mation of the form e*. By the transformation identities above, we find that under e, the quadratic
Hamiltonian H = Q1 (A) + Q»(B) transforms as

1 1
e“He ™ = EQl(eKAeK +e KAy 4+ EQz(eKAeK - e KAe™K)
1 1
+ le(eKBeK — e XBe™K) + zQz(eKBeK + e KBe™X)

= %Ql (X (A+B)eX +eK(A-Be )+ %Qz(eK (A+B)eX — e K (A - B)e™X).

(3.25)
Therefore, the diagonalization condition on K is
eX(A+B)eX = e X(A-B)e K. (3.26)
If we can find such a K, then
“He™ = 0(E) =2dI(E) + tr(E), (3.27)
where
E=eX(A+B)eX = e X(A-B)e K. (3.28)

There remains the question of existence and uniqueness of such a K:
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Conclusion of the proof of Theorem 3.1. Write AL = A + B > 0 for brevity. Then we may write the
diagonalization condition as

e KA K = A, (3.29)
1
Multiplying by A2 on both sides yields
1 1 1 1 1 1
(A2e2KAZ)? = A2¢2K A 2K A2 = A2A,A2, (3.30)
which is equivalent to
b2k b (adaadyh 2k _ b adaabyiach
A2¢2KA2 = (AZA,AZ)2, namely e 2K = AT (A2A4,A2)7AZ2, (3.31)

This implies the existence and uniqueness of the diagonalizing K as the operator exponential is a
bijection between the real, symmetric operators and the real, symmetric, positive-definite operators. O

4. The quasi-bosonic quadratic Hamiltonian

Now we turn to the quasi-bosonic setting. We start by casting the bosonizable terms H,, + Xxcs,- Hi’fn,

which we encountered in Section 2.1, into a form which closely mirrors the form of the bosonic quadratic
Hamiltonians that we considered in the preceding section.

4.1. Quadratic Hamiltonian

Let us define the pair excitation operators
bip =CpyCp, by, =Cpcpr, k€ 73, pelLg. 4.1

We remark that in contrast to the bosonic case, the fermionic creation and annihilation operators are
bounded (in fact, ||cp, o llop = llc p = 1), and therefore so are the operators b}, » b p.

Then H¥

int

*p,(T ”O
in (1.34) is exactly given by

ka_l ka_l

k _ F * * F % *

Hint - : 2(2”)3 (bk,pbkvq + bkvqbk,p) + : | 2(27'[)3 (b—k,pb—k,q + b—k,qb—k,p)
P.q€Ly pP.qeLl_i

Vik7!
’ p;k quL_k 2(1(2—7:;3 (bz,pbik,q + b—k,qbk’p)

Viki' (L
+ Z Z 2(2—”)3(b—k,pbk,q+bk,qb—k,l7)' (42)
peL_i gLy

Thus, the natural one-body Hilbert space associated to Hi/;t is £2(Ly; U L_g). To free us from having
to explicitly write sums over L; and L_; separately, we introduce some more notation. First, we will
denote this union of lunes by

LE=Ly ULy, CC(LE)=0(LyULy)=0CLy) @ (Loy), keZl. 4.3)
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Here, we used the fact that Ly N L_; = @ for any k € Zi, since if p € Ly N L_g, then
2 2 2 2 2 2
2p|" = |p = kI” + |p + k|7 =2|p|” + 2|k|” > 2|p]",
which is a contradiction. It is also convenient to introduce the ‘bar-notation’

= k,p pelLg - p—k pelLg
’ —k,p pely’ p+k pel

4.4)

to automatically encode the appropriate sign of k depending on p € Ly = Ly U L (this will allow us
to avoid expanding all our terms on a case-by-case basis when this is irrelevant).

In analogy with the definitions (3.3) and (3.4) we now define, for any k € Z3 and symmetric operators
A,B: fz(Li) — fz(Li), the quadratic operators Q’I‘(A), le‘(B) :HN — Hn by

0 ()= ) (epAeq) (bibrg+bigbi).

P-q€Ly;
kB = ) (ep,Beq)(b;pb%qmab@). (4.5)
P-qEeLy

In order to cast H fn as given by equation (4.2) into this form, we must identify the relevant operators A

and B. Define the (un-normalized) rank-one projection P, : €>(Ly) — €*>(Ly) by

Viky!

e Z ep € (L), (4.6)

peELy

Py, =vi)(vkl, vk =

where (ep,)per, denotes the standard orthonormal basis of £2(Ly). Put differently, the matrix elements

of P, are <ep,ka eq> 2Gn )3ka for all p, g € Li. Next, we define the operators

. p2 + 2 + _ Pv 0 _ 0 Pv
appie i - e, ap=(T ) m=() @)

with respect to the decomposition fz(Lf) = (?(Ly) ® £*(L_y) and the identification £>(Ly) = €>(L_y)
(under e, > e_p).
Thus, the operator HX

it 18 concisely expressed as

1nt Qk ( ) + Qi (Bl?) . (48)

It remains to consider the kinetic operator. The equality (1.74) bids us to think of H}, as it were

Hiy~ 20 3 (1pP =10 = kP) by by

kez3 PELy
= Z (Z (|P|2— |P_k|2) bz’pbk,p'i' Z (Ipl2 |p + k| ) rpb- kp) 4.9)
kez3 \PeLy peL_y

in an appropriate sense. To put this in the same framework as HX , let us introduce (for every k € Z3)

int”
the operator Ay : £2(Ly) — £>(Ly) by

1
hrep = Ag,pep,  Ar,p = §(|P|2 —|p—k%. (4.10)
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Using again the identification ¢>(Ly) = ¢>(L_) (under e p > e_p), we define the operators hff :
C2(LE) - £*(Ly) by

hry O
® _
hk‘(o hk)’ (4.11)
Then we can rewrite (4.9) as
Hiy~ (Q’f(h,?) —2tr(hk)). (4.12)
kez?

Recall that S¢ = B (0, k};) N Z3 for an exponent 1 > y > 0 which is to be optimized over at the end.
As far as the lower bound is concerned, we may replace }x ¢z, by Xxes,. (the upper bound is easier and
will be explained separately). In summary, we arrive at the following quasi-bosonic expression for the
bosonizable terms:

Hi+ > Hi~ 3 (052 + AP) + 05 (BP) - 2t(h)). (4.13)

keSc keSc

Note that unlike the bosonic case, the operators on the right side of (4.13) are bounded.

4.2. Generalized pair operators

For every k € Z3 and ¢ € Zz(Li), we define the operators

bi(p) = Z (go,ep>bm, by (p) = Z (ep,<p> b:,p. (4.14)

PEL; pEL;
They obey the quasi-bosonic commutation relations (for k,! € Z3 and ¢ € £*(L¥), y € £ (LF))

[bi (@), b ()] = [br (). b; (W)] =0,
[6k(0). b ()] = 01 . ) +Er (039), (4.15)

where the correction term is
er (g3 y) = Z Z (p.ep)(eq¥) e (WE)

PEL; qeLf

e (k,p; l q) =- (5p,qcﬂci,fk+ 6ﬁ’ﬁczcl)) . (4.16)

We simply have by (e,) = bﬁ and the quadratic operators in (4.5) can be expressed as

0f(A) = >\ (bi(Aep)bi(ep) + bi(e,)b)(Acy))
peL;

05(B) = > (b (Bep) by (ep) + bi(ep)bi (Bey)) (4.17)
peL;

in analogy with equation (3.5). In order to justify the quasi-bosonic interpretation, we need rigorous
estimates for the correction term in (4.16). Let us start with the following:
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Proposition 4.1. For all k € Z3 and ¢ € fz(Lz), it holds that ey i (¢, ¢) < 0, namely,

bi(@)bi(¢) < bi(@)bi(@) + el

Note that the observation of the error term & ; being non-positive also appeared in [5, Proof of
Lemma 4.2] in the context of different bosonic operators.

Proof. We expand the term

exk (@59) = Z <‘P’ ep> <eq’ﬁp> € (Hﬂ)

P-qeL;
= Z (e ep) (eq. 0) (6p,chfkc*pfk+ 6ﬁ’ﬁczcl))
P-q€Ly
== > Meme) cpmcig= D Srmamleen)(eae)cier  @I18)
pELIf pqeL+
<= D) Srarleen) (eqe)ciep.
P-q€L;

We treat the terms of the last sum on a case-by-case basis according to which of Ly and L_g, p and ¢

lie in: if p and ¢ lie in the same lune, then 6ﬁ,qfk = 0 psk,q7k = Op,q and so

( Z Z ) kK 90’ ep> <eq":"> CqCp = Z |<ep,<p>|2 ¢pep 2 0. (4.19)
,q€Li  p,qel g peL;
However, by the Cauchy—Schwarz inequality,

(3 %0 3 3 s ) )i

pPE€Lkx g€l  p€L-k q€Lli

1
= ( O 2t 2 2|5 maml (een) Pepep + 1 (equ0) Peeq)  420)
pPE€Lx g€l  peL-x q€Lli
< Z |<ep, go)’z cpep = A.
peL;
We thus conclude that g¢ (¢, ¢) < 0 as claimed. O

Next, we have the following:

Proposition 4.2. Forall k € Z3, ¢ € fz(Li) and ¥ € Hy, it holds that

15k (@)l < llell V(Y. NEY), < lell V(P (1 + NE) P).

The bounds here are similar to [5, Lemma 4.2]. Recall that in our quasi-bosonic setting the excitation

number operator
N = Z chep = Z cpch 4.21)
PEBL. PEBF
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plays the role that the usual number operator N does in the exact bosonic case. Thus, Proposition 4.2 is
the analogue of the well-known bosonic estimate

lla(@)Pll < llel VP NY), - lla™ ()Pl < llell V(¥, (1+N) ¥). (4.22)

Proof. By the Cauchy-Schwarz inequality,

2
Il = || 3 (p.en) bz ¥l < |3 Keven)y| 2 o
]JEL;f peLi peLi
<ol | D llep®l < ligl V(¥ NeW). (4.23)
PeLy
The second bound follows from the first and Proposition 4.1. m}

We remark that the above estimate is also valid for ¥ € H, when M # N, provided N is understood

*

as Y pepe CpCp acting on Hyy (in (4.23) we used L;; C B.). One must be precise here as the identity
Ng = peBy € pc;‘, does not hold on H,,. In fact, the estimate also holds if Mg is understood as

2 peBy CpCp» up to an additional factor of V2 due to the necessary overcounting of the holes,” namely,

from Hbﬁ‘I‘H = c’;_kcp‘I’H <

2
1Bl < llgll (| 3 [ < Vgl
p
PeLy

This is a point that we must consider, since below we will also encounter expressions such as Hb (p)c p‘P”
for ¥ € Hy (so that ¢,¥ € Hy_1). For this, we denote by ngfl) : Hy-1 — Hn_ and ./\/'gl) :
Hn+1 — Hn+1 the operators

Né_l) = Z c;cp, ngﬂ) = Z C‘,,C}:. (4.25)

p EB; PEBF

C

* k‘PH with p — k € Bp, we get
e

v, ¥). (4.24)

*
> ey

pEBF

This choice is motivated by the following identities:

Lemma 4.3. For all p € B$, and q € Bp, it holds that

-1 -1
/\/Ec’;,:cj,Né )+c*p, c,,/\fé )c;‘,SNE,

Ngcg = cqj\/grl) +cg, c;J\/é+l)cq < Ng.
Consequently,
Z c:,J\/é_l)cp =Ng - Ng = Z cp/\/'éﬂ)c;.
PEB peBF
Proof. This follows directly by the CAR, as for all p € BS,,

Necy= 3, cueacy= 3, cocyea+ D, (colea eyt —{ehcpheq) = N vep @26)

qEBY, qEBY, qE€BY,

7While Ly N L_j = 0, it is generally the case that (Ly — k) N (L_g + k) # 0 (a single hole state may be ‘shared’ by both
lunes), so when estimating in terms of a single sum over p € B, a factor of 2 is often necessary.
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Consequently, using ||cp[lop = 1 and [Ng, cpcpl =0, we have

Ni 2 Ngcjep :c;J\/’é_l)cp+c’;,cp > c*p./\/é_l)cp. 4.27)
Likewise, for all ¢ € Bf,

NEecg = Z CpCpCq = Z cqcpCp + Z (cp {c;,cq} - {cp,cq}c;) = cq./\/é+1) +cg, (4.28)

pEBF pEBF pEBF

% +1
and hence, N > ch\/' é )cq. Moreover,

Z c:,j\/é—ncp: Z (NEc*p—c*p)cp:/\/%—NEz Z (Necp —cp) )

PEBY. PEBY. PEBF
- Z epNIDer, (4.29)
PEBF

O

In some cases, it is important to refine error estimates by using the kinetic operator H/, rather than
NE. We can implement the kinetic estimate of Proposition 2.2 in the generalized setting:

Proposition 4.4. For all k € Z3, ¢ € t*(Lf) and ¥ € D (H}, ), it holds that

1be @I < [[(2)7% o (2. 1, %), (7] < [[(2)7F | (w1, ) + gl 12

Proof. We start by applying the Cauchy-Schwarz inequality

2
ok @ ¥l = > (pvep) b ¥| < \/Z P e,,)w Yol @
PEL} PEL}

peL;

As the vectors (e)per: obey hie, = A€ p» We recognize the first sum on the right-hand side as

> A een) = (0. (19) " ) = [0rg) 90“2. (4.31)

PEL}

For the second sum, we have by equation (2.4) that
2 kS 2 * 2 ’
> b = X s epien¥| + D Ak ||puen| < (e ). @32
peLIf PELy pEL_i

which implies the first claim. The second bound follows from the first and Proposition 4.1:

b*,;(go)\PHsJ<‘P, H(h/ef)_;éﬂ < [(n) 7" | o g, ) + ol 1 @.33)
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4.3. Preliminary estimates for quadratic operators

In this subsection, we provide some basic bounds on the quadratic operators Q’l‘ (A) and Qlf (B) defined
in (4.5) for any k € Z3. First, for Q¥ (A), we can normal order as follows:

OF(A) = D" (2bi(Aep)biley) + [bi(ep), by (Aep)])

PeLy
=2 > by(Aep)bilep) + Y {ep.Aey)+ D erk (eps Aey) (4.34)
peL; peL; peL;
=20K(A) +tr(A) + ex(A),

where for brevity, we have defined the notation

Of(A) = D bilAep)brlep), ex(A)= ) ek (epiAey). (4.35)

peLy peL;

The term Q]f (A) plays the same role of dI"(A) in the exact bosonic case, whereas gy (A) is a correction
term in the quasi-bosonic case.

Proposition 4.5. For all k € Z3, symmetric A : t’z(Lt) — {32(Lt) and ¥ € Hy, it holds that

(%, 0K (A) )] < l|Allp (. NEY)
(P, . (A)P)] < 3| Allop (¥, NE') .

If furthermore, A > 0, then also Q’f(A) > 0.

Proof. Let (x;); be an eigenbasis for A with eigenvalues (4;);. Noting that the mapping x,y
by, (Ax) by (y) is bilinear, we may invoke Lemma 3.3 (the part of basis independence) to write

0% (A) = Z bl (Ax;) by (x;) = Z_ Aeb’ (xi) by (x;). (4.36)

Clearly, if A > 0, then all A; > 0, and hence, Q’f(A) > 0. In general, we always have |4;| < [|A||g,, for

all i. Hence, using Lemma 3.3 again and bk pbﬁ < cpcp, We have

£01(A) < llAllop ), bi ()b (xi) = 1Alloy D) bi—bry < Allop D, cpep < IlAlop N
i

PEL} peLy
(4.37)
Similarly,
ter(A) =+ Z ik (xi Ax;) =+ Z A&k (xi5x;)
7 7
< ~lAllop Zsk,k (xi3x;) = =[|Allop Z erk (epsep), (4.38)
i

PEL;
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where in the first inequality we used the fact that e¢_x (x;;x;) < 0 as shown in the proof of Proposition
4.1. Using ex x (ep; ep) = e(k, p; 1, q) and the definition (4.16), we get

- Z g(m,m) = Z (cﬁc;_k+c;cp) <2 Z cpCp + Z cpep =3NEg, (4.39)

pELi PELi PEBF PEBY.

which implies the desired claim. O

From these results and equation (4.34), we immediately obtain the following:

Proposition 4.6. For all k € Z2, symmetric A : fz(Li) - {’Z(Li) and ¥ € Hy, it holds that
(1. (QF(4) - uw(a)) )| < 511 Allgp (2. N)

Next, we turn to Q% (B).

Proposition 4.7. For all k € Z3, symmetric B fz(Lz) - fz(Li) and ¥ € Hy, it holds that

(W, Q5 (B)¥)| < 21IBllys V(¥, (1 + Ng) W) (¥, NeW) < 2|Bllys (¥, (1+Ng) P).

Proof. We have (using that the by operators commute)

(¥, QI;(B)T> = Z (¥, (b} (Bep) by (ep) + bi(ep)bi (Bey)) ¥)
PeEL;

=2 > Re(bj (Bep) W, bi(ep)¥), (4.40)
pEL;

so using the estimates of Proposition 4.2 and the Cauchy-Schwarz inequality, we conclude that
(.otmw)<2 Y |

by (Bep) || [biep)¥]| < 2V, T+ N ¥y ) [Bey | |or5%|
peL; pPELE

NN D [ el 3 [
peL: peLy

<2||Bllus (¥, (1 + NE) ¥), (4.41)

where we again used that ||lePH < HcP‘PH O

Kinetic estimates for quadratic operators
Finally, let us improve the estimates in this subsection by using the kinetic operator H}, instead of the
number operator Ng.

Proposition 4.8. For all k € Z3, symmetric A : (*(LY) — (*(LY) and ¥ € D (H]. ), it holds that

(%, 05 (w)] < |(ng) 4 (1)

Op <l{1’ H];inqj> .

Proof. Let (x;); be an eigenbasis for (hf)‘%A(hff)‘% with eigenvalues (y;);. By Lemma 3.3, we then
see that we may write Q]f (A) as
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~ 1 _1L _1 1
0k (A) = Z by (Axy) be(xi) = b ((12)* ()7 A ()7 (1) x1) bi(x)
1 l _1 1
- Zb* ()% ()2 A (12)* i) b (1) ) (4.42)
1 1
= > iy () ) b (1) i)
and so we can estimate

(¥, 0Y(4)P)] <

max_ i

= |)<h5?>‘% A@g)

A (R PN (B R R
¥, Z by ((hl?)% Xi) b ((h;?)%x,-) ¥).

Applying Lemma 3.3 again, we also see that

2 (681w (0501 ) = 37 0 <<h@> er) e (019)F )

peL;

Z Ay (4.44)

peL;

so by equation (4.32), we obtain the desired bound of

(w0t yw)| = [(n)F 4 () H| (v, ). (4.45)

]

Next are the £ (A) terms. These we cannot estimate in terms of H. /.n, but for A of diagonal form, we
can still control them strongly:

A0

Proposition 4.9. For all k € Z3, symmetric A® = ( 0 A

) : Kz(Lz) - Zz(Li) and ¥ € Hy, it holds
that

(9, & (A%) W) < 3 (% |<ep,Aep>;) (¥, N W)

Proof. By the assumed form of A®, we may write g (A®) as

ex (A®) = Z erk (ep; A®e)) Z (eq. A®ep) ek (k pik, q)

PEL; P-q€L;

— (&3] S o
= Z (eq,A e,,) (6p’ch_k07p—k +5p—k,q—kcqcp)

P.g€L
_ * *
== 3 (eqrAep) (OpaCa-ii + Spkq-ikciycp) (4.46)
P-q€Li
* *
- Z (e-g-Ae_p) (5p,ch+kcp+k+5n+k,q+k6qcp)
P-g€L i
_ * *
_ Z ep, Aep ( Cp- kc gt c,,) Z <e_,,,Ae_,,> (cp+kcp+k+cpcp)
pELy pPEeL i
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since the terms with p € Ly,q € L_y or p € L_g,q € Ly vanish (because Ly N L_; = @ and there are
Op.q> Op—k,q-k in the summand). We can thus estimate

(. &0 (4°) ¥)| < Z [{ep- Aep)l <T (Cp*kC;—k "'C;Cp) T>

PELk
+ Z |<e,p, Ae,p>| <‘~P, (cp+kc;+k + c*pcp) ‘I‘> (4.47)
pEL i
< ([r)réag [(ep. Ae,,)|)< (Z chep+ Z CpCh + Z c,,c’;,)‘P>
peL,‘f peli—k peL_i+k
<3 (IrgaLx |<ep,Aep>|) (P, NgY¥).
O
Lastly, we consider the le‘ (B) terms:
Proposition 4.10. For all k € Z3, symmetric B : €*(LY) — €*(L¥) and ¥ € D (H], ), it holds that
k ®)\~3 ®)\~3 ’ ®\~2 ’
|<T’Q2(B)\P>| < zH(hk) B(hk) HS <\P Hkm +2“B (hk) <IP Hkln > ”\P”
Proof. By the Cauchy-Schwarz inequality and Proposition 4.4, we have
(2, 05B)W)| =2 ) Re (W, bic (Bep) brlep)¥))| <2 ) |16 (Bep) ¥l [br(ep)¥]
pELz pELIf
_1
<23 (H(h,@j) * Be,|| (W, HL W) + ||Be, | ||‘P||) bk (ep)¥| (4.48)
PEL;

<2\ ) D )7 Be| e (e wl + 2191 Y, [Be |l lbate, ]
peL; peL;

For the first sum, we can again apply the Cauchy-Schwarz inequality and (4.32):

> N0t e lsceor< | 32 a5 *) e, Jzakp”bk,pu (.49

PEL; peL; peL?

2

[

(¥, H,

kin

).

=

peL;

and we likewise estimate the second sum as

3, el ¥ = /z L [ey)| J >, s e @so

| 2
-1 ;
< | 2B (12) " enl| (O HL ).
PEL]
The claim now follows by recognizing the Hilbert-Schmidt norms. O
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5. The quasi-bosonic Bogolubov transformation

Now we are prepared to define the quasi-bosonic Bogolubov transformation that will approximately
diagonalize the Hamiltonian in (4.13),

DU (OF (e + AD) + 0K (BE) - 2t (hy)), 5.1)

kESC

where Ay, A®, B are defined in (4.11) and (4.7).
We define the generator I : Hy — Hpy of the Bogolubov transformation as follows. Let (K ,?)k eSe
be a collection of symmetric operators K ,i” : {’z(Li) — fZ(Li). Then we define

=3 Z D (emKieq) (bpbig — bibi) (5.2)

keSc p,qeL;

- % S D (b KEep) biley) — biep)b (KEep))

keSc )4 Esz

in analogy with equation (3.9). As in the bosonic case, K is seen to be a skew-symmetric operator.®
Moreover, unlike the bosonic case, K is now a bounded operator by the same argument that Q’l‘ (-) and
Q’Z‘ (-) are. Therefore, KC generates a unitary transformation e* : H, — Hx, which is the quasi-bosonic
Bogolubov transformation.

The specific kernels K ;{B we will use are those which diagonalize the corresponding bosonic Hamil-

tonian exactly, but first we will consider the action of e* on quadratic operators and the localized kinetic
operator more generally.

5.1. Transformation of quadratic operators

By exploiting the similarity of our quasi-bosonic definitions with the exact bosonic case, we can now
easily deduce the analogues of Propositions 3.2 and 3.4:

Proposition 5.1. Forall k € S¢, ¢ € fz(Lf) and symmetric operators (K;B)lesc, it holds that

(K, br(@)] = by (K2 @) + Ex(9),
[K., b} (0)] = bi (KZ¢) + E(p)",

where

Ex () =% Do 2 (b1 (KPeq) eri (¢req)}

leSc qEL[i

Proof. We calculate using the commutation relations of (4.15) that

[K.bi(e)] = 5 LSS (b (KPeq) biep), bile)] - [5 (eq) b} (KFeq) br(9)])

leSc qeL*

== Z Z (5] (eq) bk((p) b*( )] + [bk(Gﬂ)’b? (eq)] b (Kze)eq))

leSC qeLy

8In the case of complex spaces, K is skew-symmetric if the K]ie’s are symmetric and <ep s K]?eq) are real. In our application,
all relevant operators have real matrix elements, and hence, we can think of the case of real spaces.
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=—Z Z (eq) (Oki (0. KPeq) +eri (p:KPeq))

lESC C‘{ELJr

+- Z Z Sk {p.eq) +eri (@ieq)) by (KPeq)

leSc qeL+

1 1
= EbZ(Z (%Kz?eq>eq)+§b2 (KI? Z <‘1"’eq>eq)+5k(90)

qeL; qeL;

= by (KZp) +Ek(e) (5.3)

for & (¢) given by

1
Ek(p) = 3 Z Z (b7 (eq) e (93K eq) +er (@3 eq) by (Key))

leSc qELi

=3 Z D Ab; (KPeq) eni(@req)} (5.4)

IESC q€Li

where we used Lemma 3.3 to simplify the expression (as x, y > by (x)ex1 (¢; y) is bilinear for fixed ¢
and K ]? is symmetric). The commutator [IC, b’,‘(((p)] follows by taking the adjoint. O

From this, we easily deduce the commutator of /C with quadratic operators:
Proposition 5.2. For all k € S¢ and symmetric operators A, B : fz(Li) — fz(Li), it holds that

5 ({K2.A}) +Ef(A)
of ({k2.B}) +£5(B),

[K. 0% (4)]
[, 0% (B)]

where

e =3 3 3 S (biAey). (B (KFeq) erilepieq)}}

leSc peLi qeLy
+{{‘91k(eqvep) b (K } bk(AeP)}

& (B) =5 PIDP) {b" (Bep). b1 (KPeq)  e1k (eqiep)}}

leSc peLi qeLf
{{gkl(eweq) by (K eq } bi ( Bep)})

Proof. We compute using the commutators of the previous proposition (and Lemma 3.3, to simplify
the resulting expressions) that

[, 05 )] = >\ ([K.by(Aep)bilep)] + [K. bile,)by(Aey)])

PEL}
= > (by(Aep) [K.bilep)] + [K. by (Aep)] bile,))
peLy
+ > (brlep) [ b (Aep)] + [K, bilep)] by (Aep)
PEL}
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D (by(Aep) (by (KPep) +Exlep)) + (bi (K Aep) +Ex(Aep)) bilep))
peL;f

+ > (brlep) (bi (KEAep) + Ec(Aey)") + (b) (KZep) + Exleyp)) by (Aey))
PEL}

Z (bx ((AKZ +KZA) ep) bi(ep) +bilep)bi (KA +KA) ep))

peLy

+ > (bp(Aep)Eilep) + Exlep) bi(Aey) + bi(Aep)Ex(ep) +Exley)bi(Aep))
peL;

0% ({K2. A1)+ >\ ({bi(Aep), Exlep)} + {Exlep)”, br(Aep)}) (5.5)

+
PEL;

and

Z ({br(Aep). Ex(ep)} + {Ex(ep)”, bi(Ae))})

PEL}

) Z Z Z ({67 (Aep), {b] (KPeq)  enialepieq)}} (5.6)

leSc peLi qeLf
+{{enk (egiep) . bi (KPey)} bi(Aep)}) = EF(A)

as ex1(epseq)” = &1k (eq: €p). The computation of Q5 (B) is similar. o

Action of €’ on quadratic operators

With the commutators calculated, we are now ready to determine the full action of ¢ on the quadratic
operators Q’l< (-) and le‘ (+). Rather than appeal to the Baker-Campbell-Hausdorff formula, which would
also require describing the commutators [IC, 51" (A)] , etc., we will employ a ‘Duhamel-type’ argument
which allows us to more selectively expand the operator e*.

