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Abstract
We present a general approach to justify the random phase approximation for the homogeneous Fermi gas in three
dimensions in the mean-field scaling regime. We consider a system of N fermions on a torus, interacting via a
two-body repulsive potential proportional to 𝑁− 1

3 . In the limit 𝑁 → ∞, we derive the exact leading order of the
correlation energy and the bosonic elementary excitations of the system, which are consistent with the prediction
of the random phase approximation in the physics literature.
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1. Introduction

In the 1940s, experiments on the cohesive energy and specific heat of alkali atoms1 showed a large
discrepancy with theoretical calculations based solely on the Hartree–Fock approximation [3], further
complicated by the fact that second-order perturbation theory failed because it yielded infinities. Moti-
vated by this unfortunate situation, Bohm and Pines in four seminal papers [11, 12, 13, 32] introduced
the random phase approximation (RPA) as a useful tool for studying the properties of a high-density
electron gas moving in a background of uniform positive charge, called jellium. In the Bohm–Pines RPA
approach, the electron gas could be decoupled into collective plasmon excitations and quasi-electrons
that interacted via a screened Coulomb interaction. The latter fact justified the independent particle ap-
proach commonly used for many-body fermion systems. Their work was also in good agreement with
experimental data, the culmination of which was the experimental detection of plasmons [42, 17].

The microscopic derivation of the RPA has led to notable work by theoretical physicists since the
1950s. In 1957, Gell-Mann and Brueckner [20] derived the correlation energy of the electron gas in the
high density limit by using a formal summation of a particular class of Feynman diagrams. Although
each diagram is divergent in itself, it turned out that the sum is finite. This diagrammatic picture further
suggested that the main contribution to the ground-state energy came from the interaction of pairs of
fermions, one from inside and one from outside the Fermi ball. Shortly thereafter, Sawada [36] and
Sawada–Brueckner–Fukuda–Brout [37] interpreted these pairs as bosons and obtained the correlation
energy by diagonalizing an effective Hamiltonian which is quadratic with respect to the bosonic particle
pairs. Since then, the random phase approximation has become a cornerstone in the physics of condensed
matter and nuclear physics [34], also playing a significant role in bosonic field theory [26], in the quark-
gluon plasma [41] and especially in computational chemistry and materials science. Although originally
proposed for an electron gas, it is applicable to a wide variety of fermionic systems.

1When calculated in the Hartree–Fock approximation, the cohesive energy of metals is off by an order of magnitude compared
to experiments on alkali metals, as described in [33 , p. 80]. The same is true for the specific heat, as theoretically calculated in [3].
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The complete derivation of the RPA from first principles, namely from the microscopic Schrödinger
equation, has, however, long been a major open problem in mathematical physics. Recently, some
rigorous results on the correlation energy have been derived in the mean-field regime for small interaction
potentials by Hainzl–Porta–Rexze [24] (perturbative results) and by Benedikter–Nam–Porta–Schlein–
Seiringer [4, 5, 6] (non-perturbative results).

The aim of the present paper is to justify the RPA for a large class of interaction potentials in the
mean-field regime, addressing not only the ground state energy but also the excitation spectrum. As we
will explain below, the correlation structure of Fermi gases can indeed be described correctly by treating
appropriate pairs of fermions as bosons. The corresponding bosonic Hamiltonian can be handled by
Bogolubov’s diagonalization method, thus putting the description in the physics literature [20, 36, 37]
on a firm mathematical footing. Although this general point of view has been employed in [24, 5, 6], we
will provide a new bosonization approach to fermionic systems which enables us to not only extend the
study on the ground state energy initiated in [24, 5, 6] but also obtain all bosonic elementary excitations
predicted in the physics literature, thus justifying the RPA in the mean-field regime. In the long run,
we expect that the tools developed in our work will pave the way towards the Coulomb gas in the
thermodynamic limit.

1.1. Model

We consider a system of N (spinless) fermions on the torus T3 = [0, 2𝜋]3 (with periodic boundary
conditions), interacting via a bounded potential𝑉 : T3 → R. The system is described by the Hamiltonian

𝐻𝑁 = 𝐻kin + 𝑘−1
𝐹 𝐻int =

𝑁∑
𝑖=1

(−Δ 𝑖) + 𝑘−1
𝐹

∑
1≤𝑖< 𝑗≤𝑁

𝑉
(
𝑥𝑖 − 𝑥 𝑗

)
, (1.1)

which acts on the fermionic space

H𝑁 =
𝑁∧

𝔥, 𝔥 = 𝐿2 (T3). (1.2)

Here, the coupling constant 𝑘−1
𝐹 > 0 corresponds to the interaction strength. We will focus on the mean-

field regime 𝑘−1
𝐹 ∼ 𝑁− 1

3 , where the kinetic and interaction energies are comparable. More precisely, we
assume that

𝑁 = |𝐵𝐹 | =
4𝜋
3
𝑘3
𝐹 (1 + 𝑜(1)𝑘𝐹→∞), 𝐵𝐹 = 𝐵(0, 𝑘𝐹 ) ∩ Z3, (1.3)

namely, the Fermi ball 𝐵𝐹 is completely filled by N integer points. In this case, the kinetic operator 𝐻kin
has a unique, non-degenerate ground state which is the Fermi state

𝜓FS =
∧
𝑝∈𝐵𝐹

𝑢𝑝 , 𝑢𝑝 (𝑥) = (2𝜋)−
3
2 𝑒𝑖 𝑝 ·𝑥 . (1.4)

More generally, the eigenstates of 𝐻kin can be written explicitly in terms of the plane waves
(
𝑢𝑝
)
𝑝∈Z3 .

However, the spectrum of the interacting operator 𝐻𝑁 is highly nontrivial, and its computation often
requires suitable approximations.

We assume that V is of positive type, namely, its Fourier transform satisfies 𝑉̂ ≥ 0 with

𝑉 (𝑥) = 1
(2𝜋)3

∑
𝑘∈Z3

𝑉̂𝑘𝑒
𝑖𝑘 ·𝑥 with 𝑉̂𝑘 =

∫
T3
𝑉 (𝑥)𝑒−𝑖𝑘 ·𝑥 𝑑𝑥. (1.5)
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Under our assumption, 𝐻𝑁 is a self-adjoint operator on H𝑁 with domain 𝐷 (𝐻𝑁 ) = 𝐷 (𝐻kin) =∧𝑁 𝐻2 (
T

3) . Moreover, 𝐻𝑁 is bounded from below and has compact resolvent. We are interested in
the asymptotic behavior of the low-lying spectrum of 𝐻𝑁 when 𝑁 → ∞ and 𝑘𝐹 → ∞.

One of the most famous approximations for fermions is the Hartree–Fock theory, where one restricts
the states under consideration to the set of all Slater determinants 𝑔1 ∧ 𝑔2 · · · ∧ 𝑔𝑁 with {𝑔𝑖}𝑁𝑖=1
orthonormal in 𝐿2 (

T
3) . The precision of the Hartree–Fock energy is an interesting subject, which has

been studied for Coulomb systems by Bach [1] and Graf–Solovej [22]. In general, the Hartree–Fock
minimizer could be different from the Fermi state 𝜓FS; see [21] for an estimate for Coulomb systems.
However, in the mean-field model that we are considering here, the Hartree–Fock minimizer coincides
with 𝜓FS; see [6, Theorem A.1] for a precise statement. Thus, to obtain the correction to the ansatz of
plane waves, we have to understand the correlation structure of the system.2

To go beyond the ansatz of plane waves, the first step is the extraction of the energy of the Fermi state.
For computational purposes, it is convenient to use the second quantization language. For every 𝑝 ∈ Z3,
we denote by 𝑐∗𝑝 = 𝑐∗(𝑢𝑝), 𝑐𝑝 = 𝑐(𝑢𝑝) the fermionic creation and annihilation operators associated to
the plane-wave state 𝑢𝑝 . These operators act on the fermionic Fock space

F− (𝔥) =
∞⊕
𝑁=0

𝑁∧
𝔥 (1.6)

and obey the canonical anticommutation relations (CAR){
𝑐𝑝 , 𝑐𝑞

}
=
{
𝑐∗𝑝 , 𝑐

∗
𝑞

}
= 0,

{
𝑐𝑝 , 𝑐

∗
𝑞

}
= 𝛿𝑝,𝑞 , 𝑝, 𝑞 ∈ Z3, (1.7)

where {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴. The Hamiltonian operator 𝐻𝑁 in (1.1) can be expressed as

𝐻𝑁 = 𝐻kin + 𝑘−1
𝐹 𝐻int =

∑
𝑝∈Z3

|𝑝 |2𝑐∗𝑝𝑐𝑝 +
𝑘−1
𝐹

2(2𝜋)3

∑
𝑘∈Z3

∑
𝑝,𝑞∈Z3

𝑉̂𝑘𝑐
∗
𝑝+𝑘𝑐

∗
𝑞−𝑘𝑐𝑞𝑐𝑝 . (1.8)

Thanks to the CAR (1.7), it is straightforward to see that the Fermi state obeys, for all 𝑝 ∈ Z3,

𝑐∗𝑝𝑐𝑝𝜓FS = 1𝐵𝐹 (𝑝)𝜓FS =

{
𝜓FS 𝑝 ∈ 𝐵𝐹

0 𝑝 ∈ 𝐵𝑐𝐹 ,
(1.9)

where 1𝐵𝐹 (·) denotes the indicator function of the Fermi ball 𝐵𝐹 . Thus, the kinetic energy of the Fermi
state is

〈𝜓FS, 𝐻kin𝜓FS〉 =
∑
𝑝∈Z3

|𝑝 |2
〈
𝜓FS, 𝑐

∗
𝑝𝑐𝑝𝜓FS

〉
=
∑
𝑝∈Z3

1𝐵𝐹 (𝑝) |𝑝 |2 ‖𝜓FS‖2 =
∑
𝑝∈𝐵𝐹

|𝑝 |2. (1.10)

Hence, we can define the localized kinetic operator 𝐻 ′
kin : 𝐷 (𝐻kin) ⊂ H𝑁 → H𝑁 by

𝐻 ′
kin = 𝐻kin − 〈𝜓FS, 𝐻kin𝜓FS〉 =

∑
𝑝∈𝐵𝑐𝐹

|𝑝 |2𝑐∗𝑝𝑐𝑝 −
∑
𝑝∈𝐵𝐹

|𝑝 |2𝑐𝑝𝑐∗𝑝 . (1.11)

We refer to this operator as being ‘localized’ since extracting 〈𝜓FS, 𝐻kin𝜓FS〉 in this manner can be seen
as changing the point of reference from the vacuum state Ω to the Fermi state 𝜓FS, so 𝐻 ′

kin can be seen
as a kind of expansion of 𝐻kin around 𝜓FS.

Note that it is clear from the first identity in (1.11) that 𝐻 ′
kin is nonnegative since 𝜓FS is the ground

state of 𝐻kin. However, the positivity of 𝐻 ′
kin is unclear from the second identity in (1.11) since the

2The Slater determinants are the least correlated states among all fermionic wave functions (they are eigenfunctions of non-
interacting Hamiltonians).
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difference of two operators which are nonnegative may not have a sign. The resolution of this apparent
paradox lies in the underlying Hilbert space: in the N-body space H𝑁 , we always have

𝑁 =
∑
𝑝∈Z3

𝑐∗𝑝𝑐𝑝 =
∑
𝑝∈𝐵𝐹

(1 − 𝑐𝑝𝑐
∗
𝑝) +

∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝 = |𝐵𝐹 | −
∑
𝑝∈𝐵𝐹

𝑐𝑝𝑐
∗
𝑝 +
∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝 . (1.12)

Therefore, the assumption |𝐵𝐹 | = 𝑁 implies the particle-hole symmetry

N𝐸 =
∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝 =
∑
𝑝∈𝐵𝐹

𝑐𝑝𝑐
∗
𝑝 on H𝑁 , (1.13)

namely, the excitation number operator (which counts the number of particles outside the Fermi state)
coincides with the hole number operator (which counts the number of holes inside the Fermi state).
Consequently, the kinetic operator in (1.11) can be rewritten as

𝐻 ′
kin =

∑
𝑝∈𝐵𝑐𝐹

| |𝑝 |2 − 𝜁 | 𝑐∗𝑝𝑐𝑝 +
∑
𝑝∈𝐵𝐹

| |𝑝 |2 − 𝜁 | 𝑐𝑝𝑐∗𝑝 (1.14)

for any 𝜁 ∈ [sup𝑝∈𝐵𝐹 |𝑝 |2, inf 𝑝∈𝐵𝑐𝐹 |𝑝 |2], which is clearly nonnegative.
For the interaction operator, it is convenient to use the factorized form

𝐻int =
1

2(2𝜋)3

∑
𝑘∈Z3

∑
𝑝,𝑞∈Z3

𝑉̂𝑘𝑐
∗
𝑝+𝑘𝑐

∗
𝑞−𝑘𝑐𝑞𝑐𝑝

=
1

2(2𝜋)3

∑
𝑘∈Z3

𝑉̂𝑘 (dΓ(𝑒−𝑖𝑘 ·𝑥)∗dΓ(𝑒−𝑖𝑘 ·𝑥) − 𝑁), (1.15)

where

dΓ(𝑒−𝑖𝑘 ·𝑥) =
∑
𝑝,𝑞∈Z3

〈
𝑢𝑝 , 𝑒

−𝑖𝑘 ·𝑥𝑢𝑞
〉
𝑐∗𝑝𝑐𝑞 =

∑
𝑝,𝑞∈Z3

𝛿𝑝,𝑞−𝑘𝑐
∗
𝑝𝑐𝑞 =

∑
𝑝∈Z3

𝑐∗𝑝𝑐𝑝+𝑘 . (1.16)

Note that for any 𝑘 ∈ Z3
∗ = Z

3\ {0}, we have

dΓ(𝑒−𝑖𝑘 ·𝑥)𝜓FS =
∑
𝑝∈Z3

𝑐∗𝑝𝑐𝑝+𝑘𝜓FS =
∑
𝑝∈𝐿−𝑘

𝑐∗𝑝𝑐𝑝+𝑘𝜓FS (1.17)

since the summand 𝑐∗𝑝𝑐𝑝+𝑘𝜓FS in (1.17) does not vanish if and only if 𝑝 ∈ 𝐿−𝑘 , where the lune

𝐿𝑘 = 𝐵𝑐𝐹 ∩ (𝐵𝐹 + 𝑘) =
{
𝑝 ∈ Z3 | |𝑝 − 𝑘 | ≤ 𝑘𝐹 < |𝑝 |

}
(1.18)

will play an important role in our analysis. In particular, using (1.9) and the CAR again, we find that for
all 𝑘 ∈ Z3

∗, ��dΓ(𝑒−𝑖𝑘 ·𝑥)𝜓FS
��2 =

∑
𝑝∈𝐿−𝑘

��𝑐∗𝑝𝑐𝑝+𝑘𝜓FS
��2 =

∑
𝑝∈𝐿−𝑘

1 = |𝐿−𝑘 | = |𝐿𝑘 | . (1.19)

Thus, the interaction energy of the Fermi state is given by

〈𝜓FS, 𝐻int𝜓FS〉 =
𝑁 (𝑁 − 1)

2(2𝜋)3 𝑉̂0 +
1

2(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘 (|𝐿𝑘 | − 𝑁) , (1.20)
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where we see the direct and exchange energies (involving 𝑉̂0 and {𝑉̂𝑘 }𝑘≠0, respectively). We can define
the localized interaction operator

𝐻 ′
int = 𝐻int − 〈𝜓FS, 𝐻int𝜓FS〉 =

1
2(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘 (dΓ(𝑒−𝑖𝑘 ·𝑥)∗dΓ(𝑒−𝑖𝑘 ·𝑥) − |𝐿𝑘 |). (1.21)

In summary, with 𝐻 ′
kin and 𝐻 ′

int defined in (1.11) and (1.21), we can write

𝐻𝑁 = 𝐸FS + 𝐻 ′
kin + 𝑘−1

𝐹 𝐻 ′
int, 𝐸FS = 〈𝜓FS, 𝐻𝑁𝜓FS〉 . (1.22)

Note that in the prior works [24, 5, 6], the localization procedure was carried out by employing what
is known as the particle-hole transformation, which maps the Fermi state 𝜓FS to the vacuum; see, for
example, [6, Eq. (1.20)] for an analogue of (1.22). However, in the present paper we do not follow this
approach since we prefer to work on the N-body Hilbert space.

1.2. Random phase approximation

In this subsection, we explain the ideas of the bosonization approach to the random phase approximation.
On the one hand, in the original approach [11, 12, 13, 32], Bohm and Pines considered fluctuations of
density in the momentum representation where the plasma momenta and the effective particle momenta
of different wavelengths 𝑘, 𝑙 are coupled by phases 𝑒𝑖 (𝑘−𝑙) ·𝑥 𝑗 , summing over the ‘random’ particle
positions 𝑥 𝑗 . The assumption that the phases average toward zero for a large number of particles is
originally called the ‘random phase approximation’. On the other hand, after the work of Sawada [36]
and Sawada–Brueckner–Fukuda–Brout [37], the term RPA has been widely used in the physics literature
in the context of a quasi-bosonic Hamiltonian, where a quasi-boson consists of a particle-hole pair. The
quasi-bosonic approach is used not only for Coulomb gases but also in a much broader context, especially
in nuclear matter (for a standard textbook, see [18, p. 156] for Coulomb gases and [18, pp. 540-543] for
nuclear matter).

In the present paper, we will focus on building a mathematical formulation of the quasi-bosonic
approach for general potentials and eventually apply this theory to regular potentials. In the long run, we
hope that this general theory will also be helpful for singular potentials, in particular for Coulomb gases
where the next-order correction to the bosonization picture matters (in [15], we used the formulation
provided in the present paper to find the analogue of the Gell-Mann–Brueckner formula for the mean-
field Coulomb gas, which shows how important it is to carry the non-bosonic part in the calculation at
least to the leading order).

Now let us explain the bosonization argument in detail. Roughly speaking, the RPA suggests that the
fermionic correlation can be described by a Hamiltonian which is quadratic in suitable bosonic creation
and annihilation operators. To explain the heuristic bosonization argument, let us decompose further
the interaction terms in (1.21) by defining, for every 𝑘 ∈ Z3

∗,

dΓ
(
𝑒−𝑖𝑘 ·𝑥

)
= dΓ

( (
𝑃𝐵𝐹 + 𝑃𝐵𝑐𝐹

)
𝑒−𝑖𝑘 ·𝑥

(
𝑃𝐵𝐹 + 𝑃𝐵𝑐𝐹

) )
= 𝐵̃𝑘 + 𝐵̃∗

−𝑘 + 𝐷𝑘 , (1.23)

where 𝑃𝐵𝐹 and 𝑃𝐵𝑐𝐹 are projections in the one-fermion Hilbert space and

𝐵̃𝑘 = dΓ
(
𝑃𝐵𝐹 𝑒

−𝑖𝑘 ·𝑥𝑃𝐵𝑐𝐹
)
=
∑
𝑝,𝑞∈Z3

〈
𝑢𝑝 , 𝑃𝐵𝐹 𝑒

−𝑖𝑘 ·𝑥𝑃𝐵𝑐𝐹𝑢𝑞
〉
𝑐∗𝑝𝑐𝑞 =

∑
𝑝∈𝐿𝑘

𝑐∗𝑝−𝑘𝑐𝑝 , (1.24)

𝐷𝑘 = dΓ
(
𝑃𝐵𝐹 𝑒

−𝑖𝑘 ·𝑥𝑃𝐵𝐹
)
+ dΓ

(
𝑃𝐵𝑐𝐹 𝑒

−𝑖𝑘 ·𝑥𝑃𝐵𝑐𝐹
)
=

∑
𝑝∈𝐵𝐹∩(𝐵𝐹+𝑘)

𝑐∗𝑝−𝑘𝑐𝑝 +
∑

𝑝∈𝐵𝑐𝐹∩(𝐵
𝑐
𝐹+𝑘)

𝑐∗𝑝−𝑘𝑐𝑝 .
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Note that for all 𝑘 ∈ Z3
∗, we have 𝐷∗

𝑘 = 𝐷−𝑘 and

[𝐵̃𝑘 , 𝐵̃−𝑘 ] = [𝐵̃−𝑘 , 𝐷𝑘 ] = [𝐵̃∗
𝑘 , 𝐷𝑘 ] = 0, (1.25)

which can be seen from the identity [dΓ(𝑋), dΓ(𝑌 )] = dΓ([𝑋,𝑌 ]) and (1.24). Due to the symmetry
between k and −𝑘 , it is convenient to introduce the set3

Z
3
+ =
({
𝑥1 > 0

}
∪ {𝑥1 = 0, 𝑥2 > 0} ∪ {𝑥1 = 𝑥2 = 0, 𝑥3 > 0}

)
∩ Z3

∗ (1.26)

such that

Z
3
+ ∪
(
− Z3

+
)
= Z3

∗, Z
3
+ ∩
(
− Z3

+
)
= ∅. (1.27)

Using this notation and the assumption 𝑉̂𝑘 = 𝑉̂−𝑘 , we can rewrite the interaction operator in (1.21) as

𝑘−1
𝐹 𝐻 ′

int =
𝑘−1
𝐹

2(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘

( (
𝐵̃𝑘 + 𝐵̃∗

−𝑘 + 𝐷𝑘
)∗ (

𝐵̃𝑘 + 𝐵̃∗
−𝑘 + 𝐷𝑘

)
− |𝐿𝑘 |

)
=
∑
𝑘∈Z3

+

(
𝐻𝑘int −

𝑉̂𝑘 𝑘
−1
𝐹

(2𝜋)3 |𝐿𝑘 |
)
+

𝑘−1
𝐹

(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘

(
𝐵̃∗
𝑘𝐷𝑘 + 𝐷∗

𝑘 𝐵̃𝑘 +
1
2
𝐷∗
𝑘𝐷𝑘

)
, (1.28)

where for each 𝑘 ∈ Z3
+, we denote

𝐻𝑘int =
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

( (
𝐵̃𝑘 + 𝐵̃∗

−𝑘
)∗ (

𝐵̃𝑘 + 𝐵̃∗
−𝑘
)
+
(
𝐵̃−𝑘 + 𝐵̃∗

𝑘

)∗ (
𝐵̃−𝑘 + 𝐵̃∗

𝑘

) )
=

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3
(
{𝐵̃∗

𝑘 , 𝐵̃𝑘 } + {𝐵̃∗
−𝑘 , 𝐵̃−𝑘 } + 2𝐵̃∗

𝑘 𝐵̃
∗
−𝑘 + 2𝐵̃−𝑘 𝐵̃𝑘

)
. (1.29)

Now let us introduce the quasi-bosonicity. From the CAR (1.7), it is straightforward to see that[
𝐵̃𝑘 , 𝐵̃𝑙

]
=
[
𝐵̃∗
𝑘 , 𝐵̃

∗
𝑙

]
= 0,

[
𝐵̃𝑘 , 𝐵̃

∗
𝑙

]
= |𝐿𝑘 | 𝛿𝑘,𝑙 −

∑
𝑝∈𝐿𝑘∩𝐿𝑙

𝑐𝑝−𝑙𝑐
∗
𝑝−𝑘 −

∑
𝑝∈𝐿𝑘∩(𝐿𝑙−𝑙+𝑘)

𝑐∗𝑝−𝑘+𝑙𝑐𝑝

(1.30)

for all 𝑘, 𝑙 ∈ Z3
∗, where [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. Hence, on states with few excitations (e.g., the expectation

value of N𝐸 is much smaller than |𝐿𝑘 | ∼ min{|𝑘 |𝑘2
𝐹 , 𝑘

3
𝐹 }), the rescaled operators 𝐵̃′

𝑘 = |𝐿𝑘 |−
1
2 𝐵̃𝑘 obey

the commutation relations[
𝐵̃′
𝑘 , 𝐵̃

′
𝑙

]
=
[ (
𝐵̃′
𝑘

)∗
,
(
𝐵̃′
𝑙

)∗]
= 0,

[
𝐵̃′
𝑘 ,
(
𝐵̃′
𝑙

)∗] ≈ 𝛿𝑘,𝑙 (1.31)

for all 𝑘, 𝑙 ∈ Z3
∗, in direct analogy with the canonical commutation relations (CCR) obeyed by a set of

bosonic creation and annihilation operators 𝑎∗𝑘 , 𝑎𝑘 indexed by Z3
∗,

[𝑎𝑘 , 𝑎𝑙] =
[
𝑎∗𝑘 , 𝑎

∗
𝑙

]
= 0,

[
𝑎𝑘 , 𝑎

∗
𝑙

]
= 𝛿𝑘,𝑙 . (1.32)

Since the relation [𝐵̃′
𝑘 , (𝐵̃

′
𝑙)
∗] ≈ 𝛿𝑘,𝑙 is only approximate, we call these operators quasi-bosonic.