As in Section 3, we use the notation A ke = {K;e, } for anticommutators with K,f’.

Before stating the proposition, we must make a remark. To use these identities, we will need to
take limits, and to justify those limits, we need some general estimates on operators of the form
0% (1), 05 (1), EF (), EX(-). The Propositions 4.6, 4.7 establish these for Q% (-) and Q5 (-), while Propo-
sition 6.4 will establish these for 51" (-) and Sé‘ ().

The statement follows:

Proposition 5.3. For all k € Sc and symmetric A, B : 52(Lt) — fz(Lz), it holds that

e’CQIf(A)e_’C = %Q’f (eKEAeKE +e XA )+ %lec ( KE AeKi KZ Ae~K¢
1
+/0 e’ (5{‘ (cosh (A(l ,)Ke) (A) (smh (A(l ,)K;(s) (A)) e 'K dt

)

e )

05 (B = 10N (o5 BT — % BeE )+ L0k (K2 BRY 1 K K
o [ (e (s (g ) + 8 (comn (Aeg) (81)) <,

the integrals being Riemann integrals of bounded operators.
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Proof. We consider e’CQ’f (A)e™F, with the argument for e’Cle‘(B)e_’C being similar. We first claim
that for any n € N,

5.7

K Ak -K _ Nk S 1 2m k S 1 2m+1
1A =0 (,;o (2m)zAKf(A))+Q2 (WZJO amr i ke @
1 n] ny
K k 1 2m k 1 2m+1 -tK
+/o ¢ (51 (Zo(z‘m)z““<l—r>Kf(A) t& (Z;)(Zm_+1)!A<'—+f>K;?(A)))et dt

1
i ﬁ /o Ok (A () e -0

where, for brevity, n—1 = n — 1 mod 2 and ny,n; are the largest integers such that 2n; < n and
2ny + 1 < n, respectively.
We proceed by induction. For n = 1, we find by the fundamental theorem of calculus that

1 1
Mok (A)e™ = 0F(4) +/ % (e”CQ’;(A)e—"C) dt = QF (A) +/ e™ K, 05 (A)] e7* ar
0 0

1
-0t [ e (Qh (kP + ek ) e ar 58)
0
1 1
=0k (A) + / eMEf(A)e ™  dr + / et 0l (AKe(A)>e_”Cdt
0 0 Kk

by the commutator of Proposition 5.2, which is the statement for n = 1 (in this case, n; = 0O and n, = -1,
so Y, contains one term and ;" is empty).

For the inductive step, we now assume that case n holds. Integrating the last term of equation (5.7)
by parts, we find that

1 1 ) ) ) N
(”—1)!/0 RO (A () e -0

a1l
: Ok (A (4)) N (_u)]

" -1 n ),

! /0 r |16, 0% (Ao ()| e (—u) di (5.9)

S (n-1)! n

= %Q,’ij (A’,;/?(A)) + % /0] o' (Q%({KE,A'I’(E(A)}) vel (A’,‘(I?(A))) e (1 = 1yndr

1 ! 1
_ Nk n tiK ok n -tk
= an (E.AK’iB (A)) + /0 e Eﬁ (HA(II)K,‘? (A)) e "M dt

1 1
+— / e'Fok (A":} (A)) e (1 - 1)dt,
n! 0 n Kk
where we also used that
n
(1= )" Afs (A) = ((1 =D Agp(4))" = AT, s (A). (5.10)
Inserting this into (5.7) and collecting like terms yields the statement for case n + 1.
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We now deduce the statement from (5.7) by taking n — oco. Recall the identities
cosh (Ags)(T) = (ekff TeXe + e KiTe Ky (5.11)

(eKETeXE — e KiTe KY)

NI>—‘NI

sinh (-AK;Z’) (T) =

from Proposition 3.5 and note that ((n — 1)!)~! A’I’<ea (A) — 0 as n — oo. By Proposition 4.6,
k

e e _K® _K®
—Qf (eKk AeKi + e7 K Ae Kk)

of (Z WAZ o (A)| —

and
— ! : Kk K 1
t n -t n—
i [ et e -0 o
Similar convergence for Q5 is justified by Proposition 4.7. The convergence for 81" and é‘é‘ follows from
Proposition 6.4. o

Remark on the transformation of excitation operators

Let us make a quick remark on why we choose to approach the Bogolubov transformation from the point
of view of quadratic operators rather than the usual creation and annihilation operator approach. Recall
that in the exact bosonic case the creation and annihilation operators transformed under a Bogolubov
transformation as

e“a(p)e™ = a (cosh (K) @) + a* (sinh (K) ¢) (5.12)
Ka*(¢)e™ = a* (cosh (K) ¢) + a (sinh (K) ¢) .

In the quasi-bosonic setting, we can use the commutators of Proposition 5.1 and a similar Duhamel-type
argument to what we just applied to conclude that

e bi(p)e™ = by (cosh (K) ¢) + b (sinh (KT) ¢) (5.13)

+ / ik (& (cosh (1= DKE) ¢) + &k (sinh (1 = KT) ¢)") X dr
0

with a similar expression for e’Cb’,‘( (¢)e™™. This is a more cumbersome expression to work with, and if
we were to describe ¢*Q%(A)e™" by transforming the individual terms of O/ (A) like this rather than
transforming Q’l‘ (A) as a whole, the error terms would not only go from being under a single integral to
involving the product of two integrals, it would also involve cross terms between the bosonic terms and
the error terms of equation (5.13). These cross terms, in particular, would severely reduce the quality of
the final error estimate. Hence, we prefer the quadratic operator approach in the quasi-bosonic setting.

5.2. Transformation of the kinetic operator

There remains the task of describing the action of e* on the localized kinetic operator H,, . For this, we
must first formulate H,; —or rather the commutator [H,, , b} p] calculated in (1.74) — within the general

framework that we have introduced in this section. Recalling the operators hf : fz(Lz) - {’Z(Lz) in
(4.11), then by (1.74) and linearity it follows that

[Hin bi(@)] = =261 (hE9) . [Hisns bi(9)] =265 (hF ) (5.14)
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for all ¢ € fz(Lf). (The factor of 2 is introduced here because in the analogy of equation (4.9), H},
appears like a dI'(+) = %Ql ) - %tr(~) term rather than a pure Q(-) term.)
‘We now calculate [IC, Hl:in] as follows:

in

Proposition 5.4. H/. obeys

(K. Hal = D) 05 ((KE.Ag)).

keSc

Proof. We compute, using the commutators of equation (5.14) and Lemma 3.3, that

1
(K. Hy, | = 2 Z Z ([bx (Kiep) bi(ep), Hyy| = [bi(ep)by (Kiep) Hi)

keSc pGL:

D, D, (bilep)by (hEKPep) + by (hPep) b (Kep)) (5.15)

keSc pEL:

+ ) >, (bu(KPey) bi (hfep) + bi (hFKFe,) bile,))
keSc peL;

D, 95 ({kg.ng)).

keSc

O

Note that because the commutator [Hliin, by, (ga)] =2b; (hff(p) exactly mirrors the bosonic case (in

that there is no additional error term), the commutator [IC, Hlim] is likewise ‘purely bosonic’, being

simply a sum of Q’2C (+) terms without error terms such as those appearing in the statement of Proposition
5.2. With the groundwork laid, we can now easily deduce the following:

Proposition 5.5. H/

win ODeYs
Ky -K _ g7
€ Hkine _Hkin
1 @ @ 2] ] 1 @ 2 2] ]
k( K& @ K¢ -K®,0 -K® ~re\, Lok K% 8 K -K®;® K¢
+Z (EQI (e khle k +e “khle "k 2hk)+2Q2(e khle“k —e “khe k)
keSc

+ Z /01 oK (Slk (cosh (-A(l—t)Kff) (h) = hf) +&F (sinh ('A(lft)K;f) (hf))) o5 g1

keSc

Proof. By adding and subtracting, we have

FHe ™ = ) FOY (hF) e o (Hﬁm— 2, of (h?f))e"c, (5.16)
keSc keSc
and the first term on the right-hand side is by Proposition 5.3,
>, ok () e .
keSc
1 ® ® ® ® 1 ® - . .
= Z (EQIF (eKk h;?eKk + e_Kk h]?e_Kk) + EQ’; (eKk hffeKk _ e_Kk ]’l;fe_Kk ))
kESC
1
+ Z /0 oK (5{‘ (cosh (»A(l—t)K;f) (hf)) +&X (sinh (A(lft)K’?) (hf))) F ar.
keSc
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while the second is calculated using the commutators of the Propositions 5.2 and 5.4 to be

ef (lein - Z Q]f (hl?)) et - (lein - Z Q]f (hf))

keSc keSc
1 1
:/ ™| HY, - Z of (h)| e adr = - Z/ e el (h?) e  at, (5.18)
0 keSc kesc Y0
which yields the claim. O

5.3. Fixing the transformation kernels

With all the transformation identities determined, we now choose the transformation kernels (K ,f’ JkeSe

such that Hy, + X es. Hi’fn is diagonalized. For any choice of (K ,?)k eS¢ the Propositions 5.3 and 5.5
imply that

K k -K
€ (Hliin-'— Z Hint)e

keSc

1
=3 20 OF (5 (hf + A7 + BE) ¥ 4 ™ (nF + AT - BF) e —20F)
keSc

1
#5208 (N7 (h + AP+ BE) X7 = KT (4 + AP = BE) T )+ H,, + error orms.
keSc
(5.19)

In analogy with the bosonic case, we consider this expression to be diagonalized provided the Q’z< )
terms vanish, whence the diagonalization condition is that

KE (h® + AP + BY) K¢ = K¢ (n? + AP - BP) ™KK, (5.20)

which we note is the same as the diagonalization condition (equation (3.26)) of the exact bosonic
quadratic Hamiltonian

H =0 (1 + A7)+ 02 (BY) o 7* (£ (L7)). (521

Recalling the definitions of 4, AP’ and By from (4.11) and (4.7), we have

hy+P +P
3] 2} & _ Vi Vi
hk+AkJ_er_( P, hk+ka)>O'

So by Theorem 3.1, the choice

Nl—

1 _1 1 1
K =~ log | (hf + AF = BE) 7 ((nf + A7 BE)* (hf + A7 + BF) (hf + 47 - BY)*)

(n + 42 - BY) )
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is the unique diagonalizing kernel for the Hamiltonian. In this form, it is, however, not easy to see how
K acts, so we will proceed slightly differently: we define K, : 52(Li) - ZZ(Li) by

0 K
o _
K, = (Kk 0 ), (5.22)

where the operator Ky : £2(Ly) — £>(Ly) is given by

1 101 nro -4y 1 ) 7,1
K _—zlog(h (hk(hk+2Pv)h)h )——Elog(h H(meory Vi) 623)

7 k
th Vi

A kernel similar to Ky also appeared in [5, 6]. Note that Ky is precisely the diagonalizer of Theorem
3.1 for the exact bosonic quadratic Hamiltonian

H = Qi (hY +Py,) + Q2(Py,) on FH(€*(Ly)), (5.24)

rather than that of equation (5.21). Now we can verify that this K,? is, in fact, equal to the diagonalizing
kernel:

Proposition 5.6. The operator K ff defined by the equations (5.22) and (5.23) satisfies

K2 K@ -K?® _K® Ey O
X (07 4 AT+ BE) T = e K (nF w4 - ) e = (6 )

for Ex = e Krpye K,

Proof. Itis easily verified that e* & is given by

+ke [ cosh(Ky) =sinh (Ky)
ek = ( +sinh (K;) cosh (K) (5.23)
and so
K (h® + AP = B®) K¢
cosh (Ky) +sinh (Kx) \ [ Ak + Py, =Py, cosh (Ky) =+sinh (Ky)
+sinh (Kg) cosh (Ky) +P,  hx+P,, |\ £sinh (K;) cosh(Ky)
1 eXi (hy + 2Py, ) eKr + e~ Kippe K 1 (K (hy +2P,, ) eXk — e7Kipye~Ki) (5.26)
2\ £ (eKx (hg + 2Py, ) XKk — e Kipye™Ki)  eKi (hy +2P,, ) Kk + e Kipe K |°
The condition
K8 (2 + AP + BP) K¢ = 7K (n + AD - BY) K¢ (5.27)
thus holds if and only if
Xk (g + 2P, ) ek = e KrpyeKe, (5.28)

which is the diagonalization condition for the bosonic Hamiltonian of equation (5.24). Theorem 3.1
asserts that this condition is satisfied for our choice of K}, and the claim follows. m]
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5.4. Full transformation of the bosonizable terms

With the above choice of transformation kernels, we thus conclude that

K ’ k K _ gyt
€ (Hkin + Z Hint) e”~ = H}, +error terms
kGSC

1
+5 >, 0 (eKz? (h® + A? + BZ) 5% + ¢ ™KC (h® + A® — B®) ¢Ki — zh,ej)
keSc

=H,, + Z Q’f (Ek 6 I Ey (3 hy + error terms, (5.29)
keSc

and so we have succeeded in diagonalizing H}, +2xcs. H, i’fn while simultanously decoupling the spaces
2 (Lyy) C €2(Li) in a symmetric fashion. We still need to determine the exact form of the error terms,
which we record in the following proposition:

Proposition 5.7. Let Sc = B (0, k%) NZ3 withy € (0, 1]. Then the unitary transformation e® : Hy —
Hn with IC defined by (5.2), (5.22), (5.23) satisfies

K| k| -k / k
e (Hkin+ Z Hint)e =Hy, + Z QY (EZ = hy)

keSc keSc

1
+ Z/O 170K (el (AR () + EXBE (1)) 1K ar,

keSc

where E1(+), £5(+) are defined in Proposition 5.2 and

Ei,—h 0 A 0 0 B
et -ot= (P51 D) a0 = (M7 o ) 50 = ")

with E = e Xk hie K« and the operators Ay (1), Br(t) : €2(Ly) — €*(Ly) defined by

1

Ak(l‘) = 5 (eth (hk +2ka) oKk +e—thhke—th) — h
1

Bi(t) = 5 (e’Kk (hi +2P,,) K - e_’Kkhke"Kk) '

Proof. By the Propositions 5.3 and 5.5, the error terms are

D / QR (&1 (cosh (Ayxp ) (2 + AZ) +sinh (A gz ) (BE) = hZ)) e 1=0% ar
0

keSc

+ Z /01 L(1-0K (é’é‘ (sinh (A,K;g) (hy + AZ) + cosh (A’Kf) (B,?))) 1=K g

keSc

where we have reparametrized the integral by ¢ +— 1 — ¢ to simplify the arguments of the 51"(~) and
52" (+) operators. By (5.11), the arguments of £ lk and Sf in each term above equal

1
5 (5 (g + AP + BE) €XE + 7KE (hE + AT - BE) K7 ) — (5.30)
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and
l tK? (1@ ® o\ tK? _ -tK? (1 & & _ po\ ,—tK?
G K (hg+AP+BZ) e —e ™M (hY + AP — BY) e "c |, (5.31)

respectively. By the same identities that we used in the preceding proposition, it holds that

=KL (h® + AP + B?) e*1KL (5.32)

1 e'Ki (b + 2P, ) 'Kk + e K pyemtKi 1 (e!Kk (hy + 2Py, ) 'Kk — e71 Kk py 71 Kk)
2\ £ ('K (hy +2P,,) e'Ki — e7Kipye~tKi) oKk (py + 2P, ) 'Kk + e Kipye=tKic |

and the claim follows. O

6. Analysis of the exchange terms

In the preceding section, we accomplished a major qualitative goal of this paper, which was diagonalizing
the bosonizable terms H, + 2 es.. Hi’;t in an explicit, quasi-bosonic fashion. In this section, we begin
the quantitative study of the quasi-bosonic expression in Proposition 5.7.

The aim of this section is to estimate the £ f‘ ), Sf (+) operators, which enter in the error terms due
to the presence of the exchange correction & ;(¢; ) in the quasi-bosonic commutation relations. We
will therefore refer to them as exchange ferms. Since these expressions are complicated, we thus devote
three subsections to the analysis of them. In the first, we carry out a reduction procedure, in which we
systematically consider the type of terms that can appear in the sums defining 51" (A) and 52"(3) for
given A, B, and reduce these to simpler expressions, or schematic forms. In doing so, we will see that
every term appearing in £ lk (A) and Eé‘ (B) can for the purpose of estimation be sorted into one of four
schematic forms. In the second subsection, we provide some basic commutator estimates associated
with the four schematic forms, and in the final subsection we then carry out the quantitative analysis of
these four forms to obtain the desired estimates of £ lk (+) and 6’2" ().

6.1. Reduction to simpler expressions

Recall that for k € S¢ and symmetric operators A, B : ZZ(Li) — (2 (L), we already defined 51" (A) and
SZk(B) in Proposition 5.2. Since these expressions are complicated, it is helpful to discuss the general
structure of € lk (A) and 52" (B). Consider the first term of £ {‘ (A), which upon expansion is

{bZ(Aep)’ {b; (Kle;eq) » €kl (ep’eq)}}
= b (Aep) {b7 (K;Beq) €kl (ep’eq)} + {b7 (K;Beq) sekl (ep, eq)} by (Aep) 6.1
= by (Aep)b] (Keq) ek (ep. eq) + bi(Aep)eri (ep. eq) b] (K eq)
+0] (Keq) exi (epseq) bi(Aep) +ex (ep. eq) b] (K eq) bi(Aep),

which we may expand further using

eri(ep.eq) =€ (k,p; l q) =— (6,,,qcﬁc;‘7fk+ 6ﬁ’ﬁcf]c,,) (6.2)

and then removing the delta on a case-by-case basis. This causes the sums over p € L; and g € L} of
any of these terms to reduce to one of the schematic forms

Z bhk (Tep,) b? (Kz@epz) CpyCpss Z bi (Tep,) 5;35p4b? (Kzeaepz) ’
PES pes

D& Epbi (Tep,) bl (KPep,) (6.3)
peS
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subject to the following: S is a subset of L; N L7, bi can denote either by or by, &k i(ep,e,) may

instead be &1k (eq,ep) = €k 1(ep, eq)*, T denotes either A or B, the terms bi (Tep) and blh (KfBeq) may
be interchanged, the notation

€ BS
gp=4" PEOF (6.4)
Cp pEBF

encodes the correct type of creation/annihilation operator depending on whether p corresponds to a hole
state or an excited state, and p1, p2, p3, p4 denote indices which depend on p.

The same decomposition holds for every term appearing in either 51" (A) or Eé‘ (B), so we must
consider the forms of (6.3).

The only important feature of the dependency that the p; have with respect to p is that regardless of
the term, when summing over p € S, p; ranges either exclusively over excited states (i.e., p; € L3) or
exclusively over hole states (i.e., p; € (Lx — k) U (L_g + k) or the analogous set for L}"), and that the
assignments p — p; (for a given term) are injective. (Additionally, p; and p, will always be excited
states.)

Therefore, when estimating, we can always expand the sum to either all of B or all of B¢., which is
why the exact identities of § and the p; are of no importance to the estimation. For example,

2 en ) < 3 lewwlllen ¥l <[5 llep I 3 len ¥ < (2. Ae®)  6.5)

peS peS pES peS

independently of S, p3 and p4. Here, the two situations when both p3 and p4 range over excited states,
and when both p3 and p4 range over hole states, can be treated similarly thanks to the particle-hole
symmetry (1.13).

Discussion of estimation strategy
We conclude that both 5{‘ (A) and 52k (B) reduce to sums over [ € Sc¢ of finitely many terms of the
schematic forms of equation (6.3), so it suffices to estimate these. To this end, we must first perform
some additional algebraic manipulation.

To motivate our goal, let us first derive a simple but insufficent estimate for one of these terms:

Z bZ (Tepl) 5:73 c~P4b1 (KleBePz) . (6.6)
pES

Using Hc p”Op = 1, Proposition 4.4 and the Cauchy—Schwarz inequality, we find that

Db (Tep,) €, Gpibi (KEep,) ) < O [Ibi (Tep,) Bl [[br (K e ,) ¥ (6.7)
peS peS

-1 _1 , _1 -1 ,
< D[ e || () KPen|| () < ) |0 2 )
peS

for any ¥ € H . To get a feeling for the quality of this estimate, we must know what to expect of the

_1
quantities on the right-hand side. We will see in the next sections that ||(h;'9)‘%l(';9||]_[S < O0(k F3+6).
In general, what will take the place of T will be the Ay (¢) and By (f) operators we defined in the last
section, but as a simple example we consider

ka;‘l
N 2(2n)3

Z e, € (2 (Ly) (6.8)

P 0
T=( ) Po = il v
PELy

0 P,
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for which
1 _1
||(h,?)‘f T” =2k P, | =2 (kahklP ) (6.9)
HS
= 2 |viell \/(vi B vie) |Lk|’ <0 k2
(2 )3 pGZLk

when |k| ~ 1. Here, we used |L| < C|k|k7. and the bound ¥ ¢/, /l;,'p < Ckp from Proposition A.2.

Thus, for any state satisfying <‘P H/ ‘I‘> < O(kF) (c.f. Theorem 1.2), the overall estimate for the right

kin
7
side of (6.7) is O (k 1":5) which is insufficient as the correlation energy is of order k.
The technical issue with the estimation in (6.7) lies in only using that ||c ,,||Op = 1, for we may get

better bounds by using (¥, NgH;, W) instead of (¥, H,, ¥). For example,

DKW by (Tep,) €,8p,bi (KPep,) W)l (6.10)
peS

= > (W, &b (Tep,) bi (Kfep,) Ep, P < D ||k (Tep,) 2 [1br (K e p,) €p,¥|
PES PES

< Z H he ? TePlH H ePz \/<CP3T Hlimil)EP%lP> <C~p4‘P H}ifnﬂ) ~P4T> (6.11)

_1 -3 (xl) ~ ’
< (ma)i (hf) 2 TepH) Z (h;e) 2 K;Be Z< , i?szfn])CmT> (‘P Hkm‘P>
peli peS pEeS
< (ma)g (hl?)_% TeP“) “(hlea)_% Kl@“ T NE km ><‘P’ km‘P>
PEL; HS

where we used that [5 P b (-)] = 0 (as we will see in Proposition 6.1 below) and momentarily looked

ahead to the definition (6.30) for HQ:D and Lemma 6.6 (we take supremum over p4 and sum over p3
to get the second inequality). Considering again the example in (6.8), we find

Viky! -1 -3
= 5007 /Z 4l <0k, (6.12)
kELk

Thus, for any state satisfying <‘P Hlim‘l’> < O(kp) and <‘P,NEH1;m‘P> < O(klzp) (c.f. Theorem 1.2),

o)A e, | - Vik!
(hk) Tep 2(27'[)3

2
the right side of (6.10) is thus bounded by O (k ,3;5), which is much smaller than the correlation energy.
Our goal is, therefore to reduce the schematic forms of equation (6.3) to those of the form

2pes Cp, k(Tepl)b (K@epz)cm, which we may then estimate as above. While [Ep,bk(-)] =0, it

is generally the case that [c ps by (- )] # 0, so this will also introduce additional commutator terms which
we must then estimate separately.

Taking into account whether bhk = by or bl,qc = b}, the schematic forms of equation (6.3) are either of
the form (supressing the summation, the arguments and the subscripts for brevity)

b*b*¢*¢, b*b&*é, bb*¢'é, bb'é, b*¢'¢b, bEEb, bEEb”, (6.13)
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or reduce to one of these by taking the adjoint, which as we will estimate, £ 1" (A) and 52" (B) as bilinear
forms does not matter. Using that commutators of the form [b,¢], [b*,&*] and [b, [b,¢*]] vanish
(verified below), these schematic forms reduce to

bbEE=¢"

b*b*¢,
b*b& e = &b bé + [b, &) b*E + [b*, [b,¢*]] ¢,
bb*¢*¢ = &*bb*é + [b,&*] b*é,

bbé*¢ = &*bbé + [b, & bé + [b, ] bé, (6.14)

b&*Gb* = &b ¢ + [b, & b*¢ + &b [¢,b7] + [b, ¢*] [, b7] .

Reintroducing the b% notation outside the commutators and using once more our freedom to take
adjoints, we find that every term on the right-hand sides of the two equations above takes one of the four
schematic forms

&bibhe,  [6,b*]" B¢, [[6,b*].b]7E,  [é, b6 b"]. (6.15)

These are the final forms which we will explicitly estimate.

6.2. Preliminary commutator estimates

In addition to the general estimates which we derived at the start of this section, we will also need
estimates on the commutator terms which appear in the schematic forms of equation (6.23), which we
now derive. First, we must, however, verify that the commutators [b, ¢], [b*, ¢*] and [b, [b, ¢*]] vanish,
which we relied upon in our reduction procedure:

Proposition 6.1. For all k,1 € Z, ¢ € (*(LY), ¢ € €* (L¥) and p € 7 it holds that

[bi(@).ép] = [bi(9).&,] =0, [bi (). [br(@).&,]] =0.

Proof. We compute from the definitions that for any ¢ € L7,

[bﬁ’ ~p] = [Ckacqvfp] = c:;_k {cg-cp} - {C;_kvgp} €q
_ c;j{cq,cp}—{cz_k,cp}cq, pEB;
c:‘{_k {cq,c’;,} - {c’;_k,c;} ¢cq» P E€BF
=0 (6.16)

as all anticommutators on the second line vanish either directly by the CAR or by disjointness of Br
and BY.. By linearity, [bk(tp), Ep] =0, and [l77< (o), E*I,] =- [bk(t,O), 5p] =0.

For the double commutator, we first compute [bﬁ’ 5}‘,] As above, we find

*Q

* * _ * * c - X
[b ~*] _ Cﬁ{cq,cp} {c _k,cp}cq, p € B ={5q,pcq—k’ p € By

—, C =
k.q> P . . _ x
L;k]—k {cq,cp} - {c ,cp} ¢q, P EBF 5q_k,p0q» p € Bf

q-k
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SO

ety = 3 (oea) [brgcn] = D (oey) { aopiss P EBS

qeLi qEL* q a—k. pcq J2S BF

=12:(p) (¢, ep) @ e - k(D) (@ epr) Epek = L4k (P) (@, €pic) Cpi,  (6.17)

where 1g(-) denotes the indicator function of a set S. Observing that [b x(©), E’I‘,] is a linear combination
of ¢), terms, we conclude that [bl(zp) [bk(go), 1,]] = 0 by the first part. O

We now move into the estimation of the nonvanishing commutators. We begin with the single
commutator; we state the estimate and make a remark:

Proposition 6.2. For all k € Z3, sequences (go,,)pez3 € (2(LY) and ¥ € M, it holds that

2 e bic(ep)] ¥ <3| 3 max|(ep.oq)]” |11

pez3 peL,fq
S et ()] 9P <4( s Nyl | 0 NeW)
pez?

Remark 6.1. The statement may appear overly general in that it involves general sequences (¢)),ez3 C
fz(Lz) rather than the explicit vectors (Tep,)pes C fz(Lf) that we must consider. The point of the
generality is, however, only to avoid having to explicitly state the dependencies of the set S and the
pi’s of each possible schematic form, as independently of these it is easy to see that a sum such as

- . 2 . .
2pes H [€pss b3 (Tep, )]‘I‘” can always be cast into the form in the statement.

Proof. Taking the adjoint of equation (6.17) yields
[Cp’b (‘P)] = 1L*(p) (e,,, > ok Lk (p) <ep+k 90> Cp+k =l (p) <ep ks ‘P> Cp ko (6.18)

and so we can for any ¥ € Hy estimate by the (squared) triangle inequality, using also that L; and
(Lx — k) N (L_g + k) are disjoint and ||5P“Op = 1, that

2. ew b (en)] I

pez?

2

= Z |<eP’90P>|2 & k +2 Z K p+klPH +2 Z |< lPH

PEL} peLli—k peL_p+k

Z Kep":917>|2+2 Z |<6p+k,90p>|2+2 Z |<epfkv90p>‘2 w1

peLy peLli—k peLl_p+k
< Z ma>§|<ep,<pq +2 Z max ep,cpqﬂ +2 Z ma>§|<ep,gaq>|2 eI

peL,‘quZ‘ pequ peL_y €z
=3 > m:lz§|(ep,(,oq)|2 )%, (6.19)

+4d
peLy
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which implies the first estimate. For the second estimate, we find in a similar manner (now directly from
equation (6.17)) that

2
Z 13- bic (0p)] ‘P“ Z |<eP’¢P>|2‘|EpjT)| +2 Z |<ep+k»‘Pp>|2 ||C~p+kq}“2
pezd peL; pEeLr—k
+2 Z |{ep-t, ‘PP>|2 pr—k‘l’||2
peL_p+k

2 . 2 . 2 - 2
S(pgg;l;eZJ(ep,wq)I)( ¥ +2 Y llepulP+2 Y ||cp_kw||)

PeELy peli—k peL_i+k
2
( ma 3|<ep,<,oq>f) S e o2 3 JeptlF o2 3 fepvl?
peLy.q€Z peL; peLy peL_y

(Y, Ne¥). (6.20)

2
<4 (pegky};ez} epsea)l

m]
Lastly, we estimate the double commutator:

Proposition 6.3. For all k,l € Z3, sequences (¢p) .3 C (L) and (p), s € €7 (L}), and
Y € Hy, it holds that

(P, NEYP).

z||uc~p,bz<sop>1,bz<wp>1wn2sn( max Kep,mf)( max[(epity)

oy peLf.qeZ? peLt,qez?
Proof. From (6.18), we have that

[[Ep’bz (9"17)] by (‘/’p)] lL*(P) <e,, ‘P> [Cf by (Wp)] — 1L« (p) <ep+k"P> [5;+k’bl (Wp)]

(6.21)
- lLk+k(P) <ep k> ‘P)[ p—k’ . by (Wp)]
and so, by the triangle inequality and the second estimate of Proposition 6.2,
2
3 1153 (ep)] -1 0] ¥ < IE
pEZr
+2 Z ’<6p+k,90p>| )|[6;+k’bl (Wp)]\PH +2 Z ’(ep ks ‘Pp>| H[ ko b ‘ﬁp ]IP”
peLig—k peL_p+k
: (m er-e0) )(Z e e ol +2 3% Nietr - w1
2 2% eyt wpad I
PEL
2 2
<12 (pegg?;% [(ep- @q)] ) (pefﬁ?;‘ezs [(epwa )| | (2. NEY). (6.22)
O
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6.3. Final estimation of the exchange terms

Now we are ready to derive bounds for the exchange terms é'lk (A) and Eé‘(B) defined in Proposition
5.2. Recall that we have reduced the estimation of these complicated operators to the task of obtaining
a uniform estimate for the four explicit forms

Z Z €ps k (Tep,) u(Kz@epz)fpw Z Z Epas by (Tep,) |’ b Kep,)p,

leSc peS leSc peS
Z Z [[¢ps: by (Tep)] . b (K;Bepz)]*fpw Z Z [pss 0% (Tep)) ] [pes 0 (K} Pep)]
leSc peS leSc peS

(6.23)

subject to the following rules: bi denotes either by or b}, T denotes either A or B, and bi (Tep,) and

b? (K l@ ep,) may be interchanged. Furthermore, the notation ¢;, denotes either c, or ¢}, as appropriate
for p, and the set S is such that the assignments p — p1, p2, p3, pa are injective and map exclusively
into B or BY..

Let us start by giving estimates in terms of ./\/'é For the statement, we define the |||, ,-norm of an

operator T : {*(L) — ¢*(L§) by

Tl = Z max l(ep. Tey )| . (6.24)
peL* Ly

This is a minor but necessary detail, as unlike the simple estimate of equation (6.10), we cannot take the
maximum outside the sum for all schematic terms, so we need this slightly stronger norm. Note that

Te,)| < Tey| < ITllw.s - 6.25
pIEEeDIE;Ke” eq)| ’I}g’%” epll <72 (6.25)

Now the estimate the follows.

Proposition 6.4. For all k € Z3, symmetric T : fz(Li) — fz(Li) and ¥ € Hy, it holds that

(w.(1+22) )

with i = 1,2, for a constant C > 0 independent of all relevant quantities.

(W, E5(D)¥)| < C 1Tl ( 2. &P

IESC

Proof. We estimate each schematic form of (6.23) using the estimates of the Propositions 4.2, 6.2, 6.3
and Lemma 4.3, as well as the Cauchy-Schwarz inequality. First is ¢*b9b8¢:

Z ZK‘P &by ( Tep])bh (KPep,) Ep, >) Z Z”b (Tep,) cp;‘PHHb Cep,) cp4‘I'”

lESCpES

<CZZ||Tep1||||K®ep2||\/ cm 1+N<ﬂ>)cm ><cp4 (1+N<*1>)c,,4 ) (6.26)
leSc peS

< C max Te, | Z max ||K®eq;| D (N + i) )

leSc peS

(P NEY).

2 IkFlL

leSc

~ +1) ~ JO
(W (N + 8 ) W) < C Tl

peS
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Then, [¢, b*]* blé:

Z Z K Tem)]*b? (Kz%pz)gmlPM

leSc peS
S Z Z ||[5p3,b2 (Tep,)] \P” “bllq (K;Bepz) Epﬂ"
leSc peS
<C 3 X et Ten) | WIEenll {er. (1440 cv)
leSc peS
< C NP ls [ Epss b (Tep, )] ¥ Z( Eps (1+N§”)5MT> (6.27)
leSc peS
<cy nwnwz\/z max (e, Teg | IWIP\ (2, A7)
leSc pELt
scuTnm,z(Z K2l o | 11§ (2N ).
leSc

Now, [[¢,b7],b]" ¢

Z Z |<1P [[€pss b3 (Tep)] . b (K;Bepz)]* 5174T>|

leSc peS

Z Z “ [CP3 by (Tep, ] ( €ps ]IP“HCIM‘P”

leSc peS

JZ”[% (Tep)]. b1 (KFep,)| l11|| AT (6.28)
leSC peS peS

<C ), J(;ggg [(ep- Teq>|2) (ep KPeq ) | (¥, N W) (T, NPy

leSc

max
P-q€L}

< ClITlln ) IKE I, (B NEP) .

leSc

And finally, [¢, b*]" [¢, b*]:

Z Zl (. [¢pss b (Tep, ] [€pes b7 (K eps)] lP>|

leSc peS

Z Z ”[Cm by (Tep,) ]T” ”[cm by (K ep,) ]T”

leSc peS

< 3 [t e, ‘PW 3 e (k7er.)| o 629

leSc \peS

<C Z Z max (ep:Teg )| 1% Z max (ep KPeo)| 19117

leSc \\p eL* k p eL* L

< ClTlwr D IKE L 11217
leSc
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Now we derive a Kinetic bound.

Proposition 6.5. For all k € Z3, symmetric T : €*(L§) — ¢*(L¥) and ¥ € D (H], ),

Kvﬁww»sgg(wﬁﬁKﬁﬁ+wﬂ%»

V(¥ W) (P NEH], )

X

1
hE) 7 Te, |
(ggz (hE) > Tep

Tl (0 (1 L) )+ 1900 N, )

fori=1,2, for a constant C > 0 independent of all relevant quantities.

As a technical preparation, let us observe that from (1.14) we may associate to H,, the operators

,(+1) Z |Ip|2—§|C cp+ Z Ip|? —glc,, (6.30)

pEB‘ PEBF

acting on Hy +1 (the expressions of HQ:I) and H]ﬁ;l) are the same, but the domains are different). With
this interpretation, we have the following lemma (c.f. Lemma 4.3):

Lemma 6.6. It holds that
1(£1) é
cka p < Hkln

forall p € Z? and

/( 1) /(+1) *
Z CPHkm S NEH];in’ Z Ckan < NEHkm
PEBY. PEBF

Proof. By the CAR, we have that

(=1 * % .
Z CPkan )sz Z Cp Z ||Q|2—§0|cch+ Z ||q|2—{0|cch Cp

PEBY. PEBY. qEBY. q€BF
=| 2 chen|| D0 1alP = doleleq+ 3 HaP = doleqey [+ 3 | 3 Hal = tol chequc
= pCp q 0lCqCq q 01CqCq p q 01¢qCq-Cp
PEBS. qEBY. qg€BF PEBS. qEBY,
2 *
= NeHfy = D 1al = &0l 6p.g€eq < NeH, (6.31)
p,qEB;l

and the inequality for ¢, H,; '(+1) ¢t

the inequality ¢,V é ép < N e did in Lemma 4.3. o

can be derived similarly. That &}, H; '(+1) Cp < H,, follows exactly as

Now we are ready to give the

Proof of Proposition 6.5. For all schematic forms except

Z Z EZ%bk TePl bE (Kleepz) Epzw (6.32)

leSc peS
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we can use the estimates derived in Proposition 6.4, specifically the equations (6.27) through (6.29),
and the fact that Nz < H,, . For the schematic form in (6.32), we can by Proposition 4.4 estimate that

Z Z‘<‘P,5;sbk Te,,l)b? (K;Be,,2 >’ Z Z”b (Tep,) Cm‘-I‘””b K €p, cm‘I‘H

leSc peS leSc

< 3 3oty e ey ey e 02,0 0) (2.0, 502, 0)
o 3 Sy T | Eenly (e e ) o

leSc peS

> Z ITepll|(28) Keep,

Jepe¥ll (om0 0)
leSc

+ 2 Z [7en 11K e ool o]

leSc peS
=1 A1+ A+ A3z + Ag. (6.33)

The terms A through A4 can be estimated by the Cauchy-Schwarz inequality, Lemma 6.6, the inequality
NE < HJ, and the fact that max ey ||Tep|| < |72 as

A £ | max

(h$ 2TeP \/(LP klnlp> <lP NE km >’

PEL )) (Z ” h$
11,1371% H(hf)_% Tep”) le: “Kl®“oo,2

Az < ”THDO,Z(Z H(hle;)_% K;B”Hs
leSc
5 el

leSc

Ay <

V(¥ H W) (¥ N W), (6.34)

(P, Hi5, W)

Ay < IT |2 (¥, Hy;, ¥)

all of which are also accounted for by the statement. O

7. Analysis of the one-body operators K, A (¢) and B (¢)
In this section, we study the one-body operators on £%( Ly ) defined in Section 5, including K introduced
in (5.23) and A, By defined in Proposition 5.7:

1

i),

oI

1
Ky = - log|h,* (hi +2P
2 o8 ( hk%vk

1
Ax(t) = z(e’Kk(hk +2P,, )e' Kk 4 Ky otKky

1
Bi(t) = z(e”(k(hk +2P,, )e' Kk — 7Ky o7 Ki), (7.1
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where
1 ) Vikg!
hiep = Ag pep, Akp = 3 (|p| —|p — k| ), Py, =vi)(vkl, vi= 2(20)3 Z ep, (1.2)

PELk

and (ep)per, is the standard orthonormal basis of £?(Ly). We will need precise estimates on these
operators to control the quasi-bosonic Bogolubov transformation ¢* diagonalizing the bosonizable
terms. In particular, we will prove the following bounds.

Proposition 7.1 (Trace formulas). For all k € Z3, it holds that K; < 0 and

k!
A*l
2(2n7)3 Z k,P)

PELy

1 N
tr (Ky) = ~7 log (1 +2Vi

Moreover, with E, = e X hie Kk we have

ka—l 1 )
tf(Ek—hk)—2(2—7S3|Lk| = ;/0 F

ka_l Ak
(Zﬂ;; Z 22 - 2 dt,
peLx “k.p +1

with F(x) =log (1 +x) — x, and

A

Vi k;,l

tr(Ek —hk) - m

|Li|| < CkpVilk|, kp — oco.

Here, C > 0 is a constant independent of k and k.
Proposition 7.2 (Matrix element estimates). For all k € B (0,2kr) NZ3, it holds that

2
3

~ - 5
IKklleo. < CViclog (k)3 kp* K|,

and for all t € [0, 1], that
N 1 ~
1Ak (Dlleo2 > 1Bk (D)llcon < CVi|k[2 (1+ V).
Moreover, with Ej, = e X« hy.e Kk we have

max Kep, (Er — hy) €p>| < Ck;;l‘A/k (1 +Vk) .

PELy
Here, C > 0 is a constant independent of k and k.
Proposition 7.3 (Kinetic estimates). For all k € B (0,2kr), it holds as kr — oo that

1

K| < Cllogkp) Tk Vi lk P
HS

_1 LN
H{Kk,hk}hkz < CKELVi k|2
HS

h

_1 _1 ~
h* {Ke, hie} b || < CVg,
HS
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and for allt € [0, 1],

1 _1 1, N
max |2 Ay (1)e,, i Br(e|| < Chp Vi (14 V7).

pPELk

, max
PELk

Here, C > 0 is a constant independent of k and k.

Notation. In order to simplify the notation, we will throughout this section let & : V' — V denote any
positive self-adjoint operator acting on an n-dimensional Hilbert space V, let (x;), be an eigenbasis
for & with eigenvalues (4;)!_, and let v € V be any vector satisfying (x;,v) > 0 forall 1 <i < n. We
will establish general results for the operators (c.f. (7.1))

1 _1 1o
K =~ log (h (R +2P 4 )72, (7.3)
A(t) = %(etK (h+2P,)e'™ + e he™X) —
B(t) = %(e’K (h+2P,)e'® — e7 K petK)

and then at the end insert the specific choice (7.2) to get explicit estimates.

We will prove the trace formulas first. Then we derive general estimates for the matrix elements of the
operators e 2K and ¢?X in terms of a single, simpler operator T. This allows us to show that all matrix
elements of K are non-negative, which in turn implies that all matrix elements of ¢~'K sinh (-tK) and
cosh (—zK) are convex with respect to 7. With these estimates, we can then obtain the desired estimates
of K, A(¢t) and B(t).

7.1. Trace formulas

In this section, we prove Proposition 7.1. We will prove some general results using the notation in (7.3),
and then we insert the special choice of A, v in (7.2) to conclude. Let us start with the following:

Proposition 7.4. The operator K in (7.3) satisfies K < 0 and
1 -1
tr(K) = ~1 log(1+2{v,h™ v)).

1
Proof. Since h* + 2Ph 12 h* > 0and A — A? is operator monotone, we find that
v

hfé(hz_kzph%v)ih*% > (KR = 1. (7.4)

Hence, K is well defined and K < 0. By the identity tr (log(A)) = log (det(A)) and multiplicativity of
the determinant, we find

(ST
(ST

tr(K) =~ log (det (h™ (12 +2P | )i

))

_ 1 -1 2 -1
——Zlog(det(h) det (h +2Ph%v)det(h) )

)

2y

1 _ _ 1
= —Zlog(det (h l(hZ +2Phl )h 1)) = —Zlog(det(l +2Ph_%v)), (75)

2v
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and by Sylvester’s determinant theorem [40], det (1 + @Py) = 1 + a ||x||* for any & € C; hence,

tr(K) = —% log (1+2[|"2v|?) = ‘411 log (1 +2(v, h™'v)). (7.6)
O

Another exact trace formula which we will need is the following integral representation of the square
root of a rank one perturbation, first presented in [5].

Proposition 7.5. Let (H, (-, -)) be a Hilbert space and let A : H — H be a positive self-adjoint operator.
Then for any x € H and g € R such that A + gP, > 0, it holds that

t2

1 +g<x, (A+t2)_1x> .

2 (o]
(A+ng)%=A%+—g/
T Jo

Plas) s

and

tr ((A+ng)%) =tr (A%) +7lr‘/oolog(1 +g<x, (A+t2)1x>) dt.
0

Note that Proposition 7.5 follows from the Sherman—Morrison formula [39]

1 8 P

_ 71

(A+gPyy)” (1.7)

with Py, = |y){x| = (x,-) y, and the functional calculus

2 [ A 2 [ 2
\/Z:-/ d::-/ 1- dt 7.8
T Jo A+1? T Jo A+12 (7.:8)

for every self-adjoint non-negative operator A. Using this, we conclude the following:

Proposition 7.6. The trace of E — h where E = e X he™X is given by

tr(E—h) = %/Omlog(l +2<v,h (h2+t2)_] v>)dt.

Proof. By cyclicity of the trace and the definition of K,

1

1 1
tr (e—Khe—K) - tr(he_2K) - tr(h (h—% (h2 +2P )2 h—%)) - tr(h2 +2P )2, (7.9)
h2v h2v
so applying Proposition 7.5 with A = h?, x = h2v and g =2, we get the claim. O
Proof of Proposition 7.1. By inserting hj and v in Proposition 7.4, we get K < 0 and

i (Ky) = —%1og(1 +2(vk,h;1vk>). (7.10)

With the choice of A and vy in (7.2), we have

Vik7;)! Vick !

-1 F

0 < (v, hglvi) = TorE > {ephileq) = 3Gn7 >l <, (7.11)
P-q€Lli peLy
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where the last inequality is taken from Proposition A.2 in the Appendix. Combining with the bound
log(1 +x) < x with x > 0, we find that

1 R R
tr (Ky) = 7 log (1 +2V; > —CVy. (7.12)

Next, using Proposition 7.6 and the identity (c.f. (7.8))

2 o0 /lk p

INESY 1=—/ > (7.13)
pELk T Jo pELk /lk P +12

we conclude that

V k_l 1 © ka_l Ak
tr(Ex — h =— F E L 7.14
r(Ex = hi) = 20on )3| Kl ﬂ/o ((2703 Z e (7.14)

PELk

with F(x) =log (1 +x) —x. Since |F(x)| < %xz, we have

. 2
Vi 1 o1 Viky! Ake,p
tr(Ex —h = : dt 7.15
(Ex = h) - 557 )3|k| 2[5 o 2T (1.15)
_V,fk;z Z/ Ake.p Ak.q dt
- 7 2 2 ’
@n)7 o A, + A+
and by the integral identity
© a b n 1
——5——dt=———, a,b>0, 7.16
Aa2+t2b2+t2 2a+b (7.16)

it holds that

D D N I
2 2 ) et =2 il
p.gels /l +t2/lk,q+t2 zp,q /lk,p""/lk,q 2 ; /Ik,p /1k,q
2
_1
=g(z Akzp) . (7.17)
pPELy |

By Proposition A.1, we have for any k € Z3 that

_1
3oz < {F‘/_ KT <2ke _ cr2 ikl kp — oo (7.18)

<
R T T KT T 2 2k

for a constant C > 0 independent of k and kr, so we get the desired bound

2
3 A
tr (Ex — hg) — |Lk| < CViky (k; |k|) = CkpVZ|k|. (7.19)

2(2 )3
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7.2. Preliminary estimates for e~*X and ¢**

The square root formula also yields the following exact representations of e X and ¢?X:

Proposition 7.7. The operator K in (7.3) satisfies

5 4 ) t2
e*K=1+—/ P, -1 dt
T 1 (h2+12)" 'y
0 re2(vn(h+) )

4 1?
2K 12

P, 5 -1 dt.
"-/0 1+2<v,h—l (h‘2+t2)_1v>t2 hot ()

Proof. Let us consider
1 % 1
¢ 2K = (h2+2P \ ) Wi (7.20)
h2v

first. Applying Proposition 7.5 with A = h?, x = h2v and g =2, again we find

2 1 w1 4 [T 2
(h°+2P 1 )? =(h")2 + = ] —P, 1 odt
h? 0 1+2(h2v, (2 +12)1hty) (BP+?) hZv
l2

—h+ P L dr 721
7r/0 L+ 200, k(K2 + 21wy n ()™ (7.21)

whence

oo 2
K = p h+—/ d Py di |
T2 (von(p2a) ) MO

4 [ t?
S1ed / P ey 4 (7.22)
T2 (v () y)

1
For ¢2K = hx(h? + 2P 4 )72 2, we first use (7.7) to write
v

2
P -1,
L2 (hiv, (12)7 miy) (20
2
2P .
1+2(v,hly) H2v

(B +2P ) )7 = (k)7 -

(7.23)

As this is an equality, the right-hand side is, in fact, positive (as the left-hand side is), so we may apply
Proposition 7.5 with A = h™2, x = h~3v and g=-2(1+2 <v, h‘1v>)_1 for

1

2

_1 2
(h2+2P . ) oo — 2 p o,
h2v 1+2(v,h~lv) W2y

—2 % 2 2 e tz

- - -1\ 1 3 1,3 P “2,2) 3 dt

1+2<v,h v>7T 01— 2 W3y, (h_2+l‘2)_ B3y (h2+62)" h72v
l+2<v,h’1v>
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o4 e 1
=h - - . Ph'% B2ag?)! dt
o2 (v ity =2 (vt (2 ea) ) PO
4 [ 1?
:h‘l——/ ——P 3, o dr
T v (vt (2 )y MO
Hence,

12

/ ——P 4o, dr|h
7 Jo 1+2<v,h—1(h—2+t2)’ v>t2 R Gt

T /w & P dt
=1-- R -1 .
o 142 <V, h-1 (h—2 + tz)—l v> 2 B (h=2412) "y

65

(7.24)

(7.25)

These exact formulas now allow us to derive some simple estimates for e 2K — 1 and 1 — ¢?X. To

state these estimates, we first define a new operator 7 on ¢*(L;) with matrix elements

(xi,v) <v,xj>

<xi,ij>=2 Y s

VI<i,j<n.

Recall that (x;)[, are an eigenbasis of i with eigenvalues 4;’s and (x;,v) > Oforall | <i < n.

Proposition 7.8. For K in (7.3) and T in (7.26), we have both the operator estimates

0<e™ —1<T< (1420, k') (K = 1),
0<1-eK <T < (1+2(w, ")) (1 - &*X),

and for all 1 <i,j < n, the elementwise estimates

0< (x;, (e72K = Dxjy < {x;, Txj) < (1 +2v, ) (x, (e_ZK - Dx;j),
0 < (xj, (1= eX)x;) < (o, Ty < (1420, A7) G, (1 - e¥)x;).

(7.26)

Proof. We first prove the bound 0 < ¢™>K — 1 < T. Obviously, 0 < ¢™>X — 1 since K < 0. Noting that
v, h(h?+*)~1v) > 0 and P(hz_,_,z)*‘ , 20 for all t € [0, 00), we have by the first identity of Proposition

7.7 that

-2K 4 1= & 417
e — 1 = — 1 P(h2+tz)7lv dt < - t P(h2+tz)7lv dt
T e (vn () 7 Jo

(7.27)

We claim that the right-hand side is precisely T. To see this, we compute the matrix elements with

respect to (x;): Forany 1 < i, j < n, we have
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4 1%, _4 0 2, 2\t 2, 2\t
<x,~,(;/0 tP(h2+12)‘vdt)xf>_;£ t<x,~,(h +t) v (h +t) v,x;)dt

Ao ) ()
/0 .

o0 t2
= dt = {x;,v){v,x; —/ dt
d G+ A5+ A 0 (/l?+t2)(/12.+t2)
i J

4 1 )_ (xi,v)<v,xj>

= (x;,v) <v,xj> (;E/Ii+/lj =2 pRry =<x,~,ij>, (7.28)

where we used that (x;), is an eigenbasis for & as well as the integral identity (7.16).
The lower bound T < (1 +2 (v, h™'v}) (e72X — 1) follows by the same argument as

(v, h(R+2) ) < (v, h(B)7V) = (v, k1Y) (7.29)
for all 7 € [0, o), sO
1 4 [ 1
‘ZK—IZ—(—/ *P o odt| = ——8MM—T. 7.30
¢ 1+2 (v, 7y \m Jo (n4r2) "y 1+2 (v, hm1v) 7:30)
The bounds
0<1-e® <T < (1+2(v,h7'v))(1 - e*F) (7.31)

follow by exactly the same argument, starting from the second identity of Proposition 7.7, using that
0< (v, (h242) W) < (v, h7y) (7.32)

for all # € [0, o) as well as the integral identity (7.16).
The matrix element estimates likewise follow by the same argument as, for example,

e 2 . .
0< <Xi,(672K—])xj>:i/ ! 1 <§1»V>2 <‘2)’sz dt
T v (v n (e 2) ) G A

4 e 1 2
= (xi,v) (v, x;)| = 1 dt (7.33)
T Jo 1+2<v,h(h2+t2)_ v> (22 +12) (/1§+t2)
4 12 X, vy (v, x;
< {x;,Vv) <v,xj> —/ dt|= ZM = <xl~,ij>
TJo (22 +12) (/13 + t2) Ai+ 4,
by the assumption that the inner products (x;, v) and (v, X j> are non-negative. O

Remark 7.1 (Optimality of the estimates). We may observe that the estimates for e=>X, ¢?K are, in
general, optimal. To see this, let us add a small parameter g > 0O to the problem by substituting /gv for
v in equation (7.3) — that is, defining

I ,
Ky == log (™ (12 +2gP | JIhY), Ty =gl (7.34)
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Then the general bounds of the corollary read for K that

1

— T, < -2K T,. 7.35
1+2g (v, h™! > s = (7.35)
Hence,
1 2<V’h_1"> 2 2
0>-2K,-T,>-|l-———— | Ty,=—| ———T > —-Cg~, 7.36
> 8 g 2 ( 1+2g <V,h_lv>) 8 (1+2g <v,h‘1v> 8 > 8 ( )

which by self-adjointness of the operators involved implies that
2K, =T, +0(g%) = ¢T + 0(g?) (7.37)

with respect to, say, operator norm. This shows that the operator 7, = g7 is, in fact, the first-order

expansion of K, with respect to the parameter g, which is then also the case for e e — 1,1 — €Kz as,
for example, e K¢ — 1 = 2K, + O (g%) = T, + O (g?). The estimate
(xi, (7 = 1)x; ) < (x;, Tyx;) (7.38)

is therefore (asymptotically) optimal since T is precisely the small g limit of e~ Ke — 1.

This is relevant for our application, for although we do not have an explicit parameter g to consider, we
do have V. as an effective one. More precisely, the summability condition of V; ensures that essentially
all but finitely many coefficients V; are small, even when the coefficients (V)7 are not finitely
supported.

7.3. Matrix element estimates for K, A(t), B(t)

In this section, we prove Proposition 7.1. As before, we will prove some general results using the notation
from (7.3), and then we insert Ay, v from (7.2) at the end. Recall that (x;); is an eigenbasis of 7. We
start with the following:

Proposition 7.9. Forall 1 < i, j < n, we have (x;,—Kx;) > 0 and the functions
t = (xi, (7% = 1)x;), (x;,sinh (=tK) x;), (x;, (cosh (—tK) — 1) x;)

are non-negative and convex for t € [0, co).