In view of the quasi-bosonicity of these operators, in the form (1.28) of 𝐻 ′
int, we call the first sum

on the right-hand side of this equation the bosonizable terms, while the second sum constitutes the
non-bosonizable terms which are regarded as error terms. The bosonizable part 𝐻𝑘int can be viewed as a
quadratic Hamiltonian in the bosonic setting, which can be diagonalized by Bogolubov transformations.

3The exact definition of Z3
+ is not important, only that it satisfies Z3

+ ∪
(
−Z3

+

)
= Z3

∗ and Z3
+ ∩
(
−Z3

+

)
= ∅.
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This is the spirit of what we will do, but there is a catch: the kinetic operator 𝐻 ′
kin cannot be written in

terms of 𝐵̃𝑘 . The solution is to further decompose the operators 𝐵̃𝑘 by defining the excitation operators

𝑏𝑘, 𝑝 = 𝑐∗𝑝−𝑘𝑐𝑝 , 𝑏∗𝑘, 𝑝 = 𝑐∗𝑝𝑐𝑝−𝑘 , 𝑘 ∈ Z3
∗, 𝑝 ∈ 𝐿𝑘 . (1.33)

The name is due to the fact that the action of 𝑏∗𝑘, 𝑝 is to create a state at momentum 𝑝 ∈ 𝐵𝑐𝐹 and annihilate
a state at momentum 𝑝 − 𝑘 ∈ 𝐵𝐹 .

Since 𝐻𝑘int is quadratic in terms of 𝐵̃𝑘 , it is also quadratic in terms of 𝑏∗𝑘, 𝑝 , namely,

𝐻𝑘int =
∑

𝑝,𝑞∈𝐿𝑘

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3
(
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 + 𝑏𝑘,𝑞𝑏

∗
𝑘, 𝑝

)
+
∑

𝑝,𝑞∈𝐿−𝑘

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3
(
𝑏∗−𝑘, 𝑝𝑏−𝑘,𝑞 + 𝑏−𝑘,𝑞𝑏

∗
−𝑘, 𝑝
)

+
∑
𝑝∈𝐿𝑘

∑
𝑞∈𝐿−𝑘

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3
(
𝑏∗𝑘, 𝑝𝑏

∗
−𝑘,𝑞 + 𝑏−𝑘,𝑞𝑏𝑘, 𝑝

)
+
∑
𝑝∈𝐿−𝑘

∑
𝑞∈𝐿𝑘

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3
(
𝑏∗−𝑘, 𝑝𝑏

∗
𝑘,𝑞 + 𝑏𝑘,𝑞𝑏−𝑘, 𝑝

)
.

(1.34)

The reason that the operators 𝑏𝑘, 𝑝 are preferable to the operators 𝐵̃𝑘 is that they satisfy the following
commutation relation with the kinetic operator (see (1.74) below)

[
𝐻 ′

kin, 𝑏
∗
𝑘, 𝑝

]
= 2𝜆𝑘, 𝑝𝑏∗𝑘, 𝑝 , 𝜆𝑘, 𝑝 =

1
2
(|𝑝 |2 − |𝑝 − 𝑘 |2). (1.35)

Note that 𝜆𝑘, 𝑝 ≥ 1
2 (first, 𝜆𝑘, 𝑝 > 0 since 𝑝 ∈ 𝐿𝑘 ; moreover, |𝑝 |2 − |𝑝 − 𝑘 |2 is an integer as 𝑝, 𝑘 ∈ Z3).

This is to be compared with the bosonic setting: if the operators 𝑎𝑘 obey the CCR (1.32), then[∑
𝑙

𝜀𝑙𝑎
∗
𝑙 𝑎𝑙 , 𝑎

∗
𝑘

]
= 𝜀𝑘𝑎

∗
𝑘 . (1.36)

Therefore, viewing 𝑏∗𝑘, 𝑝 as being analogous to a bosonic creation operator, we get

𝐻 ′
kin ≈

∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

2𝜆𝑘, 𝑝𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 =
∑
𝑘∈Z3

+

( ∑
𝑝∈𝐿𝑘

2𝜆𝑘, 𝑝𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 +
∑
𝑝∈𝐿−𝑘

2𝜆−𝑘, 𝑝𝑏∗−𝑘, 𝑝𝑏−𝑘, 𝑝
)
. (1.37)

Combining (1.34) and (1.37), we arrive at a Hamiltonian quadratic in terms of the operators 𝑏𝑘, 𝑝 , which
could be treated in the bosonic interpretation. Note that 𝑏𝑘, 𝑝𝜓FS = 0 for all 𝑘 ∈ Z3

∗, 𝑝 ∈ 𝐿𝑘 , and hence,
the Fermi state plays the role of the bosonic vacuum.

Overview of the heuristic assumptions behind the random phase approximation
In the physics literature [36, 37], the RPA entails two assumptions:

1. That the excitation operators 𝑏∗𝑘, 𝑝 , 𝑏𝑘, 𝑝 in (1.33) can be treated as bosonic creation and annihilation
operators, and that the operators 𝑏𝑘, 𝑝 and 𝑏𝑙,𝑞 with 𝑘 ≠ 𝑙 can be considered as acting on independent
Fock spaces. Mathematically, we thus expect that the approximate canonical commutation relations
(CCR) [

𝑏𝑘, 𝑝 , 𝑏𝑙,𝑞
]
=
[
𝑏∗𝑘, 𝑝 , 𝑏

∗
𝑙,𝑞

]
= 0,

[
𝑏𝑘, 𝑝 , 𝑏

∗
𝑙,𝑞

]
≈ 𝛿𝑘,𝑙𝛿𝑝,𝑞 (1.38)

should hold in an appropriate sense.
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2. That the operator in (1.22) can be approximated by an effective Hamiltonian which is quadratic
in terms of 𝑏∗𝑘, 𝑝 and 𝑏𝑘, 𝑝 . This is already true for the interaction part

∑
𝑘∈Z3

+
𝐻𝑘int in (1.34), and in the

RPA, the non-bosonizable terms

𝑘−1
𝐹

(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘

(
𝐵̃∗
𝑘𝐷𝑘 + 𝐷∗

𝑘 𝐵̃𝑘 +
1
2
𝐷∗
𝑘𝐷𝑘

)
(1.39)

are simply dropped. Moreover, the kinetic operator 𝐻 ′
kin is not exactly of the desired form, but it can be

replaced by the right side of (1.37). All this leads to the effective Hamiltonian

∑
𝑘∈Z3

+

𝐻Bog,𝑘 =
∑
𝑘∈Z3

+

(
2
∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 + 2

∑
𝑝∈𝐿−𝑘

𝜆−𝑘, 𝑝𝑏
∗
−𝑘, 𝑝𝑏−𝑘, 𝑝 + 𝐻𝑘int −

𝑉̂𝑘 𝑘
−1
𝐹

(2𝜋)3 |𝐿𝑘 |
)

(1.40)

acting on the bosonic Fock space
⊕

𝑘∈Z3
+
F+ (ℓ2 (𝐿𝑘 ∪ 𝐿−𝑘 )

)
.

Consequently, since the operators 𝑏𝑘, 𝑝 and 𝑏𝑙,𝑞 with 𝑘 ≠ 𝑙 are considered as acting independently, we
can diagonalize separately each quadratic bosonic Hamiltonian 𝐻Bog,𝑘 by a Bogolubov transformation
U𝑘 on F+ (ℓ2 (𝐿𝑘 ∪ 𝐿−𝑘 )

)
such that

U𝑘𝐻Bog,𝑘U∗
𝑘 = 2 tr

(
𝐸𝑘 − ℎ𝑘

)
−
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3 |𝐿𝑘 | + 2
∑

𝑝∈𝐿𝑘∪𝐿−𝑘

〈𝑒𝑝 , 𝐸𝑘𝑒𝑞〉𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 , (1.41)

where for every 𝑘 ∈ Z3
∗, we denote the following quantities on ℓ2(𝐿𝑘 ):

𝐸𝑘 = (ℎ
1
2
𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
ℎ

1
2
𝑘 )

1
2 , ℎ𝑘𝑒𝑝 = 𝜆𝑘, 𝑝𝑒𝑝 , 𝑃𝑣𝑘 = |𝑣𝑘〉〈𝑣𝑘 |, 𝑣𝑘 =

√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐿𝑘

𝑒𝑝 (1.42)

with (𝑒𝑝)𝑝∈𝐿𝑘 the standard orthonormal basis of ℓ2(𝐿𝑘 ).
Summing over k, we obtain the correlation energy (see Proposition 7.1)

𝐸corr =
∑
𝑘∈Z3

+

(
tr
(
𝐸𝑘 − ℎ𝑘

)
−

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3 |𝐿𝑘 |
)
=
∑
𝑘∈Z3

∗

1
𝜋

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡, (1.43)

where 𝐹 (𝑥) = log (1 + 𝑥) − 𝑥. All in all, the RPA thus suggests that up to a unitary transformation, we
expect that

𝐻𝑁 ≈ 𝐸FS + 𝐸corr + 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈𝑒𝑝 , 𝐸𝑘𝑒𝑞〉𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 , (1.44)

at least on states with few excitations.

Prediction of the correlation energy and the excitation spectrum
Equation (1.44) leads immediately to the following approximation for the ground state energy

inf 𝜎 (𝐻𝑁 ) ≈ 𝐸FS + 𝐸corr, (1.45)
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which coincides with [37, Eq. (34)],4 where the authors derived it from the effective operator of equation
(1.40) and also explained the connection to the original work of Gell-Mann–Brueckner [20]. See also
[35, Eq. (9.54)] and [18, Eq. (12.53)] for this expression of the ground state energy.

More importantly, (1.44) also suggests that the excitation spectrum of 𝐻𝑁 could be described in
terms of the eigenvalues of 2𝐸𝑘 , which correspond to the bosonic elementary excitations and can be
explicitly computed.

Indeed, for every eigenvalue 𝜖 of 𝐸𝑘 , we may find an eigenvector 𝑤 ∈ ℓ2(𝐿𝑘 ) such that

𝜖2𝑤 = 𝐸2
𝑘𝑤 = ℎ

1
2
𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
ℎ

1
2
𝑘𝑤 = ℎ2

𝑘𝑤 + 2〈ℎ
1
2
𝑘 𝑣𝑘 , 𝑤〉ℎ

1
2
𝑘 𝑣𝑘 . (1.46)

But either 𝜖 is also an eigenvalue of ℎ𝑘 or 𝜖2 − ℎ2
𝑘 is invertible. In the latter case, we can write

𝑤 = 2〈ℎ
1
2
𝑘 𝑣𝑘 , 𝑤〉(𝜖

2 − ℎ2
𝑘 )

−1ℎ
1
2
𝑘 𝑣𝑘 , (1.47)

and taking the inner product with ℎ
1
2
𝑘 𝑣𝑘 and cancelling the factors of 〈ℎ

1
2
𝑘 𝑣𝑘 , 𝑤〉 yields

1 = 2〈𝑣𝑘 , ℎ𝑘 (𝜖2 − ℎ2
𝑘 )

−1𝑣𝑘〉 =
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜖2 − 𝜆2
𝑘, 𝑝

, (1.48)

which appears in [37, Eq. (6)]. The sum can be rewritten as

1 =
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐵𝐹

|𝑘 |2

(𝜖 − 𝑘 · 𝑝)2 −
(

1
2 |𝑘 |2

)2 . (1.49)

The formula (1.49) allows to compute all eigenvalues of 𝐸𝑘 outside the spectrum of ℎ𝑘 .
In the physically relevant case of the Coulomb potential where 𝑉̂𝑘 𝑘

−1
𝐹 is replaced by 4𝜋𝑒2 |𝑘 |−2,

one can immediately derive the famous plasmon frequency from (1.49): for |𝑘 | � 𝑘1/2
𝐹 , the largest

eigenvalue 𝜖 is proportional to 𝑘3/2
𝐹 (see [14, Eq. (2.27)–(2.54)] for a detailed explanation), and its

leading order behavior can be computed easily in the thermodynamic limit (including also a factor of 2
for the electron spin states)

𝜖2 =
4𝜋𝑒2

(2𝜋)3

∫
𝐵 (0,𝑘𝐹 )

𝜖2

(𝜖 − 𝑘 · 𝑝)2 −
(

1
2 |𝑘 |2

)2 𝑑𝑝 ≈ 2𝑒2

(2𝜋)2 Vol(𝐵(0, 𝑘𝐹 )) =
2𝑒2

3𝜋
𝑘3
𝐹 = 2𝜋𝑛𝑒2, (1.50)

where 𝑛 = 𝑁
V = 1

3𝜋2 𝑘
3
𝐹 is the number density of the system. Recalling that the relevant operator is 2𝐸𝑘

rather than 𝐸𝑘 and that ℏ2

2𝑚 = 1, this yields an excitation energy of

2𝜖 ≈ 2
√

2𝜋𝑛𝑒2 = ℏ

√
4𝜋𝑛𝑒2

𝑚
= ℏ𝜔plasmon, (1.51)

where 𝜔plasmon =
√

4𝜋𝑛𝑒2𝑚−1 is called the plasmon frequency in [33, Eq. (3-90)] and [18, Eq. (15.16) -
(15.18)]. Note that the Coulomb potential is special as it makes the right-hand side of (1.51) independent
of k. See also [4, 14] where (1.51) was discussed.

Establishing the above heuristic computation is a longstanding problem in mathematical physics. In
the present paper, we will give a rigorous formulation for the operator approximation (1.44) and then

4Provided one replaces (2𝜋)3 with the volume Ω of the box, includes a spin factor and inserts the Coulomb potential,
𝑉̂𝑘 𝑘

−1
𝐹 = 4𝜋𝑒2 |𝑘 |−2.
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use this to justify the prediction of the correlation energy and the bosonic elementary excitations for a
wide class of bounded potentials in the mean-field regime.

1.3. Main results

Our first result is the following rigorous formulation of the operator approximation (1.44).

Theorem 1.1 (Operator formulation of the RPA). Let 𝑉 : T3 → R obey 𝑉̂𝑘 ≥ 0 and 𝑉̂−𝑘 = 𝑉̂𝑘 for all
𝑘 ∈ Z3, and assume furthermore that

∑
𝑘∈Z3 𝑉̂𝑘 |𝑘 | < ∞. Consider the Hamiltonian 𝐻𝑁 given in (1.1)

with 𝑁 = |𝐵𝐹 |. Let the operators 𝐻 ′
kin, N𝐸 , 𝐸𝑘 − ℎ𝑘 be defined in (1.11), (1.13), (1.42). Let the energies

𝐸FS, 𝐸corr be defined in (1.22), (1.43). Then there exists a unitary transformation U : H𝑁 → H𝑁 such
that

U𝐻𝑁U∗ = 𝐸FS + 𝐸corr + 𝐻eff + EU , (1.52)

where the effective operator 𝐻eff : H𝑁 → H𝑁 is

𝐻eff = 𝐻 ′
kin + 2

∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , (𝐸𝑘 − ℎ𝑘 )𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 (1.53)

and the error operator EU : H𝑁 → H𝑁 obeys the operator inequality: for every constant 𝜖 > 0,

±EU ≤ 𝐶𝑘
− 1

94+𝜖
𝐹

(
𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝐻 ′

kin + 𝑘𝐹

)
, 𝑘𝐹 → ∞. (1.54)

The unitary operator in Theorem 1.1 is given explicitly as U = 𝑒J 𝑒K, where K and J are given in
(1.78) and (1.85), respectively (the transformations 𝑒K and 𝑒J are studied in detail in Sections 5 and 9).

Remark 1.1. The operator N𝐸𝐻
′
kin on the right-hand side of (1.54) is nothing but the ‘bosonic kinetic

operator’, due to the following remarkable identity (see Proposition 10.1):

2
∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 = N𝐸𝐻

′
kin. (1.55)

Thus, in Theorem 1.1, we control the error in the random phase approximation using only the fermionic
and bosonic kinetic operators, which is very natural.

Remark 1.2. In the expansion (1.52), 𝐸FS is of order 𝑘5
𝐹 , and 𝐸corr is of order 𝑘𝐹 . As we will argue

below, when we apply this to the low-lying eigenstates with energy 𝐸FS + 𝑂 (𝑘𝐹 ), the expectation of
the effective Hamiltonian 𝐻eff in (1.53) is of order 𝑘𝐹 , while the error term EU in (1.54) is of order
𝑂 (𝑘1− 1

94+𝜖
𝐹 ) = 𝑜(𝑘𝐹 ).

In order to put Theorem 1.1 to good use, we need some a priori estimate on the low-lying eigenstates
of the Hamiltonian 𝐻𝑁 . We have the following:

Theorem 1.2 (A priori estimate for eigenstates). Let V and U be as in Theorem 1.1. Let Ψ ∈ 𝐷
(
𝐻 ′

kin
)

be a normalized eigenstate of 𝐻𝑁 with energy 〈Ψ, 𝐻𝑁Ψ〉 ≤ 𝐸FS + 𝜅𝑘𝐹 for some constant 𝜅 > 0
independent of 𝑘𝐹 . Then, 〈

Ψ,
(
𝐻 ′

kin + 𝑘−1
𝐹 N𝐸𝐻

′
kin

)
Ψ
〉
≤ 𝐶 (𝜅 + 1)2𝑘𝐹

for a constant 𝐶 > 0 depending only on V. The same bound holds with Ψ replaced by UΨ.
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Remark 1.3. Thanks to the inequality N𝐸 ≤ 𝐻 ′
kin (see [6, Lemma 2.4] and also Proposition 2.1 below),

Theorem 1.2 implies that for an eigenstate Ψ of 𝐻𝑁 with energy 〈Ψ, 𝐻𝑁Ψ〉 ≤ 𝐸FS +𝑂 (𝑘𝐹 ), we have

〈Ψ,N𝐸Ψ〉 ≤
〈
Ψ, 𝐻 ′

kinΨ
〉
= 𝑂 (𝑘𝐹 ). (1.56)

Thus, the number of excitations is much smaller than the total number of particles (𝑘𝐹 ∼ 𝑁1/3 � 𝑁).
While (1.56) has been derived in [24, 6] for every state with energy 〈Ψ, 𝐻𝑁Ψ〉 ≤ 𝐸FS +𝑂 (𝑘𝐹 ) (at least
for a class of potentials V), the improved bound in Theorem 1.2 is deeper, and the eigenstate assumption
plays a crucial role in the proof.

From Theorems 1.1 and 1.2, we can deduce immediately the asymptotic formula (1.45) on the ground
state energy up to an error 𝑜(𝑘𝐹 ). Indeed, the energy upper bound is given by the trial state U∗𝜓FS,
while the energy lower bound follows from the obvious operator inequality 𝐸𝑘 ≥ ℎ𝑘 . Moreover, our
approach is quantitative, and we can derive (1.45) with explicit error estimates.

Theorem 1.3 (Ground state energy). Let V be as in Theorem 1.1. Then for all 𝜖 > 0,

inf 𝜎 (𝐻𝑁 ) = 𝐸FS + 𝐸corr +𝑂 (𝑘1− 1
94+𝜖

𝐹 ), 𝑘𝐹 → ∞.

Here are some remarks concerning Theorem 1.3.