Proof. By Proposition 7.8, the operator § = 1 — ¢?X satisfies that 0 < § < 1 and (x;, Sxj) = 0 for all
1 <i,j < n. By writing
s 5 st
—2K_—log(1—S)_S+—+?+I+ (7.39)
we find that —2K also has non-negative matrix elements. By using the series expansion again, we see
that forany 1 <i,j <nandt € [0, ),

—t l’(_K)m

(i (e7® 1)xj>‘z<x — ) :

2

e =y = 3 ) 00
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yielding the claim for t — (x;, (e —1)x;). The functions # +— (x;,sinh(—tK)x;) and ¢
<x,~, (cosh (-tK) - 1) x j> can be treated similarly. O

Next, we have the key matrix element bounds.

Proposition 7.10. Forall1 <i,j <nandt € [0, 1], we have the elementwise estimates

[ K Kx"’ (e_tK - 1)x1>" Kxf’ (1 - etK)xf>|’
|(x;, sinh (=tK) x;)|, |(xi, (cosh (=tK) — 1) x;)| < M

/1,' + /lj

Proof. The arguments for e 'K — 1, sinh (=#K) and cosh (—#K) — 1 are again the same, so we focus on
e~'K — 1. By the convexity of Proposition 7.9 and the elementwise estimate of Proposition 7.8, we find

for all € [0, 1] that

0< <x,-, (e—’K - 1)x,-> < (1 - %) <xi, (e_O'K - 1)x.,-> + % <xi, (e‘ZK - 1)x,->

t 2 1 2 l <xi?v> <V,Xj>
= 2 (i (e - 1) 1) < §‘<xi, (e 1)) < 5 (@ Txy) = e 04
This also gives us the estimate for K as
| -K (i, v) (v, x;)

O<<x,,( K)Xj SmZ:lg xi, (— K) xj>—<x,~,(e —I)Xj>ST/lj, (7.42)
where we used again the positivity of (x;, —Kx ;) from Proposition 7.9. Finally, the estimate for 1 — e~
is deduced from that of sinh (—7K) and cosh (-¢K) — 1 as

[xi, (1= €®)x;)| = |(x;, sinh (—tK) x;) = {x;, (cosh (—tK) — 1) x; )|
X, V) (V, X
< max {Kxi,sinh(—tK)xj)L|<x,-, (cosh (-tK) — l)xj>|} < M,
A; +/lj
(7.43)

where we also used the positivity of (x;, (cosh (—7K) — 1) x;) and (x;, sinh (—7K) x; ) from Proposition
7.9 to justify the first inequality. O

As a simple application of these estimates, we can easily obtain the following:

Proposition 7.11. It holds that
1K |leon < @f(v. h72v),

where @ = maxi<j<n <v,xj>.
Proof. We estimate using Proposition 7.10 that

2
n ) n (xj,v) (v,xj>
”K”oo 2= Zl ]mjax |<Xi,KXj>i - Zl] max ( /11. +/lj

1<j<n
im

S(max vx;) )ZK’C"V” o® (v, i) (7.44)

1<j<n
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Now we consider A(¢) and B(z), which can be written as
A(t) = Ap(t) + 'K Pye'™,  B(t) = By(1) + X P ', (7.45)
for

1
Ap(t) = 3 (etKhe’K + e_tKhe_tK) -h

= cosh (=tK) hcosh (—tK) + sinh (—=tK) hsinh (-tK) — h
= sinh (—¢K) hsinh (-7K) + (cosh (—tK) — 1) h (cosh (-tK) — 1) + {h, cosh (-tK) — 1}
(7.46)

and

1
By (1) = > (etKhetK _ e—tKhe—tK)

= — (cosh (=tK) hsinh (—¢K) + sinh (—=¢K) h cosh (-tK))
= — ((cosh (=tK) — 1) hsinh (—=¢K) + sinh (=¢K) h (cosh (=tK) — 1) + {h, sinh (-tK)}) .
(7.47)

Specifically, we must estimate the ||-||o , norms of A(#) and B(z) with respect to (x;),. We begin with
the e’X P, 'K term:

Proposition 7.12. It holds for all t € [0, 1] that

e P (1 () 0,

where @ = maxi<;j<n <v,xj>.

Proof. We first observe that

n n
||etKPVe'K||;2 = Z max [{x;, e’KPve’Kxj>|2 = Z max \(xi,e’Kv>|2 (v, ethj>|2
i=1 i=1

1<j<n 1<j<n
2 2
= (lréljaé(nKv,ethjﬂ )”etKv” < (lrgjai( [(v,e"®x;)| )||v||2, (7.48)

- 2
where we used that by monotonicity of e* and the fact that K < 0, ||e’Kv” = (v, eKy) < IvI|*. For
the remaining factor, we first write

(v.e'®x;) = (v,x;) +<v, (e’K - 1) > (v.x;) Z v, x; <x,,( 1)xj>, 1<j<n

and estimate using Proposition 7.10 that

5 o (¢ = 1)) < S (1)) ¢ Sty 22020

<(vx,Z|<x"V>| (vox;) (v, WY, 1<j<n (150
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Hence,

(v, e x;)] < (v.x;) +

S e (i (e~ 1) 1)
i=1

so returning to equation (7.48), we conclude that

2
e per|E, < (max,

(v,xj> (1 + (v, h_1v>)|2) IvI? = a? (1 + (v, h_1v>)2 vI?, (7.52)

implying the claim. O

For Ay (t) and By (¢), we estimate the matrix elements of the operators appearing in the equations
(7.46) and (7.47):

Proposition 7.13. It holds for all 1 < i,j < nandt € [0,1] that, for C; = cosh(-tK) — 1 and
S; = sinh (—tK),

|(xis CehCox ;)| [(xi, ChSyx ;)| |(xis SehSex )| < (i vy (voxj) (v, k1) (7.53)
and
|<xi, {h, C,}xj>| , |<xi, {h, S;}xjﬂ < (xi,v) <v,xj> . (7.54)

Proof. The arguments for the elements of the two groups are the same, so we focus on particular
representatives. For the first, we have by the estimates of Proposition 7.10 that

Kx,-,sinh (—tK) hsinh (—tK) ,xj>| = Z/lk (x;,sinh (—tK) , x) (xk, sinh (—7K) ,xj>

k=1
< Zn:/l (i, v) (v, xp) s v) (Vs x)
_k:l g Ai + A /lk+/lj

n 2
< (x;,Vv) <v,xj> Z M = (x;,v) <v,xj> (v, h_lv> (7.55)

=
and for the second, that

|<xi, {h, sinh (-tK)} ,x]'>i = (/l,' +/lj) |<xi, sinh (—tK) ,)Cj>|

(xi,v) <v,xj>

S(/li+/lj) /l'+/1j

= (xi,v) (v.x)). (7.56)

‘We can now obtain the desired estimate:

Proposition 7.14. It holds for all t € [0, 1] that
AWz IBOIlw < 3e (14 (v n™v)) vl

where @ = maXi<j<n <v,xj>.
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Proof. Again, the arguments for A(¢) and B(t) are the same, so we focus on A(#). Using that ||| ; is
indeed a norm, and hence obeys the triangle inequality, we have for any ¢ € [0, 1] that

IADeo2 < [l Pve™ [l 0 + 1AR (D002
<|le"® Pye'¥||, , + llsinh (=tK) h sinh (1K)l »
+ [[(cosh (=tK) — 1) h (cosh (=tK) = 1)l + |[{#, cosh (=2K) = 1}{| > - (7.57)
We estimate ||sinh (=K) & sinh (=¢K) ||, , using Proposition 7.13 as

n

|Isinh (=¢K) h sinh (—tK)||§O 2= Z 1max |<xi, sinh (—¢K) h sinh (—tK) xj>|2
i=1

< Z max |(x,,v> v, x]><v h~ v>\2 (7.58)

1<j<
2 -1,\2 2 2 S IR CTINTY)
=a? (v, h7'v) Z|<x,~,v>| =a® (v, i) VP,
i=1

the same bound holding also for ||(cosh (—¢K) — 1) & (cosh (-tK) — 1) ||§o’2. We likewise find

n

lI{h, cosh (—K) = 1}]I% , = Z max. |(x;, {h, cosh (~1K) = 1} x; )| (7.59)

< Z max |(x;,v) (v, x]>| =a’|v|I*,

1<j<n
so recalling the estimate of Proposition 7.12, we conclude that

1Az < e (14 (o W) vl 42 (v, A7) vl + e livl] < 3a (14 (v 7)) VIl (7:60)

O
Now we come to the last ingredient of Proposition 7.1.
Proposition 7.15. Let E = e Khe X Foralll < i,j < n, it holds that
[t (B = 1)) < (1 (0 70) (e 0.,
Proof. Using the identity
e Kne™® —n={he® -1} + (X - 1)n(e® - 1), (7.61)

we can write
<x,~, (e_Khe_K - h)xj> = (/ll- +/lj)<xi, (e_K - l)xj> + <xl~, (e_K - l)h(e_K - l)xj>. (7.62)
We can apply Proposition 7.10 to estimate the first term of this equation as

Grisv) ()

i(/li +/lj)<x,~, (e_K - 1)xj>‘ < (A +45) LA <x,,v><v Xj > (7.63)
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and the second term as

|(xis (7% = 1)n(e™® Z (xis (€7 = Do Y (xres (€75 = 1))
G ) (o) (v x)

< Ak
=i A + A Ak +/lj

< o)) 3L = ) ).

which implies the claim.

(7.64)

i

Proof of Proposition 7.2. Now we insert h; and vi to conclude. Using Proposition 7.11, and noting

that ‘@’ of our problem is simply the constant

Vick !
i 1) =\ 3
we find that
Vikpt | Vik! 1
IKles.2 < \]2(2 )%\/ (i i) \/2(271)342(2703 p;k 2
< CViky! Z -
peLy “k,p
The desired upper bound

N _2
IKkllwon < CVi log (k)3 k70 [k|'*S

then follows from an estimate from Proposition A.3 in the Appendix:

1
Z —— < ClkP*3 (log kF)sk* kp — oo.
peLk Ak p
However, by Proposition 7.14 and (7.11), we conclude that

ka;,l
2(%)3 (1+ (v g vi)) m L]

<Cka ! |Lk|(l+ka ! Z )SCVk|k|é (1+Vk),

peLy A P

where we used

1
Ll < ClklkE, > ~— < Ckr
PeLg k.p
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from Proposition A.1 and Proposition A.2. Finally, from Proposition 7.15, we have

max |<ep, (Ex — hy) e,,)l < (1 + (vk,h;lvk>) sup | <ep,v> |?
PELk pEL,

€L
N 1 ka_
=1+ Vik7! — < CkR'Vi (1+ Wy (7.70)
( F p;k /lk,p) 2(2ﬂ)3 ( )
where we used (7.65) and (7.69) again in the last estimate. O

7.4. Kinetic estimates
Now we prove Proposition 7.3. Again, let us start with the notation (7.3). We have the following:

Proposition 7.16. Under the notation (7.3), it holds that

Hh_%KH < <v h~ 2v>
HS
1
K,h}h™2 <2 h=1v),
omy w21y,

_1 _1 _
”h Py | <2 (vt

Proof. Using Proposition 7.10, we estimate

e Sl 2 v (i, v) (v, x;) |(x; v)| 1 \2
h_iKH = — [{xi, Kxj)|” < _— 2 =< Jh2 > ,
H Hs l_;l 7 [ Kxs)| ,-;1 P Y Z; naey
(7.71)
and for H{K,h} h=2||  use that H{K,h} h2 < ||Kh% + HhKh‘% to estimate
HS HS HS HS
1|)? C X >| -1
|xcn® HSZ; ;| KoY < Z | ei, )P ——|| P (v n )
_1 2 a2 /12 s
[ WY 1K) < I i o)l e (v, h71v) (7.72)
i,j=1 Q=1 A
for the claimed H{K,h} ht s <2|v|l (v,h‘1v>. We likewise have that
”h’% K.mht| < ”h’%Kh% +(h%1<h*% =2}|h*%1<h% , (7.73)
H HS HS HS

so the bound

”h—%mﬁ

112 A . 2 )
= 2T 2, (i, Ky (Z i V>| ) = (v, i)’ (7.74)
i,j=1

implies the final claim. O

For A(¢) and B(t), we recall the decompositions (7.45)-(7.47). Recall also that (x;); is an eigenbasis
of hand (x;,v) > 0 forall I <i < n. We first estimate the e’X P, ¢’X term:
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Proposition 7.17. For all t € [0, 1], it holds that

max
1<j<n

h 2e’KP e’KxJH < a/(1+<v h” v>)2 (v,h‘1v>,

where @ = max<j<pn <v,xj>.

Proof. We write e'K P, e'K as
eKpPe® =P, + ('K —1)P, + P, (e'® = 1) + ('K = 1)P, ('K - 1)

and estimate each term separately. By the definition of P,,, the first term is simply

‘ < a,/(v, h‘]v>.

For the remaining terms, we use Proposition 7.10 to estimate that

st =5 B i
i=1 7t k=1

n 1 Zn: (x,»,v) (V,)Ck> <Xk v> <V x.>2
> > Xj

=20 A+
=i i+ Ak

Hh’%vajH = Kv,xj)l “hf%v

2

o A

< vxf (Z l<xnv>|) <a2<vh V>,

and
2
(e ) = 5[5 o o 1))
i=1 Ai k=1
n n . 2
< ;% 2 _— (V,Xk>—<xk,’1:>+<;;x]>
< |<v,xj>|2 (z": |(x,/,l—v)|2)3 < a? <v, Pf]v>3
i=1 L
and

i) e 1)
<xl,( = 1) i) G, o) (s (% = 1) ;)

(3, 7) o0 G, v) (v ) [
Z T (W) ) =

2

1
/l

1

l

k,l=

2 2 2
() Z o) (Z |Gox )| |<xlilv>| ) < (oY,

k,l=1

i=1

which imply the claim.
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Finally, the full estimates on A(¢) and B(¢) are now easily obtained:

Proposition 7.18. It holds for all t € [0, 1] that

max _%A(t)xjH, 1Ta§ Hh_%B(t)xjH <2«a (1 + (v, h_1v>)2 (v,h‘1v>,
<j<n

1<j<n

where @ = maXi<j<n (v,xj>.

Proof. The estimates for A(¢) and B(¢) are similar, so we focus on A(t). We have
o)
< ”h’% sinh (=¢K) h sinh (=K x,-|| + Hh*% (cosh (=tK) — 1) h (cosh (=tK) — 1)xj“
+ Hh—% {h, cosh (—tK) — 1}xjH + Hh—%efKPVefojH, (7.81)

and by Proposition 7.13, we can estimate that

2 n
Hh_% sinh (—¢K) h sinh (—tK) xj” = Z /li |<xl~, sinh (—¢K) h sinh (—tK) xj>\2
—l A;

< |<v X; | (v hly Z |(x,,v)| <a? (v, h_1v>3 , (7.82)
the same estimate holding also for ”h‘% (cosh (=tK) — 1) h (cosh (-=tK) — 1) xjH, and

|27 th, cosh (~1K) - l}xf'”2 - Z % [(xi. (. cosh (<1K) = 1))

< |(v,x)} ZKX”V)' o (v, V). (7.83)

Inserting also the estimate of Proposition 7.17, we thus obtain

h_%A(t)xj” <2« <v, h_1v>% + a,/(v, h‘1v> +a(l+ (v, h_1v>)2 (v, h‘1v> (7.84)
< 2a(1+ (v, )2, i 1v).

max
1<j<n

O
Proof of Proposition 7.3. The desired bounds follow from applying the general estimates of this section
to hy and vy, plus using the uniform bound on « in (7.65) and the estimates

. . _3 _1
IVI* < CVklklkr,  (vioh'vi) < CVk, (v b 2vi) < CVlk**3 (log kp)%k 3 (7.85)
which hold for all k € B (0,2kF) due to Propositions A.1, A.2, and A.3. O

8. Gronwall estimates for the Bogolubov transformation

In the previous sections, we have bounded several error terms using the operators H,, and NE. In this
section, we control the propagation of these operators under the Bogolubov transformation e % defined
in Section 5. We have the following Gronwall-type estimates.
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Proposition 8.1. Let 3, ;3 Vi |k| < co. Then for all ¥ € D (H];in) and |t| < 1, it holds that

(7™, (H], +kp)e W) < C (¥, (H};, +kr)¥),
(e, (ki NgH[,, + H],, + kp)e ™) < C (¥, (kp' NgH],, + H,, + kr)¥)

in

for a constant C > 0 independent of kF.
As a preparation, let us first prove the following:

Lemma 8.2. Let X,Y, Z be self-adjoint operators on a Hilbert space such that
X,Z>0, [X,Z]=0, =+][[Y,X].X]<Z.

Then,

i[[y,&],ﬁ]s%

Proof of Lemma 8.2. Using (7.8), we can write
2 [ X A -1
Y,\/}]z—/ Y, —— dtz—/ Y, ——
[ 7 Jo [ X+ tz] 7w Jo X +12
and applying this identity twice, we get

2 (o] [ee)
2 11 11,
Y VX|. VX[ =|- —— [V, X] . X]| —— t-dsdt.
H ] ] (n)‘/o /0 X+t2X+s2[[ ] ]X+s2X+t2S *

Therefore, the assumptions + [[Y, X], X] < Z and [X, Z] = 0 imply that

2 [ee] (o]
2 1 1 z
+ Y,\/X],\/X]s = / / z 22 dsdt = —.
H 7 Jo Jo XX+ x+2 x4+ PUT 4y

Now we give the following:
Proof of Proposition 8.1. Write ¥, = ¢'W for brevity. Recalling Proposition 5.4, we see that
d ’ ’
T (W (H{gy + k)W) = (9 [ B [ W) = (908 (KPL1P)) ).
keSc

The right-hand side can be bounded by using Propositions 4.10 and 7.3 as

> e 0s (ke ngN W <2 Y || (2) 7 (Km0} ()

HS <lPt’Hliin‘Pt>

keSc keSc
_1
+2 3 [k gy ()72 0 HG ) 1
keSc

N 1 N

< C(Z Ve <lPt’Hliianl>+Ck12F(Z A NC AR AN A
keSc keSc

< C(¥, (H, +kp)¥),
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where we also used the Cauchy—Schwarz inequality in the last step. Thus, the first estimate of Proposition
8.1 follows by Gronwall’s lemma. For the second bound of Proposition 8.1, let us denote

X1 ZJ\/E +kp > kp, Xo=kp +Hliin >kp, Y1 =[K,X2] and Y,=[K, Xi]. (8.6)

Note that Y7, Y, are symmetric since X, X, are symmetric and K is skew-symmetric. Moreover, since
[X1, X2] =0, [IC, X1 X>] is also symmetric, and we can write

2[K, X1 Xa] 2(}(1 [, Xa] + [KC. XI]XZ) 2X1Y; + Y2 Xo)

2

Z(XY+YX)—Z(2x/Z~m/7,-+[[Yi,JZ],JZ]). 8.7)

i=1 i=1

For i = 1, arguing similarly to (8.4) and (8.5), we have

oY) = +[K, Hj 1 =+ ) 05 ({K2. hE)}) < CXo,  +XNX) < CX1 X, (8.8)

keSc

Here, we used [X], X2] = 0 in the last estimate. To apply Lemma 8.2, let us compute [[Y1, X1], X;].
Note that for every symmetric operator B on fz(L ), we deduce from (1 75) that

[05(B),NE| =2 Z (ep, Beg) (_bz,pb:j+bﬁbﬁ)’

p.q€Ly
[[5(B). Ne] . Ne] =4 D (ep, Bey) (b*k‘ ﬁ”’ﬁbm) = 40k (B). (8.9)
P-q€L;
Using (8.9) and (8.8), we have
[V Xl Xl =24 Y 0% ({KE P < Cxs, (8.10)
keSc
which implies by Lemma 8.2 that
+[[Y1, VX1, VX1] < CXo X7 (8.11)

Next, we consider the terms of i = 2 in (8.7). Let us compute the commutator Y, = [K, Ng]. By
linearity, we deduce from (1.75) that [by (), Ng] = by (¢) for any ¢ € 52(Lf), and hence from the
definition of K in (5.2),

=[G Nel= >0 > (bilep)by (KEep) + bk (KPep) bilep)) = >, 0% (KE).  (8.12)

keSc p eL* keSc

Note that

KO = 0 K K, O
k Ky O 0 —Ki

and hence by Proposition 7.1, we obtain

DUIKE s < D) wrKEN =2 Y w(Ki) <C Y Vi (8.14)

keSc keSc keSc kez3

Sl
-l

-l
-l

B ) (8.13)
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Therefore, by Proposition 4.7,

+Y; < 2( > ||K;fHHS) (1+Ng) <CX1, +Xaha/Xa < CXiXo. (8.15)
keSc
Finally, consider
(12 X2]. X2 = ) [[Q5 (KP) . Hy ] Hi, ] - (8.16)
keSc

For every symmetric operator B on fz(Li), by (1.74), we compute

[05(B). Hy,, | = Z <eP’Be'I>[( *"‘b i ) km]

P.g€Ly

- ZL+<ep,Beq>(/lm+/la (~bibi + bgbis)
p.qeLy

[[QIZC(B)’Hl:in] Hy,| = Z <ep’Beq>(/l >t g [( bz bk,qb )Hl:m]

P.q ELz

= > (epBeg) (U +/l—)2( +babﬁ). (8.17)

+
P-9€L;

By the Cauchy—Schwarz inequality, we can estimate

4
£ [[05(B). HLy) Bl < (e(awmm) bjwbjwb,wbw+e—1|<e,,,3eq>|2) (8.18)
p,qeL:

for all € > 0. From Propositions 4.5, 4.8 and the commutation relations (1.74), (1.75), we have

0< Z ’lﬁbkp g brabrrs < Z Akp %p Vb, <HkinNE’
P-qEL; peL;

0< D dgbibibrobry < ) b Hibiy < HyNe. (8.19)
P-qEL; peLy

Moreover, when k € Sc = B (0, k;y,) N Z3 with 1 > y > 0, we have
T 3.3 2,4 +
Wl < Clklke, 1P < ClkPkE < ClkPkE, Vp e L. (8.20)
Hence, we conclude from (8.18) that
+ [[Q5(B). HY, | Y, ] < C(elk Pl H{yNi + €711 ) (8.21)
for all € > 0. Optimizing over € gives
+ [[04(B), H, | H, ] < CliBllus klir (i N + K3 ) (8.22)

for all symmetric operators B on fz(L ). Inserting this in (8.16) and using

DIkl < D Ikl (KD =2 " [kl ((Kil) < € Y [kIVi (8.23)

keSc keSc keSc kez3
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(which is similar to (8.14)), we find that

L[V 6], %] =+ Y. [[0F (KE) H, ] Hiy] < Chp(H{Ne + k) <CXiXE (8.24)
keSc

Applying Lemma 8.2, we obtain
+[[Y1,VX2], VXa] < CX1Xo. (8.25)

Putting together (8.8), (8.11), (8.15) and (8.25), we conclude from (8.7) that

=K, X1 X;3] < CX1X;. (8.26)
Thus,
d
‘E (‘PI,X1X2"P,> = |<‘Pt, [IC, X1X2]TI>| <C <‘P,,X1X2"Pt> . (8.27)
By Gronwall’s lemma, we have
(P, X1 X0W;) < C(Y, X1 X, P), V|t <1. (8.28)

This implies the desired bound since %Xl X, < N EHI:in +k FHliin + k2F < X1X. Here, we used again
Proposition 2.1. o

9. The second Bogolubov transformation

Recall that after the conjugation by ¢*, up to negligible error terms, we obtain the correlation energy
and the operator

Hl+2 > 0K (ER - h9). ©.1)
keSc

In the bosonic analogy, where we informally consider H,, ~ 2 Zkezi Q’f (h,‘f), this expression would
be manifestly non-negative as Hy, cancels the negative terms 2 Xy, Q’f(—hf) (and E,? > 0 as
E; = e Xk hie ®x > 0), so this term could be neglected for the lower bound. This analogy is only
formal, however. One might still hope that E,? - hff > 0 since Ey is isospectral to E, « and E, r = hy, but
this fails too; it can be shown that Ex — hy is indefinite. While these two ideas — the bosonic analogy
and the fact that E; — hx > 0 — fail on their own, we will overcome this issue by combining them. In this
section, we will carry out another unitary transformation which effectively replaces Ex by Erin (9.1).
Consider the unitary transformation e : Hy — Hy, where J : Hy — Hy is now of the form

J = Z Z (ep.Teq) bilep)bi (eq) = Z Z by (Jgep) biclep), 9.2)

keSc p.geLs keSc peLy

where S¢ = E(O, k) NZ3 with 1 > y > 0 and
1

o_[Jk O b ook )b K
Jk = 0 Jk . Jk=10g(Uk), Uk= hke khk h, 2e™k, (9.3)
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Here, Uy : €>(Ly) — €?(Ly) is the unitary transformation which takes Ey to Er, namely,

= Ey, (9.4)

=

1 1
1 1\2 (1 1\2 1
UkEkU;gz(h;e—szh;) (h,ge—ZKkh,g) =hie *ep

and Jy, is the (principal) logarithm of Uy, so that e’* = Uy. Since J; is skew-symmetric, so are J ,? and
J, and hence, e is a unitary operator on Hy .

In the exact bosonic case, it is not difficult to see that for every skew-symmetric operator J : V — V,
the unitary operator e with 7 = dI" (J) = 3, a* (Je;) a(e;) is a Bogolubov transformation on F* (V)
which acts on a second-quantized operator as

e7dr(A)e~7 = dTI (ej Ae™? ) . 9.5)

Returning to the quasi-bosonic case, we will show that

ey ( Z Qf(E,?)) e ~ Z Q’f (leE,?eJI?) = Z Q]f (Eff) (9.6)

keSc keSc keSc

up to error terms which are similar to the exchange terms coming from the first transformation. More-
over, although H;, ~ 23, ez Qf (hff) does not hold precisely, it is valid from the point of view of

commutators as explained in (1.72), which results in ngin -2 ez Q’f (h,‘f) being essentially invariant
under the Bogolubov transformation ¢ . The overall transformation then takes the form

7 (ngm+2 > ok (Eg - h;f))e—J ~H,+2 ) O (Ef —hf), 9.7)
kESC kESC

and we now have the desired non-negative operator E]? - h,‘f > 0 on the right-hand side.

While the error terms in (9.7) are similar to those coming from the first transformation, they are in
practice more difficult to estimate, for although we derived simple, optimal estimates for the transforma-
tion kernels (K )y es,. in Section 7, we cannot obtain the same for the transformation kernels (Jx)ges,.-
The justification that the second transformation works as claimed will therefore take more effort than
was needed for the first transformation.