Remark 1.4. The method of our proof can be adapted to give the upper bound under the weaker
condition

∑
𝑘∈Z3 𝑉̂2

𝑘 |𝑘 | < ∞ (see [8, Appendix A] for a derivation of the upper bound under this weaker
condition). Additionally, under this condition it can be shown that

1
𝜋

∑
𝑘∈Z3

∗

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡 =

𝑘𝐹
𝜋

∑
𝑘∈Z3

∗

|𝑘 |
∫ ∞

0
𝐹

(
𝑉̂𝑘

(2𝜋)2 𝐼 (𝑡)
)
𝑑𝑡 + 𝑜 (𝑘𝐹 ) , (1.57)

where 𝐹 (𝑥) = log (1 + 𝑥) − 𝑥 and 𝐼 (𝑡) = 1 − 𝑡 tan−1 (𝑡−1) (this essentially amounts to replacing the
Riemann sum by the integral and can be done by following either the proof of [5, Eq. (5.15)] or the
analysis in Appendix A; the condition

∑
𝑉̂2
𝑘 |𝑘 | < ∞ ensures that the main contribution comes from

|𝑘 | ∼ 𝑂 (1)). Hence, Theorem 1.3 implies that

inf 𝜎 (𝐻𝑁 ) = 𝐸FS + 𝑘𝐹
𝜋

∑
𝑘∈Z3

∗

|𝑘 |
∫ ∞

0
𝐹

(
𝑉̂𝑘

(2𝜋)2 𝐼 (𝑡)
)
𝑑𝑡 + 𝑜 (𝑘𝐹 ) . (1.58)

A result similar to ours, namely, the bound (1.58) for all potentials satisfying
∑
𝑘 𝑉̂𝑘 |𝑘 | < ∞, has been

independently obtained in [8], based on a refinement of the method in [5, 6].5 The bound (1.58) was
proved earlier in [5, 6], under the additional assumption that the Fourier coefficients 𝑉̂𝑘 be finitely
supported and that ‖𝑉̂ ‖ℓ1 be sufficiently small. For small 𝑉̂𝑘 , the logarithm of equation (1.58) can be
expanded for

𝜎 (𝐻𝑁 ) = 𝐸FS − 1 − log (2)
6(2𝜋)4 𝑘𝐹

∑
𝑘∈Z3

∗

𝑉̂2
𝑘 |𝑘 |
(
1 +𝑂

(
𝑉̂𝑘
) )
+ 𝑜 (𝑘𝐹 ) , (1.59)

which was first proved in [24].

Remark 1.5. A further refinement of our method allows a derivation of a rigorous energy upper bound
for all potentials satisfying

∑
𝑘≠0 𝑉̂

2
𝑘 < ∞; see [15]. This covers the case of the Coulomb potential

𝑉̂𝑘 = 4𝜋𝑒2 |𝑘 |−2, where the correlation energy is given by the left-hand side of (1.57) which is of order
𝑘𝐹 log 𝑘𝐹 plus a correlation exchange correction of order 𝑘𝐹 (the correlation exchange contribution

5Note that the conventions of the Fourier transform and scaling of 𝐻𝑁 in [5, 6, 8] differ from ours.
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comes from the fact that the purely bosonic picture is not exact; it is different from the exchange energy
which is part of 𝐸FS). In particular, for the Coulomb potential, the right-hand side of (1.57) diverges,
whereas the left-hand side does not, and hence the discrete form in (1.57) is arguably more fundamental
than the continuous form. It is interesting that in our method the discrete version of the correlation
energy always appears naturally.

Besides containing the information of the ground state energy, another decisive consequence of the
operator statement in Theorem 1.1 is that it allows us to obtain all bosonic elementary excitations
predicted in the physics literature. We have the following:

Theorem 1.4 (Bosonic elementary excitations). Let V and U be as in Theorem 1.1. Let Ψ ∈ H𝑁 be a
normalized wave function such that N𝐸Ψ = Ψ and 〈Ψ, 𝐻 ′

kinΨ〉 = 𝑂 (𝑘𝐹 ). Then for all 𝜖 > 0, we have

〈Ψ,U𝐻𝑁U∗Ψ〉 = 𝐸FS + 𝐸corr + 〈Ψ, 𝐻eff |N𝐸=1 Ψ〉 +𝑂 (𝑘1− 1
94+𝜖

𝐹 ),

where

𝐻eff |N𝐸=1 = 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈𝑒𝑝 , 𝐸𝑘𝑒𝑞〉𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 = 𝑈̃
!"#
⊕
𝑘∈Z3

∗

2𝐸𝑘
$%& 𝑈̃∗ (1.60)

on the space {Ψ ∈ H𝑁 | N𝐸Ψ = Ψ}, and

𝑈̃ :
⊕
𝑘∈Z3

∗

𝐿2 (𝐿𝑘 ) → {Ψ ∈ H𝑁 | N𝐸Ψ = Ψ} (1.61)

is a unitary isomorphism defined by

𝑈̃
⊕
𝑘∈Z3

∗

𝜑𝑘 =
∑
𝑘∈Z3

∗

𝑏∗𝑘 (𝜑𝑘 ) 𝜓FS =
∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

〈𝑒𝑝 , 𝜑𝑘〉𝑏∗𝑘, 𝑝𝜓FS. (1.62)

Recall that all eigenvalues of 𝐸𝑘 can be computed explicitly from the spectrum of ℎ𝑘 and (1.49).
From Theorem 1.1 and Theorem 1.4, we may say that up to the unitary transformation U , the RPA is
exact for the {N𝐸 = 1} eigenspace of the effective Hamiltonian 𝐻eff. To our knowledge, this is the first
rigorous derivation of the bosonic elementary excitations from first principles.

Remark 1.6. For every fixed 𝑘 ∈ Z3
∗, in the limit 𝑘𝐹 → ∞, most eigenvalues of 𝐸𝑘 are of order 𝑘𝐹 ,

but the lowest eigenvalue of 𝐸𝑘 is of order 𝑜(𝑘𝐹 ). This absence of a one-body spectral gap corresponds
to the expected fact that the excitation spectrum of 𝑘−1

𝐹 𝐻𝑁 becomes continuous in the limit 𝑘𝐹 → ∞.
Therefore, in principle, it is very difficult to extract useful information by analyzing the full spectrum
of 𝐻𝑁 . The significance of Theorem 1.4 is to offer a nontrivial statement on the bosonic excitations by
analyzing exactly the spectrum of the effective Hamiltonian instead of looking directly at the spectrum
of 𝐻𝑁 .

Remark 1.7. In Theorem 1.4, the restriction to the N𝐸 = 1 eigenspace is important. Obviously, the
effective Hamiltonian (1.53) does not coincide with that in the heuristic formula (1.44). Hence, it is
natural to ask what to make of the assumption of the RPA that the effective Hamiltonian should behave
like a diagonalized bosonic Hamiltonian. To approach this question, we note that using (1.55), we can
rewrite the effective Hamiltonian in (1.53) as

𝐻eff = 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈𝑒𝑝 , 𝐸𝑘𝑒𝑞〉𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 − (N𝐸 − 1) 𝐻 ′
kin. (1.63)

Since this operator commutes with N𝐸 , we can restrict 𝐻eff to the eigenspaces of N𝐸 . Doing so, we
see that the trivial eigenspace {N𝐸 = 0} = span (𝜓FS) exactly corresponds to the ground state energy
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which is already addressed in Theorem 1.3. For the first nontrivial eigenspace {N𝐸 = 1}, we do indeed
obtain the expected operator

𝐻eff |N𝐸=1 = 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈𝑒𝑝 , 𝐸𝑘𝑒𝑞〉𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 , (1.64)

as in the heuristic formula (1.44). Moreover, the second identity in (1.60) tells us that 𝐻eff |N𝐸=1 can be
diagonalized explicitly on {N𝐸 = 1}, which is important for applications.

More generally, we can also consider the higher excitation sectors {N𝐸 = 𝑀} for 𝑀 ∈ N.

Theorem 1.5 (Higher excitations). Let V andU be as in Theorem 1.1. Let 1 ≤ 𝑀 ≤ 𝑂 (𝑘𝐹 ). Let Ψ ∈ H𝑁

be a normalized wave function such that N𝐸Ψ = 𝑀Ψ and 〈Ψ, 𝐻 ′
kinΨ〉 ≤ 𝑂 (𝑘𝐹 ). Then for all 𝜖 > 0, we

have

〈Ψ,U𝐻𝑁U∗Ψ〉 = 𝐸FS + 𝐸corr + 〈Ψ, 𝐻eff |N𝐸=𝑀 Ψ〉 +𝑂 (𝑘1− 1
94+𝜖

𝐹 ),

where

𝐻eff |N𝐸=𝑀 = 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈𝑒𝑝 , (𝐸𝑘 − (1 − 𝑀−1)ℎ𝑘 )𝑒𝑞〉𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 .

Remark 1.8. For 𝑀 ≥ 2, the operator 𝐻eff |N𝐸=𝑀 in Theorem 1.5 cannot be diagonalized explicitly
as in (1.60). The quasi-bosonic property is insufficient to guarantee that it is diagonalizable, even
approximately. Understanding the behaviour of 𝐻eff on higher eigenspaces and reconciling the RPA thus
appears to be an interesting but nontrivial task. Some progress in this direction was done in [14] where
the norm ‖(𝐻eff − 𝑀𝜖)Ψ‖ was estimated for suitable trial states.

1.4. Proof strategy

Now let us explain some key ingredients of the proof. Following [37], our approach consists of studying
pair-excitations 𝑏∗𝑘, 𝑝 = 𝑐∗𝑝𝑐𝑝−𝑘 , where 𝑐𝑝−𝑘 annihilates a particle with momentum 𝑝 − 𝑘 (i.e., creates
a hole in the Fermi ball), and 𝑐∗𝑝 creates a particle outside the Fermi ball. These operators 𝑏𝑘, 𝑝 , 𝑏∗𝑘, 𝑝
satisfy the bosonic commutation relations in an appropriate sense. This enables the use of a quasi-
bosonic Bogolubov transformation to diagonalize the original fermionic operator. A main achievement
of the present work is the analytical elaboration of this bosonic picture.

In [5, 6], a different, collective bosonization approach was developed by averaging the pair-excitations
𝑏∗𝑘, 𝑝 on ‘patches’ near the surface of the Fermi ball, thus realizing strengthened versions of the bosonic
commutation relations which make the comparison with the purely bosonic computation significantly
easier. In the present paper, we show that the bosonization idea can be implemented directly for pairs of
fermions without such an averaging procedure. In our opinion, this new approach is conceptually closer
to the physics of the problem and more transparent for applications. In particular, it allows us to obtain all
bosonic elementary excitations as in Theorem 1.4. Moreover, the new method is potentially applicable
to Coulomb systems, where the correlation exchange correction to the purely bosonic computation plays
an important role; see [15] for a rigorous ground state energy upper bound.

In the context of interacting Bose gases, Bogolubov transformations based on another approximate
CCR have been used to study the excitation spectrum; see, for example, [38, 23, 9, 25]. However, for
the fermionic problem considered in the present paper, the approximate CCR holds in a very different
setting and requires distinct estimation techniques.
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Now let us provide further details.

Bosonization method
The driving concept of the random phase approximation is the bosonization of fermionic pairs. We must
therefore argue why the excitation operators

𝑏𝑘, 𝑝 = 𝑐∗𝑝−𝑘𝑐𝑝 , 𝑏∗𝑘, 𝑝 = 𝑐∗𝑝𝑐𝑝−𝑘 , 𝑝 ∈ 𝐿𝑘 = (𝐵𝐹 + 𝑘) \𝐵𝐹 (1.65)

obey an approximate CCR. Consider for simplicity the case 𝑘 = 𝑙: then computation shows that for any
𝑝, 𝑞 ∈ 𝐿𝑘 , [𝑏𝑘, 𝑝 , 𝑏𝑘,𝑞] = [𝑏∗𝑘, 𝑝 , 𝑏

∗
𝑘,𝑞] = 0, but

[𝑏𝑘, 𝑝 , 𝑏∗𝑘,𝑞] = 𝛿𝑝,𝑞 − 𝛿𝑝,𝑞 (𝑐∗𝑝𝑐𝑝 + 𝑐𝑝−𝑘𝑐
∗
𝑝−𝑘 ). (1.66)

In general, thanks to Pauli’s exclusion principle (𝑐∗𝑝𝑐𝑝 , 𝑐𝑝𝑐∗𝑝 ≤ 1), the error term in (1.66) satisfies the
simple bound 𝛿𝑝,𝑞 (𝑐∗𝑝𝑐𝑝 + 𝑐𝑝−𝑘𝑐

∗
𝑝−𝑘 ) ≤ 2𝛿𝑝,𝑞 , but this is even bigger than the leading term 𝛿𝑝,𝑞 . The

key observation is that although these errors terms can not be considered to be small individually, they
are so on average. For instance,∑

𝑝,𝑞∈𝐿𝑘

𝛿𝑝,𝑞 (𝑐∗𝑝𝑐𝑝 + 𝑐𝑝−𝑘𝑐
∗
𝑝−𝑘 ) =

∑
𝑝∈𝐿𝑘

𝑐∗𝑝𝑐𝑝 +
∑
𝑝∈𝐿𝑘

𝑐𝑝−𝑘𝑐
∗
𝑝−𝑘 ≤ 2N𝐸 , (1.67)

where N𝐸 is the ‘excitation number operator’ defined in (1.13). Thus, for states where the expectation
value of N𝐸 is much smaller than

∑
𝑝,𝑞∈𝐿𝑘 𝛿𝑝,𝑞 = |𝐿𝑘 | ∼ min{|𝑘 |𝑘2

𝐹 , 𝑘
3
𝐹 }, one may expect that

the contribution of the non-bosonic error terms are also smaller than the leading bosonic behaviour.
Justifying this idea rigorously is one of the main results of this paper.

Note that unlike the works [24, 5, 6], we do not employ the ‘particle-hole transformation’ R, which
maps 𝜓FS to the vacuum, so that we always work directly on the space H𝑁 .

A priori estimates
As explained above, to apply the bosonization method, we need to show that the expectation of N𝐸

against low-lying eigenstates of 𝐻𝑁 is much smaller than |𝐿𝑘 | ∼ min
{
𝑘2
𝐹 |𝑘 |, 𝑘

3
𝐹

}
.

Using the condition
∑
𝑘∈Z3 𝑉̂𝑘 |𝑘 | < ∞ and a variant of Onsager’s lemma, we can prove that

𝐻𝑁 ≥ 𝐸FS + 𝐻 ′
kin − 𝐶𝑘𝐹 . (1.68)

Consequently, if Ψ is any eigenstate for 𝐻𝑁 satisfying 〈Ψ, 𝐻𝑁Ψ〉 ≤ 𝐸FS + 𝐶𝑘𝐹 , then〈
Ψ, 𝐻 ′

kinΨ
〉
≤ 𝐶𝑘𝐹 . (1.69)

Since 𝐻 ′
kin ≥ N𝐸 , which was already explained in [6], this implies that 〈Ψ,N𝐸Ψ〉 ≤ 𝐶𝑘𝐹 � |𝐿𝑘 |.

For V sufficiently small, this bound was first proved in [24] (by a different method), and it was also used
in [6]. In practice, we will also need a stronger a priori estimate, namely,〈

Ψ, 𝑘−1
𝐹 N𝐸𝐻

′
kinΨ
〉
≤ 𝐶𝑘𝐹 (1.70)

as stated in Theorem 1.2. This we will obtain by employing a bootstrapping argument for eigenstates,
inspired by the ‘improved condensation’ in the context of Bose gases in [38, 23, 29, 30]. In [6], an
analogue of equation (1.70) was proved for a modified ground state by using a ‘localization in Fock
space’ technique. In comparison, our estimate of equation (1.70) is obtained in a far more direct fashion
and yields a uniform bound for all low-lying eigenstates. In particular, thanks to (1.69) and (1.70),
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the operator estimate in Theorem 1.1 leads to direct consequences on the ground state energy and the
excitation spectrum of 𝐻𝑁 .

Removing the non-bosonizable terms
An important ingredient of the RPA is that the non-bosonizable terms

𝑘−1
𝐹

2(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘
(
2 Re

(
𝐵̃∗
𝑘 + 𝐵̃−𝑘

)
𝐷𝑘 + 𝐷∗

𝑘𝐷𝑘
)

(1.71)

are negligible to the leading order of the correlation energy. Here, we offer a direct estimate for these
terms, which is simpler than the strategy proposed in [6] and does not require a smallness condition
on V. More precisely, in Theorem 2.4, we will prove that the non-bosonizable terms are bounded by
𝑜(1) (𝑘−1

𝐹 N𝐸𝐻
′
kin +𝐻 ′

kin + 𝑘𝐹 ), and hence, the expectation against the low-lying eigenstates of 𝐻𝑁 is of
order 𝑜(𝑘𝐹 ) due to the a priori estimates mentioned before.

Bosonization of the kinetic operator and the excitation number operator
Concerning the bosonizable terms, while the interaction terms can be interpreted directly as a quadratic
Hamiltonian in the quasi-bosonic picture as in (1.34), the treatment of the kinetic operator is more
subtle. In fact, (1.37) does not hold as a direct operator approximation. Instead, we will justify it by
appealing to the commutator relation

[
𝐻 ′

kin, 𝑏
∗
𝑙,𝑞

]
≈
⎡⎢⎢⎢⎢⎣2
∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 , 𝑏

∗
𝑙,𝑞

⎤⎥⎥⎥⎥⎦ . (1.72)

This commutator relation ensures that the difference

𝐻 ′
kin − 2

∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 (1.73)

is essentially invariant under the Bogolubov transformations introduced later, which is sufficient for our
purpose. The approximation (1.72) is a consequence of the exact commutation relation (1.35): For every
𝑝 ∈ 𝐿𝑘 = 𝐵𝑐𝐹 ∩ (𝐵𝐹 + 𝑘), by the CAR, we have[

𝐻 ′
kin, 𝑏

∗
𝑘, 𝑝

]
=
∑
𝑞∈𝐵𝑐𝐹

|𝑞 |2
[
𝑐∗𝑞𝑐𝑞 , 𝑐

∗
𝑝𝑐𝑝−𝑘

]
−
∑
𝑞∈𝐵𝐹

|𝑞 |2
[
𝑐𝑞𝑐

∗
𝑞 , 𝑐

∗
𝑝𝑐𝑝−𝑘

]
=
∑
𝑞∈𝐵𝑐𝐹

|𝑞 |2
[
𝑐∗𝑞𝑐𝑞 , 𝑐

∗
𝑝

]
𝑐𝑝−𝑘 −

∑
𝑞∈𝐵𝐹

|𝑞 |2 𝑐∗𝑝
[
𝑐𝑞𝑐

∗
𝑞 , 𝑐𝑝−𝑘

]
=
∑
𝑞∈𝐵𝑐𝐹

|𝑞 |2 𝛿𝑞,𝑝𝑐∗𝑞𝑐𝑝−𝑘 −
∑
𝑞∈𝐵𝐹

|𝑞 |2 𝛿𝑞,𝑝−𝑘𝑐∗𝑝𝑐𝑝−𝑘

= |𝑝 |2𝑐∗𝑝𝑐𝑝−𝑘 − |𝑝 − 𝑘 |2𝑐∗𝑝𝑐𝑝−𝑘 =
(
|𝑝 |2 − |𝑝 − 𝑘 |2

)
𝑏∗𝑘, 𝑝 . (1.74)

A similar strategy was used in [6], although the analysis there is more complicated due to the averaging
technique of the ‘patches’. In particular, the operators on ‘patches’ in [6] do not obey the exact commutator
relation [𝐻 ′

kin, 𝑏
∗
𝑘, 𝑝] = 2𝜆𝑘, 𝑝𝑏∗𝑘, 𝑝 , and so the kinetic operator has to be handled by an additional

linearization argument.
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Note that in the same manner of the dispersion relation in (1.74), we also have[
N𝐸 , 𝑏𝑘, 𝑝

]
=
∑
𝑞∈𝐵𝑐𝐹

[
𝑐∗𝑞𝑐𝑞 , 𝑐

∗
𝑝−𝑘𝑐𝑝

]
=
∑
𝑞∈𝐵𝑐𝐹

(
𝑐∗𝑞
[
𝑐𝑞 , 𝑐

∗
𝑝−𝑘𝑐𝑝

]
+
[
𝑐∗𝑞 , 𝑐

∗
𝑝−𝑘𝑐𝑝

]
𝑐𝑞
)

=
∑
𝑞∈𝐵𝑐𝐹

(
𝑐∗𝑞
(
− 𝑐∗𝑝−𝑘

{
𝑐𝑞 , 𝑐𝑝

}
+
{
𝑐𝑞 , 𝑐

∗
𝑝−𝑘
}
𝑐𝑝
)
+
(
− 𝑐∗𝑝−𝑘

{
𝑐∗𝑞 , 𝑐𝑝

}
+
{
𝑐∗𝑞 , 𝑐

∗
𝑝−𝑘
}
𝑐𝑝
)
𝑐𝑞
)

= −
∑
𝑞∈𝐵𝑐𝐹

(
𝛿𝑞,𝑝𝑐

∗
𝑝−𝑘
)
𝑐𝑞 = −𝑐∗𝑝−𝑘𝑐𝑝 = −𝑏𝑘, 𝑝 (1.75)

for all 𝑘 ∈ Z3
∗ and 𝑝 ∈ 𝐿𝑘 . This means that N𝐸 plays the same role as the number operator in the bosonic

picture.