9.1. Actions on the bosonizable terms
The first step of justifying (9.7) is to prove the following exact equality.
Proposition 9.1. The unitary transformation e’ : Hy — Hy given in (9.2)-(9.3) satisfies

o (H];m 2 Y ot (ip - hf)) 7

keSc

1
=B, +2 ) 0F (E,? —h;f) 2y /0 107 k(P8 (1))e= (107 gy,

keSc keSc
where for all k € 73 and t € [0, 1], we defined the operator F]?(t) : Zz(Lf) — fz(Lf) by

tJx —tJr _
o, _ [€'FEe hy 0
Fk (t)_( 0 ethEke—th_hk)’
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and for symmetric A : fz(Lf) — Zz(Lt), we defined the new exchange operator

EE(a)=2)" 37 > Re(bi(Aep)ari(epieq)bi(Jfey))

leSc peL; qeLy

=230 3 D) Re(bilAep) (d.gciesp+ o grrcien) iU ey)

leSc peL; qeLy

We will follow the same strategy as we did when we considered the action of the quasi-bosonic
Bogolubov transformation on the Q% (A) and Q5 (B) terms. First, we calculate the commutator:

Proposition 9.2. For all k € Sc and symmetric A : (*(LF) — €*(L%), it holds that

[7, 05 (A)] = 0 (12, A]) + E5 (A).

Proof. We first calculate, using the commutation relations of the excitation operators b (¢) and b (¢),
that for any k € Sc and ¢ € KZ(Lf),

[T bi(@)] == > > (bj(IPeq) [bi(p), bi (eq)] + [ba(9). b (I eg)] b (eq))

leSc qGL[i
=- Z Z (6k.1 {0 I7eq) + £r (9317 eq)) i (eq) 9.8)
leSc qeLf
=" Z (9. J%eq) bi (eq) = Z Z et (@3 eq) bi (eq)
qeL; leSc qeLf
= Z (Jep.eq) i (eq) + Z Z ekt (¢req) bi(Teq)
qeL; leSc qeLy

= b (J2¢) +E7 (9)

for

&7 (p) = Z Z ek (@req) bi(Jleq), 9.9)

1eSc qeLli

where we used the skew-symmetry of J&, anti-linearity of ¢ — by (¢), and Lemma 3.3. Consequently,
we compute for Q~’1< (A) that

(7,05 ()] = ) [T.bi(Aep)bilep)]

peL:
- (b3 (Aep) [T.biep)] + [T bi(Ae,)] bice,))
PeEL};
- ZL: (b;(Aep) (bk (/2e,) +5,;7(ep)) + (bk (J2Ae,) +5,;7(Aep))* bk(ep))
peLy
= ZL: (br(Aep)bi (Jep) + by (I Aep) bi(ep)) (9.10)
PEL}
+ ZL: (b*k(Aep)E;Z (ep) + (b*k(ep)g,f (Aep))*)
PEL}
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Db ((JRA=- AR ep) bilep) +2 Y > " Re(bi(Aep)eri(epeq)bi(Ifey)

leSc peLi qeLy

PEL}
= 01 (LU, A + E5 (A).
O
To derive an expression for e Q’l‘ (A)e~7, we will use the Baker-Campbell-Hausdorff formula
— 1 © o .
exp (cjke;) (A) = Z — O (A) = /P AT, with Cpe(4) = [P, A]. 9.11)
Imitating the proof of Proposition 5.3, we deduce the following:
Proposition 9.3. For all k € Sc and symmetric A : (*(Ly) — €*(L%), it holds that
1
e 0 (A)e T = OF (leAe_]f?) +/ e' 7 &S ( (=07¢ Ae™ (1—:)13) e,
0
the integrals being Riemann integrals of bounded operators.
Proof. We claim that for any n € N, it holds that
n-1 1 1 n-1
e 0k (A)e™T = OF (Z Ec;EB(A)) + /0 e'TEY (Z i ,)J$(A)) e dt
m=0 m=0
1 ! tT Ak n -tJ n—1
+W/O e Ql (CJ;B(A))C‘ (l—l) dt. (9.12)

We proceed by induction. For n = 1, we have by the fundamental theorem of calculus and Proposition

9.2 that
1
7 0N (e = 0K (A) + / &7 [7.04A)] e dr
0

1 1
=Q’f(A)+/ oK (I8, Ae™Y dt+/ e EX(A)e™ dt, (9.13)
0

0

which is the claim. For the inductive step, we assume that case n holds and integrate the last term of

equation (9.12) by parts:

1 ! Nk 1
/O ' g (C’}E(A)) et (1= 1" Ldr

(n=1)!
= Gy [ 2k (e ) e (_¥)];
- (,,_11), /0 9 (7.0 (cro)| e (—%)m ©.14)
- %Q{c (Co)) + L /01 7 (08 ([92.Cr ]+ €5 (e () (1 = e

~i [ 1 1
= Ok (EC;’?(A))+/O fﬂgk( 1l I)JQ(A)) “ di

R
) e'7 Ok (c;:;l(A)) eI (1= 1)dr.
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Insertion of this identity into equation (9.12) yields the statement for case n + 1, so our claim (9.12)
holds. We can now take n — oo and appeal to equation (9.11) to get the claim. O

Proposition 9.2 also allows us to describe the action of e on H,

Proposition 9.4. It holds that
e’ [Hy -2 ) OF h@) T =Hj, -2 ) 0F (hf) ZZ/ "7 EX (h®) eV .
keSc keSc keSc

Proof. By the fundemental theorem of calculus and the fact that 8, (eABe™4) = ¢’A[A, B]le™'4, the
left side is equal to

Hiy =2 ), OF (k) + / NI H =2 Y OF () [ dr.
keSc keSc
Recalling (1.74), we may compute using Lemma 3.3 that
(7 Hal == 20 D [Hiaws bic (2ep) bitep)]
keSc peLg
=2 3" > (=by (JEep) bi (hep) + b (hETEe,) biley))
kESC pGLi
=2 3 D bp ((JERE = hEIE) ep) brlep) =2 > OF ([J2.hE]). (9.15)
keSc peL; keSc

Combining with Proposition 9.2, we have that

[J, My -2 Y ot <hss>] -2 S [0 ] = Y ). o6

kESC kESC kESC

which implies the claim. O
We can now conclude:

Proof of Proposition 9.1. By the Propositions 9.3 and 9.4, we see that

o7 (H;m 23 o2 Y 6 (Eé’))

keSc keSc
=H{;, -2 > OF (hf) -2 Z/ eI EN (h®) e dt
keSc kESC

+2 Z Q]f( EGa - )+2/ e’j53k (e(lft)JgE,?ef(lft)J/?) e I dt

keSc

1
= Hllcin +2 Z Q~]1c (eJ]?E]?e_JG? _ h]?) + 2/ e(l—t)]géc (etJszae—zJi? _ h;?) e_(l_t)Jdt,
kGSC 0
9.17)
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where we also reparametrized the integral. From the choice of J ,? in (9.3), we have

etJ"Eke_t‘I"' — hy 0

tJ® pe —tJ® ®
ekEPe ™k — h? = _
k k 0 e”kEke Tk — hy

= E2(1) (9.18)

for all ¢ € [0, 1]. Moreover, using e’* = Uy and (9.4), we get eJSE]?e_”l? = Elf O

9.2. Estimates for the exchange terms

Now we estimate the new exchange term &3 in Proposition 9.1. We have the following:

Proposition 9.5. For all k € Z3, symmetric E : €2(L%) — €*(Ly) and ¥ € D (H]. ), it holds that

(@WEAMZWmﬁﬁM

for a constant C > 0 independent of all quantities.

V(¥ H W) (¥ N H, W)

(P, E5(E)P)| < C (max
peL;

Proof of Proposition 9.5. We can follow the analysis in Section 6. In particular, the same reduction in
Section 6.1 applies to Eé‘(E), but in this case, it is significantly simpler. By definition, up to taking
adjoints, every term of 53k (FE) immediately reduces to the schematic form

Z Z by (Eep,) € pyCpibi (Jl®epz) , 9.19)

leSc peS

and recalling that commutators of the forms [5 Py bi (<p)] and [E*p, by (go)] also vanish, we may normal-

order this schematic form without introducing additional terms. Controlling 53" (E) thus reduces entirely
to the estimation of the single schematic form

DD by (Eep,) bi(JPep,) ép,. (9.20)

leSc peS

We estimate the schematic form of equation (9.20) using Proposition 4.4, Lemma 6.6 and the Cauchy-
Schwarz inequality:

Z Zl (¥.¢ sy (Eep,) bi (J7ep,) €p, ¥ Z Z”bk Eep,) &p, || [[b1 (1€ p,) €, ¥

leSc peS leSc peS

~ 7(+1) ~ ~ r(£1) ~
Z Z “ hy) 2 EemH” h)” J;Bep2 \/<C’,,3‘I’,Hki(ni )cm‘P> <c,,4‘P,Hki(: )cp4‘P>

leSc
_1 ~s 7(xl) ~
< (mzfi (h)% Eey| | (2. 1, %) (hl) e, Z( L H Ve, )
Py leSc \peS peS
< (;rit (h®)” Eepl“) (Z ) JGB J VO L) (N, ). 9.21)
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9.3. One-body operator estimates

In this subsection, we derive estimates on the one-body quantities

_1 _1 _1 _1 _ - _
W Ex(Depl|, |, 2k hC o hid b\, (P (Ee - ki), 9.22)

HS

max
PELk

s bl

HS

The first two quantities arise from the analysis of the exchange terms in the previous subsection, while
the third quantity will be needed in order to derive Gronwall-type estimates for the kinetic operator. The
last one is useful to remove the cutoff S¢ on the right-hand side of (9.7) at the end. The estimates we
will establish are the following:

Proposition 9.6. Assume 3} 73 Vielk| < oo. Then for all k € Z3, we have
tr(h;l/z(gk - hk)hzl/z) < CVk.

Moreover, ifk € B (0,k}.) NZ3,0 <y < 35 and t € [0, 1], it holds that

1 1
-2 -2 (0 03116
,E%%’,f h *Ex(t)ep| < Ckp? (Vk+Vk|k| log(kF)),
_1 1,
K20 < Clogkr) ik, Vi,
HS

< CVk.
HS

_1 _1
hk2 [Jk, hk] hkz

Here, the constant C > 0 is independent of k and k.

Proposition 9.6 is the main source of the technical restriction y < % which comes from the use of
the first bound in Proposition A.3 (we need y < % with 8 = —%).

As in Section 7, in order to simplify the notation, let & : V — V denote a self-adjoint operator acting
on an n-dimensional Hilbert space V, let (x;)*, denote an eigenbasis for i with eigenvalues (4;);_;, and
let v € V be any vector such that (v, x;) > 0 forall 1 <i < n. As before, we take

1 _1 2 % _1
K = -3 log (h : (h +2Phév) h z). (9.23)
We will establish general estimates for the operators
1
U= (h%e’ZKh%)z h3eK, J=log(U), E(1)=eeKneKe ! —p (9.24)

and then at the end insert the explicit choice (7.2) to get the desired estimates.

Unlike the case in Section 7, we will now also take V to be a complex Hilbert space. This is not a
strictly necessary assumption, but it allows us to streamline the presentation significantly, as it implies
that the unitary operator U is diagonalizable and so lets us describe the operators J = log(U) and ¢’”
solely in terms of eigenvectors of U.

The main difficulty of the proof of Proposition 9.6 is that we cannot extend the argument leading
to matrix element estimates for e 72X — 1 and 1 — ¢?X in Section 7 to handle the operators J and e’”.
Instead, we will utilize a technique which effectively lets us replace relevant quantities of J by these of
U — 1, by exploiting the diagonalizability of U.

We start with the easy part of Proposition 9.6.

https://doi.org/10.1017/fmp.2023.31 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.31

86 M. R. Christiansen, C. Hainzl and P. T. Nam

1

Proposition 9.7. With E = (h2 + 2Ph ! ) * we have
v

tr(h-l/Z(E— h)h‘”z) < (v, ).

Proof. Using (7.21) for E = (h2 + 2Ph% )2 , We can write
A4

_ 4 ) t2 4 ©
h—l/Z(E _ h)h—1/2 — _/ 5.yl dl‘ < —/ P 2, 2\-1 t2 dt
7 Jo 1+2<v,h(h2+t2) > Py wJo )y

(9.25)
Taking the trace and using (7.8), we complete the proof. O
Estimates for U
Let us consider the unitary operator U : V — V defined by
= (hte K p2yip2eK (h2+2ph%v)%h*%e’<. (9.26)

First, the analysis of (A2 + 2Ph ! )% in Section 7 can be extended to (A2 + 2Ph 1 )%. We have the
\4 v
following:

Proposition 9.8. Forall 1 < i, j < n, it holds that

1
xi, [(R2+2P ) —h2)|x;
h2v J

Note that by using the integral identity

A = 2\/_
/( A+t4)dt (9.27)

for every self-adjoint non-negative operator A instead of (7.8), we obtain the following analogue of
Proposition 7.5:

234 (xg,v) (v xJ>
\/_+\/_. i+

Proposition 9.9. Let (H, (-, -)) be a Hilbert space and let A : H — H be a positive self-adjoint operator.
Then for any x € H and g € R such that A + gP, > 0, it holds that

2V2g [ r*
(A+ng)z]T - A% 4 \/_g/ (A+t4) 1 dt.
T Jo 1+g<v,(A+t4) >
Proof of Proposition 9.8. Applying Proposition 9.9 with A = h?, x = h2v and g =2, we find

1 [4

1 1 oo
(242 )4=(h2)4+&/ : — P o (928)
h2v T Jo 1+2<h7v,(h2+t4)_1h§v> () v

4 tt
% \/_/ P 5 -l dl,
2 (v (2 ) ) PO
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and so we can estimate that

1
0< <xi, ((h2 +2Ph%v)4 - h%)x,->

42 > i
:i/ ] <_Xi,P% 5, a1 )C]>dt
S Y (e I A

4V2 @ 4 . NA

:i(x,-,w (v,x,«)/ ! - ;//1_‘4 ;/_’4 t (9.29)
n 0 1e2(vn(r ety ) A

< @(» v) (v x’>/m Vi L tdt = 2V ki v) (v )

o TNy Bt et VG +A Ai+d;

where we also applied the integral identity

“Na Vb 4. Nab 1

A a2+t4b2+t4t t:ﬁmm’ a,b>0. (9.30)
O
‘We may then conclude the following:
Proposition 9.10. Forall 1 < i, j < n, it holds that
(xi,v) <v,xj>

[ (0 = D) o (0 = D) <3 (10 (i) =R

Proof. As |<xl-, U-1 xj>| = |<xj, -1 xl-)\ and the claimed estimate is symmetric with respect to
i and j, it suffices to consider U — 1. We write

=

U—I:(h2+2P \ ) h—%eK—lz((h%zP . )Z—h% 5K 1K _ 9.31)
h2v h2vy

=
5

1 1
=K 1+ ((h2+2p L) —hi)h—% + ((h2+2P L) —h%)h—% (5 - 1)
h2v h2v
and estimate each term separately. The first is directly covered by Proposition 7.10, with

‘<xl~, (eK - l)xj>‘ < % (9.32)

For the second term, we can by Proposition 9.8 estimate that

1
2 7 1 _1
<xi,((h +2p | —h2)h zxj>

1 2 7 1
\/_/l_j <x,~,(<h +2Ph%v) —h2)xj>
- L 2id; (xi,v) (v,xj> - 2(xl-,v) (v,xj>
_\/Z\//l_l-'_\/z /li+/lj - /1,'+/lj '

For the final term, we carry out an orthonormal expansion and apply the previous two estimates to see
that

(9.33)
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N 2 i -1 K
< Xi, (h +2P ) —h2 | h Ix; |<xk,(e —l)xj>‘
h2v
k=1
<2 S <Xi,V> <V,Xk> <Xk,V> <V’xj> 2<xi’v> <V,)Cj> C ﬂi +AJ |<X V>|2
< = k»
— A + Ag Ag + 4 A+ 4 = (A + Ax) (/lk +/lj)
xi, vy (v, x;) & 2 xi, v) (v, x;
PRSI ’>Z|<xk’v>| =2(v,h*1v>—<l A ’>, (9.34)
A; +/1j = Ak A; +/l]'
where we also applied the elementary inequality
+b +b 1
a - a <=, Va,b,c>0. (9.35)
(a+c)(c+b) cla+b)+ab+c? ¢
Combining the estimates now yields the claim. O

Estimates for J

Recall that we defined J : V — V to be the principal logarithm of U. Since U is a unitary operator
on the finite-dimensional complex Hilbert space V, by the spectral theorem it is diagonalizable — that
is, there exists an orthonormal basis (w j)]'.’=1 for V of eigenstates of U with eigenvalues (eigf);’:l,

(0;)) € (=m, 7], (e, Uwj = "% w forall 1 < j < n). Thus, J can be explicitly written as

JWj = I.QA,'W]', 1<j<n. (9.36)

To estimate the quantity Hh‘%J , we will apply the following:

s
Proposition 9.11. It holds that

2
JI* < I(U—l)*(U—l).
Proof. We note the elementary inequality

|x] < g\/Z(l —cos(x)) = g |eix - 1| , x¢€|[-mn], (9.37)

which can be deduced from the fact that x +— \e"" - 1| is an even function and concave on x € [0, r].
As the eigenbasis (w f);l:l obeys

Uw;=e%w;, U'wj=e%w;, Jw;=i0jw;, J'wj=-i0;w,, (9.38)

we can for any w € V perform an orthonormal expansion in terms of (w j);?:l to see that

N . - 2 RN ‘0 2 2
(v dsw) = 7wl = ;w (o) < Z (51 = 11)" [ w)]
< . 2w ) .
=ZZ|((U = Dwjow)[ = I =DwlP = 7 (. (U= 1D (U =1)w), (939
j=1
which is the claim. O
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Corollary 9.12. There exists a universal constant C > 0 such that

|HS <C (1 + <v, h_lv>) <v, h_%v> .

Proof. By cyclicity of the trace and the estimate of the previous proposition, we have that

s

Hh’%J |12{S —tr (J*h’lJ) —tr (h’%JJ*h’%)

I . 1\t _1?
Sztr(h P (U= (U=1)h 2)—ZH(U—1)h .o

k]

and by the matrix element estimate of Proposition 9.10,

i,]’i—l |<Xi’ (=1 h_%xj>‘2 - i % |<xi, U - 1))cj>|2

i,j=1
2 & 1
SC(1+<v,h’lv>) Z/l_
J

ij=1

fo- v, -

(xi,v) <v,xj> :
/11' +ﬂj

= C(l + (v, h ) Z Kx“j})l C(l +<v,h’lv>)2 <v,h’%v>2,
A;

which gives the claim.

89

(9.40)

2
<o+ L i) {v.xj)

/l, s 1
— A 19314
i,j=1 /ll- /l]

(9.41)

]

Next, consider ||h‘% [/, h]h_%HHs. By the triangle inequality, it suffices to bound ||h‘%Jh%||Hs.
Unlike ||h‘%J |ls, this is more involved as the presence of factors of 4 on both sides of J prevents us

from combining J and J* in ||h_%Jh% ”1215

we note the following elementary estimate:

Lemma 9.13. There exists a constant C > O such that

1 . .
0 — 3 (elg - e_’g)

Proof. The left-hand side is |0 — sin(6)| = O(|60]*), while |0] > |e’? — 1| > C'é.

< C|ei9 - 1|3, 0el-nn].

Proposition 9.14. There exists a universal constant C > 0 such that

1 1
h2 h2
” 7. A HS

Proof. Tt suffices to bound ||h‘%1h% |lgs- By writing
J=rw-n+lacvyer Toi-tw-ovy
T2 2 ) ’

we see by the triangle inequality that

o+t

1 1 1 1 1 1 1
WS Jn3 <—||h’§ U-1)ht —H/ﬁ 1 —U h2
” HS ~ 2 ( ) +2 ( )

HS
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By Proposition 9.10, we have
n /lj 5
Z |<xl,h (U - 1)h2x1>| = Z IKxi’(U_ l)xj>|

ij=1
222
c(1+ h! ) il
v.h UZ/L

||h7 - 1)h2

<x1,v) v, xj>
Ai + 4

IA

(1 ot (3 L) )
i=1 l

L

=c(1+ (v v>) (v, 7V’ (9.44)

and likewise for ||h’%(1 - U*)h% ”1%15' For h’%fh%, we instead apply Lemma 9.13 and the Cauchy-

Schwarz inequality to see that forany 1 <i,j < n,

2 g e = b )

< [Sle P it )|

1

( 10— 1|4|<Wk,h‘;xi>|2) (i e — 1|2 )<Wk,h5x.>)2)
=i k=1 :

¢ (Z (@ - 1>2Wk,h—;x,.>f) (Z (- l)wk,h;xjw)
k=1

k=1

2
1~ 1 2
|<xi,h_7Jh7xj>| =

O
)

SH

I/\

2.1 |2 1P
=c|@w- 02w - vaiy| (9.45)

Summing over i, j, we obtain

“h-ﬂl% ’ <C||(U =l ”(U ntl (9.46)
HS ~ HS HS '
We can now again apply Proposition 9.10 to estimate that
H(U—l)hz Z (<xl,(U—1)h2x,>( Z 4 [(xn (U = 1) x) )
i,j=1
2
<X[,V> <V,Xj>
SC(1+ vh v) 121/1 T/l,
2
Xi, V)V, X; 2 2
SC(1+ v, h™ v) Z/l w =C(1+<V,h_1v>) <v,h_%v>
i,j=1 /l?/l?
(9.47)
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and
2, —L|]? C 2, -1 2
”(U—l) = HS:i;lei,(U—l) h zxj>(
1 2
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||h_%l~h%||Hs <(1+ <v, h_1v>)3<v, h_%v><v, h_%v>2.

Combining the estimates yields the claim.

91

(9.48)

(9.49)

]

Remark 9.1 (Remarks on the estimation technique). As we will use the same approach to obtain
estimates on E (), let us consider the technique of the proof in detail. The idea is that, as we have a good
estimate for the matrix elements of U — 1 and U* — 1, we should attempt to express our operator solely in
terms of these. The first step is therefore to decompose J as in (9.42). The error term J=1J- % (U -U"
cannot be simplified further in terms of U but by orthonormal expansion and Lemma 9.13, we can
nonetheless estimate it solely in terms of U — 1, despite being unable to apply an operator inequality, as

we did for ||h_%J |lzs, to ‘substitute’ U — 1 for J directly. The utility of the estimate (9.46) is thus that it

allows us to replace the unknown error operator with factors of U — 1, which we can estimate well. The

1 1
downside to this is that it simultanously ‘decouples’ the ™2 and A2 factors, which prevents us from

exploiting the cancellation between these.

This decoupling is also the reason why it is important that in (9.46) we distribute two factors of U — 1

1
to ™2 rather than only one. One can by the same argument estimate that

|32 78% s < €U = 1) gl (U = 1)R3 s

<C(1+(v, h_3v>)3<v, h_%v>2<v, h_%v>,

s

but in Proposition A.3, we only have the good estimates <v ks hl‘(’v k) ~C kll;’“ for @ > —%, which makes

3
(9.50) a worse estimate due to the (v, h™2 v) factor. There is therefore a limit to how low the exponent &

(9.50)

can be without affecting our estimates, and so it is advantageous to distribute the factors of U — 1 such

that the overall minimal exponent is not too small.

Estimation of E (¢)
We now estimate max ||h‘%E (#)x || using the technique outlined above. First, we decompose

E(t)=e e Kne™Xe™ —h=(e"he™ —h)+e' (e Khe™ —h)e ™ = E\(1) + Ex(1)
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and using the algebraic identity
ABC=B+(A-1)B+B(C-1D+(A-1)B(C-1) (9.52)
with A = ¢!/, B = hand C = ¢/ further decompose E| (t) as

Ev(t) = e he —h= (e = 1)h+h(e™ = 1)) + (e = 1)h(e™ 1)
2E1’1(l‘) +E]’2(I). (9.53)

Defining Eo = E(0) = e X he™® — h, we likewise decompose E»(#) according to

E>x(t) = e Ege™ = Ey+ ((e’J - 1)E +E0(e_’J -1))+ (e’J - l)Eo(e_’J -1)
= Ey+ E2,1 (t) + Ez’z(t). (9.54)
The E| 1(2), E12(t) and E; (), E2»(t) terms differ only in replacing the operator & by Ey. We can

therefore estimate these terms similarly, provided we have an estimate on Ej. This is given by the
following:

Proposition 9.15. Forall 1 <i,j < n, it holds that
ot B, = [ (e he™ = W) < (14 (0,70 () ().

Consequently,

max [ Eoxy | < a1+ (7)),

where @ = max<j<pn <v,xj>.

Proof. Using the identity of equation (9.52) with A = e = C and B = h, we have that
e Kne™® —n={ne® -1} + (e - 1)n(e™ -1). (9.55)
Hence,
(xis (e ®ne™ —n)x;) = (A4 + ;) (xiy (7% = D)x;) + (xis (7K = 1)h(e™™ = 1)x;).  (9.56)
We can apply Proposition 7.10 to estimate the first term of this equation as

|(/li + ;) {xi, (7 = l)xj>| < (4 +x@-)% = (x;, v){v,x;) 9.57)

and the second term as

M=

[Gris (7 = D a(e™ = 1))l = A (™ = 1)) (i (7 = 1))

(s v) (v xe) (o v) (v x;)

A + Ag /1k+/lj

1

=7

IA

Ak
-l

(xi,v><v,xj>§w = <v,h_1v><xi,v><v,xj>, (9.58)

=~

IN
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which implies the first claim. Consequently,

n

1 2 & s 2 1 2
s Sl () 534 a1
i=1 =1

i=
n

< (1 + <V, h_lv>)2 Z /ll |(x,~, V) <v,xj>’2 <a’? (1 + <v, h_lv>)2 <v, h_lv> . (9.59)

i=1
m}

Now it remains to consider the operators ¢’/ — 1 and e/ - 1 = (¢!’ - 1)*. To implement the above
estimation technique, from the following analogue of Lemma 9.13,
t(1-1)
2

(€ — 1) —t(e'? = 1) + (€@ +ei?—2)| <Cle’?—1, te[0,1],0¢€ [-mx], (9.60)

we are motivated in approximating e’/ — 1 by

tht(U—l)—t(lz_t)

U+U"-2), tel0,1], (9.61)
with the error term being cubic with respect to U — 1. We then have the following bounds for F; and the

associated error terms:

Proposition 9.16. ForanyT :V —» V,x €V, m € {1,2} and t € [0, 1], it holds that

e =1 Rl (e =1 ) < Cllr(w = 1) (0= 1

1)"llys
and forall1 <i,j <n, te€[0,1],

(xi,v) (v,xj>

[ Fex)] [ B < C(1 o)) =320

for a constant C > 0 independent of all quantities.

Proof. Recall that (w;)"_, is an orthonormal eigenbasis of J, namely, eMwj=e"%w;foralll <j<n.
Using (9.60) and the Cauchy-Schwarz inequality, we have that

1|T<e~—1—Ff>x|r=jz’;»<w<e~—l—Ff>x>r

n n 2
= Z Z ( ”gk - (eiek - 1) + —t(lz_ ) (eiek +e 10 _ 2)) <stTWk> (W, x)
i=1 k=1
' n n 2
<C ( | “qk—1| | wj,ka>||(wk x)l)
Jj=1 \k=1
<C ( | 0 _ | W]’ka>| )(Z| 0 1‘2(3 m) ,X>|2)
Jj=1 \k=1
=C |<Wj,T(U - l)m Wk)iz (Z |<(U* - 1)3—m Wk,x>’2)
jok=1 k=1
= CIIT (U - )" [l}s (U - D> x| (9.62)
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the same estimate holding also for HT (e —1-F}) x” For the matrix element estimate of F;, we
have by Proposition 9.10 that

|<xi,F,xj>| = '<xi, (t(l; D u-1- t(l D U - 1))xj>

(1 t(l—t
= %Kxi,(U— 1)Xj>i+ ( 2 ) KX[,(U* - 1)X1>|
B (xi,v) <v,xj>
1
<C(14(vh V>)T/l,- (9.63)
as we only consider ¢ € [0, 1], and likewise for |<x,~, Ft*xj>|. o

Estimation of E;(¢)
We are now ready to estimate E; () = E 1 (t)+E »(¢), starting with E1 1 (1) = (') — 1) h+h (e - 1).
Recall that (x;); are an eigenbasis of 4 with (x;,v) > 0forall 1 <i < n.