Bogolubov transformation I
We will estimate the contribution of high momenta separately and only diagonalize the effective operator
in (1.40) for low momenta. For this reason, we define a cutoff set

𝑆𝐶 = 𝐵
(
0, 𝑘𝛾𝐹

)
∩ Z3

+, (1.76)

where 𝛾 ∈ (0, 1] will be optimized later. For a given 𝑘𝐹 , we then diagonalize only

𝐻 ′
eff =

∑
𝑘∈𝑆𝐶

(
2
∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 + 2

∑
𝑝∈𝐿−𝑘

𝜆−𝑘, 𝑝𝑏
∗
−𝑘, 𝑝𝑏−𝑘, 𝑝 + 𝐻𝑘int

)
(1.77)

and treat the remaining terms with 𝑘 ∈ Z3
+\𝑆𝐶 as an error term. As 𝐵

(
0, 𝑘𝛾𝐹

)
∩ Z3

+ forms an exhaustion
of Z3

+, all terms are thus nonetheless diagonalized in the limit 𝑘𝐹 → ∞.
Inspired by the exact bosonic diagonalization (see Theorem 3.1 for details), we take the diagonalizing

Bogolubov transformation to be of the form 𝑒K for a generator K : H𝑁 → H𝑁 defined by

K =
∑
𝑘∈𝑆𝐶

( ∑
𝑝∈𝐿𝑘

∑
𝑞∈𝐿−𝑘

〈
𝑒𝑝 , 𝐾𝑘𝑒−𝑞

〉 (
𝑏𝑘, 𝑝𝑏−𝑘,𝑞 − 𝑏∗−𝑘,𝑞𝑏

∗
𝑘, 𝑝

))
, (1.78)

where the transformation kernels 𝐾𝑘 : ℓ2(𝐿𝑘 ) → ℓ2(𝐿𝑘 ), 𝑘 ∈ Z3
+, are defined by

𝐾𝑘 = −1
2

log

(
ℎ
− 1

2
𝑘

(
ℎ

1
2
𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
ℎ

1
2
𝑘

) 1
2

ℎ
− 1

2
𝑘

)
(1.79)

with ℎ𝑘 , 𝑃𝑣𝑘 as defined in equation (1.42). With this choice, we find that

𝑒K𝐻 ′
eff𝑒

−K ≈
∑

𝑘∈𝑆𝐶∪(−𝑆𝐶 )

(
tr (𝐸𝑘 − ℎ𝑘 ) + 2

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , 𝐸𝑘𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞

)
(1.80)

for

𝐸𝑘 = 𝑒−𝐾𝑘 ℎ𝑘𝑒
−𝐾𝑘 (1.81)

and by the commutation relation of equation (1.72), that

𝑒K
!"#𝐻 ′

kin − 2
∑

𝑘∈𝑆𝐶∪(−𝑆𝐶 )

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝

$%& 𝑒−K ≈ 𝐻 ′
kin − 2

∑
𝑘∈𝑆𝐶∪(−𝑆𝐶 )

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 (1.82)
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so by the equations (1.77), (1.80) and (1.82), noting also that
〈
𝑒𝑝 , ℎ𝑘𝑒𝑞

〉
= 𝛿𝑝,𝑞𝜆𝑘, 𝑝 ,

𝑒K
!"#𝐻 ′

kin +
∑

𝑘∈𝑆𝐶∪(−𝑆𝐶 )
𝐻𝑘int
$%& 𝑒−K

≈ 𝐻 ′
kin +

∑
𝑘∈𝑆𝐶∪(−𝑆𝐶 )

(
tr (𝐸𝑘 − ℎ𝑘 ) + 2

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , (𝐸𝑘 − ℎ𝑘 ) 𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞

)
. (1.83)

On the right side of (1.83), the constant
∑
𝑘∈𝑆𝐶∪(−𝑆𝐶 ) tr (𝐸𝑘 − ℎ𝑘 ) captures correctly the leading

order of the correlation energy 𝐸corr. However, although 𝐸𝑘 is isospectral to

𝐸𝑘 = ℎ
1
2
𝑘 𝑒

−2𝐾𝑘 ℎ
1
2
𝑘 =

(
ℎ

1
2
𝑘 (ℎ𝑘 + 2𝑃𝑣𝑘 )ℎ

1
2
𝑘

) 1
2

≥ ℎ𝑘 , (1.84)

the operator 𝐸𝑘 − ℎ𝑘 is not non-negative. Thus the term 2
∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , (𝐸𝑘 − ℎ𝑘 ) 𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 – a kind

of second quantization of 𝐸𝑘 − ℎ𝑘 – cannot be ignored for the lower bound.
The Bogolubov transformation used in this part is analogous to that of [6]. It was proved in [6] that

if V is small, then the quantization of 𝐸𝑘 − ℎ𝑘 can be controlled by 𝐻 ′
kin, leading to the desired lower

bound on the ground state energy. In order to treat an arbitrary potential, we will instead utilize a second
Bogolubov transformation which effectively replaces 𝐸𝑘 by 𝐸𝑘 in (1.83).

Bogolubov transformation II
We define the second Bogolubov transformation 𝑒J for a generator J : H𝑁 → H𝑁 defined by

J =
∑

𝑘∈𝑆𝐶∪(−𝑆𝐶 )

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , 𝐽𝑘𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 , (1.85)

where 𝐽𝑘 = log (𝑈𝑘 ) denotes the (principal) logarithm of the unitary transformation 𝑈𝑘 : ℓ2(𝐿𝑘 ) →
ℓ2(𝐿𝑘 ) defined by

𝑈𝑘 =

(
ℎ

1
2
𝑘 𝑒

−2𝐾𝑘 ℎ
1
2
𝑘

) 1
2

ℎ
− 1

2
𝑘 𝑒𝐾𝑘 . (1.86)

This is precisely the unitary transformation which satisfies

𝑈𝑘𝐸𝑘𝑈
∗
𝑘 = ℎ

1
2
𝑘 𝑒

−2𝐾𝑘 ℎ
1
2
𝑘 =

(
ℎ

1
2
𝑘 (ℎ𝑘 + 2𝑃𝑣𝑘 )ℎ

1
2
𝑘

) 1
2

= 𝐸𝑘 , (1.87)

as is easily verified. This transformation acts such that

𝑒J

( ∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , 𝐸𝑘𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞

)
𝑒−J ≈

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , 𝐸𝑘𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 , (1.88)

and thanks to the relation of equation (1.72), also

𝑒J
!"#𝐻 ′

kin − 2
∑

𝑘∈𝑆𝐶∪(−𝑆𝐶 )

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝

$%& 𝑒−J ≈ 𝐻 ′
kin − 2

∑
𝑘∈𝑆𝐶∪(−𝑆𝐶 )

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 , (1.89)
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so all in all,

𝑒J 𝑒K
!"#𝐻 ′

kin +
∑

𝑘∈𝑆𝐶∪(−𝑆𝐶 )
𝐻𝑘int
$%& 𝑒−K𝑒−J

≈
∑

𝑘∈𝑆𝐶∪(−𝑆𝐶 )
tr (𝐸𝑘 − ℎ𝑘 ) + 𝐻 ′

kin +
∑

𝑘∈𝑆𝐶∪(−𝑆𝐶 )

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , (𝐸𝑘 − ℎ𝑘 )𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 . (1.90)

As 𝐸𝑘 − ℎ𝑘 ≥ 0, the last term can now be dropped and the energy lower bound concluded. The cutoff
𝑆𝐶 can be removed at the end without serious difficulties. On the technical level, the second Bogolubov
transformation is an important new tool to remove the smallness condition of [6], thus enabling us to
work with a significantly larger class of interaction potentials. In the independent work [8], the idea of
using the second Bogolubov transformation has also been introduced to refine the method in [5, 6].

Elementary excitations
The key ingredient to obtain all bosonic elementary excitations is the formula (1.60) in Theorem 1.4.
To prove this, note that 𝐻eff |N𝐸=1 commutes with N𝐸 and the total momentum 𝑃 =

∑
𝑝∈Z3

∗
𝑝𝑐∗𝑝𝑐𝑝 , so

we may restrict 𝐻eff to the simultanous eigenspaces of N𝐸 and P, which are

{Ψ ∈ H𝑁 | N𝐸Ψ = Ψ, 𝑃Ψ = 𝑘Ψ} = span(𝑏∗𝑘, 𝑝𝜓FS)𝑝∈𝐿𝑘 =
{
𝑏∗𝑘 (𝜑)𝜓FS | 𝜑 ∈ 𝐿2 (𝐿𝑘 )

}
. (1.91)

It turns out that the mapping 𝑈𝑘 : 𝐿2 (𝐿𝑘 ) → {Ψ ∈ H𝑁 | N𝐸Ψ = Ψ, 𝑃Ψ = 𝑘Ψ} defined by

𝑈𝑘𝜑 = 𝑏∗𝑘 (𝜑)𝜓FS, 𝜑 ∈ 𝐿2 (𝐿𝑘 ) (1.92)

is a unitary isomorphism with the property that

𝐻eff |N𝐸=1 = 𝑈𝑘 (2𝐸𝑘 )𝑈∗
𝑘 . (1.93)

Summing over different momenta k’s, we obtain the transformation 𝑈̃ introduced in (1.62).
In summary, our approach is different from the previous works [24, 5, 6] in many aspects. On the

conceptual level, our direct bosonization method (i.e., working directly with the operators 𝑏𝑘, 𝑝 instead
of averaging them on ‘patches’) allows us to stick closely to the heuristic argument of the physics
literature and to obtain not only the ground state energy but also all bosonic elementary excitations, thus
leading to the first complete justification of the RPA in the mean-field regime.

Although our general ideas are very transparent, to realize the whole procedure on a rigorous basis,
we will need to develop several new estimates to justify all of the approximations made. In the rest of
the paper, we will show how to implement the proof strategy rigorously.

Outline of the paper. In Section 2, we prove some general estimates involving the kinetic operator
𝐻kin and bound the non-bosonizable terms. In Section 3, we review the theory of bosonic Bogolubov
transformations; in particular, we review how one may explicitly define a Bogolubov transformation
which diagonalizes a given positive-definite quadratic Hamiltonian. We then apply the bosonic theory
to our study of the Fermi gas where we implement the diagonalization procedure in the quasi-bosonic
framework. This is done by introducing the quasi-bosonic quadratic Hamiltonian in Section 4 and the
quasi-bosonic Bogolubov transformation 𝑒K in Section 5 (these notations mirror the exact bosonic
ones as closely as possible such that the bosonic theory is easily transferred to the quasi-bosonic
setting). In this way, the quasi-bosonic analysis reduces to that of a collection of exact bosonic quadratic
Hamiltonians plus correlation exchange terms – error terms which arise due to the deviation from the
exact CCR. In Section 6, we estimate the exchange terms, reducing the analysis of these to the associated
one-body operators of the bosonic problem. The one-body operators are studied separately in Section 7.
In this part, we will need several estimates of Riemann sums, which are collected in the Appendix.
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We complete the analysis of the transformation 𝑒K in Section 8, where we prove that 𝐻 ′
kin and N𝐸 are

stable under the transformation 𝑒K. In Section 9, we introduce the second unitary transformation 𝑒J .
The analysis of this transformation is essentially similar to the first one, except that we require new
one-body operator estimates which are somewhat more difficult. Finally, we conclude the proofs of the
main theorems in Section 10.

2. Removal of the non-bosonizable terms

In this section, we collect several basic estimates concerning the operator 𝐻𝑁 which can be obtained
without using Bogolubov transformations. Recall the decomposition (1.22)

𝐻𝑁 = 𝐸FS + 𝐻 ′
kin + 𝑘−1

𝐹 𝐻 ′
int, 𝐸FS = 〈𝜓FS, 𝐻𝑁𝜓FS〉 . (2.1)

We will bound the interaction operator 𝐻 ′
int in terms of the kinetic operator 𝐻 ′

kin and then prove a priori
estimates for eigenstates of 𝐻𝑁 which are parts of Theorem 1.2.

Recall the following result from [6, Lemma 2.4] concerning the kinetic operator 𝐻 ′
kin in (1.11).

Proposition 2.1. We have 𝐻 ′
kin ≥ N𝐸 with N𝐸 given in (1.13).

Proof. Since |𝑝 |2 is an integer for 𝑝 ∈ Z3, our assumption |𝐵𝐹 | = 𝑁 implies that

inf
𝑝∈𝐵𝑐𝐹

|𝑝 |2 − sup
𝑝∈𝐵𝐹

|𝑝 |2 ≥ 1. (2.2)

Therefore, in (1.14), we can choose 𝜁 such that | |𝑝 |2 − 𝜁 | ≥ 1/2 for all 𝑝 ∈ Z3. �

Next, we consider the bosonizable terms in 𝐻 ′
int. The following result is a minor extension of [24,

Lemma 4.7] (see also [6, Appendix B] for a simplified proof).

Proposition 2.2. For all 𝑘 ∈ Z3
∗, the operator 𝐵̃𝑘 in (1.24) satisfies that

𝐵̃∗
𝑘 𝐵̃𝑘 ≤ 𝐶𝑘𝐹𝐻

′
kin, 𝐵̃𝑘 𝐵̃

∗
𝑘 ≤ 𝐶𝑘𝐹 (𝐻 ′

kin + |𝑘 |𝑘𝐹 ),

where the constant 𝐶 > 0 is independent of k and 𝑘𝐹 .

Proof. As argued in [24, 6], for any Ψ ∈ H𝑁 , it follows from the triangle and Cauchy-Schwarz
inequalities that��𝐵̃𝑘Ψ�� = ����� ∑

𝑝∈𝐿𝑘

𝑐∗𝑝−𝑘𝑐𝑝Ψ

����� ≤ ∑
𝑝∈𝐿𝑘

���𝑐∗𝑝−𝑘𝑐𝑝Ψ��� ≤ √∑
𝑝∈𝐿𝑘

𝜆−1
𝑘, 𝑝

√∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

���𝑐∗𝑝−𝑘𝑐𝑝Ψ���2, (2.3)

where 𝜆𝑘, 𝑝 = 1
2 (|𝑝 |

2 − |𝑝 − 𝑘 |2). Using (1.14) and Pauli’s exclusion principle ‖𝑐𝑝 ‖op ≤ 1, ‖𝑐∗𝑝 ‖op ≤ 1,
we find that∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

���𝑐∗𝑝−𝑘𝑐𝑝Ψ���2 =
1
2

∑
𝑝∈𝐿𝑘

(
| |𝑝 |2 − 𝜁 | + | |𝑝 − 𝑘 |2 − 𝜁 |

) ���𝑐∗𝑝−𝑘𝑐𝑝Ψ���2 (2.4)

≤ 1
2

∑
𝑝∈𝐿𝑘

| |𝑝 |2 − 𝜁 |
��𝑐𝑝Ψ��2 + 1

2

∑
𝑝∈𝐿𝑘

| |𝑝 − 𝑘 |2 − 𝜁 |
���𝑐∗𝑝−𝑘Ψ���2

≤ 1
2

∑
𝑝∈𝐵𝑐𝐹

| |𝑝 |2 − 𝜁 |
��𝑐𝑝Ψ��2 + 1

2

∑
𝑝∈𝐵𝐹

| |𝑝 |2 − 𝜁 |
��𝑐∗𝑝Ψ��2 =

1
2
〈
Ψ, 𝐻 ′

kinΨ
〉
.

Thus, it remains to show that
∑
𝑝∈𝐿𝑘 𝜆

−1
𝑘, 𝑝 ≤ 𝐶𝑘𝐹 . For |𝑘 | ∼ 𝑂 (1), this bound was already proved in

[24, 6]. For completeness, we will establish this bound for all 𝑘 ∈ Z3
∗ in the Appendix (Proposition A.2).
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Thus, in summary,

𝐵̃∗
𝑘 𝐵̃𝑘 ≤ 1

2

( ∑
𝑝∈𝐿𝑘

𝜆−1
𝑘, 𝑝

)
𝐻 ′

kin ≤ 𝐶𝑘𝐹𝐻
′
kin. (2.5)

Then the bound for 𝐵̃𝑘 𝐵̃∗
𝑘 follows from the fact that[

𝐵̃𝑘 , 𝐵̃
∗
𝑘

]
= |𝐿𝑘 | −

∑
𝑝∈𝐿𝑘

𝑐∗𝑝𝑐𝑝 −
∑
𝑝∈𝐿𝑘

𝑐𝑝−𝑘𝑐
∗
𝑝−𝑘 ≤ |𝐿𝑘 | ≤ 𝐶 |𝑘 |𝑘2

𝐹 . (2.6)

In the last estimate, we used |𝐿𝑘 | ≤ 𝐶𝑘2
𝐹 |𝑘 | for all 𝑘 ∈ Z3

∗ (see Proposition A.1 for details). �

For the non-bosonizable terms in 𝐻 ′
int, it was proved in [5, Eq. (5.1)] that

𝐷∗
𝑘𝐷𝑘 ≤ 4N 2

𝐸 . (2.7)

However, this bound is not optimal for low-lying eigenfunctions (for which N𝐸 ∼ 𝑘𝐹 ). In order to
remove the non-bosonizable terms completely, we need the following improvement.

Proposition 2.3. For all 𝑘 ∈ Z3
∗ and any 0 < 𝜆 ≤ 1

6 𝑘
2
𝐹 , the operator 𝐷𝑘 in (1.23) satisfies

𝐷∗
𝑘𝐷𝑘 ≤ 𝐶

(
|𝑘 |−1𝜆 + |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

)
(𝜆 + |𝑘 |)N𝐸 + 𝐶𝜆−

1
2 N𝐸𝐻

′
kin

for a constant 𝐶 > 0 independent of k, 𝑘𝐹 and 𝜆.

In applications, we will eventually choose 𝜆 = 𝑘
2𝛾
𝐹 /|𝑘 |4 for some constant 𝛾 ∈ (0, 1/9).

Proof. For 𝑘 ∈ Z3
∗, we write 𝐷𝑘 = 𝐷1

𝑘 + 𝐷2
𝑘 as in (1.24), namely,

𝐷1
𝑘 =

∑
𝑞∈𝐵𝐹∩(𝐵𝐹+𝑘)

𝑐∗𝑞−𝑘𝑐𝑞 , 𝐷2
𝑘 =

∑
𝑞∈𝐵𝑐𝐹∩(𝐵𝑐𝐹+𝑘)

𝑐∗𝑞−𝑘𝑐𝑞 . (2.8)

By the Cauchy–Schwarz inequality,

𝐷∗
𝑘𝐷𝑘 ≤ 2

(
(𝐷1

𝑘 )
∗𝐷1

𝑘 + (𝐷2
𝑘 )

∗𝐷2
𝑘

)
. (2.9)

We will estimate (𝐷1
𝑘 )

∗𝐷1
𝑘 in detail, with the estimate of (𝐷2

𝑘 )
∗𝐷2

𝑘 being similar. We have

(𝐷1
𝑘 )

∗𝐷1
𝑘 =

∑
𝑝,𝑞∈𝐵𝐹∩(𝐵𝐹+𝑘)

𝑐∗𝑝𝑐𝑝−𝑘𝑐
∗
𝑞−𝑘𝑐𝑞 =

∑
𝑝,𝑞∈𝐵𝐹∩(𝐵𝐹+𝑘)

(𝛿𝑝,𝑞𝑐𝑝−𝑘𝑐∗𝑝−𝑘 − 𝑐𝑝−𝑘𝑐𝑞𝑐
∗
𝑝𝑐

∗
𝑞−𝑘 )

=
∑

𝑝∈𝐵𝐹∩(𝐵𝐹+𝑘)
𝑐𝑝−𝑘𝑐

∗
𝑝−𝑘 −

1
2

∑
𝑝,𝑞∈𝐵𝐹∩(𝐵𝐹+𝑘)

(𝑐𝑝−𝑘𝑐𝑞𝑐∗𝑝𝑐∗𝑞−𝑘 + ℎ.𝑐.). (2.10)

Here, we used 𝑘 ≠ 0 so that 𝑐𝑝−𝑘 and 𝑐∗𝑝 anti-commute. By the definition of N𝐸 in (1.13),∑
𝑝∈𝐵𝐹∩(𝐵𝐹+𝑘)

𝑐𝑝−𝑘𝑐
∗
𝑝−𝑘 ≤

∑
𝑝∈𝐵𝐹

𝑐𝑝𝑐
∗
𝑝 = N𝐸 . (2.11)
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Moreover, by the Cauchy–Schwarz inequality, for all 𝜖𝑝 > 0, we get

± 1
2

∑
𝑝,𝑞∈𝐵𝐹∩(𝐵𝐹+𝑘)

(𝑐𝑝−𝑘𝑐𝑞𝑐∗𝑝𝑐∗𝑞−𝑘 + ℎ.𝑐.)

≤ 1
2

∑
𝑝,𝑞∈𝐵𝐹∩(𝐵𝐹+𝑘)

(𝜖𝑝𝑐𝑝−𝑘𝑐𝑞𝑐∗𝑞𝑐∗𝑝−𝑘 + 𝜖−1
𝑝 𝑐𝑞−𝑘𝑐𝑝𝑐

∗
𝑝𝑐

∗
𝑞−𝑘 )

≤ 1
2

∑
𝑝,𝑞∈𝐵𝐹∩(𝐵𝐹+𝑘)

(𝜖𝑝𝑐𝑝−𝑘𝑐∗𝑝−𝑘𝑐𝑞𝑐
∗
𝑞 + 𝜖−1

𝑝 𝑐𝑞−𝑘𝑐
∗
𝑞−𝑘𝑐𝑝𝑐

∗
𝑝)

≤ 1
2

∑
𝑝∈𝐵𝐹∩(𝐵𝐹+𝑘)

(𝜖𝑝𝑐𝑝−𝑘𝑐∗𝑝−𝑘 + 𝜖−1
𝑝 𝑐𝑝𝑐

∗
𝑝)N𝐸 . (2.12)

By taking 𝜖𝑝 ≡ 1, we obtain immediately (𝐷1
𝑘 )

∗𝐷1
𝑘 ≤ N 2

𝐸 , which, together with a similar bound for
𝐷2
𝑘 , leads to (2.7). To improve on this, we have to choose 𝜖𝑝 differently.
Recall that in (1.14) we can choose 𝜁 ∈ [sup𝑝∈𝐵𝐹 |𝑝 |2, inf 𝑝∈𝐵𝑐𝐹 |𝑝 |2] such that | |𝑝 |2 − 𝜁 | ≥ 1/2 for

all 𝑝 ∈ Z3. For any 𝜆 > 0, we can split

𝐵𝐹 ∩ (𝐵𝐹 + 𝑘) = 𝑆1
𝑘,𝜆 ∪ 𝑆1

𝑘,≥𝜆, (2.13)

where

𝑆1
𝑘,𝜆 =

{
𝑝 ∈ 𝐵𝐹 ∩ (𝐵𝐹 + 𝑘) | max

{
| |𝑝 |2 − 𝜁 |, | |𝑝 − 𝑘 |2 − 𝜁 |

}
< 𝜆
}
,

𝑆1
𝑘,≥𝜆 =

{
𝑝 ∈ 𝐵𝐹 ∩ (𝐵𝐹 + 𝑘) | max

{
| |𝑝 |2 − 𝜁 |, | |𝑝 − 𝑘 |2 − 𝜁 |

}
≥ 𝜆
}
. (2.14)

Choosing 𝜖𝑝 = 1 for 𝑝 ∈ 𝑆1
𝑘,𝜆 and using ‖𝑐∗𝑝 ‖op ≤ 1, we get

1
2

∑
𝑝∈𝑆1

𝑘,𝜆

(𝜖𝑝𝑐𝑝−𝑘𝑐∗𝑝−𝑘 + 𝜖−1
𝑝 𝑐𝑝𝑐

∗
𝑝) ≤ |𝑆1

𝑘,𝜆 |. (2.15)

Choosing 𝜖𝑝 =
√
| |𝑝 − 𝑘 |2 − 𝜁 |/

√
| |𝑝 |2 − 𝜁 | for 𝑝 ∈ 𝑆1

𝑘,≥𝜆, we have∑
𝑝∈𝑆1

𝑘,≥𝜆

(𝜖𝑝𝑐𝑝−𝑘𝑐∗𝑝−𝑘 + 𝜖−1
𝑝 𝑐𝑝𝑐

∗
𝑝)

=
∑

𝑝∈𝑆1
𝑘,≥𝜆

1√
| |𝑝 |2 − 𝜁 | · | |𝑝 − 𝑘 |2 − 𝜁 |

( | |𝑝 − 𝑘 |2 − 𝜁 |𝑐𝑝−𝑘𝑐∗𝑝−𝑘 + ||𝑝 |2 − 𝜁 |𝑐𝑝𝑐∗𝑝)

≤
∑

𝑝∈𝑆1
𝑘,≥𝜆

1√
𝜆/2

(| |𝑝 − 𝑘 |2 − 𝜁 |𝑐𝑝−𝑘𝑐∗𝑝−𝑘 + ||𝑝 |2 − 𝜁 |𝑐𝑝𝑐∗𝑝) ≤
2
√

2
√
𝜆
𝐻 ′

kin. (2.16)

Here, we used that among two factors | |𝑝 |2 − 𝜁 | and | |𝑝 − 𝑘 |2 − 𝜁 |, there is at least one ≥ 𝜆 due to the
assumption 𝑝 ∈ 𝑆1

𝑘,≥𝜆, and the other one is trivially ≥ 1/2. In summary,

(𝐷1
𝑘 )

∗𝐷1
𝑘 ≤ |𝑆1

𝑘,𝜆 |N𝐸 + 𝐶𝜆−
1
2 𝐻 ′

kinN𝐸 . (2.17)

Similarly, we have

(𝐷2
𝑘 )

∗𝐷2
𝑘 ≤ |𝑆2

𝑘,𝜆 |N𝐸 + 𝐶𝜆−
1
2 𝐻 ′

kinN𝐸 , (2.18)
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where

𝑆2
𝑘,𝜆 =

{
𝑝 ∈ 𝐵𝑐𝐹 ∩

(
𝐵𝑐𝐹 + 𝑘

)
| max

{
| |𝑝 |2 − 𝜁 |, | |𝑝 − 𝑘 |2 − 𝜁 |

}
< 𝜆
}
. (2.19)

The desired conclusion of 𝐷∗
𝑘𝐷𝑘 follows from the bound

|𝑆1
𝑘,𝜆 | + |𝑆2

𝑘,𝜆 | ≤ 𝐶

(
|𝑘 |−1𝜆 + |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

)
(𝜆 + |𝑘 |) (2.20)

whose proof can be found in Proposition A.4 in the Appendix. �

2.1. Estimation of the non-bosonizable terms

Now we are ready to remove the non-bosonizable terms, namely, the terms involving operators 𝐷𝑘 in
the decomposition (1.28) of the interaction operator:

𝑘−1
𝐹 𝐻 ′

int =
∑
𝑘∈Z3

+

(
𝐻𝑘int −

𝑉̂𝑘 𝑘
−1
𝐹

(2𝜋)3 |𝐿𝑘 |
)
+

𝑘−1
𝐹

(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘

(
𝐵̃∗
𝑘𝐷𝑘 + 𝐷∗

𝑘 𝐵̃𝑘 +
1
2
𝐷∗
𝑘𝐷𝑘

)
, (2.21)

where 𝐻𝑘int is defined in (1.29). Moreover, for technical reasons, we will also impose a momentum cutoff
in the bosonizable terms. Recall the set 𝑆𝐶 in (1.76). Define

ENB = 𝑘−1
𝐹 𝐻 ′

int −
∑
𝑘∈𝑆𝐶

(
𝐻𝑘int −

𝑉̂𝑘 𝑘
−1
𝐹

(2𝜋)3 |𝐿𝑘 |
)
. (2.22)

Proposition 2.4. Let
∑
𝑘∈Z3 𝑉̂𝑘 |𝑘 | < ∞. Then for all 𝛾 ∈ (0, 1/9) in 𝑆𝐶 , we have

±ENB ≤ 𝐶𝑘
−𝛾/2
𝐹

(
𝐻 ′

kin + 𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝑘𝐹

)
.

Here, the constant 𝐶 > 0 depends only on V (in particular, it is independent of 𝑘, 𝑘𝐹 and 𝜆).

We write ±𝑋 ≤ 𝑌 for two operator inequalities 𝑋 ≤ 𝑌 and −𝑋 ≤ 𝑌 .

Proof. For the bosonizable terms, by (2.6), Proposition 2.2 and Proposition 2.1, we can bound

±({𝐵̃∗
𝑘 , 𝐵̃𝑘 } − |𝐿𝑘 |) = ±

(
2𝐵̃∗

𝑘 𝐵̃𝑘 −
∑
𝑝∈𝐿𝑘

𝑐∗𝑝𝑐𝑝 −
∑
𝑝∈𝐿𝑘

𝑐𝑝−𝑘𝑐
∗
𝑝−𝑘

)
≤ 2𝐵̃∗

𝑘 𝐵̃𝑘 +N𝐸 ≤ 𝐶𝑘𝐹𝐻
′
kin (2.23)

for all 𝑘 ∈ Z3
∗. Moreover, by the Cauchy–Schwarz inequality,

±(𝐵̃∗
𝑘 𝐵̃

∗
−𝑘 + 𝐵̃−𝑘 𝐵̃𝑘 ) ≤ |𝑘 |−1/2𝐵̃−𝑘 𝐵̃

∗
−𝑘 + |𝑘 |1/2𝐵̃∗

𝑘 𝐵̃𝑘 ≤ 𝐶 |𝑘 |1/2𝑘𝐹 (𝐻 ′
kin + 𝑘𝐹 ) (2.24)

for all 𝑘 ∈ Z3
∗. Combining (2.23) and (2.24), we find that

±
∑

𝑘∈Z3
+\𝑆𝐶

(
𝐻𝑘int −

𝑉̂𝑘 𝑘
−1
𝐹

(2𝜋)3 |𝐿𝑘 |
)
≤ 𝐶 (𝐻 ′

kin + 𝑘𝐹 )
∑

𝑘∈Z3
+\𝑆𝐶

𝑉̂𝑘 |𝑘 |1/2

≤ 𝐶 (𝐻 ′
kin + 𝑘𝐹 )𝑘−𝛾/2

𝐹

∑
𝑘∈Z3

𝑉̂𝑘 |𝑘 |. (2.25)
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For the non-bosonizable terms, by the Cauchy–Schwarz inequality and Proposition 2.2, we have

±
(
𝐵̃∗
𝑘𝐷𝑘 + 𝐷∗

𝑘 𝐵̃𝑘
)
≤ 𝑘

−𝛾/2
𝐹 |𝑘 |𝐵̃∗

𝑘 𝐵̃𝑘 + 𝑘
𝛾/2
𝐹 |𝑘 |−1𝐷∗

𝑘𝐷𝑘 ≤ 𝐶𝑘
1−𝛾/2
𝐹 |𝑘 |𝐻 ′

kin + 𝑘
𝛾/2
𝐹 |𝑘 |−1𝐷∗

𝑘𝐷𝑘 , (2.26)

and hence,

±
∑
𝑘∈Z3

∗

𝑉̂𝑘
(
𝐵̃∗
𝑘𝐷𝑘 + 𝐷∗

𝑘 𝐵̃𝑘 + 𝐷∗
𝑘𝐷𝑘
)
≤ 𝐶𝑘

1−𝛾/2
𝐹 𝐻 ′

kin +
∑
𝑘∈Z3

∗

𝑉̂𝑘 (𝑘𝛾/2
𝐹 |𝑘 |−1 + 1)𝐷∗

𝑘𝐷𝑘 . (2.27)

Let us decompose the sum on the right-hand side of (2.27) into the high-momenta |𝑘 | > 𝑘
𝛾/2
𝐹 and the

low-momenta |𝑘 | ≤ 𝑘
𝛾/2
𝐹 . For the high-momenta, from the simple bound (2.7), we get∑

𝑘∈Z3
∗ , |𝑘 |>𝑘

𝛾/2
𝐹

𝑉̂𝑘 (𝑘𝛾/2
𝐹 |𝑘 |−1 + 1)𝐷∗

𝑘𝐷𝑘 ≤ 𝐶𝑘
−𝛾/2
𝐹 N 2

𝐸

∑
𝑘∈Z3

𝑉̂𝑘 |𝑘 |. (2.28)

For the low-momenta, using Proposition 2.3 with 𝜆 = 𝑘
𝛾
𝐹/|𝑘 |

2, we have

𝐷∗
𝑘𝐷𝑘 ≤ 𝐶

(
𝑘

2𝛾
𝐹 + 𝑘

𝛾
𝐹 |𝑘 |

2/3 (log 𝑘𝐹 )
2
3 𝑘2/3
𝐹 + |𝑘 |3+2/3 (log 𝑘𝐹 )

2
3 𝑘2/3
𝐹

)
|𝑘 |N𝐸 + 𝐶𝑘

−𝛾/2
𝐹 |𝑘 |N𝐸𝐻

′
kin,

(2.29)

and hence,

∑
𝑘∈Z3

∗ , |𝑘 | ≤𝑘
𝛾/2
𝐹

𝑉̂𝑘𝐷
∗
𝑘𝐷𝑘 ≤ 𝐶

(∑
𝑘∈Z3

𝑉̂𝑘 |𝑘 |
) (

𝑘
(3+ 2

3 )
𝛾
2 +

2
3

𝐹 (log 𝑘𝐹 )
2
3 N𝐸 + 𝑘

− 𝛾2
𝐹 N𝐸𝐻

′
kin

)
≤ 𝐶𝑘

−𝛾/2
𝐹

(
𝑘𝐹N𝐸 +N𝐸𝐻

′
kin
)

(2.30)

for all 𝛾 ∈ (0, 1/7). Moreover, using Proposition 2.3 with 𝜆 = 𝑘
2𝛾
𝐹 /|𝑘 |4, we have

𝑘
𝛾/2
𝐹 |𝑘 |−1𝐷∗

𝑘𝐷𝑘 ≤ 𝐶

(
𝑘

4𝛾
𝐹 + 𝑘

(2+ 1
2 )𝛾

𝐹 (log 𝑘𝐹 )
2
3 𝑘2/3
𝐹 + 𝑘

𝛾
2
𝐹 |𝑘 |

2+2/3 (log 𝑘𝐹 )
2
3 𝑘2/3
𝐹

)
|𝑘 |N𝐸

+ 𝐶𝑘
−𝛾/2
𝐹 |𝑘 |N𝐸𝐻

′
kin, (2.31)

and hence,

∑
𝑘∈Z3

∗ , |𝑘 | ≤𝑘
𝛾/2
𝐹

𝑉̂𝑘 𝑘
𝛾/2
𝐹 |𝑘 |−1𝐷∗

𝑘𝐷𝑘 ≤ 𝐶

(∑
𝑘∈Z3

𝑉̂𝑘 |𝑘 |
) (

𝑘
(2+ 1

2 )𝛾+
2
3

𝐹 (log 𝑘𝐹 )
2
3 N𝐸 + 𝑘

− 𝛾2
𝐹 N𝐸𝐻

′
kin

)
≤ 𝐶𝑘

−𝛾/2
𝐹

(
𝑘𝐹N𝐸 +N𝐸𝐻

′
kin
)

(2.32)

for all 𝛾 ∈ (0, 1/9). Inserting (2.28), (2.30) and (2.32) in (2.27) and using Proposition 2.1, we conclude
that

±
𝑘−1
𝐹

(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘
(
𝐵̃∗
𝑘𝐷𝑘 + 𝐷∗

𝑘 𝐵̃𝑘 + 𝐷∗
𝑘𝐷𝑘
)
≤ 𝐶𝑘

−𝛾/2
𝐹

(
𝐻 ′

kin + 𝑘−1
𝐹 N𝐸𝐻

′
kin

)
(2.33)

for all 𝛾 ∈ (0, 1/9). The conclusion follows from (2.25) and (2.33). �
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3. Overview of bosonic Bogolubov transformations

In this section, we review the general theory of quadratic Hamiltonians and Bogolubov transformations
in the exact bosonic setting. Later, in the remainder of the paper, the analysis here will be adapted to
handle the quasi-bosonic case where error terms have to be estimated carefully.

The study of bosonic quadratic Hamiltonians goes back to Bogolubov’s 1947 paper [10] where he
proposed an effective Hamiltonian to describe the excitation spectrum of weakly interacting Bose gases.
An important property of quadratic Hamiltonians is that they can be diagonalized by suitable Bogolubov
transformations; see, for example, [2, 31, 16] for recent results in the infinite dimensional cases. For
our application, we will only focus on the situation where the one-body Hilbert space is real and finite
dimensional. Historically, the diagonalization problem in finite dimensions can be solved abstractly by
using Williamson’s theorem [43]. We refer to [27] and [16, Section 2] for systematic discussions on the
finite dimensional case.

In the present paper, we will need an explicit construction of the diagonalizing transformations so
that we can adapt this to the quasi-bosonic operators. Such an explicit construction can be found in [23],
which was also used in the fermionic context in [5, 6] and will be recalled below. Here, we will offer a
slightly different treatment of Bogolubov transformations, in that we will view quadratic operators on
Fock spaces as the fundamental object of study rather than the creation and annihilation operators.
Notation. We will denote by V a finite-dimensional real Hilbert space and let 𝑛 = dim (𝑉). The bosonic
Fock space associated to V is

F+ (𝑉) =
∞⊕
𝑁=0

𝑁⊗
Sym

𝑉, (3.1)

where
⊗𝑁

Sym 𝑉 denotes the space of symmetric N-fold tensor products of V. To any element 𝜑 ∈ 𝑉 ,
there are associated two operators on F+ (𝑉): the annihilation operator 𝑎(𝜑) and the creation operator
𝑎∗(𝜑). These are (formal) adjoints of one another and obey the canonical commutation relations (CCR):
for any 𝜑, 𝜓 ∈ 𝑉 ,

[𝑎(𝜑), 𝑎 (𝜓)] = [𝑎∗(𝜑), 𝑎∗ (𝜓)] = 0, [𝑎(𝜑), 𝑎∗ (𝜓)] = 〈𝜑, 𝜓〉 . (3.2)

Additionally, the mappings 𝜑 ↦→ 𝑎(𝜑), 𝜑 ↦→ 𝑎∗(𝜑) are linear.6

3.1. Quadratic Hamiltonians

Similarly to how we can to any 𝜑 ∈ 𝑉 associate the two operators 𝑎(𝜑) and 𝑎∗(𝜑), we may also associate
two types of symmetric operators on F+ (𝑉) to any symmetric operator on V. For the definition, we let
(𝑒𝑖)𝑛𝑖=1 denote an orthonormal basis of V. Given any symmetric operator 𝐴 : 𝑉 → 𝑉 , we then define the
operator 𝑄1(𝐴) on F+ (𝑉) by

𝑄1(𝐴) =
𝑛∑

𝑖, 𝑗=1

〈
𝑒𝑖 , 𝐴𝑒 𝑗

〉 (
𝑎∗(𝑒𝑖)𝑎(𝑒 𝑗 ) + 𝑎(𝑒 𝑗 )𝑎∗(𝑒𝑖)

)
, (3.3)

and likewise, for any symmetric operator 𝐵 : 𝑉 → 𝑉 , we define the operator 𝑄2 (𝐵) by

𝑄2 (𝐵) =
𝑛∑

𝑖, 𝑗=1

〈
𝑒𝑖 , 𝐵𝑒 𝑗

〉 (
𝑎∗(𝑒𝑖)𝑎∗(𝑒 𝑗 ) + 𝑎(𝑒 𝑗 )𝑎(𝑒𝑖)

)
. (3.4)

6If V is a complex Hilbert space space, the mapping 𝜑 ↦→ 𝑎 (𝜑) is anti-linear which complicates the exposition. In our quasi-
bosonic application, although the relevant Hilbert spaces are complex, all relevant operators have real matrix elements, and hence,
it suffices to restrict to the case of real spaces as in this section.
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These definitions are independent of the basis chosen, and we can write equivalently

𝑄1 (𝐴) =
𝑛∑
𝑖=1

(𝑎∗(𝐴𝑒𝑖)𝑎(𝑒𝑖) + 𝑎(𝑒𝑖)𝑎∗(𝐴𝑒𝑖)) (3.5)

𝑄2 (𝐵) =
𝑛∑
𝑖=1

(𝑎∗ (𝐵𝑒𝑖) 𝑎∗(𝑒𝑖) + 𝑎(𝑒𝑖)𝑎 (𝐵𝑒𝑖)) .

Thus, for real, symmetric 𝐴, 𝐵 : 𝑉 → 𝑉 , we can define a quadratic Hamiltonian on F+ (𝑉) by

𝐻 = 𝑄1 (𝐴) +𝑄2 (𝐵). (3.6)

Note that by the CCR, we may express 𝑄1(𝐴) as

𝑄1 (𝐴) = 2
𝑛∑

𝑖, 𝑗=1

〈
𝑒𝑖 , 𝐴𝑒 𝑗

〉
𝑎∗(𝑒𝑖)𝑎(𝑒 𝑗 ) + tr(𝐴) = 2 dΓ(𝐴) + tr(𝐴), (3.7)

where dΓ(𝐴) denotes the second quantization of 𝐴 : 𝑉 → 𝑉 . Sometimes in the literature, in particular
in infinite dimensions, quadratic Hamiltonians are defined by dΓ(𝐴) +𝑄2 (𝐵), which is the same to our
definition up to the constant tr(𝐴). Here, we prefer to use 𝑄1 (𝐴) instead of dΓ(·); the reason for this is
that the relations of Proposition 3.4 below are symmetric in the Q’s.

Note that the basis-independence is a nice property of the real space setting. In general, if V is a
complex Hilbert space and B is symmetric, then the definition of 𝑄2 (𝐵) in (3.4) may depend on the
basis. In fact, we can obtain a basis-independent formulation in the complex case, but the mapping
𝐵 ↦→ 𝑄2 (𝐵) is not to be defined for symmetric linear operators B, but rather symmetric anti-linear
operators B to make up for the fact that in the complex case the assignment 𝜑 ↦→ 𝑎(𝜑) is also anti-
linear. This is unimportant for our application, which is why we only consider real Hilbert spaces in this
section, for the sake of simplicity.

3.2. Bogolubov transformations

In this subsection, we review an explicit construction of a Bogolubov transformation U : F+ (𝑉) →
F+ (𝑉) that diagonalizes the quadratic Hamiltonian 𝐻 = 𝑄1 (𝐴) +𝑄2 (𝐵), namely,

U𝐻U∗ = 𝑄1(𝐸) (3.8)

for a real, symmetric operator 𝐸 : 𝑉 → 𝑉 . Such a construction is well known; see, for example, [16] for
a recent review. We consider a unitary transformation U = 𝑒K where K is an anti-symmetric operator
on F+ (𝑉) of the following form:

K =
1
2

𝑛∑
𝑖, 𝑗=1

〈𝑒𝑖 , 𝐾𝑒 𝑗〉
(
𝑎(𝑒𝑖)𝑎(𝑒 𝑗 ) − 𝑎∗(𝑒 𝑗 )𝑎∗(𝑒𝑖)

)
=

1
2

𝑛∑
𝑖=1

(𝑎(𝐾𝑒𝑖)𝑎(𝑒𝑖) − 𝑎∗(𝑒𝑖)𝑎∗(𝐾𝑒𝑖)) . (3.9)

Here, 𝐾 : 𝑉 → 𝑉 is a symmetric operator (called the transformation kernel) and (𝑒𝑖)𝑛𝑖=1 denotes any
orthonormal basis of V (as with 𝑄1 (·) and 𝑄2(·) this definition is independent of the basis).

In this subsection, we discuss the following:

Theorem 3.1. Let 𝐴, 𝐵 : 𝑉 → 𝑉 be real, symmetric operators such that 𝐴 ± 𝐵 > 0 (namely, 𝐴 + 𝐵 > 0
and 𝐴 − 𝐵 > 0). Consider the Bogolubov transformation 𝑒K where K is given in (3.9) with

𝐾 = −1
2

log
(
(𝐴 − 𝐵)−

1
2

(
(𝐴 − 𝐵)

1
2 (𝐴 + 𝐵) (𝐴 − 𝐵)

1
2

) 1
2 (𝐴 − 𝐵)−

1
2

)
.
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Then

𝑒K (𝑄1 (𝐴) +𝑄2 (𝐵))𝑒−K = 𝑄1 (𝐸) = 2 dΓ(𝐸) + tr(𝐸),

where

𝐸 = 𝑒𝐾 (𝐴 + 𝐵)𝑒𝐾 = 𝑒−𝐾 (𝐴 − 𝐵)𝑒−𝐾 .

Moreover, the diagonalizing K is uniquely determined by this.

In the following, we will prove Theorem 3.1 by using a generalization and simplification of the
argument used in [23, 5]. We will first discuss the action of the Bogolubov transformation with a general
kernel K and then explain where the diagonalization condition comes from.

Let us start with some basic properties of K.

Proposition 3.2. For any symmetric operator 𝐾 : 𝑉 → 𝑉 , the operator K defined by (3.9) is an anti-
symmetric operator on F+ (𝑉) and obeys the commutators

[K, 𝑎(𝜑)] = 𝑎∗ (𝐾𝜑) , [K, 𝑎∗(𝜑)] = 𝑎 (𝐾𝜑) , ∀𝜑 ∈ 𝑉.

Thus, [K, ·] acts on the creation and annihilation operators by ‘swapping’ each type into the other
and applying the operator K to their arguments. From this, one can now deduce that the unitary
transformation 𝑒K acts on the creation and annihilation operators according to

𝑒K𝑎(𝜑)𝑒−K = 𝑎 (cosh (𝐾) 𝜑) + 𝑎∗ (sinh (𝐾) 𝜑) (3.10)
𝑒K𝑎∗(𝜑)𝑒−K = 𝑎∗ (cosh (𝐾) 𝜑) + 𝑎 (sinh (𝐾) 𝜑) ,

since by the Baker-Campbell-Hausdorff formula,

𝑒K𝑎(𝜑)𝑒−K = 𝑎(𝜑) + 1
1!

[K, 𝑎(𝜑)] + 1
2!

[K, [K, 𝑎(𝜑)]] + 1
3!

[K, [K, [K, 𝑎(𝜑)]]] + · · ·

= 𝑎(𝜑) + 1
1!

𝑎∗ (𝐾𝜑) + 1
2!

𝑎
(
𝐾2𝜑
)
+ 1

3!
𝑎∗
(
𝐾3𝜑
)
+ · · · (3.11)

= 𝑎

(
𝜑 + 1

2!
𝐾2𝜑 + · · ·

)
+ 𝑎∗

(
1
1!

𝐾𝜑 + 1
3!