Proposition 9.17. Forallt € [0, 1], it holds that

max
1<j<n

W EL (0] < Car (14 (v, V) (v 1Y)
1 3 5 2 1 4 %
+Ca (1 + <v, h™ v>) (||v|| <v, h_1h> + <v, h_7v> <v, h_?v> ) ,
where a = maxj<;<n <v,x j> and C > 0 is a constant independent of all quantities.
Proof. We write
Ei1(t) = Fth+hF} + (" =1 -F)h+h(e™ —1-F)) (9.64)

so that for any 1 < j < n, we can estimate by Proposition 9.16

i B | < |t R | +

W F|+ ot @ - 1)2HHS (U = 1) x|

+c(

1
Y (U - 1)HHS (U= 1)2x;]. (9.65)
We consider each term above for the following. By Proposition 9.16, we see that independently of
1<j<n,

n/lz 2

n /l
”h‘%FthxjHZ = > Ll ) < (1 (v v)) >3
i=1 i=1 !

< C|<v x->|2 (1 + <v h’lv>>zzn: M < Ca? (1 + <v h’1v>)2 <v h’1v>
—_ E) ] E) i:1 Al —_ b 9’ b
n 2

h%F;wJH2 = sl Fog)f < € (14 vy ) Z/l i) {r.x;)

i=1

A+ 4;
< C|(vx)f (14 (v,h—‘v)) Z M < co? 1+ (v,h—‘v>)2 (v, 7'V . (9.66)

i=1

(xi,v) (v,xj>
A; +/lj
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For the remaining terms of equation (9.65), we recall that we already estimated ||h‘% (U -

Hh% (U - in the equations (9.47) and (9.48) to be

| <C (1 + <v, h’lv>) <v, h7%v>,

_1 2 _ 9,1 4 2 5 \2
Hh FU-1) HHS—H(U—I) = HSSC(1+(v,h v)) <v,h 4v> ,

Dllis

R N T

Vlls

and

(9.67)

the equalities holding by normality of U. The only unknown quantities are thus H(U —1) hx J|| and

H(U - 1)2xjH, which we estimate using Proposition 9.10 as

”(U— 1) thH = Z/lz <x, (U-1)x; >|2 (1 + <v,h_lv>)zzn:/l§

i=1

/1i+/lj

<C |<v,xj>|2 (1 + (v, h_]v>)2 Zn: |(xi, v)|? < Ca? (1 + (v, h_1v>)2 v,
i=1

2

Z (xi, (U = 1) xge) {xge, (U = 1) x;)

k=1

lw-12sf =Y

i=1

C (1 + (v, h_lv>)4 Zn:

i=1

SC|<v,x]>| (1+<v h v}) ZKX“ >|2( |(k§ )|2)

=1 A4

4
3
ik

Z (i) o) ) (o) [
A + Ak Ak + 4

< Ca? (1 + (v, h_1v>) <v, h_%v>3 .
Thus,

72 U = 1)l = x| < Carlt+ (v 7)) W[ 5

I3 (0= )lgll@ = 102550 = Calt o (o) o). 7ty

which, upon combination with the estimates of equation (9.66), imply the claim.

Proposition 9.18. For all t € |0, 1], it holds that

(Ca,/)_1 max Hh_%El’Z(I)xjH
I<j<n

3

< (1 + (v,h_1v>)2 (v,h_1v>% + (l + <v,h_1v>)6 <v,h_%v> < v, %h>2 <v,h %v
<v h™ zv>i <v,h_ v> ),

4 3
+ (1 + <v, h_1v>) ( <v, h‘1v> <v, h_%v>2 <v, h_%v>
where @ = maXi<j<n <v,xj> and C > 0 is a constant independent of all quantities.
Proof. We write E5(t) = (¢ = 1) h(e7"/ — 1) as

Ei2(t) = FhE; + Foh(e™ = 1= F) + (e = 1 = F)hF; + (e" =1 = F,)h(e™ -
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and see by Proposition 9.16 that

”h—%El,z(r)x,-H < Hh_%FthF,*xjH +C ”h‘%Fth U - 1)“HS [ - 1)2x)]|
|t w -0 Nw-1nEs 9.72)

+C Hh U - 1)2|)HS (U = 1) h (U = Dllgs [|(U = 1D)*x;] -

We estimate by Propositions 9.10 and 9.16 that

2
_1 . |17 0 & (xi,v) (v, xk) (XK, V) <v,xj>
”h 2FthF,xjH SC(1+<v,h v>) Z/l_l Z/lk 1A Sy
i=1 k=1 J
4 G [ o) s ;
sCa2(1+<v,h_lv>) Z L (Z /{ ) =Ca? (1+<v,h_lv>) <v,h_lv>‘,
i=1 i k=1 k
(9.73)
and
rrn ol < (aon 8 ) ) Gae) ()|
H (U - )HHS ( +<V v}) Z:]/l Z A + Ak Ar +4;
n
sc(inguntn) 3 LR g e z'“k’”'
ij=1 Ai A /13
4
= (1+ (o)) ) (v i) (9.74)
and
@ -0 aE < ¢ (1 (o)) 3730 B2 ) o) () 2
el = ’ | U A A+,
n 2
4
< Ca? ( v, h™ v) Z]|()cl,v)|2 I(xk,v)I = Ca? (1+<v,h_]v>) <v,h‘%v>3, (9.75)
k=1 A} /13
and
U h(U--DIR <1 ol 40| 1 (xi, v) (v, xk) (xk,v)<v,xj>2
W =1 R W=Dl < C {1+, v>) ), e v e rev
2
S e, v
SC(1+ (v,h~ v) Z|(x,,v)| |<xj, | Zﬁ
i =1 k=1 /lfxlj./lz
=c 1+, h-lv))4 (v h—%v>4 . (9.76)
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Combining these with the estimates of the equations (9.67) and (9.69) yields

|3 Fn = W= 125 < ca 1+t ) (v i) (v, 17

v
I
—
=
=
VIS
<
~—
I

[t w -2 Nl -1nnFg] < ca i+ (vny) )4 v, b %v>%< -%v>2 9.77)
and
it w =02 1w =D h@ = Dls v - 175
< Car (14 () (vt (oY (rr i) ©.79
which imply the claim. o
Estimation of E;(¢)

We now repeat the same steps for E»(t) = Eg + E.1(t) + E2.2(t) where
E>1(1) = F,Eo+ EoF} + (e” —1- F,) Eo + Eo (e—” —1- F,*) . (9.79)
Proposition 9.19. Forall t € [0, 1], it holds that

max
1<j<n

3
2E2 1(t)xH < Ca'(l +<v h~ v)) (v h~ v>2
4 3 2
+Ca (1+<v,h_1v>) <v,h_-%v>2 <v,h_%v>
S 2 \3 i \3
+Ca(1 +<v,h_ v>) <v, h*1v> <v,h_§v> <v,h_§v> ,
where @ = maXi<j<n <v,xj> and C > 0 is a constant independent of all quantities.

Proof. By Proposition 9.16, we can estimate that

)|h*%E2,1(z)xj|) < ||h*%Ftonj“ + “h*%EOF,*x,” +C ||h*% U - 1)2“HS (U = 1) Eoxj|
+c|ntEo W - @ -2 (9.80)
Then let us consider each term separately. By the Propositions 9.10, 9.15, 9.16, we have that

2

Z <x“/lv>+<‘/}l S Xk) (e, v) <v’xj>

n n 2
a? (1 + (v, h‘1v>)4 Z |<Xi/,£’>|2 (Z |(x1i{k\/>|2)
i=1 ! k=1

= ca? (14 (v,h—1v>)4 (v, 7Y (9.81)

Hh_%F,onjH2 <C (1 + <v,h_ y )
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and

(XK, V) <v xj>
Z<xl,v><vx ey

2 1
”h_%EOF,x‘i” <C (1 + <v,h_ v ) —
l

i=1

n 2
< Ca? (1 +(v, h‘IV>)4 Z Kxi;)l ( |<xl}’kv>| ) =Ca? (1 +(v, h"v))4 (v, h"v>3,
i=1 !

k=1
(9.82)
and
) )R ) ) ’
||(U—1)E0xj|| £C(1+<v,h v>) Zw(xk,v) <v,xj>
i=1 |k=1
40
< Ca? ( v, h™ v) ZKXI’ >|2 Z|<xk,v)|
k=1 A} A}
= Ca ( v i) )4<v,h §v> (9.83)
and
2
_1 2 1 1 <Xk,V> <V,Xj>
”h 2Ey (U - 1)”HS <C ( v, h ) Z:: /l_z g(xi,v) <V’Xk>T/lj
2
n 2
<(te () 3l oty
i,j=1 k=1 /lk/ljz
= C(1+ (v, W), o) (v, i3 v)3. (9.84)
Combining these with our prior estimates that
A7 (U = 1) lys < €+ h™v)) (730,
1 = 1) ]ls < Car(1+ (v, 57 9)) 2 (v, h730)2, (9.85)
we obtain the claim. O

Proposition 9.20. Forallt € [O, 1], it holds that
(Ca)™ max [IA7% Es (1)
< (L4 o W) o ) E 4 (L (o)) (o 3 (v, Y2 (v nEe)
+(1+ (v, h_1v>)5<v, h_%v>% ((v h_1v>% (v, h_%vﬁ + <v, h_1v><v, h_%v>2),

where @ = maxi<j<n <v,x j> and C > 0 is a constant independent of all quantities.

Proof. We decompose E; »(1) = (e'/ = 1)Eg(e™"/ = 1) as

F,EgF; + F,Eg(e™ = 1= F/) + (¢ =1~ F,)EoF; + (¢ —1-F,)Eo(e™ —1-F}) (9.86)
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and estimate by Proposition 9.16 that

|72 E2a 03| < ||p 3 FEoFy x| + € b FeBo 0= 1| W = 1%
et w- 1>2|)HS (U = 1) EoF; x|

-1
st w -0 1w-DE@- DW= ©87)
We estimate as in the previous proposition that

2
Hh—%F,EoF;x,-”

2
Z1a)\© 1 (xi,v) (v, xk) (x7,v) (v,xj>
ﬁC(1+<V,h V>) ;A_l & 1W<Xk’v><v,XI>T/lj
<co (14 nir v)ﬁ |<x,,v>| (Z |<xk,v>|2|<x1,v>|2)
p A
6
= Ca? (14 (v.h™'v)) (v : (9.88)
and
' 2
ot Fieo -
2
_ 6 1 i, v) v, xi) (x1,v) <v,xj>
<C 1+<v,h lv> — “—’<xk,V> v, x)) ————
( ) i /li fars| /li"'/lk /ll+/l]'
2
NENUES |<x,V>| | Geae, WP e, )|
<t ) 3 Wl g gl > Kkl
ij=1 A k=1 /113/1J3.
6 3
:C(l+<v,h_lv>) <v,h_lv>3 <v,h_%v> s (9.89)
and
||(U— 1) E()F )C]“
2
60 |0 (i v) (v ) (1, v) (v, x;)
<C o h _— s , _—
(1o b)) 20| 20 SR e e =
2
n n 2 2
< o (1 i) |<xl,v>|2( > ot ) )
= K= A0A; !
6 3
= Ca? (1+ (™)) (v o) (i) (9.90)
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and finally that

(U = 1) Eo (U = D)I%s

zn: (X, vy (v, xp) ( (x1,v) (v, x;5) ?

<C (1 +(v, h_1v>)6 X, v) (v x1)

Pl Py /li+/lk /ll+/1j
2 2 ?
BENUES 20 [ W1 [, v
SC(1+<v,h 1v)) Z |(x,~,v>|2|<xj,v>| Z T T
i,j=1 ki=t A7 A; a; /1]3.
RC 1\ 6
=c(t+ () (vod) (9.91)
Combining these bounds with equation (9.85) yields the claim. O

Combining the estimates from Proposition 9.17 through 9.20 and the last bound of Proposition 9.15,
we obtain

(Ca)™! max Hh_%E(t)xjH
1<j<n

< (1 + <v, h_1v>) ‘/<v, h‘1v> + (1 + (v, h_lv>)2 (v, h_1v>%

3 2 3
+ (1 + (v, h 1v>) (<v, h_1v>% + vl <v, h_%v> + <v, h_%v> <v, h_§v>2)
4 2 % 4 % 5 2
+(1+<v,h 1v>) <v,h_?v> ( <v,h lv> <v,h_§v> +<v,h7v> )
5 2\ 3 3 4 \3 2
+ (1 +<v,h 1v>) <v,h_§v> ((v,h_1v>2 <v,h_§v> +<v,h lv> <v,h 4v> )
6 2 2 3
+(1+<v,h 1v>) <v,h_%v> <v,h_%v> <v,h iv>2
7 3 3
+(1 +<v,h’lv>) <v h’%v> <v h 4v> <v,h 3v>2 (9.92)
The right hand can be simplified further using the Holder estimates
3
(v.h73v) < vl (v W) (v 1730} < il (v 7). (9.93)

All this gives the following:

Proposition 9.21. Forall t € [0, 1], it holds that

max
1<j<n

h—%E(t)x,-H < Ca (1 + <v,h-1v>)8 (<v,h-1v>% + ||v||<v,h-%v>2) (1 + ||v||<v,h-%v>%),

where a = max<j<n <v,x j> and C > 0 is a constant independent of all quantities.

Conclusion of Proposition 9.6: Inserting s; and v in Proposition 9.7 and (7.11), we have imme-
diately

i 2 (Ei = iy | < i b ve) < €V (9.94)
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Next, consider the corresponding expressions on the right-hand side of Proposition 9.21. Recall that

1
ax =maxper, (Vi.ep) < C(Vk)%sz. Moreover, by Propositions A.1, A.2 and A.3, we get

N . 5
(v Hivi) < COKE! 3 A < COKIKR)™A, 02 B> =3,
PELk
% A3 1 4
(v Hivi)" < COF (kIkp) ™ K[ log (k). < 3. 9.95)

Putting these bounds together, we deduce from Proposition 9.21 that

max

/’l Ek(t)ep
peL

< CO kg (14 90)" ((D0F + D0F) (14 01k Togkr )
L

< Ck,? (vk +V3k° log (kp)) (9.96)

for |k| < k7., as claimed. Similarly, inserting (9.95) in Corollary 9.12 and Proposition 9.14, we see that

- L,

< C {1+ (v ') < h,}vk> < Clogkp) k7 Vi (1+ Vi) k>,

3 _1 s \?
1S <C (1 + <vk,h;1vk>) ((vk,hzlvk> + <Vk,/’lkzvk> <Vk,/’lk4vk> )
PO 3 NN 1 (A _1\2 N
<C(1+V) (Vk+vk (Iklkr)? (Vi (kL)) ) < CV. 9.97)

Here, we also note that Vk is uniformly bounded, and hence, the constant C may depend on V, but it is
still independent of k and k.

9.4. Gronwall estimates for the kinetic operator

We now come to the kinetic Gronwall estimates for the transformation e’ . We have the following:

Proposition 9.22. Assume ¥, .73 Vi|k| < 00 and Sc = Z3 N B (0,k},) with 0 < y < . Then for all
Y e D (H{, ) and |t| < 1, it holds that

<etj‘P’ Hl;inetjq]) <lp Hlim‘P>
<etJLP’NEHliinet‘7lP> <lP NE km >

for a constant C > 0 independent of k.

Proof. Write ¥; = e'7 W for brevity. By the commutator in (9.15), we have

d
d <‘Pt’ kin > <\Ijt’ [‘-7 Hlim] \Pt =2 Z ¥, Qk hEB] qu) (9.98)
keSc

with Q% defined in (4.35). Moreover, Proposition 4.8 allows us to estimate

> w0k (g gl e < > () g ()

keSc keSc

op (o Hiin¥1) - (9.99)
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Since

4 4
(1) [ff,hfwf)‘%:(hk ekl b0 ) 0100
O th [Jk9 hk] th

by Proposition 9.6 we can estimate further that

P (G VR (T 2

1

_1 _1
hkz [Jka hk] hkz

1

_1 _1
th [Jk» hk] hkz

)

keSc Op keSc HS
<Cc ) W%=c (9.101)
keSc
Hence, |4 (¥,, ngin‘P,>| < C (¥, H], ¥;), so by Gronwall’s lemma
(W, H[ W) < (W, H] W)l < C (¥, H,P), ltl<l (9.102)
For (‘P,, N, EHl:in‘P,>, besides the commutator in (9.15), we also note that
[T Nel= D) > [bi (UFep) biley), Ne]
keSc pGL;
= 3T S (5 (Uep) [bilep). Ne] + [y (UFey) Nl bile,)  (9.103)
keSc pGL:
= Z Z (6% (Jiep) brlep) = by (Jep) bi(ep)) = 0.
keSc peLi

Here again, we used [NE, by ()] = —by forall ¢ € €Z(Li), which follows from (1.75) and linearity.
Hence,

d -
— o (o N, W) = (¥ N [T H, [ W) =2 ) (W NeOF ([ 17]) 1)

dt keSc

Now, it holds that [Ng, Q’f([] e hff])] = 0 (as can be seen by a computation similar to that of
equation (9.103)), so we may estimate as above for

X 10 N0t (107 mE]) w)| = Y ([ 0f (7. g ] At e

keSc keSc
_1 _1 1 L ,
< 3 e pag) ), <N,§ ¥, H N} lp,> < COPNGHL W), (9.104)
keSc P
where we also used that [Nz, H}; | = 0. The second claim now follows. 0

10. Conclusion of the main results

Now we are ready to provide the proof of the main theorems stated in the introduction.

10.1. Proof of Theorem 1.1

The proof follows almost immediately by the analysis we have performed throughout the paper, for we
will simply take I/ = e e® where e* is the quasi-bosonic Bogolubov transformation e* of Section 4
and e is the second transformation of Section 9.
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Step 1: Let us start from the decomposition (1.22):

Hy — Eps = H);, + k. Hl'rlt =H/, + Z ( ot — (2 X |Lk|) + ENB, (10.1)
kESC

where HY, is given in (1.29), Ep is given in (2.22), and Sc = B (0,k%) NZ3 with 0 < y < 7-. From
Proposition 2.4, the non-bosonizable term Enp is estimated as

+Enp < CkY P (Y, + k' NeH,, + k). (10.2)
By the Gronwall estimates of Propositions 8.1, 9.22 and the choice U = e ¢*, we have
+UENBU" < kP (HL, + ki NeHYy + kF). (10.3)

Thus, it remains to apply the transformations e* and e to the bosonizable terms.
Step 2: Now we apply the transformation e*. By Proposition 5.7, we have

K k -K
(Hliin-i_ Z Hmt)

keSc
:Hl:in+ Z Q (E® h@) + Z / (1-)K (gk(AGB(t)) +gk(BeB(t))) —(I-nK dt. (10 4)
keSc keSc

We will use the kinetic estimate of Proposition 6.5 and the Gronwall estimates of Proposition 8.1 to
bound the exchange terms in (10.4). Thanks to the one-body estimates in Propositions 7.3, 7.2 and our
assumption Y cs.. Vi|k| < oo, we get

_1 _1
KA (e, W2 B2(De,,

} <c Y i (1+72) < cip,

Z max {max
Ly
tel0,1] | peLk KeSc

keSc
> max AP0 B2 0ll.of <€ 3 Vilklt (147) < .
kESC kESC

, max
PELy

D (H(hf)_% K|+ IKENL ) < Cllog k)3 k" Y VilkfE. (10.5)
keSc keSc

All this gives that for every state ¥ € D ( and ¥, = e~ (I-OKyp,

kln)

/ | ¥, 5k(A@(t))+5k(B®(t)))lp,> dt < C(logkp)3 (Z Vk|k|3+3)

keSC kESC
-4
8 (kF tlél%gﬁ] \/<lpt’ km > <TZ’NE kin >
_1 -1
+ kF3 max <\Ill, klan[> + k * max <lP[’NE kin >)

r€(0,1] tel0,1]

< C(logkp) ik, (Z Vi k|5 ( (W, H], W)+ ki (P NeH] ¥)+kr ||‘I‘||2), (10.6)

keSc
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where we also used the Cauchy—Schwarz inequality to split the square roots at the end. Thus, the
exchange terms in (10.4) can be estimated as

1
+ 2/ (10K (Ef‘(A,?(t))+5§(Bl§(t)))e—(l_,),cdt

keSc 0

1

< C(logkp) 3k,

(7 2 ’ - ’
D Vk|k|3+3) (Ff + K3 Ny + ). (10.7)
keSc

It remains to consider the main term Q; (E]f9 - hff) on the right side of (10.4). We use the normal
order form in (4.34):

Z Q1(EP - h?) = Z 201(EZ - h?) + Z 2tr(Ex — hi) + Z ex(EZ —h®).  (10.8)

keSc keSc keSc keSc

By Propositions 4.9, 7.2 and 2.1,

£ Y e (EP=hP) <C > kp' Vi (14 Vi) N < Ch'HY,,. (10.9)
keSc keSc

Moreover, by Proposition 7.1, we have

(7 1.1 o0
> (2tr(Ek ) - ﬁ|Lk|)= A

keSc keSc

‘A/kkgl Ak p )
: dt (10.10)
3 2
(27) PGZLk /lk’p +12

with F(x) =log (1 + x) — x. Thus in summary, we conclude from (10.4) that

Vick ! _
(Hk1n+ Z (Hll;t (271_)3 |Lk|))e K

keSc
ka ! /lkp
—H/, +2 ) ONE®-h®)+ / - el dr + &k, (10.11)
" keZSc k; (Zﬂ) peLli /lk,p-i-t2
where
_1
£ < Clloghp) ik [ Vk|k|3+*) (Ff + ki Ny + k). (10.12)
keSc

Step 3: Next, we apply the transformation e to the right-hand side of (10.11). From (10.12) and the
Gronwall estimates of Proposition 9.22, we have

+e7 EceT < Clogkr) k. ( Z Vk|k|3+3) (H];in +kp NeH, + kF). (10.13)
kESC
For the main terms, by Proposition 9.1,

( Hy;, +2 Z oy )) -7 (10.14)

keSc

1
=Hj,+2 ) Of (E;f —hg)+2 ) / 1T EX(FR(1))e™ D .

keSc Kesc Y0
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Let us bound the exchange term &;(-). For all k € B (0,k),) NZ3 with 0 < y < 4 and ¢ € [0,1], by
Proposition 9.6, we have

_1 (A A 3
max H(h@) ZEk(t)ep“ < Ck;? (Vk+Vk|k|610g(kp)) < Ck 2(vk+v,§|k|3k;7 log (k)|
pe

_1 N N _1
ey e, < ctoghmiigt Y014+ < Cllogke) kg (10.15)
leSc

leSc

Hence, using the kinetic estimate of Proposition 9.5, Gronwall’s bounds of Proposition 9.22 and the

assumption Y .3 Vi |k| < oo, we find that for every state ¥ € D (H[, ) and ¥, = e~(!")7 Y,
/ [, EX(FE (1)) dt (10.16)
keSc
o 3
< D Cllogkp)ik, 'k (vk+v,§|k|3k;1 log(kF)) max \/(\P,, H) W) (¥, NgH] V)
t€[0,1]
keSc
1
< C(logkp) 3k, (W, (k' NgH, + HY;, + k)W) .

. 3
Here, we used 3 .3 V2 |k|* < (Zkezi Vk|k|) < 0. Consequently,

+ Z / (1- t)Jgk(F@(t))e—(l DT gt < C(long)3k 3(k INEHIQ +H, +kFp). (10.17)
kESC

In summary, we have for i/ = e7¢* and 0 <y < £,

Z/[HNU*zEFS"' km+2ZQ1( ) Z%./O'OOF

V]J(}l Ak P
- dt+€&7,
2n)3 Z /lip +12 7

keSc keSc PEL
(10.18)
where the error term is collected from (10.3), (10.13), (10.17) which satisfies
+€5 < Ck (K N HY, + HY,, + kr). (10.19)

Step 4: Finally, let us remove the cutoff S¢ = Zi NB (0, k;) on the right-hand side of (10.18). By
Proposition 7.1, we can bound

1 © (Vek;! Akp . .
= Z /0 F oy Z 5 | di| < Chr Z V2k| < Ck,.7. (10.20)
keZ3\Sc peLx “k,p keZ\S¢

. . 2
Here, we used Y .53 VZ[k[* < (Z rezd Vi |k|) < co. Moreover, by Propositions 4.8 and 9.6 (together
with the fact that the trace norm dominates the operator norm), we can bound

0t (B2 ) < oo™ (25 - 0) )Y,

/’l (Ek — hk) :

’
H, kin

H},, < CViHy;, (10.21)
Op
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forall k € Zf_, and hence,

+ Z ok (’E’,?—h,?)sc( Z Vk) H},, < Ck, H,. (10.22)

keZ3\Sc keZ3\Sc

Therefore, we can deduce from (10.18) that forf = e7 ¢ and 0 < y < 47,

ka Ax
* ® 89 Nz
UHNU" = Eps + H.._ +2 Z@ 0} (B¢ - i 23 / ((27r)3 = +t2)d:+5u,
kez} kez? pely “k.p
(10.23)
where
+& < Ck (K NgHYy, + Y, + kr). (10.24)

The statement of Theorem 1.1 follows by recognizing the identity

23 O (EE-np) =23 D (e (Bi-he)eq) b pbrgs

kezl kez3 P.g€Llk

which follows from the definition of Q’f in (4.35).

10.2. Proof of Theorem 1.2

Let ¥ € D (H], ) be a normalized eigenstate of Hy with energy (¥, Hy¥) < Egs + «kp for some
k > 0. Denoting Hy = Hy — Egs, we have Hy¥ = E’¥ with E’ < «k. Using (1.22) and the obvious
inequality A*A > 0, we obtain the Onsager-type estimate
k!
@ r (7 —ik-x\* —ik-xy\ _
Ay = Hy = 30 23 Vi (dF(e ) dr (e~ ) |Lk|) (10.25)

2(2 )3 Z Vi ILk| = ~Ckr Z ||V

kez?

Here, we used |Li| < C k%|k| for all k € Z3 (see Proposition A.1). From (10.25) and the assumption
HyY = E'Y with E’ < kkp, we deduce immediately that

(W,H,, W) < C(k+ Dkp. (10.26)
To prove the bound for Ng H, «in» We use the operator inequality
NEH], = NgH| Ng < NeHyNg + CkpNp
- % (NEAN + ANNE = [N, [N, AN ]) + CeNE, (10.27)

which follows from (10.25) and the fact that [NE,H];H] = 0. Thanks to the eigenvalue equation
HnY = E'Y with E’ < kkp, we deduce that

(P, NZH[, W) < C(k+ Dkp (¥, NZ¥) - % (W, [Ne, [Ne. BN || ). (10.28)
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Using N = Yepe cics and

[cﬁcs,c;kcz_kcqcp] = C;+kc>;_kcqcp(6s,p+k +85.g-k — 0s.q — Os.p)s (10.29)

we deduce from (1.8) that

2
[NE’ [NE’HN] 2(271.)3 Z Z chp+kcq kcqcp( Z (Os.p+k +0s.g-k — Os.q 6s,p)) .
keZ3 p,qez? sEBS
(10.30)
Using the obvious bound
2
05 (D Gopsk +0sg k= 0ug —8sp)) <4 (1031)
SEBY.
and the Cauchy—Schwarz inequality, we estimate
(2, [N, Ve A ] ®)] < €t DT D Villepareq- 1 ®llllcge, P
keZ? p,qez’
<Ck' D Vi D (lepreq- 1 PIP + llegepWIP) < Chp' Y V(W NZ ). (10.32)
kez? p.q€Z3 keZ3
Since V is summable, (10.28) and (10.32) imply that
(W, NZH[, W) < C(k+ Dkp (¥, NZ¥). (10.33)

Combining with the inequality H}, > NE from Proposition 2.1, we deduce by Holder’s inequality
(P NRY) < (P NZ) < (W NEH, W) < (Cler Dk (. NY) )2/3, (10.34)
which implies that <‘I‘, ./\fé‘P) <C(k+ l)2k2 , and hence by (10.33) again,
(P, NEH], W) < C(k+1)*k3. (10.35)
The bound (¥, NgH{, ¥) < C(k + 1)*k% follows from (10.26) and (10.35). In summary, we have
(P, (kp' NgH[, + H], + kp)P) < C(k+1)%kp. (10.36)
By the Gronwall estimates of Propositions 8.1, 9.22 and the choice U = e ¢/, we also obtain

(U, (k! NeH[, + HY + kp)UP) < Ck + 1)k (10.37)
10.3. Proof of Theorem 1.2

Taking the expectation against Wgs of the operator estimate in Theorem 1.1, we have

_ 1
inf o (Hy) = inf o (UHNU") < (Pps, UHNU W) = Eps + Ecorr + O (kyp ). (10.38)

Here, we used the bound on &y from Theorem 1.1 and the identities H}, Wrs = Her'PFs = 0.
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To see the lower bound, let ¥gs € D (Hl’dn) be the normalized ground state of Hy . By the definition
of Wgs and the above upper bound, we have

(Wgs, HyWgs) = info(Hy) < Egs + Ckp, (10.39)
and hence, Theorem 1.2 implies that the state ‘I’és = UWgs satisfies
(Wiso (Kp! NgH[ + H], + kr)¥Ss) < Ckp. (10.40)

Taking the expectation against ¥'(;4 of the operator estimate in Theorem 1.1, we conclude that

inf o (Hy) = (Wos, HvWas) = (Wgs UHNU W) (10.41)
’ ’ 4 l_i
= FEgs + Ecorr + <lPGS’ (Hkin + Heg + gu) lPGS> > Eps + Ecorr + O(kF 94+E).
Here, we used the operator inequalities
L
H >0, He>0, & >Chy ™  (ky'NgHy, +Hl, +kr) (10.42)

and the a priori estimate (10.40). This completes the proof of Theorem 1.3.

10.4. Proof of Theorems 1.4 and 1.5

In this subsection, we study the effective operator Heg in Theorem 1.1 in more detail. First, we prove
the following remarkable fact.

Proposition 10.1. We have the operator identity on D(H,, ):

230 > Aipbi pbip = NeHyy,

kez3 pELk

Proof of Proposition 10.1. The idea is simply to interchange the summation on k € Z3 and p € L;. By
rephrasing the condition that p € L, we have the equivalences

(keZ)Aper e (keZ)Alp -k < ke < Ip])
o (k c Zﬁ) A (k c E(p,kp)) A (p € BS) (10.43)

& (peBs) A (keE(p,kF)mZ3),

where we could replace Z3 by Z* in the last line as the conditions p € BS = Z3\B(0,kr) and
k € B(p, kr) exclude k = 0 automatically. Recognizing that B (p, kr) N Z> = Br + p, we can now

write
237 dkpbipbip= D0 Y (|p|2— |p—k|2) by pbip (10.44)
kez3 pELx kez3 peLi
= > > Phibis— Y DL P kP bips
PEBY, ke(BFr+p) PEBY ke(BFr+p)
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and by expanding the excitation operators, we find for the first sum that

> Phibes= D) Y pPehepkch i

PEBY. ke(Br+p) PEBY. ke(Br+p)

c C* | |2 *
p—kCp_i |IPI CpCp

PEBY \ke(Br+p)

- Z (Z c_kc*k) IplPctep = Ne Z Ipl*chep (10.45)

PEBY \keBF PEBL

as XkeBy C-kCoy = DikeBy CkCy = NE by the particle-hole symmetry, and similarly,

Z Z P — kI ,brp = Z chep Z P = kPeporch (10.46)

PEBY, ke(BFr+p) PEBE. ke(Bp+p)
* 2 * 2 *
= Z CpCp Z |k|“ckey, = NE Z |k|“crcy,
peB; keBr keBr

for the claimed equality of

T=23" 3 Apbibip=Ne| Y IpPchep— Y IpPeyc, | = NeHy,. (10.47)

kez3 peLy PEBY, PEBF

To complete the proof, let us show that the relevant operators are well defined on the domain
D(H}, ). This is clear for /\/EHliin since N is a bounded operator (0 < Ng < N on H ). For T, we can
interchange the summations of k and p using the same observation in (10.43). This gives the quadratic
form estimate

T=23" 3 Apbipbip= > > WP =216y bep+ D, > Nlp =k =16} by

kez3 peLi kez3 p€Lli kez3 peli
2 2
< Z (Z ckc;)||p| —{lchep + Z chep Z k> = ¢| kel < NeH],, (10.48)
PEBY, \keBF PEBY, keBF

where ¢ > 0 is the constant in (1.14). Moreover, it is easily seen that T commutes with both Az and
H,, . Therefore, the above quadratic form estimate also implies the stronger estimate

T2 < (NeHY,) (10.49)
which justifies that D(T) ¢ D(NgH,, ) € D(H,, ). m|
Now we are ready to give the

Proof of Theorem 1.5. Thanks to Proposition 10.1 and the identity (e, hxey) = Ak pdp,q, We have

Heff = Hl;in +2 Z Z <e,,, (Ek - hk) eq> bz,pbk,q

kez3 P-q€Li

=2 Z Z <eP’Ekeq>bz,pbk,q - (NE - 1)H12m (10.50)

kez3 P-q€Li
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Since [Heg, Ne] = 0, we can restrict Heg to the eigenspaces of Ng: for every M = {1,2,...}, we can
write the restriction to {Ng = M} for M € N in the quasi-bosonic form

Hetlnpnr =2 ) 3 {eps (Bx= (1= M7") i) eq) by brca (10.51)
keZ3 P-q €Ly
O
Proof of Theorem 1.4. We only need to verify the statement on the effective operator Heg|y,.—p With

M = 1. In this case, it is convenient to introduce the total momentum P = (P, P;, P3), where each P i
is given by P; = X, 73 pjc),cp. Itis easily checked that P; obeys the commutators

[Py bip] = ~kibeps  [Prbi, | =kibi,e (10.52)

and additionally [P s Hlim] = 0, whence the effective Hamiltonian H.g also commutes with P;, j =
1,2, 3. It also holds that [N E, Pj] = 0, so we may restrict Hqg to the simultanous eigenspaces of Ng

and P. It follows from [P j» by p] =kjby » that this simultaneous eigenspace is precisely

(¥ e Hy | Ne¥W =¥, P¥ = kW) = span (bz’prS)peb = (bl ()rs | ¢ € LA(Li)} . (10.53)

In fact, the mapping U : ¢ +— b} (¢)yrFs is an isomorphism. To see that, we compute, using the
commutation relations of the excitation operators and the fact that by (¢)¥ps = 0 = ex 1 (¢; @)¥rs for
any ¢, ¢ € L>(Ly), that

(U, Ugp) = (b} (¢)yrs, by (@)rs) = (Urs, (b7 (0)bi(9) + (8, ) + ex i (459)) Ups)  (10.54)
= (¢, @) (Yrs, ¥rs) = (. ¢) ,

so U is a unitary embedding of L>(Ly) into {¥ € Hy | Ng¥ =¥, P¥ = k¥} and hence an isomor-
phism for dimensional reasons.

Similarly, we find as Heﬂ‘|NE:l = 221ez~2 Zp,qeLl <ep, Eleq> b;“pbl,q that for any ¢, ¢ € Lz(Lk),

U, HU9) =2 3" 3" (eps Ereq) (brpbi (80rs. brgbiy(¢)es) (10.55)

173 p.q€ly

=20, ), <€pagl€q>6k’l (9:¢p) (eq. ) = 2<¢’ Ek‘p>’

kez3 p.g€Lk

whence U*HoqU = 2Ey. By elaborating the above argument slightly, one finds that the mapping

U: @L2(Lk) S {¥PeHy | Ng¥P =¥} (10.56)
kez?
defined by
U@ Yk = Z by (¢x) ¥rs (10.57)
kez? kez?
is likewise a unitary isomorphism under which U*HeqU = €D, <z Ey. o
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A. Appendix: Lattice estimates and Riemann sums

In this appendix, we collect several useful estimates for the lattice points and Riemann sums. In particular,

. . B
we want to obtain estimates on the sum 3 ,c7, A kop? where 5 < 0 and

— — 1 1
Le= (Br+K)\Br = (B (k,kp)\BOkp))| 02 Ap =5 (1P = 1p=kP2) =k p = 5IKP.

It is natural to expect the sum to be approximated by the corresponding integrals — that is,

1
D fkp) ~ ﬁ f (k p- zlklz) dp, (A1)

pely B(k,kp)\B(0,kr)

with f(¢) = 5. Indeed, when —1 < B < 0, the Riemann sum is well behaved, and using general
estimation methods based on (A.1), we have the following:

Proposition A.1. For all k € Z2 and —1 < 8 < 0, it holds that

2 <c{k?’*|ki“ﬁ k] < 2k
k,p —

= k3| k| |k| > 2kp

for a constant C > 0 depending only on .

For 8 < —1, the summands are, however, too divergent to obtain good estimates using only general
methods. For example, when 8 = —1, using standard estimates based on (A.1), we obtain

1+ k7M1 k k k 2k
Z <cC (3"‘|_|2 og (kr)) kp |k| <2kp (A2)
P ki k| |k| > 2k,

pPELk
which is non-optimal when |k| < 2k . To obtain good estimates on the sums 3. ,¢;, f (Ak,p) for more
singular f, we will instead derive a summation formula which reduces the 3-dimensional Riemann sum to
two 1-dimensional Riemann sums plus an error term. The utility of this summation formula, apart from
reducing the dimensionality of the sums, is that the 1-dimensional Riemann sums contain weighting
factors which explicitly cancel the divergent behaviour of the summands. To derive this summation
formula, we need to carry out a detailed analysis of the structure of the lunes L, which is related to a
lattice point counting problem in the plane and can be handled by classical results from analytic number
theory.

With the summation formula at our disposal, we can improve (A.2) to the following:

Proposition A.2. For all k € Z2, it holds that

Z /l;’lpSCkF, kp — oo,
PELk

for a constant C > 0 independent of k and k.

We refer to [24, Lemma 4.7] and [6, Eq. B.1] for results similar to Proposition A.2. However, the
k-independence of the constant C was not completely clear in these previous results.
For more singular functions, we have the following:

4438

Proposition A.3. For —‘31 <B<-landk € B (0,k)) with0 <y < T

we have

2
Z A< CRpP L™, kp — o,
peLy
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Moreover, for B < —% andk € B (0,2kf), we have
P < ClkPH (logkr)iks, k
DA < CIS (logkr) kg, kr — oo
PELy
Here, the constant C > 0 is independent of k and k.

In Proposition A.3, the first bound is optimal in terms of both k?ﬁ and |k|A. The second bound is
unlikely to be optimal but is sufficient in applications if |k| is relatively small.

Finally, for the kinetic estimate in Proposition 2.3, we need the following proposition, which can be
obtained by the same argument of the above results.

Proposition A4. Let S} .52  asin (2.14), (2.19) with k € B(0,kp) NZ3 and 0 < A = A (kp, k) <

ék%. Then there exists a constant C > 0 independent of k, kr, A such that
2
ISl +182 1 < C (1K' A+ k13 (log k) k1) (A + kD), kp — oo,

In the rest of the appendix, we will discuss some preliminary results in Sections A.1 and A.2 and
then turn to the proofs of Propositions A.1, A.2, A.3 and A 4.

A.1. Some lattice concepts

Let V be a real n-dimensional vector space. The lattice A C V generated by (v;)}", is

n
A:A(vl,u-,v,,)z{Zmivi|m1,...,mnEZ}. (A3)

i=1
Given two bases (v;)i_, and (w;)!,, it may happen that A(vy,...,v,) = A(wy,...,w,) even if the

bases are not equal. The following is well known (see, for example, [28, p. 4])

Proposition A.5. Let (v;);_, and (w;)i_, be bases of V. Then A(vi,...,v,) = A(wi,...,wy) if and
only if the transition matrix T = (T;, j)?j:l defined by

n
w; = ZTi’jVj’ 1<i<n
Jj=1

has integer entries and determinant +1.
This result has an important consequence when V is endowed with an inner product.

Proposition A.6. Let A be a lattice in (V,(-,-)) and let (v;)}_, generate A. Then the quantity

(e1,v1) -+ (en,v1) Vi, v) oo (Vi v)
d (A) = |det : : = |det :

(€1.vm) - (ensvn) V1avm) - (Vs V)

n

is independent of the choice of generators (v;);_,. Here, (e;)!L, is any orthonormal basis for V.

Here, d(A) is referred to as the covolume (or simply determinant) of A. The fact that d(A) is inde-
pendent of (e;)]" | follows by a standard orthonormal expansion, while the fact that d(A) is independent
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of (v;)i—, follows from the previous proposition: if (v;)i-; and (w;);_, are two bases with transition
matrix 7T, then

(er,wi) -+ (en,w1) (e1,v1) -+ (ensv1)
det : : = |det(T)| |det : : . (A4)

(1 wa) -+ (ens W) (€1svn) -+ (ensva)

Given a lattice A in an n-dimensional inner product space V, one defines the successive minima
(Ai)1, (relative to the closed unit ball B (0, 1)) by

A; = inf {2 | B(0,1) N A contains i linearly independent vectors}, 1<i <n. (A.5)

A well-known theorem due to Minkowski provides an inequality relating the successive minima of a
lattice A to its covolume:

Theorem A.7 (Minkowski’s second theorem). Let A be a lattice in an n-dimensional inner product
space V. Then it holds that

2"d(A) <l < 2"d(A)
n! Vol(B(0, 1)) "~ Vol(B(0, 1))

Note that although B (0, 2,,) N A contains 7 linearly independent vectors, it is not ensured that these
n vectors can be chosen to generate A. For n = 2, this is nonetheless the case:

Corollary A.8. Let A be a lattice in a 2-dimensional inner product space V. Then there exist vectors
V1, Vo € A which generate A such that

4
illval < =d (A).
T

Proof. By definition of A5, there exists linearly independent vectors vy, vy € A such that |vy|, |v2]| < A2
and by Minkowski’s second theorem |v{||vy| < %d (A). We argue that v; and v, must necessarily
generate A. Suppose otherwise (i.e., that there exists av € A such thatv # m v +myv, form, m, € Z).
As vy and v, are linearly independent and dim (V) = 2, these do nonetheless span V (i.e., there must
exist ¢1,cp € Rsuchthat v = civy + cavp).

Now we can assume that |c{|, |ca| < %, since as A is a lattice and vy, v, v € A, we may subtract
multiples of v; and v, from v until this is the case. Then, since [(vi,v2)| < |vi||v2] by the Cauchy-
Schwarz inequality (strict inequality being a consequence of the linear independence of v| and v;), we
can estimate that

2
2 = [vil*e? + [val*c3 + 2 (v, va) crea < vilPed + valPed +2[vilIval fei ] lea (A.6)

2
1 1
= (le1| vi] + eal va])? < (5/12 n 5/12) -2,

or [v|] < A,. But this contradicts the minimality of A5 as v # 0, and at least one of {v{,v} and {v,, v}
must be a linearly independent set, so such a v cannot exist. O

The sublattice orthogonal to a vector k € Z3

Consider Z3 as a lattice in R? endowed with the usual dot product. Let k = (ky, k2, k3) € Z3\ {0} be
arbitrary and write k = |k|~'k. Now we consider the set { peZ|k-p= 0}, namely, the sublattice
orthogonal to k. Let us recall the following well-known result.
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Theorem A.9. For (ky, ks, k3) € Z3\ {0} and ¢ € Z, the linear Diophantine equation

kimy + koymy + ksms = ¢

is solvable with (my, ma, m3) € Z* if and only if ¢ is a multiple of gcd (k1, k2, k3). Moreover, in this case,
there exist linearly independent vectors vy, v, € Z3, which do not depend on c, such that if (m*l‘, m3, mg)
is any particular solution of the equation, then all solutions are given by

{(my,ma,m3) € 73 | kymy + kama + kams = ch = (my,ms,mi) +{aivi +axvs | ar,a € Z} .

Note that the second part of the proposition states that (up to translation by a particular solution) the
solution set of a linear Diophantine equation forms a lattice, much as the solution set of a real-variable
linear equation forms a linear subspace. This result implies the following:

Proposition A.10. Let k = (ky, ky, k3) € Z3\ {0} be given. Then with | = |k|™" ged (ky, ko, k3), the
following disjoint union of nonempty sets holds:

Z3=U{p€Z3|IE-p=lm}.

mezZ

Additionally, there exist linearly independent vectors vy, v, € Z3, which span { peR3|k-p= O}, such
that for any m € Z, it holds for all g {p eZk-p= lm} that

{p€Z3 | l%~p=lm}:q+{a1v1+a2vz|a1,a262}.

Proof. Clearly, Z> = |, cx { peZ|k-p= t}, so we must determine for which values of # it holds that
{p eZk-p= t} # 0. The equation k-p=tis equivalent to

klpl + k2p2 + k3p3 = |k|l‘, (A7)

where p = (p1, p2, p3) € Z3, and as the left-hand side is an integer, we must have 7 = |k|!¢ for some
¢ € Z. Theorem A.9 now furthermore implies that ¢ = gcd (ky, k2, k3) - m for some m € Z, so that
t = |k|7" ged (ky, ka, k3) -m = Im, and as p was arbitrary, we see that Z* = |,z {p eZ|k-p= lm}
as claimed.

That all the sets {p € Z> | k - p = Im}, m € Z, are also nonempty similarly follows from the ‘only
if” part of Theorem A.9, and the representation

{peZ3|I€~p:lm}:q+{a1v1+a2vz|a1,a2€Z} (A.8)

for linearly independent v{, v, € 73 is likewise a simple restatement of the second part of the theorem.
Finally, that v; and v, span {p eR|k-p= 0} follows by noting that ¢ = (0,0, 0) is a particular
solution of & - p = 0, whence by the previous part

{vi,va} c g+ {avi+axvy | aj,a, €2} = {p eZ | k-p =0} C {p eR?| l%-sz}, (A9)
so we find that span ({v1,v2}) = {p € R® | k- p = 0} by linear independence of {v;,v,} and dimen-
sionality consideration. O

Proposition A.10 implies that {p eZ|k-p= O} is a lattice in {k}* = {p eR | k-p= 0}. Since
{ peZ’| k- p= 0} is a lattice, it has a well-defined covolume

\'/det(v1 BSOS ) = \/|V1|2|V2|2 — (v1-v2)? (A.10)

Vi-V2 V2 V2

for any choice of generators v and v,. This covolume is explicitly given by the following:
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Proposition A.11. For any vi, v, € Z3 generating {p eZ k-p= O}, it holds that

2 —
il val? = (vi - va)? =172

with I = |k|™" ged (k1, ko, k3). Additionally, vi and v, can be chosen such that |vy|> + |v2|> < %.

Proof. Let vi and v, generate {p e k-p= O} and let w € {p eZ |k-p= l} be arbitrary. By
linearity, it holds that

{peZ|k-p=im}=mw+{peZ’ |k-p=0}, meZ (A.11)

so by the Proposition A.10,

73 = U (mw + {p e7? | k -p= 0}) ={mvi + myvy + msw | my,my,m3 € Z} (A.12)
mezZ
(i.e., (vi,va, w) is a set of generators for Z3). Now, let {k}* = {p eR|k-p= 0} be the orthogonal
complement of {k}. Let (e, e2) be an orthonormal basis for {k}* so that (e 1, €2, 12) forms an orthonor-
mal basis for R®. Then d (Z?) is equal to

e1 vy e2~v1k-v1 €1 -V €2‘V10
A €1 -VvVy ér-v
det| e;-vy ep vy k-vy ||=|det| e1-vy er-v2 O =ldet(el vl 82 vl)
~ 1:-V2 €2:-V2
er-w er-w k-w el-w ey-w i
Vi-V]y V-V
=1\/olet(1 . 1)=1\/|v1|2|v2|2—(vl~vz>2, (A.13)
V1+V2 V2 V)

but it is also clear that d (Z*) = 1, so the first result follows. From this result, (A.10) and Corollary A.8,
we deduce that there exist generators v and v, such that

4 ~ 4
vil[val s—d({pez3|k-p=o})=—r‘. (A.14)
T T
Since vy, vy € Z2\ {0}, we have |v{], |v2| > 1, and hence,

8 _
1%+ [val® < 2lvi Pyl < ;l 2, (A.15)

A.2. Plane decomposition of Ly, and the summation formula

Now we turn to consider the lune L; = { peZ||p—k|l<kp <] p|}. Throughout this subsection,
we let k = (ky, k», k3) € Z3\ {0} be fixed and write k = |k|™"k and [ = |k|~" ged (ky, k2, k3) for the
sake of brevity. The integrands of the Riemann sums we must consider only depend on the quantity
Akp=k-p- %|k|2 = |k| (/2 -p - %|k|), so we begin by decomposing L along the k - p = constant
planes. By the definition of Ly, it easily follows that

1 R
ch{p€R3|§|k|<k-pskp+|k|}. (A.16)
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Letting m* be the least integer and M the greatest integer such that
1 * *
§|k| <Im*, IM" <kp+|k|, (A.17)

we see that the lune L can be expressed as the disjoint union

.
Lk:UL’”, Lr={peLi|k-p=im}. (A.18)

m=m*

So for any function f : R — R, we may express a sum of the form } ,c;, f (Ak,p) as

M* M*
S f= > Y f(lkl(l?-p—%lkl)) -3 f(lkl(lm—%lkl))lLZ’I. (A.19)
pEL m=m* peL}" m=m*

Rewriting L}"
To proceed, we must analyze |L}"|, the number of points contained in L}'. For this we first rewrite

Le={peZ’|lp-kl<kr <Ipl}={peZ’ |k} < |p|* < ki — |kI* +2k - p}. (A.20)

Now let P, : R3 — {k}* denote the orthogonal projection onto {k}*. Then for any p € R3, |p|> =
L \2
P p|*+ (k'p) , Whence

N 2 R 2
Lkz{p€Z3|k%—(k~p) <|Plp|2§k12p—|k|2+2k'p—(k'p) }

~

3 2 2 2 2 7 2
={peZ |k - (kp) <IPupP <k} - (k-p-1kI) |, (A21)
and so the sets L = L 0 {p € Z* | k- p = Im} may be written as
Lt ={peZ|k p=1im, k% - (Im)* < |P.p|* < k% — (Im - |k|)*}
N 2 2
={p ez 1k p=im (R') <IP.pl < (RY)}, (A22)

where the real numbers Rq” and R;" are

R = \JK% = (Im)2, Ry = Jkg —(Im—-k])?, m"<m< M*, (A.23)

which are well defined by definition of m* and M*.
Now by Proposition A.10, we can find the generators v, v, € Z° of { peZ|k-p= 0}. Moreover,

a fixed m* < m < M, there exists g € {p eZk-p= lm}, and any p € Z3 is an element of
{p eZ|k-p= lm} if and only if it can be written as

p=avi+ayvy+q (A.24)
for some ay, ap € Z. Since P, g € {k}* by definition and the proposition likewise asserts that v; and v,
span {k}*, there must also exist by, b, € R such that P, g = bjvy + bav,. Consequently, P, p for our

arbitrary element p takes the form

Plp = a|PJ_V1 +02PLV2 +PJ_q = (a1 +b1) V) + (az + bz) 1% (A25)
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whence
IPLplP = (a1 +51)> i + (a2 + b2)* o> + 2 (a1 +b1) (a2 + b2) (vi - v2) (A.26)
so by equation (A.22) we conclude that
121 = | (ar @) € Z2 1 (RY)? < (ar 4502 i+ (a2 + 2)? [val?
+2 (a1 +b1) (a2 +b2) (v1 - v2) < (R)? H
= |(ES\ET" = (b1, b)) N Z7, (A.27)

where the sets E f’ and Eg", defined by
E" = {(x, V) €RE | vilP2 + a2 y? +2 (v - va) xy < (R:")z} , =12, (A.28)

are seen to be (the closed interiors of) ellipses. The analysis of |L]"| thus reduces to the estimation of
the number of lattice points enclosed by these.

Lattice point estimation
To estimate |L}'| = |(E£”\E 7= (b1, by)) N ZZ|, we will use the following result on the number of lattice
points contained in compact, strictly convex regions in the plane:

Theorem A.12 [19]. Let K C R? be a compact, strictly convex set with C* boundary and let K have
minimal and maximal radii of curvature 0 < ry < rp. If ro > 1, then

ININY

||k N 22| - Area (K)| < C:—?ré% log (14222}

for a constant C > 0 independent of K, r1 and r.

This result follows from the techniques of Chapter 8 of [19].
From the theorem, we deduce the following practical corollary:

Corollary A.13. Let E C R? be an ellipse with radii of curvature O < ry < ry. Then,

2
|E nZ?| - Area(E)| < C (1 + :—er log (1 +2 2r2)3)
1

for a constant C > 0 independent of E, r1 and r;.

Proof. The theorem gives the case that r, > 1. If , < 1, then we can circumscribe some disk D of
radius 1 around E, and trivially

|IE 022 - Area(E)| < max (|E 022

,Area(E)) < max (|D N ZZ|,Area(D)) <C (A.29)

as the right-hand side is seen to be bounded irrespective of the exact position of D. O

This corollary lets us estimate that

Wt

r 2
3

[SS IS

2
L1 = Area (EZ\ET) + 0 {1+ 21 log (1+2v2r2)  +
1

(r2)

r

log (1 +2 2r§)§) . (A30)

—_

where r; and r/, i = 1,2 denote the radii of curvature of E{" and E7', as the translation by (b, b2)
affects neither the areas nor the radii of curvature of the ellipses.
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To proceed, we must obtain some information on the geometry of the ellipses E". By the definition
(A.28), the semi-axes a; > b; > 0 of E]" are given by

ai = VIR" (|vl|2 a2 = (12 = 1val)? +4 (v -Vz)z) ,

NI—=

1
2

b; = V2R" (IV1I2 + vl + \/(|Vl|2 — [val)? +4 (v - Vz)z) : (A31)

We can now describe the geometry of the ellipses E}" in terms of k and m:
Proposition A.14. If |k| < 2k, then

o nlk (lm - %|k|)l if Im* < Im < kp,
Area (EJ'\ET") = ) 5 ' .
n(kF—(lm—|k|))l if kg < lm < IM",

and the radii of curvature 0 < ry < ry of both EY", E}* obey

23 <l k.
ry

for a constant C > 0 independent of k and m.
(The condition |k| < 2kp ensures that the lune does not degenerate into a ball, in which case the

area formula must be modified.)