𝐾3𝜑 + · · ·
)

= 𝑎 (cosh (𝐾) 𝜑) + 𝑎∗ (sinh (𝐾) 𝜑) ,

and the identity for 𝑒K𝑎∗(𝜑)𝑒−K then follows immediately by taking the adjoint.
Now let us consider 𝑒K𝑄1(·)𝑒−K and 𝑒K𝑄2(·)𝑒−K. For this, we will first make an observation on

their structure which will greatly simplify computations: namely, we note that the operators 𝑄1 (𝐴) and
𝑄2 (𝐵) are both of a ‘trace-form’ in the sense that we can write, say, 𝑄1 (𝐴) =

∑𝑛
𝑖=1 𝑞 (𝑒𝑖 , 𝐴𝑒𝑖), where

𝑞 (𝑥, 𝑦) = 𝑎∗ (𝑦) 𝑎(𝑥) + 𝑎(𝑥)𝑎∗ (𝑦) (3.12)

defines a bilinear mapping from 𝑉 × 𝑉 into the space of operators on F+ (𝑉), similar to how the trace
of an operator T is tr(𝑇) =

∑𝑛
𝑖=1 𝑞 (𝑒𝑖 , 𝑇𝑒𝑖) for 𝑞 (𝑥, 𝑦) = 〈𝑥, 𝑦〉. This abstract viewpoint is worth noting

because all such expressions are both basis-independent and obey an additional property, which for
the trace is just the familiar cyclicity property. Since we will encounter such ‘trace-form’ expressions
repeatedly during computations throughout this paper, we state this property in full generality. In the
following, we take sesquilinear to mean anti-linear in the first argument and linear in the second (we
note that in the present real case a sesquilinear mapping is of course just a bilinear mapping, but stating
it in this generality will prove useful later).

https://doi.org/10.1017/fmp.2023.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.31


28 M. R. Christiansen, C. Hainzl and P. T. Nam

Lemma 3.3. Let (𝑉, 〈·, ·〉) be an n-dimensional Hilbert space and let 𝑞 : 𝑉 ×𝑉 → 𝑊 be a sesquilinear
mapping into a vector space W. Let (𝑒𝑖)𝑛𝑖=1 be an orthonormal basis for V. Then for any linear operators
𝑆, 𝑇 : 𝑉 → 𝑉 , it holds that

𝑛∑
𝑖=1

𝑞 (𝑆𝑒𝑖 , 𝑇𝑒𝑖) =
𝑛∑
𝑖=1

𝑞 (𝑆𝑇∗𝑒𝑖 , 𝑒𝑖) .

As a consequence, the expression
∑𝑛
𝑖=1 𝑞 (𝑒𝑖 , 𝑒𝑖) is independent of the chosen basis.

Proof. By orthonormal expansion, we find that

𝑛∑
𝑖=1

𝑞 (𝑆𝑒𝑖 , 𝑇𝑒𝑖) =
𝑛∑
𝑖=1

𝑞
!"#𝑆𝑒𝑖 ,

𝑛∑
𝑗=1

〈
𝑒 𝑗 , 𝑇𝑒𝑖

〉
𝑒 𝑗
$%& =

𝑛∑
𝑗=1

𝑞

(
𝑛∑
𝑖=1

〈
𝑇𝑒𝑖 , 𝑒 𝑗

〉
𝑆𝑒𝑖 , 𝑒 𝑗

)
=

𝑛∑
𝑗=1

𝑞

(
𝑆

𝑛∑
𝑖=1

〈
𝑒𝑖 , 𝑇

∗𝑒 𝑗
〉
𝑒𝑖 , 𝑒 𝑗

)
=

𝑛∑
𝑖=1

𝑞 (𝑆𝑇∗𝑒𝑖 , 𝑒𝑖) . (3.13)

The basis independence follows from the fact that for all unitary transformation 𝑈 : 𝑉 → 𝑉 ,

𝑛∑
𝑖=1

𝑞 (𝑈𝑒𝑖 ,𝑈𝑒𝑖) =
𝑛∑
𝑖=1

𝑞 (𝑈𝑈∗𝑒𝑖 , 𝑒𝑖) =
𝑛∑
𝑖=1

𝑞 (𝑒𝑖 , 𝑒𝑖) . (3.14)

�

The lemma thus allows us to move a mapping from one argument to the other when under a sum,
which will be immensely useful when simplifying expressions. As mentioned, this can indeed be seen
as a generalization of the cyclicity property of the trace, since the lemma implies

tr (𝑆𝑇) =
𝑛∑
𝑖=1

〈𝑒𝑖 , 𝑆𝑇𝑒𝑖〉 =
𝑛∑
𝑖=1

〈𝑆∗𝑒𝑖 , 𝑇𝑒𝑖〉 =
𝑛∑
𝑖=1

〈𝑆∗𝑇∗𝑒𝑖 , 𝑒𝑖〉 =
𝑛∑
𝑖=1

〈𝑒𝑖 , 𝑇𝑆𝑒𝑖〉 = tr (𝑇𝑆) , (3.15)

but it is important to note that cyclicity is not a general property of trace-form sums; the assignments
𝐴 ↦→ 𝑄1(𝐴) and 𝐵 ↦→ 𝑄2 (𝐵) do not obey such a property.

With the lemma, we can now easily derive the commutator of K with 𝑄1(·) and 𝑄2 (·):

Proposition 3.4. For any real, symmetric operators 𝐴, 𝐵, 𝐾 : 𝑉 → 𝑉 , the operator K defined by
equation (3.9) obeys the following commutators on F+(𝑉):

[K, 𝑄1 (𝐴)] = 𝑄2 ({𝐾, 𝐴})
[K, 𝑄2 (𝐵)] = 𝑄1 ({𝐾, 𝐵}) .

Proof. We compute using the commutators of Proposition 3.2 that

[K, 𝑄1(𝐴)] =
𝑛∑
𝑖=1

([K, 𝑎∗(𝐴𝑒𝑖)𝑎(𝑒𝑖)] + [K, 𝑎(𝑒𝑖)𝑎∗(𝐴𝑒𝑖)])

=
𝑛∑
𝑖=1

(𝑎∗(𝐴𝑒𝑖) [K, 𝑎(𝑒𝑖)]

+ [K, 𝑎∗(𝐴𝑒𝑖)] 𝑎(𝑒𝑖) + 𝑎(𝑒𝑖) [K, 𝑎∗(𝐴𝑒𝑖)] + [K, 𝑎(𝑒𝑖)] 𝑎∗(𝐴𝑒𝑖))

=
𝑛∑
𝑖=1

(𝑎∗(𝐴𝑒𝑖)𝑎∗(𝐾𝑒𝑖) + 𝑎(𝐾𝐴𝑒𝑖)𝑎(𝑒𝑖) + 𝑎(𝑒𝑖)𝑎(𝐾𝐴𝑒𝑖) + 𝑎∗(𝐾𝑒𝑖)𝑎∗(𝐴𝑒𝑖)) . (3.16)
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As the assignments 𝜑, 𝜓 ↦→ 𝑎(𝜑)𝑎(𝜓), 𝑎∗(𝜑)𝑎∗(𝜓) are bilinear, we can apply Lemma 3.3 to see that

[K, 𝑄1 (𝐴)] =
𝑛∑
𝑖=1

(
𝑎∗ (𝐴𝐾∗𝑒𝑖) 𝑎∗(𝑒𝑖) + 𝑎(𝑒𝑖)𝑎

(
(𝐾𝐴)∗ 𝑒𝑖

)
+ 𝑎(𝑒𝑖)𝑎(𝐾𝐴𝑒𝑖) + 𝑎∗ (𝐾𝐴∗𝑒𝑖) 𝑎∗(𝑒𝑖)

)
=

𝑛∑
𝑖=1

(𝑎∗ (𝐴𝐾𝑒𝑖) 𝑎∗(𝑒𝑖) + 𝑎(𝑒𝑖)𝑎 (𝐴𝐾𝑒𝑖) + 𝑎(𝑒𝑖)𝑎(𝐾𝐴𝑒𝑖) + 𝑎∗(𝐾𝐴𝑒𝑖)𝑎∗(𝑒𝑖))

=
𝑛∑
𝑖=1

(𝑎∗ ((𝐴𝐾 + 𝐾𝐴)𝑒𝑖) 𝑎∗(𝑒𝑖) + 𝑎(𝑒𝑖)𝑎 ((𝐴𝐾 + 𝐾𝐴)𝑒𝑖)) = 𝑄2 ({𝐾, 𝐴}) , (3.17)

where we also used that A and K are symmetric. The computation of [K, 𝑄2 (𝐵)] is similar. �

Note the similarity between this result and that of Proposition 3.2. Again we see that that [K, ·] acts
by ‘swapping the types and applying K to the argument’, although now the relevant types are 𝑄1 (·), and
𝑄2 (·) and the application of K is taking the anticommutator.

We can now appeal to the Baker-Campbell-Hausdorff formula again to conclude that

𝑒K𝑄1(𝐴)𝑒−K = 𝑄1 (𝐴) +
1
1!

[K, 𝑄1 (𝐴)] +
1
2!

[K, [K, 𝑄1(𝐴)]] +
1
3!

[K, [K, [K, 𝑄1 (𝐴)]]] + · · ·

= 𝑄1 (𝐴) +
1
1!
𝑄2 ({𝐾, 𝐴}) + 1

2!
𝑄1 ({𝐾, {𝐾, 𝐴}}) + 1

3!
𝑄2 ({𝐾, {𝐾, {𝐾, 𝐴}}}) + · · ·

= 𝑄1

(
𝐴 + 1

2!
{𝐾, {𝐾, 𝐴}} + · · ·

)
+𝑄2

(
1
1!

{𝐾, 𝐴} + 1
3!

{𝐾, {𝐾, {𝐾, 𝐴}}} + · · ·
)
, (3.18)

but to succeed, we must identify the sums of these iterated anticommutators. First, we note that we
can rephrase this in a manner closer to that of equation (3.10) for 𝑒K𝑎(𝜑)𝑒−K. One may view the
anticommutator with K as a linear mapping 𝐴 ↦→ {𝐾, 𝐴} on the space of operators on V, B (𝑉) – denote
this mapping by A𝐾 : B (𝑉) → B (𝑉) (i.e., A𝐾 (·) = {𝐾, ·}). Then we may phrase the above identity as

𝑒K𝑄1 (𝐴)𝑒−K = 𝑄1 (cosh (A𝐾 ) (𝐴)) +𝑄2 (sinh (A𝐾 ) (𝐴)) (3.19)

and likewise

𝑒K𝑄2 (𝐵)𝑒−K = 𝑄2 (cosh (A𝐾 ) (𝐵)) +𝑄1 (sinh (A𝐾 ) (𝐵)) (3.20)

so that the arguments again involve hyperbolic functions of linear operators, but now acting on B (𝑉)
rather than V itself. We then note the following ‘anticommutator Baker-Campbell-Hausdorff formula’:

Proposition 3.5. Let (𝑉, 〈·, ·〉) be an n-dimensional Hilbert space, let 𝐾 : 𝑉 → 𝑉 be a self-adjoint
operator and let A𝐾 (·) = {𝐾, ·} : B (𝑉) → B (𝑉) denote the anticommutator with K. Then for any
linear operator 𝑇 : 𝑉 → 𝑉 ,

𝑒A𝐾 (𝑇) =
∞∑
𝑚=0

1
𝑚!

A𝑚𝐾 (𝑇) = 𝑒𝐾𝑇𝑒𝐾 .

Consequently,

cosh (A𝐾 ) (𝑇) =
1
2
(𝑒𝐾𝑇𝑒𝐾 + 𝑒−𝐾𝑇𝑒−𝐾 ),

sinh(A𝐾 ) (𝑇) =
1
2
(𝑒𝐾𝑇𝑒𝐾 − 𝑒−𝐾𝑇𝑒−𝐾 ).
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Proof. Let (𝑥𝑖)𝑛𝑖=1 be an eigenbasis for K with associated eigenvalues (𝜆𝑖)𝑛𝑖=1. Denote 𝑃𝑖, 𝑗 = |𝑥 𝑗〉〈𝑥𝑖 |,
namely, 𝑃𝑖, 𝑗𝑥 = 〈𝑥𝑖 , 𝑥〉 𝑥 𝑗 for all 𝑥 ∈ 𝑉 . It is well known that for any orthonormal basis (𝑥𝑖)𝑛𝑖=1 of V,
the collection

(
𝑃𝑖, 𝑗
)𝑛
𝑖, 𝑗=1 form an orthonormal basis for (B (𝑉) , 〈·, ·〉HS). Moreover, for any 𝑥 ∈ 𝑉 and

1 ≤ 𝑖, 𝑗 ≤ 𝑛, by self-adjointness of K,

A𝐾
(
𝑃𝑖, 𝑗
)
𝑥 =
{
𝐾, 𝑃𝑖, 𝑗

}
𝑥 = 〈𝑥𝑖 , 𝑥〉 𝐾𝑥 𝑗 + 〈𝑥𝑖 , 𝐾𝑥〉 𝑥 𝑗 = 〈𝑥𝑖 , 𝑥〉 𝜆 𝑗𝑥 𝑗 + 〈𝜆𝑖𝑥𝑖 , 𝑥〉 𝑥 𝑗 (3.21)

=
(
𝜆𝑖 + 𝜆 𝑗

)
〈𝑥𝑖 , 𝑥〉 𝑥 𝑗 =

(
𝜆𝑖 + 𝜆 𝑗

)
𝑃𝑖, 𝑗𝑥.

Thus, {𝑃𝑖, 𝑗 }𝑛𝑖, 𝑗=1 an eigenbasis for A𝐾 with associated eigenvalues
(
𝜆𝑖 + 𝜆 𝑗

)𝑛
𝑖, 𝑗=1.

Hence, it suffices to verify the identity 𝑒A𝐾 (𝑇) = 𝑒𝐾𝑇𝑒𝐾 with the eigenbasis
(
𝑃𝑖, 𝑗
)𝑛
𝑖, 𝑗=1:

𝑒A𝐾
(
𝑃𝑖, 𝑗
)
𝑥 = 𝑒𝜆𝑖+𝜆 𝑗𝑃𝑖, 𝑗 = 𝑒𝜆𝑖+𝜆 𝑗 〈𝑥𝑖 , 𝑥〉 𝑥 𝑗 =

〈
𝑒𝜆𝑖𝑥𝑖 , 𝑥

〉
𝑒𝜆 𝑗 𝑥 𝑗 =

〈
𝑒𝐾 𝑥𝑖 , 𝑥

〉
𝑒𝐾 𝑥 𝑗 (3.22)

=
〈
𝑥𝑖 , 𝑒

𝐾 𝑥
〉
𝑒𝐾 𝑥 𝑗 = 𝑒𝐾𝑃𝑖, 𝑗𝑒

𝐾 𝑥.

The statements regarding cosh (A𝐾 ) and sinh (A𝐾 ) follow from the identities

cosh(𝑥) = 1
2
(𝑒𝑥 + 𝑒−𝑥) , sinh(𝑥) = 1

2
(𝑒𝑥 − 𝑒−𝑥) , and (−A𝐾 ) = A−𝐾 . (3.23)

�

By these formulas, we thus deduce the quadratic operator analogue of equation (3.10):

𝑒K𝑄1 (𝐴)𝑒−K =
1
2
𝑄1(𝑒𝐾 𝐴𝑒𝐾 + 𝑒−𝐾 𝐴𝑒−𝐾 ) + 1

2
𝑄2(𝑒𝐾 𝐴𝑒𝐾 − 𝑒−𝐾 𝐴𝑒−𝐾 )

𝑒K𝑄2 (𝐵)𝑒−K =
1
2
𝑄1(𝑒𝐾 𝐵𝑒𝐾 − 𝑒−𝐾 𝐵𝑒−𝐾 ) + 1

2
𝑄2 (𝑒𝐾 𝐵𝑒𝐾 + 𝑒−𝐾 𝐵𝑒−𝐾 ). (3.24)

Diagonalization condition
We can now finally describe how to diagonalize a quadratic Hamiltonian using a Bogolubov transfor-
mation of the form 𝑒K. By the transformation identities above, we find that under 𝑒K, the quadratic
Hamiltonian 𝐻 = 𝑄1 (𝐴) +𝑄2 (𝐵) transforms as

𝑒K𝐻𝑒−K =
1
2
𝑄1 (𝑒𝐾 𝐴𝑒𝐾 + 𝑒−𝐾 𝐴𝑒−𝐾 ) + 1

2
𝑄2 (𝑒𝐾 𝐴𝑒𝐾 − 𝑒−𝐾 𝐴𝑒−𝐾 )

+ 1
2
𝑄1 (𝑒𝐾 𝐵𝑒𝐾 − 𝑒−𝐾 𝐵𝑒−𝐾 ) + 1

2
𝑄2(𝑒𝐾 𝐵𝑒𝐾 + 𝑒−𝐾 𝐵𝑒−𝐾 )

=
1
2
𝑄1 (𝑒𝐾 (𝐴 + 𝐵)𝑒𝐾 + 𝑒−𝐾 (𝐴 − 𝐵)𝑒−𝐾 ) + 1

2
𝑄2 (𝑒𝐾 (𝐴 + 𝐵)𝑒𝐾 − 𝑒−𝐾 (𝐴 − 𝐵)𝑒−𝐾 ).

(3.25)

Therefore, the diagonalization condition on K is

𝑒𝐾 (𝐴 + 𝐵)𝑒𝐾 = 𝑒−𝐾 (𝐴 − 𝐵)𝑒−𝐾 . (3.26)

If we can find such a K, then

𝑒K𝐻𝑒−K = 𝑄1 (𝐸) = 2 dΓ(𝐸) + tr(𝐸), (3.27)

where
𝐸 = 𝑒𝐾 (𝐴 + 𝐵)𝑒𝐾 = 𝑒−𝐾 (𝐴 − 𝐵)𝑒−𝐾 . (3.28)

There remains the question of existence and uniqueness of such a K:
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Conclusion of the proof of Theorem 3.1. Write 𝐴± = 𝐴 ± 𝐵 > 0 for brevity. Then we may write the
diagonalization condition as

𝑒−2𝐾 𝐴−𝑒
−2𝐾 = 𝐴+. (3.29)

Multiplying by 𝐴
1
2− on both sides yields(

𝐴
1
2−𝑒−2𝐾 𝐴

1
2−
)2 = 𝐴

1
2−𝑒−2𝐾 𝐴−𝑒

−2𝐾 𝐴
1
2− = 𝐴

1
2− 𝐴+𝐴

1
2− , (3.30)

which is equivalent to

𝐴
1
2−𝑒−2𝐾 𝐴

1
2− =
(
𝐴

1
2− 𝐴+𝐴

1
2−
) 1

2 , namely 𝑒−2𝐾 = 𝐴
− 1

2−
(
𝐴

1
2− 𝐴+𝐴

1
2−
) 1

2 𝐴
− 1

2− . (3.31)

This implies the existence and uniqueness of the diagonalizing K as the operator exponential is a
bijection between the real, symmetric operators and the real, symmetric, positive-definite operators. �

4. The quasi-bosonic quadratic Hamiltonian

Now we turn to the quasi-bosonic setting. We start by casting the bosonizable terms 𝐻 ′
kin +

∑
𝑘∈𝑆𝐶 𝐻𝑘int,

which we encountered in Section 2.1, into a form which closely mirrors the form of the bosonic quadratic
Hamiltonians that we considered in the preceding section.

4.1. Quadratic Hamiltonian

Let us define the pair excitation operators

𝑏𝑘, 𝑝 = 𝑐∗𝑝−𝑘𝑐𝑝 , 𝑏∗𝑘, 𝑝 = 𝑐∗𝑝𝑐𝑝−𝑘 , 𝑘 ∈ Z3
∗, 𝑝 ∈ 𝐿𝑘 . (4.1)

We remark that in contrast to the bosonic case, the fermionic creation and annihilation operators are
bounded (in fact, ‖𝑐𝑝,𝜎 ‖Op = ‖𝑐∗𝑝,𝜎 ‖Op = 1), and therefore so are the operators 𝑏∗𝑘, 𝑝 , 𝑏𝑘, 𝑝 .

Then 𝐻𝑘int in (1.34) is exactly given by

𝐻𝑘int =
∑

𝑝,𝑞∈𝐿𝑘

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3

(
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 + 𝑏𝑘,𝑞𝑏

∗
𝑘, 𝑝

)
+
∑

𝑝,𝑞∈𝐿−𝑘

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3

(
𝑏∗−𝑘, 𝑝𝑏−𝑘,𝑞 + 𝑏−𝑘,𝑞𝑏

∗
−𝑘, 𝑝

)
+
∑
𝑝∈𝐿𝑘

∑
𝑞∈𝐿−𝑘

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3

(
𝑏∗𝑘, 𝑝𝑏

∗
−𝑘,𝑞 + 𝑏−𝑘,𝑞𝑏𝑘, 𝑝

)
+
∑
𝑝∈𝐿−𝑘

∑
𝑞∈𝐿𝑘

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3

(
𝑏∗−𝑘, 𝑝𝑏

∗
𝑘,𝑞 + 𝑏𝑘,𝑞𝑏−𝑘, 𝑝

)
. (4.2)

Thus, the natural one-body Hilbert space associated to 𝐻𝑘int is ℓ2(𝐿𝑘 ∪ 𝐿−𝑘 ). To free us from having
to explicitly write sums over 𝐿𝑘 and 𝐿−𝑘 separately, we introduce some more notation. First, we will
denote this union of lunes by

𝐿±
𝑘 = 𝐿𝑘 ∪ 𝐿−𝑘 , ℓ2 (𝐿±

𝑘

)
= ℓ2 (𝐿𝑘 ∪ 𝐿−𝑘 ) = ℓ2(𝐿𝑘 ) ⊕ ℓ2(𝐿−𝑘 ), 𝑘 ∈ Z3

+. (4.3)
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Here, we used the fact that 𝐿𝑘 ∩ 𝐿−𝑘 = ∅ for any 𝑘 ∈ Z3
+, since if 𝑝 ∈ 𝐿𝑘 ∩ 𝐿−𝑘 , then

2|𝑝 |2 ≥ |𝑝 − 𝑘 |2 + |𝑝 + 𝑘 |2 = 2|𝑝 |2 + 2|𝑘 |2 > 2|𝑝 |2,

which is a contradiction. It is also convenient to introduce the ‘bar-notation’

𝑘, 𝑝 =

{
𝑘, 𝑝 𝑝 ∈ 𝐿𝑘

−𝑘, 𝑝 𝑝 ∈ 𝐿−𝑘
, 𝑝 − 𝑘 =

{
𝑝 − 𝑘 𝑝 ∈ 𝐿𝑘

𝑝 + 𝑘 𝑝 ∈ 𝐿−𝑘
(4.4)

to automatically encode the appropriate sign of k depending on 𝑝 ∈ 𝐿±
𝑘 = 𝐿𝑘 ∪ 𝐿−𝑘 (this will allow us

to avoid expanding all our terms on a case-by-case basis when this is irrelevant).
In analogy with the definitions (3.3) and (3.4) we now define, for any 𝑘 ∈ Z3

+ and symmetric operators
𝐴, 𝐵 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ), the quadratic operators 𝑄𝑘1 (𝐴), 𝑄

𝑘
2 (𝐵) : H𝑁 → H𝑁 by

𝑄𝑘1 (𝐴) =
∑

𝑝,𝑞∈𝐿±
𝑘

〈
𝑒𝑝 , 𝐴𝑒𝑞

〉 (
𝑏∗
𝑘, 𝑝

𝑏𝑘,𝑞 + 𝑏𝑘,𝑞𝑏
∗
𝑘, 𝑝

)
,

𝑄𝑘2 (𝐵) =
∑

𝑝,𝑞∈𝐿±
𝑘

〈
𝑒𝑝 , 𝐵𝑒𝑞

〉 (
𝑏∗
𝑘, 𝑝

𝑏∗
𝑘,𝑞

+ 𝑏𝑘,𝑞𝑏𝑘, 𝑝

)
. (4.5)

In order to cast 𝐻𝑘int as given by equation (4.2) into this form, we must identify the relevant operators A
and B. Define the (un-normalized) rank-one projection 𝑃𝑣𝑘 : ℓ2(𝐿𝑘 ) → ℓ2(𝐿𝑘 ) by

𝑃𝑣𝑘 = |𝑣𝑘〉〈𝑣𝑘 |, 𝑣𝑘 =

√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐿𝑘

𝑒𝑝 ∈ ℓ2(𝐿𝑘 ), (4.6)

where (𝑒𝑝)𝑝∈𝐿𝑘 denotes the standard orthonormal basis of ℓ2(𝐿𝑘 ). Put differently, the matrix elements
of 𝑃𝑣𝑘 are

〈
𝑒𝑝 , 𝑃𝑣𝑘 𝑒𝑞

〉
= 1

2(2𝜋)3 𝑉̂𝑘 𝑘
−1
𝐹 for all 𝑝, 𝑞 ∈ 𝐿𝑘 . Next, we define the operators

𝐴⊕
𝑘 , 𝐵

⊕
𝑘 : ℓ2 (𝐿±

𝑘

)
→ ℓ2 (𝐿±

𝑘

)
, 𝐴⊕

𝑘 =

(
𝑃𝑣𝑘 0
0 𝑃𝑣𝑘

)
, 𝐵⊕

𝑘 =

(
0 𝑃𝑣𝑘
𝑃𝑣𝑘 0

)
(4.7)

with respect to the decomposition ℓ2(𝐿±
𝑘 ) = ℓ2(𝐿𝑘 ) ⊕ ℓ2(𝐿−𝑘 ) and the identification ℓ2(𝐿𝑘 ) � ℓ2(𝐿−𝑘 )

(under 𝑒𝑝 ↦→ 𝑒−𝑝).
Thus, the operator 𝐻𝑘int is concisely expressed as

𝐻𝑘int = 𝑄1
𝑘

(
𝐴⊕
𝑘

)
+𝑄2

𝑘

(
𝐵⊕
𝑘

)
. (4.8)

It remains to consider the kinetic operator. The equality (1.74) bids us to think of 𝐻 ′
kin as it were

𝐻 ′
kin ∼

∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

(
|𝑝 |2 − |𝑝 − 𝑘 |2

)
𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝

=
∑
𝑘∈Z3

+

( ∑
𝑝∈𝐿𝑘

(
|𝑝 |2 − |𝑝 − 𝑘 |2

)
𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 +

∑
𝑝∈𝐿−𝑘

(
|𝑝 |2 − |𝑝 + 𝑘 |2

)
𝑏∗−𝑘, 𝑝𝑏−𝑘, 𝑝

)
(4.9)

in an appropriate sense. To put this in the same framework as 𝐻𝑘int, let us introduce (for every 𝑘 ∈ Z3
+)

the operator ℎ𝑘 : ℓ2(𝐿𝑘 ) → ℓ2(𝐿𝑘 ) by

ℎ𝑘𝑒𝑝 = 𝜆𝑘, 𝑝𝑒𝑝 , 𝜆𝑘, 𝑝 =
1
2
(|𝑝 |2 − |𝑝 − 𝑘 |2). (4.10)
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Using again the identification ℓ2(𝐿𝑘 ) � ℓ2(𝐿−𝑘 ) (under 𝑒𝑝 ↦→ 𝑒−𝑝), we define the operators ℎ⊕
𝑘 :

ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ) by

ℎ⊕
𝑘 =

(
ℎ𝑘 0
0 ℎ𝑘

)
. (4.11)

Then we can rewrite (4.9) as

𝐻 ′
kin ∼

∑
𝑘∈Z3

+

(
𝑄𝑘1 (ℎ

⊕
𝑘 ) − 2 tr(ℎ𝑘 )

)
. (4.12)

Recall that 𝑆𝐶 = 𝐵
(
0, 𝑘𝛾𝐹

)
∩ Z3

+ for an exponent 1 ≥ 𝛾 > 0 which is to be optimized over at the end.
As far as the lower bound is concerned, we may replace

∑
𝑘∈Z+ by

∑
𝑘∈𝑆𝐶 (the upper bound is easier and

will be explained separately). In summary, we arrive at the following quasi-bosonic expression for the
bosonizable terms:

𝐻 ′
kin +

∑
𝑘∈𝑆𝐶

𝐻𝑘int ∼
∑
𝑘∈𝑆𝐶

(
𝑄𝑘1 (ℎ

⊕
𝑘 + 𝐴⊕

𝑘 ) +𝑄𝑘2 (𝐵
⊕
𝑘 ) − 2 tr(ℎ𝑘 )

)
. (4.13)

Note that unlike the bosonic case, the operators on the right side of (4.13) are bounded.

4.2. Generalized pair operators

For every 𝑘 ∈ Z3
+ and 𝜑 ∈ ℓ2(𝐿±

𝑘 ), we define the operators

𝑏𝑘 (𝜑) =
∑
𝑝∈𝐿±

𝑘

〈
𝜑, 𝑒𝑝

〉
𝑏𝑘, 𝑝 , 𝑏∗𝑘 (𝜑) =

∑
𝑝∈𝐿±

𝑘

〈
𝑒𝑝 , 𝜑

〉
𝑏∗
𝑘, 𝑝

. (4.14)

They obey the quasi-bosonic commutation relations (for 𝑘, 𝑙 ∈ Z3
+ and 𝜑 ∈ ℓ2(𝐿±

𝑘 ), 𝜓 ∈ ℓ2 (𝐿±
𝑙

)
)

[𝑏𝑘 (𝜑), 𝑏𝑙 (𝜓)] =
[
𝑏∗𝑘 (𝜑), 𝑏

∗
𝑙 (𝜓)

]
= 0,[

𝑏𝑘 (𝜑), 𝑏∗𝑙 (𝜓)
]
= 𝛿𝑘,𝑙 〈𝜑, 𝜓〉 + 𝜀𝑘,𝑙 (𝜑;𝜓) , (4.15)

where the correction term is

𝜀𝑘,𝑙 (𝜑;𝜓) =
∑
𝑝∈𝐿±

𝑘

∑
𝑞∈𝐿±

𝑙

〈
𝜑, 𝑒𝑝

〉 〈
𝑒𝑞 , 𝜓

〉
𝜀
(
𝑘, 𝑝; 𝑙, 𝑞

)
,

𝜀
(
𝑘, 𝑝; 𝑙, 𝑞

)
= −
(
𝛿𝑝,𝑞𝑐𝑞−𝑙𝑐

∗
𝑝−𝑘

+ 𝛿𝑝−𝑘,𝑞−𝑙𝑐
∗
𝑞𝑐𝑝

)
. (4.16)

We simply have 𝑏𝑘 (𝑒𝑝) = 𝑏𝑘, 𝑝 and the quadratic operators in (4.5) can be expressed as

𝑄𝑘1 (𝐴) =
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝐴𝑒𝑝)𝑏𝑘 (𝑒𝑝) + 𝑏𝑘 (𝑒𝑝)𝑏∗𝑘 (𝐴𝑒𝑝)

)
𝑄𝑘2 (𝐵) =

∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘
(
𝐵𝑒𝑝
)
𝑏∗𝑘 (𝑒𝑝) + 𝑏𝑘 (𝑒𝑝)𝑏𝑘

(
𝐵𝑒𝑝
) )

(4.17)

in analogy with equation (3.5). In order to justify the quasi-bosonic interpretation, we need rigorous
estimates for the correction term in (4.16). Let us start with the following:
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Proposition 4.1. For all 𝑘 ∈ Z3
+ and 𝜑 ∈ ℓ2(𝐿±

𝑘 ), it holds that 𝜀𝑘,𝑘 (𝜑, 𝜑) ≤ 0, namely,

𝑏𝑘 (𝜑)𝑏∗𝑘 (𝜑) ≤ 𝑏∗𝑘 (𝜑)𝑏𝑘 (𝜑) + ‖𝜑‖2 .

Note that the observation of the error term 𝜀𝑘,𝑘 being non-positive also appeared in [5, Proof of
Lemma 4.2] in the context of different bosonic operators.

Proof. We expand the term

𝜀𝑘,𝑘 (𝜑; 𝜑) =
∑

𝑝,𝑞∈𝐿±
𝑘

〈
𝜑, 𝑒𝑝

〉 〈
𝑒𝑞 , 𝜑

〉
𝜀
(
𝑘, 𝑝; 𝑘, 𝑞

)
= −

∑
𝑝,𝑞∈𝐿±

𝑘

〈
𝜑, 𝑒𝑝

〉 〈
𝑒𝑞 , 𝜑

〉 (
𝛿𝑝,𝑞𝑐𝑞−𝑘𝑐

∗
𝑝−𝑘

+ 𝛿𝑝−𝑘,𝑞−𝑘𝑐
∗
𝑞𝑐𝑝

)
= −

∑
𝑝∈𝐿±

𝑘

11〈𝑒𝑝 , 𝜑〉112 𝑐𝑝−𝑘𝑐∗𝑝−𝑘 − ∑
𝑝,𝑞∈𝐿±

𝑘

𝛿𝑝−𝑘,𝑞−𝑘
〈
𝜑, 𝑒𝑝

〉 〈
𝑒𝑞 , 𝜑

〉
𝑐∗𝑞𝑐𝑝 (4.18)

≤ −
∑

𝑝,𝑞∈𝐿±
𝑘

𝛿𝑝−𝑘,𝑞−𝑘
〈
𝜑, 𝑒𝑝

〉 〈
𝑒𝑞 , 𝜑

〉
𝑐∗𝑞𝑐𝑝 .

We treat the terms of the last sum on a case-by-case basis according to which of 𝐿𝑘 and 𝐿−𝑘 , p and q
lie in: if p and q lie in the same lune, then 𝛿𝑝−𝑘,𝑞−𝑘 = 𝛿𝑝∓𝑘,𝑞∓𝑘 = 𝛿𝑝,𝑞 and so

𝐴 =

( ∑
𝑝,𝑞∈𝐿𝑘

+
∑

𝑝,𝑞∈𝐿−𝑘

)
𝛿𝑝−𝑘,𝑞−𝑘

〈
𝜑, 𝑒𝑝

〉 〈
𝑒𝑞 , 𝜑

〉
𝑐∗𝑞𝑐𝑝 =

∑
𝑝∈𝐿±

𝑘

11〈𝑒𝑝 , 𝜑〉112 𝑐∗𝑝𝑐𝑝 ≥ 0. (4.19)

However, by the Cauchy–Schwarz inequality,

±
( ∑
𝑝∈𝐿𝑘

∑
𝑞∈𝐿−𝑘

+
∑
𝑝∈𝐿−𝑘

∑
𝑞∈𝐿𝑘

)
𝛿𝑝−𝑘,𝑞−𝑘

〈
𝜑, 𝑒𝑝

〉 〈
𝑒𝑞 , 𝜑

〉
𝑐∗𝑞𝑐𝑝

≤
( ∑
𝑝∈𝐿𝑘

∑
𝑞∈𝐿−𝑘

+
∑
𝑝∈𝐿−𝑘

∑
𝑞∈𝐿𝑘

)
1
2

(
𝛿𝑝−𝑘,𝑞−𝑘 |

〈
𝜑, 𝑒𝑝

〉
|2𝑐∗𝑝𝑐𝑝 + |

〈
𝑒𝑞 , 𝜑

〉
|2𝑐∗𝑞𝑐𝑞

)
(4.20)

≤
∑
𝑝∈𝐿±

𝑘

11〈𝑒𝑝 , 𝜑〉112 𝑐∗𝑝𝑐𝑝 = 𝐴.

We thus conclude that 𝜀𝑘,𝑘 (𝜑, 𝜑) ≤ 0 as claimed. �

Next, we have the following:

Proposition 4.2. For all 𝑘 ∈ Z3
+, 𝜑 ∈ ℓ2(𝐿±

𝑘 ) and Ψ ∈ H𝑁 , it holds that

‖𝑏𝑘 (𝜑)Ψ‖ ≤ ‖𝜑‖
√
〈Ψ,N𝐸Ψ〉,

��𝑏∗𝑘 (𝜑)Ψ�� ≤ ‖𝜑‖
√
〈Ψ, (1 +N𝐸 ) Ψ〉.

The bounds here are similar to [5, Lemma 4.2]. Recall that in our quasi-bosonic setting the excitation
number operator

N𝐸 =
∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝 =
∑
𝑝∈𝐵𝐹

𝑐𝑝𝑐
∗
𝑝 (4.21)
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plays the role that the usual number operator N does in the exact bosonic case. Thus, Proposition 4.2 is
the analogue of the well-known bosonic estimate

‖𝑎(𝜑)Ψ‖ ≤ ‖𝜑‖
√
〈Ψ,NΨ〉, ‖𝑎∗(𝜑)Ψ‖ ≤ ‖𝜑‖

√
〈Ψ, (1 +N ) Ψ〉. (4.22)

Proof. By the Cauchy-Schwarz inequality,

‖𝑏𝑘 (𝜑)Ψ‖ =

������ ∑𝑝∈𝐿±
𝑘

〈
𝜑, 𝑒𝑝

〉
𝑏𝑘, 𝑝Ψ

������ ≤
√∑
𝑝∈𝐿±

𝑘

11〈𝜑, 𝑒𝑝〉112√√∑
𝑝∈𝐿±

𝑘

���𝑏𝑘, 𝑝Ψ���2
≤ ‖𝜑‖

√∑
𝑝∈𝐿±

𝑘

��𝑐𝑝Ψ��2 ≤ ‖𝜑‖
√
〈Ψ,N𝐸Ψ〉. (4.23)

The second bound follows from the first and Proposition 4.1. �

We remark that the above estimate is also valid for Ψ ∈ H𝑀 when 𝑀 ≠ 𝑁 , providedN𝐸 is understood
as
∑
𝑝∈𝐵𝑐𝐹 𝑐∗𝑝𝑐𝑝 acting on H𝑀 (in (4.23) we used 𝐿±

𝑘 ⊂ 𝐵𝑐𝐹 ). One must be precise here as the identity
N𝐸 =

∑
𝑝∈𝐵𝐹 𝑐𝑝𝑐

∗
𝑝 does not hold on H𝑀 . In fact, the estimate also holds if N𝐸 is understood as∑

𝑝∈𝐵𝐹 𝑐𝑝𝑐
∗
𝑝 , up to an additional factor of

√
2 due to the necessary overcounting of the holes,7 namely,

from
���𝑏𝑘, 𝑝Ψ��� = ���𝑐∗𝑝−𝑘𝑐𝑝Ψ��� ≤ ���𝑐∗𝑝−𝑘Ψ��� with 𝑝 − 𝑘 ∈ 𝐵𝐹 , we get

‖𝑏𝑘 (𝜑)Ψ‖ ≤ ‖𝜑‖
√√∑
𝑝∈𝐿±

𝑘

���𝑐∗
𝑝−𝑘

Ψ
���2 ≤

√
2 ‖𝜑‖

√√√〈
Ψ,

( ∑
𝑝∈𝐵𝐹

𝑐𝑝𝑐
∗
𝑝

)
Ψ

〉
. (4.24)

This is a point that we must consider, since below we will also encounter expressions such as
��𝑏𝑘 (𝜑)𝑐𝑝Ψ��

for Ψ ∈ H𝑁 (so that 𝑐𝑝Ψ ∈ H𝑁−1). For this, we denote by N (−1)
𝐸 : H𝑁−1 → H𝑁−1 and N (+1)

𝐸 :
H𝑁+1 → H𝑁+1 the operators

N (−1)
𝐸 =

∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝 , N (+1)
𝐸 =

∑
𝑝∈𝐵𝐹

𝑐𝑝𝑐
∗
𝑝 . (4.25)

This choice is motivated by the following identities:
Lemma 4.3. For all 𝑝 ∈ 𝐵𝑐𝐹 and 𝑞 ∈ 𝐵𝐹 , it holds that

N𝐸𝑐
∗
𝑝 = 𝑐∗𝑝N

(−1)
𝐸 + 𝑐∗𝑝 , 𝑐𝑝N (−1)

𝐸 𝑐∗𝑝 ≤ N𝐸 ,

N𝐸𝑐𝑞 = 𝑐𝑞N (+1)
𝐸 + 𝑐𝑞 , 𝑐∗𝑞N

(+1)
𝐸 𝑐𝑞 ≤ N𝐸 .

Consequently, ∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝N
(−1)
𝐸 𝑐𝑝 = N 2

𝐸 −N𝐸 =
∑
𝑝∈𝐵𝐹

𝑐𝑝N (+1)
𝐸 𝑐∗𝑝 .

Proof. This follows directly by the CAR, as for all 𝑝 ∈ 𝐵𝑐𝐹 ,

N𝐸𝑐
∗
𝑝 =

∑
𝑞∈𝐵𝑐𝐹

𝑐∗𝑞𝑐𝑞𝑐
∗
𝑝 =

∑
𝑞∈𝐵𝑐𝐹

𝑐∗𝑝𝑐
∗
𝑞𝑐𝑞 +

∑
𝑞∈𝐵𝑐𝐹

(
𝑐∗𝑞
{
𝑐𝑞 , 𝑐

∗
𝑝

}
−
{
𝑐∗𝑞 , 𝑐

∗
𝑝

}
𝑐𝑞

)
= 𝑐∗𝑝N

(−1)
𝐸 + 𝑐∗𝑝 . (4.26)

7While 𝐿𝑘 ∩ 𝐿−𝑘 = ∅, it is generally the case that (𝐿𝑘 − 𝑘) ∩ (𝐿−𝑘 + 𝑘) ≠ ∅ (a single hole state may be ‘shared’ by both
lunes), so when estimating in terms of a single sum over 𝑝 ∈ 𝐵𝐹 , a factor of 2 is often necessary.
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Consequently, using ‖𝑐𝑝 ‖Op = 1 and [N𝐸 , 𝑐
∗
𝑝𝑐𝑝] = 0, we have

N𝐸 ≥ N𝐸𝑐
∗
𝑝𝑐𝑝 = 𝑐∗𝑝N

(−1)
𝐸 𝑐𝑝 + 𝑐∗𝑝𝑐𝑝 ≥ 𝑐∗𝑝N

(−1)
𝐸 𝑐𝑝 . (4.27)

Likewise, for all 𝑞 ∈ 𝐵𝐹 ,

N𝐸𝑐𝑞 =
∑
𝑝∈𝐵𝐹

𝑐𝑝𝑐
∗
𝑝𝑐𝑞 =

∑
𝑝∈𝐵𝐹

𝑐𝑞𝑐𝑝𝑐
∗
𝑝 +
∑
𝑝∈𝐵𝐹

(
𝑐𝑝
{
𝑐∗𝑝 , 𝑐𝑞

}
−
{
𝑐𝑝 , 𝑐𝑞

}
𝑐∗𝑝

)
= 𝑐𝑞N (+1)

𝐸 + 𝑐𝑞 , (4.28)

and hence, N𝐸 ≥ 𝑐∗𝑞N
(+1)
𝐸 𝑐𝑞 . Moreover,∑

𝑝∈𝐵𝑐𝐹

𝑐∗𝑝N
(−1)
𝐸 𝑐𝑝 =

∑
𝑝∈𝐵𝑐𝐹

(
N𝐸𝑐

∗
𝑝 − 𝑐∗𝑝

)
𝑐𝑝 = N 2

𝐸 −N𝐸 =
∑
𝑝∈𝐵𝐹

(
N𝐸𝑐𝑝 − 𝑐𝑝

)
𝑐∗𝑝

=
∑
𝑝∈𝐵𝐹

𝑐𝑝N (+1)
𝐸 𝑐∗𝑝 . (4.29)

�

In some cases, it is important to refine error estimates by using the kinetic operator 𝐻 ′
kin rather than

N𝐸 . We can implement the kinetic estimate of Proposition 2.2 in the generalized setting:

Proposition 4.4. For all 𝑘 ∈ Z3
+, 𝜑 ∈ ℓ2(𝐿±

𝑘 ) and Ψ ∈ 𝐷
(
𝐻 ′

kin
)
, it holds that

‖𝑏𝑘 (𝜑)Ψ‖ ≤
���(ℎ⊕

𝑘

)− 1
2 𝜑
���√〈Ψ, 𝐻 ′

kinΨ
〉
,
��𝑏∗𝑘 (𝜑)Ψ�� ≤ ���(ℎ⊕

𝑘

)− 1
2 𝜑
���√〈Ψ, 𝐻 ′

kinΨ
〉
+ ‖𝜑‖ ‖Ψ‖ .