Proof. Let vy and v, be the generators given by Proposition A.11. The area enclosed by an ellipse with
semi-axes a and b is mab, so as ET" C E7" for any m* <m < M* and ET # 0 when Im < kg, we find
in this case that

Area (E;n\ETn) =T (a2b2 - albl) =

\/(|V1|2 + |V2|2)2 - ((|V1|2 - |V2|2)2 +4 (v ‘vz)z)

2 (k3. = (1m = K1) = (K2 = (1m)?))

1
= =2n|k]| (lm—zlkl)l (A.32)
VHVIRIV2P 44 (v - v2)
and similarly in the case kr < Im that
2n (Rgn)z 2 2
Area (E§'\EY') = Area (EY') = masby = = 3= == (k3 = (tm = k12 1. (A.33)

For the radii of curvature, we note that for an ellipse with semi-axes a > b > 0, these are given by
ri =a"'b* and ry = b~'a?, respectively, so for the ratio 7} 'r,, we can for either of E" and EJ" estimate
using equation (A.31) that
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3

2 2
" (a,.)3_ 12 4+ a2 (1912 = [v2l?) 44 1 v2)?

_ : :
i+ w2l = (91 = 22)? +4 (1 - 2)

b;

r

N

2 2
(|vl|2+ al? + (101 P = v22)? + (1 - v2) )

(12 + 1v212)* = (17112 = [v212)7 + 4 (- v2)?)

) ( (w1 + v )’ )‘2 < ((Clz)z)m <cr?

(A34)
41 Pval? = (v - v2)?) 5
and likewise estimate for r; that
a2 \/|V1|2+|V2|2+\/(|V1|2—|V2|2)2+4(V1 -v)?
ro = b—l = \/lem
’ i+ w2l = (91 = 22)? 44 (1 - v2)?
3
2
(|vl|2 + w2+ (1 = r22)2 44 (v ~vz)2)
= V2RY" 2 2
(912 val) = (1012 = 2l)+ 4 (01 - 2)?)
3
2 (vi?+|v2|?))? 3
<\V2R™ 2 (b1l + Ival)) - < (cr?) 2R < cr Mk (A35)
4([vi2v2l? = (v1 - v2)7)
Here, we also used that R{", R} < kp forallm* <m < M". ]

The summation formula

We can now present the summation formula that we will use to estimate the sums Y ,c;, f (dk.p).
Noting that the quantity I = |k|~! gcd (k1, k2, k3) obeys the lower bound [ > |k|~! independently of k,
we can by equation (A.30) and Proposition A.14 estimate (provided |k| < 2kf) that

2
3

03
|IL2| - Area (EZ'\EM)| < € (1 +17 (17 ) log(l +2V2 (llkF)z)z)

LI

<C (1 + kP ES og (1 + \/|k|kF)

2
) < CIkIP*3 (logkp) k. (A.36)

as kp — oo, for a constant C > 0 independent of k and m. Inserting the expression for Area (E5"\E")
that we determined in Proposition A.14, we then have

27lk| (lm - %|k|)l Im* < Im < kp

LY | =
k n(k% —(Im - |k|)2)z ki <lm < IM*

3+2 2.3
+O | |k|I”"5 (logkFp)3ky ). (A.37)
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Letting M denote the greatest integer such that /M < kr, it now follows from equation (A.19) that for
any f : (0,00) — R, it holds that

S fp =2kl Y f (11 (1= ) (= 5000

peELy m=m* 2
er ST (i (im- L J (13 = am = w?)
ﬂm:M+l " 2 " "
2 2 2 M 1
+0 |1kP*3 (log k) 3k Z f(|k|(lm—§|k|))‘), (A.38)

so the 3-dimensional Riemann sum ) ,¢;, f (Ak,p) has been reduced to two 1-dimensional Riemann
sums plus an error term. In fact, these two 1-dimensional Riemann sums are just what one would expect,
since by 3D integrating along the k axis it is not difficult to show that, in general,

kr
f o (k p- l|k|2) dp = 2n|k|/ f (|k| (r - l|k|)) (r - l|k|) dr
B(kkr)\B(0,kr) 2 Lk 2 2
kp+|k| 1
+7r/ f(lkl (z— —|k|)) (k3 = ¢ = 1kD?) a1, (A39)
kr 2

and the two Riemann sums of equation (A.38) are seen to be Riemann sums for the two 1-dimensional
integrals above.

In the statement in the following proposition, we make a minor adjustment: We expand the factor
k2 — (Im — |k|)* as

1
k2 — (Im = |k|)* = k% = (Im)? = |k|* + 2|k|Im = (k% - (lm)z) +2|k]| (lm - §|k|) (A.40)

and collect the 2|k|(Im — %lkl) terms in the first sum. We have the summation formula:

Proposition A.15. Let k = (ki,ka,k3) € Z3\{0} with |k| < 2kp, f : (0,00) — R. Let

I = |k|™" ged (ky, ko, k3) and m* is the least integer and M, M* the greatest integers for which
1
§|k| <Im*, IM<kp, IM"<kp+]|kl|.

Then for all functions f : (0, 00) — R, it holds that

+

(|k| (zm - §|k|)) (i - amy?) 1

"
2
|k[**5 (logkp) Tk >

m=m*

M | |
p;kf(/lk,p) =27T|k|m=2m*f(|k| (lm— §|k|)) (lm— §|k|)l

”-

> f

=M+1

+0

f (|k| (lm - §|k|))'), k= o

A.3. Proof of Proposition A.l

Now we prove Proposition A.1 and (A.2). In this part, we do not use Proposition A.15.
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Some Riemann sum estimation techniques
We must first establish some preliminary Riemann sum estimation results. Let S ¢ R", n € N, be given,
define for k € Z" the translated unit cube Cy by

Ce=[-27"27"" +k (A.41)

and let Cs = Ugesnze Ck denote the union of the cubes centered at the lattice points contained in S.
The first result we will establish is that for a convex function f, the integral /Cs f(p)dp always yields an

upper bound to the Riemann sum Y, cgqzn f(k):

Proposition A.16. Let f € C (Cs) be a function which is convex on Cy, for all k € S N Z". Then,

Fk) < /C F(p)dp.

keSnzZr

Proof. As a convex function admits a supporting hyperplane at every interior point of its domain, we
see that for every k € S N Z", there exists a ¢ € R" such that

fp) = f(k)+c-(p—k), peC, (A.42)

which upon integration over Cy yields
[ s [ swoaps [ e p-ndp= s (A43)
Cr Cr Crk

as /Cs f(k)dp = f(k) since Vol (Cx) = 1 and /Cs c¢-(p—k)dp =0,asCy is symmetric with respect to
k but the integrand p — ¢ - (p — k) is antisymmetric. Consequently,

> s S [ rop= [ s (A44)

keSnzn keSnzn

]

This proposition lets us replace the sum by an integral but over an integration domain Cs which will
generally be complicated. An exception is the n = 1 case which we record in the following (generalizing
also the statement to any lattice spacing /):

Proposition A.17. Leta,b € Z, 1 > 0,and f € C ([la - %l, b+ %l]) be a convex function. Then,

b Ib+}1
Im)l < dx.
>, pmis [ 7 oo

2

For n # 1, we instead require an additional result that lets us replace Cs by a simpler integration
domain. We define a subset S, € R" by

S = {p eR" | inf |p—¢q| < ﬁ} (A.45)
qeS 2

and observe the following:

Proposition A.18. It holds that Cs C S.. Consequently,

IS N Z"| < Vol (S,).
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Proof. We first note that for any p € R", every point of the translated cube ([—2_1, 2_1] + p)n is a
Vi

distance of at most -5~ separated from p itself. Now, let p € Cs. Then by definition of Cs and the previous
observation, there exists some k € S N Z" such that |p — k| < @, and hence, p € S, since
inf |p —q| < |p—k[ < ¥ (A.46)
qeS 2

Clearly, [SNZ"| = Yresnzn 1 = Zkesnze Yol (Cx) = Vol (Cs), so the inclusion Cg € S, immedi-
ately implies that |S N Z"| < Vol (S,). O

Lune geometry

Returning to Proposition A.1 and (A.2), we now let k € Z3 and —1 < 8 < 0 be fixed. The Riemann sum
ranges over p € Ly = (B(k,kr)\B(0, kr)) NZ3, so in the notation of the above discussion we must
consider S = E(k, k p)\E(O, kr). The relevant integrand,

T EY MG T (A47)
P, =5 IpP=1p = Pk .

is convexon {p e R3 | k- p > %|k|} but singular at {p e R? | k- p = %|k|}. For this reason, we must

ﬁp.Wewriteszs1 U S2

introduce a cutoff to the Riemann sum 3’ ,¢;, A .

2+13
2

2+3
2

. 1 - 1
Slz{peS|k-p§§|k|+ } Szz{peS|k-p>§|k|+ } (A.48)

so that likewise, Lj = L}( @) Li where L}( =Ly NSk, Li = L N S2. Hence, by Proposition A.18,

B B
A 1
B _ B B . 1
S, 5 e 5 < sl [ w0 )
PELy peL} peL? 52

; ) Y
s(inf ak,p) VO1(31)+|k|ﬁ/52 (k.p—§|k|) dp, (A.49)

PELk

where we also used that p — (k- p — %|k|)ﬁ is non-negative to expand the integration range of the
integral. In order to apply this inequality, we will again replace the sets S!, S2 by ones which are easier
to work with. We have the following:

Proposition A.19. For all k € Z3, it holds that

3 -~ = 3
Sy = peR3|inf|p—q|§£ cS=8B k,kF+£
qeS 2 2

f-9)

W

\B

3 —~ ~ A 1

sl= peR3|inf|p—q|g£ cS'= peS|—££k~p——|k|£1+\/§,
geS! 2 2 2

3 ~ . 1

Siz{peRﬂinf|p—q|§i}cgzz{peSHc-p——lklzl}.

qeSs? 2 2
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Proof. We first show that S, C S. For every p € S, by the triangle inequality, we can estimate

. V3
Pl = sup (lgl = |p — gl ) > kr = inf [p = q| = kr - =, (A.50)
qes qeS 2

3
Ip—klsinf(lq—k|+|p—q|)SkF+inf|p—qlskF+£,
geS ges 2

and hence, p € S. Next, we prove S c S': for every p € S!, we have

N 1 o 1 A 2 3
k-p—=|k| = inf (k-q——|k|+k-(p—q))£ +\/_+inf |p—q|£1+\/§, (A.51)
2 geS! 2 geS!
. 1 . 1 . , V3
k-p—-=|k|l = sup (k-q——|k|+k-(p—q)) >—inf |p-—q| > —-—— (A.52)
2 ges! 2 qESl 2

and hence, p € S'. Here, we used the definition of S and §' ¢ § c {q eR} | k-q> %|k|}. That
p €S2 implies k - p — %|k| > 1 follows by the same argument. O

Thanks to the simple bound A, > % for all p € L, we can now conclude the inequality

— . 1 B
Z o< 2—BV01(51)+|k|ﬁ/ (k-p——|k|) dp. (A.53)
ST P 2 2

Hence, we need only consider the sets S! and §2, which consist of ‘slices’ of S:

§:U§,, S,={peS|k-p=1}. (A.54)
t

Recalling the definition of S from Proposition A.19 and using elementary trigonometry, we can show
that

2 2
Area(§,)=ﬂ (kp+?) —(t—=1kD?*|-7 (kp—\/?g) — |t]?

-7 (2\/§kF - (|k|2 - 2|k|t)) -2 (lkl (r - %|k|) + \/§kF) (A.55)

for |k|/2 = V3/2 <t < kr —V/3/2, and that

Area ('S}) = (kF + ?)2 (- |k|)2) =7 (kF + ?)2 - (ﬂ —2Jk| (z - %|k|))

2 (11 (1 = Likl) + VBip | + 7 kp—ﬁz—zz
o~ ) s e 1 ) )

2

<2n (|k| (r - %lkl) + \/§kF) (A.56)

for kp —V3/2 <t < kr +V3/2 + k|
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With these formulas, we can now give the following:

Proof of the|k| < 2k pcase of Proposition A.Il and (A.2). By equation (A.53), we have

~ . 1 \#
Z Afp <278 Vol(Sh) + |1<|ﬁ/~ (k~p— §|k|) dp, (A.57)
pELy ’ s
and we can estimate
_ L4143 _ L4143 1
Vol(Sh) =/ Area(S,)dt=27rf k|t — =|k| +V3kp | dt (A.58)
L= 3§ L= 3§ 2

1+3 248
=2n/£ (|k|t+\/§kF)dt§C(|k|+kp)SCkF:O(kF |k|1+ﬁ),

)

forall -1 < <0, and
R 1 B kp+% +|k| 1 B _
‘/~(k-p——|k|) dpz/ (t—§|k|) Area(s,)dz
S2 L lk|+1
kr+% +|k| 1 B 1
SZn/ (:—§|k|) (|k|(t—§|k|)+\/§kp)dt
Llk|+1
g1k kp+ 4L |k|
’ t1+ﬁdt+\/§kF/ o tﬁdt)
1

kF+T
=2 ||k| /
1

2+ 1+8
k| Vi ol V3 N 2eg
<2m| —— — 4 — — + = < A.
< n(2+ﬁ kr+ > +2|k| +1+’8kp kp + > +2|k| < Cky" |k (A.59)

for—-1 < B <0, and

A 1\ kp+B+1 k| e+ L+ k|
/ (k.p_§|k|) dp < 2n |k|/ 1dt+\/§kF/ ' dt
s2 1 1

31
C(|k|kp+kp10g(kp+£+§|k| < Clkl 1+ 1K1 log (k) kr

2

(A.60)

for § = —1. Combining the estimates yields the claim. O

Proof of the |k| > 2k case of Proposition A.1. For |k| > 2kg, the lune S = B (k, kr) \B(0, kr) de-
generates into a ball, and so we must adapt our argument. Now it is simply the case that

V3

S,=S=B k,kF+7). (A.61)

If 2|k| > kp + 52 2+\F , then every p € S satisfies & - p - |k| > 1 and the cutoff set S! is unnecessary.
Otherwise, the equatlon (A.53),

R 1,V
> <2—BV01( )+|k|3/§2 (k~p—§|k|) dp, (A.62)

PELy
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still holds for
~ ~ A 1 =~ . 1
slz{pe5|k.p—§|k|g 1+«/§}, Ezz{pe5|k-p—§|k| z+1}, (A.63)
where we simplified the description for st using that k - p — %|k| ‘f holds for all p € S when
|k| = 2kFr. We can then easily estimate Vol (§ 1), as itis now seen to be a spherlcal cap of radius kg +\/7§
and height
1 V3 1 2+3V3 _2+3V3
Z 1 - —kp-—|< - = < A.64
(2|k|+ +xf3) (|k| kr 2)_kF Sl + == < =——, (A.64)
whence
2
2+3V3 3 2+3V3
Vol (S ) g( +2‘/_) (3 (kF +§) - +2\/—) < Ckp, (A.65)

soas kg = O (k3.|k|?) forall -1 < B < 0 when 2kp < |k| < 2kp + % ‘f , this is again negligible. O
We estimate the integrals to conclude the following:

Proof of the second part of Proposition A.1. We again note that the area of the slice S, is given by

NG 2
Area (5,) = ((kF+—) — (- Ik]) ) (A.66)
now for |k| — kp — £ <t < |kl+kp+% ‘f If |k| < 2kp + 1 + V3, we just saw that the contribution
coming from the Cutoff set S' is neghglble, while the integral term is
kp+% Bk 1 B _ )
|k|ﬁ/ ( p——|k|) |k|ﬁ/ (t——|k|) Area(S,)dtkaF+ﬁ|k|1+/5 (A.67)
Lk +1 2

as calculated in equation (A.59), which is O (k%lklzﬁ) for 2k < |k| < 2kp + 1+ V3 (here we also use
that for 8 = —1, the logarithmic term in the estimate of equation (A.60) is negligible when |k| > 2k
due to the additional factor of |k|™1).

If |k| > 2kp + 2+2‘E , we simply have

V3

|k |[+kp+% 1 B _
> <|k|ﬁ/( p——|k|) |k|ﬁ/ (t——|k|) Area(St)dt, (A.68)
5 Ik |~k — 2

pELk

and by writing (¢t — |k|)? = (t - —|k|) — |k| (t - %lkl) + %Iklz, we can furthermore estimate that

Area (5, = n((kF ; ?)2 - ((r - §|k|)2 - 1k1 1= 3101 + %w))
: n(|k| (r - §|k|) - (}Hkﬁ - (kF . ?)2) - (r - %|k|)2) < k| (r - §|k|) . (A9)
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SO

5 1 Ik +kpe+ 3 1 \!*8
Z Ay < k] +B/ (;— 5|1<|) dt

peln Ik |~k 2
2 2
_M l|k|+k +£ +ﬁ_ 1|k|_k _ﬁ ’
“ 2+ (|2 ) 2 )
248
1 3
< Clk|'P (§|k| +kp+ g) < Clk**. (A.70)

If additionally |k| < 3k (say), then this is again O (k3.|k|??). If this is not the case, however, then we
can instead trivially estimate that

B
N 1
E /lf SIle/(k~p——|k|) dp < |k|P [ inf (k p——|k|) /ldp
P s 2 pes S

pELy
B
1 V3 — V3
< k[P | =|k| — kg — —| Vol|B|0,kp + —
_||(2||F2 o F+2))
B
1 1 3
< Cky|klP -|k|——|k|—£ < Cky |k, (A1)
2 3 2
m]
A.4. Proof of Proposition A.2
In the cases |k| > 2kr and 2kp > |k| > log(kp), the claim has been proved. Thus, it remains to

consider the case |k| < log(kr), for which we will apply the summation formula in Proposition A.15
to improve (A.2). By Proposition A.15, we have

Z = 2n|k| Z bl ———l+n i M[

sy or i |k|( L) = )

+O| kP (logkp)iki Z
et |k|(m—§|k|)

M* M*
2 2 2 1
<2n 1+0||kI*3(logkp)3k; —) kp — oo, (A.72)
er]n* m;* Im — %|k|

where we used that by definition of M, (kzF —(Im)*) <Oforallm > M + 1. As |k| < 2kp,

=I(M*—m*+1) <kp +|k|+1 < Ckp, kr— oo, (A.73)

M2

*

where we also used that

max (|ki|, |k2|, |k3|) <1

/2 2., 12
k1+k2+k3

1= |k|™" ged (k1, ko, k3) <

(A.74)
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. -1
We now consider the sum Z%:m* (lm - %lkl) . To apply Proposition A.17, we must estimate the

m = m* term separately, so that the integration range does not cross the point x = %Ikl, where the
integrand diverges. Note that using Ax_, > % for all p € Ly, we have

* 1 . ~ 1 1 . 1 5 1 1
- - = . —_—— = . I > _
lm” = 51kl = min (k p 2Ikl) Ik (;Iéank (k p =5kl )) 2SIk (A.75)
Therefore,
Ll M IM*+L1
1 1 ! 1
D, <2l ) ——— <20kl + k| ———dx
m=me = §|k| mamrat L= §|k| Im*+31 X — §|k|

IM*+ 11— Lk ke + k| + 31— L1k
< Clk||1+1log 12—12” < Clk||1+1log F |12 il
< Clk| (1 +1log(|klkp)) < Clk|log (kg), kp — oo, (A.76)

yielding the total bound when |k| < log(kF)
1 3+2 5.3
—— < C kg + k3 log (kp)3 kJ.) < Ckp. (A.77)
Ak,p
peLx ™

A.5. Proof of Proposition A.3

First, consider the case —‘3—‘ <B<-landk € E(O, 2kr). By Proposition A.15, we can estimate using
the argument leading to (A.77) that

5 M 1\ 1
DA =2mlkl Y (|k|(lm—§|k|)) (lm—§|k|)l
pPELy m=m*
M* 1 B
vy (|k|(lm—§|k|)) (k%—(lm)z)z

m=M +1
M* B
342 2,2 1
+0 | |k| +s(1ong)sk;m;m(|k|(zm—§|k|)) )
g M 1 148 e , 2 M 1 \A
+ _ 2 +5+ %13 _ 2
< 2n|k| mzzm* (lm 2|k|) 1+0 ||k (1ong)3ka=ZW (lm 2|k|) . (A78)

Applying Proposition A.17 and A.75, again we have

M* 1+8 1+8 M* 1+
1 | 1
§ *(lm—§|k|) [ = (lm —§|k|) I+ Z (lm—5|k|) I
m=m m=m*+1

1 1+8 lM*+%l 1 1+

-1

< (—|k| ) +/ (lm - —|k|) dx

2 Im*+L1 2

1 . 1+8 1 ‘ 1 1 2+ 1 1 2+
—|= - M* i _ * 7 =

(2|k| ) +2+,8 [ +21 2|k| Im +2l 2|/’<|

2+
11
<C (|k|-<1+ﬁ> + (kF ol E|k|) ) <CKP, kp — oo, (A.79)
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and likewise,

M B B M B
1 L1 B 1
Z*(lm_ilkl) —(lm —§|k|) +1 Z (lm—§|k|) !
m=m m=m*+1
1 B IM*+11 1 \#
-1
s(—|k| ) + k| (lm——|k|) dx
2 Im+ 11 2

=27Pk| P + k] Im* + L1 1|/<| v v+ L 1|k| Hﬁ
- w8\ T2 72 )

1 1+8 1 148
< C||k|™ + k| (zm* +5l- E|k|) > C|k|™ +|k| (§|k|‘l) <Clkl™.  (A.80)

Combining these, we find that for all —% <B<-landk € E(O, 2kF),

2
DM, =C (k?‘glkl“ﬁ + k¥ (log kp)gki:), kp — oo. (A.81)
PELk

Consequently, if 8 < —‘3—‘ and k € E(O, 2kr), then using Ag p, > %, we have

_4 2
Z ﬁf,p <C Z Ay S CIkP*3 (logkp) 3k ). (A.82)
PELk peLy
Moreover, if —% < B < —1and k| < k}; with y < —gﬁg, then the right-hand side of (A.81) can be

simplified to Ck " [k|'*5.

A.6. Proof of Proposition A.4

In this subsection, we prove Proposition A.4. We first establish a simple upper bound:

Proposition A.20. For all k € Z3 and any A > 0, it holds that |S} | + |53 ,| < [Sk.al, where

~ 1 1
Sk = {P eZ’ | |lp* - ¢l <A and ‘kwv - Elkl < Elkl_]ﬂ}-
Proof. As S} ;NS | =0, the claim will follow if we can show that S} ,, 87 ; C Sk.a. Consider an
arbitrary p € S, ,. By definition of S} ,,
lIpI> = £| < max {||pl* = ZI.|lp — kI = I} < 4, (A.83)
so the first condition for Sy, is satisfied. For the other, we note that
12k - p = [kP|=Ipl* = Ip = k1P| = llpP* = ¢ = Ip — k> = £| (A.84)

< max {|Ip* - ¢l lp = kI> = £1} < 4,

where in the second equality we used that both p, (p — k) € Bp if p € Sk 1. This now implies that
p € Sk, so indeed, S} , C Sg 1. The inclusion S7 | C Sk 4 follows similarly. o

The quantity |Sk, /1‘ can in turn be estimated with exactly the same techniques which we used for
the estimation of Riemann sums in the previous subsections. Let us start by using the arguments from
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Proposition A.10. Now, the condition that ||p|> — ¢| < A is equivalent with £ — A < |p|*> < ¢ + 4,
and writing |p|?> = (k- p)? + |P.. p|? (where P, : R® — R3 denotes the orthogonal projection onto
{k}* ={p € R®| k- p = 0}), this is equivalent with

(= (k-p)y=a<|Pip| <¢—(k-p)+a (A.85)

Consequently, if we let m_ and m. be the least and greatest integers, respectively, such that
1 1
E(|k| — k') <Im- and Imy < §(|k| +1k]7'2), (A.86)

it follows that we can decompose Si 1 = e, S¥ ., where

k,A°
Skm’/l:Sk,,lﬁ{pGZ3|l€-p:lm}:{p€Z3|l€~p:lm,||p|2—{|</l}
={peZk-p=im - (Um)?-A<|P.pP* < - (Im)*+2} (A.87)
={peZ | k-p=im (R"? <|P.pl* < (R™?}
for

(R =¢-(Im)P <4, m_<m<m,. (A.88)

We see that the sets S}" | are of the same form as the sets L' which we considered in Section A.2.
The arguments which we used to estimate |L}"| thus 1mmed1ately carry over, provided we can establish
some basic estimates on R and R}'. We have the following:

Proposition A.21. Forall k € B(0,kp) NZ3 and 0 < A = A (kp, k) < k2, it holds that
C kg < R™ <R™ < Ckp, Vm_<m<my, (A.89)
as kg — oo for a constant C > 0 independent of k, kr and A.

Proof. First, recall that ¢ is the midpoint of the interval I = [suppeBF Ip|?,infpepe |p|*|. Since k. € 1
by definition of the Fermi ball, we can bound

1 1
|& - k2| I == nf IpI> = sup |p|*| < kp +1. (A.90)
2 2 qeBr

Here, the last inequality can be seen by taking the trial points p_ = (|kr],0,0) € Br and p, =
(Lkp]+1,0,0) € BS.. Combining (A.90), the definitions of m_, m, and the assumptions of the
statement, we may estimate independently of m that

(R™?* > ¢ — max {(Im_)*, (Im,)*} -

2 2
4——((|k| k1712 +(|k|+|k|-u))—a (A91)
1 3.1
__ 2 =25 _ R 1.2 _
>{ 2(Ikl+|k| A) A=¢ 2kF 24241% kp—1,
and
a2 2 1, 7,
(RE) =4~ (Um) +A < {4 ckip < ckp +kp +1. (A.92)
O
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This allows us to estimate |S}" | with the same error term as that of |L}'|, which is to say
2 2 2
Clk|>*5 (logkp)3 k.. We can now give the following:

Proof of Proposition A.4. By Proposition A.21 and the above arguments, we can estimate

- 27 ((Ry)? - (R™)? 2 22
i < 22 DD i g k)
2
= 27 (kg k) L+ Clk**3 (log k) Tk (A.93)

m

v > We can then estimate further

for m_ < m < m,. By the decomposition S 1 = Unt,, S

my - .
[Seal= - [sg| <272 ), 1+ clkPiogke) g Y1

m=m- m=m- m=m-

2
<C (a +1k|**3 (log kF)ik;) (Imy — Im_ +1) (A.94)
442 2,3 l -1 _l -l
SC(/I+|I<| 3(long)3kF)(2(|k|+|k| /l) 2(|k| Ik| 4)+z
2
sc(|k|-u+|k|3+§(1ong)§k;)(A+|k|),

where we also applied the estimate |k|~! <[ < 1. O
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