Proof. We start by applying the Cauchy-Schwarz inequality

‖𝑏𝑘 (𝜑)Ψ‖ =

������ ∑𝑝∈𝐿±
𝑘

〈
𝜑, 𝑒𝑝

〉
𝑏𝑘, 𝑝Ψ

������ ≤
√∑
𝑝∈𝐿±

𝑘

𝜆−1
𝑘, 𝑝

11〈𝜑, 𝑒𝑝〉112√√∑
𝑝∈𝐿±

𝑘

𝜆𝑘, 𝑝

���𝑏𝑘, 𝑝Ψ���2. (4.30)

As the vectors (𝑒𝑝)𝑝∈𝐿±
𝑘

obey ℎ⊕
𝑘 𝑒𝑝 = 𝜆𝑘, 𝑝𝑒𝑝 , we recognize the first sum on the right-hand side as

∑
𝑝∈𝐿±

𝑘

𝜆−1
𝑘, 𝑝

11〈𝜑, 𝑒𝑝〉112 =
〈
𝜑,
(
ℎ⊕
𝑘

)−1
𝜑
〉
=
���(ℎ⊕

𝑘

)− 1
2 𝜑
���2 . (4.31)

For the second sum, we have by equation (2.4) that∑
𝑝∈𝐿±

𝑘

𝜆𝑘, 𝑝

���𝑏𝑘, 𝑝Ψ���2 =
∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

���𝑐∗𝑝−𝑘𝑐𝑝Ψ���2 + ∑
𝑝∈𝐿−𝑘

𝜆−𝑘, 𝑝

���𝑐∗𝑝+𝑘𝑐𝑝Ψ���2 ≤
〈
Ψ, 𝐻 ′

kinΨ
〉
, (4.32)

which implies the first claim. The second bound follows from the first and Proposition 4.1:

��𝑏∗𝑘 (𝜑)Ψ�� ≤
√√√〈

Ψ,

(����(ℎ⊕
𝑘

)− 1
2
𝜑

����2 𝐻 ′
kin + ‖𝜑‖2

)
Ψ

〉
≤
���(ℎ⊕

𝑘

)− 1
2 𝜑
���√〈Ψ, 𝐻 ′

kinΨ
〉
+ ‖𝜑‖ ‖Ψ‖ . (4.33)

�
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4.3. Preliminary estimates for quadratic operators

In this subsection, we provide some basic bounds on the quadratic operators 𝑄𝑘1 (𝐴) and 𝑄𝑘1 (𝐵) defined
in (4.5) for any 𝑘 ∈ Z3

+. First, for 𝑄𝑘1 (𝐴), we can normal order as follows:

𝑄𝑘1 (𝐴) =
∑
𝑝∈𝐿±

𝑘

(
2 𝑏∗𝑘 (𝐴𝑒𝑝)𝑏𝑘 (𝑒𝑝) +

[
𝑏𝑘 (𝑒𝑝), 𝑏∗𝑘 (𝐴𝑒𝑝)

] )
= 2
∑
𝑝∈𝐿±

𝑘

𝑏∗𝑘 (𝐴𝑒𝑝)𝑏𝑘 (𝑒𝑝) +
∑
𝑝∈𝐿±

𝑘

〈
𝑒𝑝 , 𝐴𝑒𝑝

〉
+
∑
𝑝∈𝐿±

𝑘

𝜀𝑘,𝑘
(
𝑒𝑝; 𝐴𝑒𝑝

)
(4.34)

= 2 𝑄̃𝑘1 (𝐴) + tr(𝐴) + 𝜀𝑘 (𝐴),

where for brevity, we have defined the notation

𝑄̃𝑘1 (𝐴) =
∑
𝑝∈𝐿±

𝑘

𝑏∗𝑘 (𝐴𝑒𝑝)𝑏𝑘 (𝑒𝑝), 𝜀𝑘 (𝐴) =
∑
𝑝∈𝐿±

𝑘

𝜀𝑘,𝑘
(
𝑒𝑝; 𝐴𝑒𝑝

)
. (4.35)

The term 𝑄̃𝑘1 (𝐴) plays the same role of dΓ(𝐴) in the exact bosonic case, whereas 𝜀𝑘 (𝐴) is a correction
term in the quasi-bosonic case.

Proposition 4.5. For all 𝑘 ∈ Z3
+, symmetric 𝐴 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ H𝑁 , it holds that11〈Ψ, 𝑄̃𝑘1 (𝐴)Ψ

〉11 ≤ ‖𝐴‖Op 〈Ψ,N𝐸Ψ〉 ,
|〈Ψ, 𝜀𝑘 (𝐴)Ψ〉| ≤ 3 ‖𝐴‖Op 〈Ψ,N𝐸Ψ〉 .

If furthermore, 𝐴 ≥ 0, then also 𝑄̃𝑘1 (𝐴) ≥ 0.

Proof. Let (𝑥𝑖)𝑖 be an eigenbasis for A with eigenvalues (𝜆𝑖)𝑖 . Noting that the mapping 𝑥, 𝑦 ↦→
𝑏∗𝑘 (𝐴𝑥) 𝑏𝑘 (𝑦) is bilinear, we may invoke Lemma 3.3 (the part of basis independence) to write

𝑄̃𝑘1 (𝐴) =
∑
𝑖

𝑏∗𝑘 (𝐴𝑥𝑖) 𝑏𝑘 (𝑥𝑖) =
∑
𝑖

𝜆𝑖𝑏
∗
𝑘 (𝑥𝑖)𝑏𝑘 (𝑥𝑖). (4.36)

Clearly, if 𝐴 ≥ 0, then all 𝜆𝑖 ≥ 0, and hence, 𝑄̃𝑘1 (𝐴) ≥ 0. In general, we always have |𝜆𝑖 | ≤ ‖𝐴‖Op for
all i. Hence, using Lemma 3.3 again and 𝑏∗

𝑘, 𝑝
𝑏𝑘, 𝑝 ≤ 𝑐∗𝑝𝑐𝑝 , we have

±𝑄̃𝑘1 (𝐴) ≤ ‖𝐴‖Op

∑
𝑖

𝑏∗𝑘 (𝑥𝑖)𝑏𝑘 (𝑥𝑖) = ‖𝐴‖Op

∑
𝑝∈𝐿±

𝑘

𝑏∗
𝑘, 𝑝

𝑏𝑘, 𝑝 ≤ ‖𝐴‖Op

∑
𝑝∈𝐿±

𝑘

𝑐∗𝑝𝑐𝑝 ≤ ‖𝐴‖Op N𝐸 .

(4.37)

Similarly,

±𝜀𝑘 (𝐴) = ±
∑
𝑖

𝜀𝑘,𝑘 (𝑥𝑖; 𝐴𝑥𝑖) = ±
∑
𝑖

𝜆𝑖𝜀𝑘,𝑘 (𝑥𝑖; 𝑥𝑖)

≤ −‖𝐴‖Op
∑
𝑖

𝜀𝑘,𝑘 (𝑥𝑖; 𝑥𝑖) = −‖𝐴‖Op
∑
𝑝∈𝐿±

𝑘

𝜀𝑘,𝑘
(
𝑒𝑝; 𝑒𝑝

)
, (4.38)
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where in the first inequality we used the fact that 𝜀𝑘,𝑘 (𝑥𝑖; 𝑥𝑖) ≤ 0 as shown in the proof of Proposition
4.1. Using 𝜀𝑘,𝑘 (𝑒𝑝; 𝑒𝑝) = 𝜀(𝑘, 𝑝; 𝑙, 𝑞) and the definition (4.16), we get

−
∑
𝑝∈𝐿±

𝑘

𝜀
(
𝑘, 𝑝; 𝑘, 𝑝

)
=
∑
𝑝∈𝐿±

𝑘

(
𝑐𝑝−𝑘𝑐

∗
𝑝−𝑘

+ 𝑐∗𝑝𝑐𝑝
)
≤ 2

∑
𝑝∈𝐵𝐹

𝑐𝑝𝑐
∗
𝑝 +
∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝 = 3N𝐸 , (4.39)

which implies the desired claim. �

From these results and equation (4.34), we immediately obtain the following:

Proposition 4.6. For all 𝑘 ∈ Z3
+, symmetric 𝐴 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ H𝑁 , it holds that111〈Ψ,

(
𝑄𝑘1 (𝐴) − tr(𝐴)

)
Ψ
〉111 ≤ 5 ‖𝐴‖Op 〈Ψ,N𝐸Ψ〉 .

Next, we turn to 𝑄𝑘2 (𝐵).

Proposition 4.7. For all 𝑘 ∈ Z3
+, symmetric 𝐵 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ H𝑁 , it holds that11〈Ψ, 𝑄𝑘2 (𝐵)Ψ

〉11 ≤ 2 ‖𝐵‖HS
√
〈Ψ, (1 +N𝐸 ) Ψ〉 〈Ψ,N𝐸Ψ〉 ≤ 2 ‖𝐵‖HS 〈Ψ, (1 +N𝐸 ) Ψ〉 .

Proof. We have (using that the 𝑏𝑘 operators commute)〈
Ψ, 𝑄𝑘2 (𝐵)Ψ

〉
=
∑
𝑝∈𝐿±

𝑘

〈
Ψ,
(
𝑏∗𝑘
(
𝐵𝑒𝑝
)
𝑏∗𝑘 (𝑒𝑝) + 𝑏𝑘 (𝑒𝑝)𝑏𝑘

(
𝐵𝑒𝑝
) )
Ψ
〉

= 2
∑
𝑝∈𝐿±

𝑘

Re
〈
𝑏∗𝑘
(
𝐵𝑒𝑝
)
Ψ, 𝑏𝑘 (𝑒𝑝)Ψ

〉
, (4.40)

so using the estimates of Proposition 4.2 and the Cauchy-Schwarz inequality, we conclude that11〈Ψ, 𝑄𝑘2 (𝐵)Ψ
〉11 ≤ 2

∑
𝑝∈𝐿±

𝑘

��𝑏∗𝑘 (𝐵𝑒𝑝 ) Ψ�� ��𝑏𝑘 (𝑒𝑝)Ψ�� ≤ 2
√
〈Ψ, (1 +N𝐸 ) Ψ〉

∑
𝑝∈𝐿±

𝑘

��𝐵𝑒𝑝�� ���𝑏𝑘, 𝑝Ψ���
≤ 2
√
〈Ψ, (1 +N𝐸 ) Ψ〉

√∑
𝑝∈𝐿±

𝑘

��𝐵𝑒𝑝��2√√∑
𝑝∈𝐿±

𝑘

���𝑏𝑘, 𝑝Ψ���2
≤ 2 ‖𝐵‖HS 〈Ψ, (1 +N𝐸 ) Ψ〉 , (4.41)

where we again used that
���𝑏𝑘, 𝑝Ψ��� ≤ ��𝑐𝑝Ψ��. �

Kinetic estimates for quadratic operators
Finally, let us improve the estimates in this subsection by using the kinetic operator 𝐻 ′

kin instead of the
number operator N𝐸 .

Proposition 4.8. For all 𝑘 ∈ Z3
+, symmetric 𝐴 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ 𝐷

(
𝐻 ′

kin
)
, it holds that11〈Ψ, 𝑄̃𝑘1 (𝐴)Ψ

〉11 ≤ ���(ℎ⊕
𝑘

)− 1
2 𝐴
(
ℎ⊕
𝑘

)− 1
2
���

Op

〈
Ψ, 𝐻 ′

kinΨ
〉
.

Proof. Let (𝑥𝑖)𝑖 be an eigenbasis for (ℎ⊕
𝑘 )

− 1
2 𝐴(ℎ⊕

𝑘 )
− 1

2 with eigenvalues (𝜇𝑖)𝑖 . By Lemma 3.3, we then
see that we may write 𝑄̃𝑘1 (𝐴) as
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𝑄̃𝑘1 (𝐴) =
∑
𝑖

𝑏∗𝑘 (𝐴𝑥𝑖) 𝑏𝑘 (𝑥𝑖) =
∑
𝑖

𝑏∗𝑘

( (
ℎ⊕
𝑘

) 1
2
(
ℎ⊕
𝑘

)− 1
2 𝐴
(
ℎ⊕
𝑘

)− 1
2
(
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
𝑏𝑘 (𝑥𝑖)

=
∑
𝑖

𝑏∗𝑘

( (
ℎ⊕
𝑘

) 1
2
(
ℎ⊕
𝑘

)− 1
2 𝐴
(
ℎ⊕
𝑘

)− 1
2 𝑥𝑖

)
𝑏𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
(4.42)

=
∑
𝑖

𝜇𝑖𝑏
∗
𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
𝑏𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
,

and so we can estimate11〈Ψ, 𝑄̃𝑘1 (𝐴)Ψ
〉11 ≤ ( max

1≤𝑖≤|𝐿±
𝑘 |
|𝜇𝑖 |
)∑

𝑖

〈
Ψ, 𝑏∗𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
𝑏𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
Ψ
〉

(4.43)

=
���(ℎ⊕

𝑘

)− 1
2 𝐴
(
ℎ⊕
𝑘

)− 1
2
���

Op

〈
Ψ,
∑
𝑖

𝑏∗𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
𝑏𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
Ψ

〉
.

Applying Lemma 3.3 again, we also see that∑
𝑖

𝑏∗𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
𝑏𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑥𝑖

)
=
∑
𝑝∈𝐿±

𝑘

𝑏∗𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑒𝑝

)
𝑏𝑘

( (
ℎ⊕
𝑘

) 1
2 𝑒𝑝

)
=
∑
𝑝∈𝐿±

𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝

𝑏𝑘, 𝑝 , (4.44)

so by equation (4.32), we obtain the desired bound of11〈Ψ, 𝑄̃𝑘1 (𝐴)Ψ
〉11 ≤ ���(ℎ⊕

𝑘

)− 1
2 𝐴
(
ℎ⊕
𝑘

)− 1
2
���

Op

〈
Ψ, 𝐻 ′

kinΨ
〉
. (4.45)

�

Next are the 𝜀𝑘 (𝐴) terms. These we cannot estimate in terms of 𝐻 ′
kin, but for A of diagonal form, we

can still control them strongly:

Proposition 4.9. For all 𝑘 ∈ Z3
+, symmetric 𝐴⊕ =

(
𝐴 0
0 𝐴

)
: ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ H𝑁 , it holds

that 11〈Ψ, 𝜀𝑘
(
𝐴⊕ ) Ψ〉11 ≤ 3

(
max
𝑝∈𝐿𝑘

11〈𝑒𝑝 , 𝐴𝑒𝑝〉11) 〈Ψ,N𝐸Ψ〉 .

Proof. By the assumed form of 𝐴⊕, we may write 𝜀𝑘
(
𝐴⊕ ) as

𝜀𝑘
(
𝐴⊕ ) = ∑

𝑝∈𝐿±
𝑘

𝜀𝑘,𝑘
(
𝑒𝑝; 𝐴⊕𝑒𝑝

)
=
∑

𝑝,𝑞∈𝐿±
𝑘

〈
𝑒𝑞 , 𝐴

⊕𝑒𝑝
〉
𝜀𝑘,𝑘

(
𝑘, 𝑝; 𝑘, 𝑞

)
= −

∑
𝑝,𝑞∈𝐿±

𝑘

〈
𝑒𝑞 , 𝐴

⊕𝑒𝑝
〉 (

𝛿𝑝,𝑞𝑐𝑞−𝑘𝑐
∗
𝑝−𝑘

+ 𝛿𝑝−𝑘,𝑞−𝑘𝑐
∗
𝑞𝑐𝑝

)
= −

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑞 , 𝐴𝑒𝑝

〉 (
𝛿𝑝,𝑞𝑐𝑞−𝑘𝑐

∗
𝑝−𝑘 + 𝛿𝑝−𝑘,𝑞−𝑘𝑐

∗
𝑞𝑐𝑝

)
(4.46)

−
∑

𝑝,𝑞∈𝐿−𝑘

〈
𝑒−𝑞 , 𝐴𝑒−𝑝

〉 (
𝛿𝑝,𝑞𝑐𝑞+𝑘𝑐

∗
𝑝+𝑘 + 𝛿𝑝+𝑘,𝑞+𝑘𝑐

∗
𝑞𝑐𝑝

)
= −

∑
𝑝∈𝐿𝑘

〈
𝑒𝑝 , 𝐴𝑒𝑝

〉 (
𝑐𝑝−𝑘𝑐

∗
𝑝−𝑘 + 𝑐∗𝑝𝑐𝑝

)
−
∑
𝑝∈𝐿−𝑘

〈
𝑒−𝑝 , 𝐴𝑒−𝑝

〉 (
𝑐𝑝+𝑘𝑐

∗
𝑝+𝑘 + 𝑐∗𝑝𝑐𝑝

)
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since the terms with 𝑝 ∈ 𝐿𝑘 , 𝑞 ∈ 𝐿−𝑘 or 𝑝 ∈ 𝐿−𝑘 , 𝑞 ∈ 𝐿𝑘 vanish (because 𝐿𝑘 ∩ 𝐿−𝑘 = ∅ and there are
𝛿𝑝,𝑞 , 𝛿𝑝−𝑘,𝑞−𝑘 in the summand). We can thus estimate11〈Ψ, 𝜀𝑘

(
𝐴⊕ ) Ψ〉11 ≤ ∑

𝑝∈𝐿𝑘

11〈𝑒𝑝 , 𝐴𝑒𝑝〉11 〈Ψ,
(
𝑐𝑝−𝑘𝑐

∗
𝑝−𝑘 + 𝑐∗𝑝𝑐𝑝

)
Ψ
〉

+
∑
𝑝∈𝐿−𝑘

11〈𝑒−𝑝 , 𝐴𝑒−𝑝〉11 〈Ψ,
(
𝑐𝑝+𝑘𝑐

∗
𝑝+𝑘 + 𝑐∗𝑝𝑐𝑝

)
Ψ
〉

(4.47)

≤
(
max
𝑝∈𝐿𝑘

11〈𝑒𝑝 , 𝐴𝑒𝑝〉11) 〈Ψ,
!"#
∑
𝑝∈𝐿±

𝑘

𝑐∗𝑝𝑐𝑝 +
∑

𝑝∈𝐿𝑘−𝑘
𝑐𝑝𝑐

∗
𝑝 +

∑
𝑝∈𝐿−𝑘+𝑘

𝑐𝑝𝑐
∗
𝑝
$%&Ψ
〉

≤ 3
(
max
𝑝∈𝐿𝑘

11〈𝑒𝑝 , 𝐴𝑒𝑝〉11) 〈Ψ,N𝐸Ψ〉 .

�
Lastly, we consider the 𝑄𝑘2 (𝐵) terms:

Proposition 4.10. For all 𝑘 ∈ Z3
+, symmetric 𝐵 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ 𝐷

(
𝐻 ′

kin
)
, it holds that11〈Ψ, 𝑄𝑘2 (𝐵)Ψ

〉11 ≤ 2
���(ℎ⊕

𝑘

)− 1
2 𝐵
(
ℎ⊕
𝑘

)− 1
2
���

HS

〈
Ψ, 𝐻 ′

kinΨ
〉
+ 2
���𝐵 (ℎ⊕

𝑘

)− 1
2
���

HS

√〈
Ψ, 𝐻 ′

kinΨ
〉
‖Ψ‖ .

Proof. By the Cauchy-Schwarz inequality and Proposition 4.4, we have

11〈Ψ, 𝑄𝑘2 (𝐵)Ψ
〉11 = 1111112 ∑𝑝∈𝐿±

𝑘

Re
(〈
Ψ, 𝑏𝑘

(
𝐵𝑒𝑝
)
𝑏𝑘 (𝑒𝑝)Ψ

〉)111111 ≤ 2
∑
𝑝∈𝐿±

𝑘

��𝑏∗𝑘 (𝐵𝑒𝑝 ) Ψ�� ��𝑏𝑘 (𝑒𝑝)Ψ��
≤ 2

∑
𝑝∈𝐿±

𝑘

(���(ℎ⊕
𝑘

)− 1
2 𝐵𝑒𝑝

���√〈Ψ, 𝐻 ′
kinΨ
〉
+
��𝐵𝑒𝑝�� ‖Ψ‖

) ��𝑏𝑘 (𝑒𝑝)Ψ�� (4.48)

≤ 2
√〈

Ψ, 𝐻 ′
kinΨ
〉 ∑
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝐵𝑒𝑝

��� ��𝑏𝑘 (𝑒𝑝)Ψ�� + 2 ‖Ψ‖
∑
𝑝∈𝐿±

𝑘

��𝐵𝑒𝑝�� ��𝑏𝑘 (𝑒𝑝)Ψ�� .
For the first sum, we can again apply the Cauchy-Schwarz inequality and (4.32):

∑
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝐵𝑒𝑝

��� ��𝑏𝑘 (𝑒𝑝)Ψ�� ≤ √√√√∑
𝑝∈𝐿±

𝑘

𝜆−1
𝑘, 𝑝

����(ℎ⊕
𝑘

)− 1
2
𝐵𝑒𝑝

����2√√∑
𝑝∈𝐿±

𝑘

𝜆𝑘, 𝑝

���𝑏𝑘, 𝑝Ψ���2 (4.49)

≤

√√√√∑
𝑝∈𝐿±

𝑘

����(ℎ⊕
𝑘

)− 1
2
𝐵
(
ℎ⊕
𝑘

)− 1
2
𝑒𝑝

����2√〈Ψ, 𝐻 ′
kinΨ
〉
,

and we likewise estimate the second sum as∑
𝑝∈𝐿±

𝑘

��𝐵𝑒𝑝�� ��𝑏𝑘 (𝑒𝑝)Ψ�� ≤ √∑
𝑝∈𝐿±

𝑘

𝜆−1
𝑘, 𝑝

��𝐵𝑒𝑝��2√√∑
𝑝∈𝐿±

𝑘

𝜆𝑘, 𝑝

���𝑏𝑘, 𝑝Ψ���2 (4.50)

≤

√√√√∑
𝑝∈𝐿±

𝑘

����𝐵 (ℎ⊕
𝑘

)− 1
2
𝑒𝑝

����2√〈Ψ, 𝐻 ′
kinΨ
〉
.

The claim now follows by recognizing the Hilbert-Schmidt norms. �
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5. The quasi-bosonic Bogolubov transformation

Now we are prepared to define the quasi-bosonic Bogolubov transformation that will approximately
diagonalize the Hamiltonian in (4.13),∑

𝑘∈𝑆𝐶

(𝑄𝑘1 (ℎ
⊕
𝑘 + 𝐴⊕

𝑘 ) +𝑄𝑘2 (𝐵
⊕
𝑘 ) − 2 tr(ℎ𝑘 )), (5.1)

where ℎ⊕
𝑘 , 𝐴⊕

𝑘 , 𝐵⊕
𝑘 are defined in (4.11) and (4.7).

We define the generator K : H𝑁 → H𝑁 of the Bogolubov transformation as follows. Let (𝐾 ⊕
𝑘 )𝑘∈𝑆𝐶

be a collection of symmetric operators 𝐾 ⊕
𝑘 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ). Then we define

K =
1
2

∑
𝑘∈𝑆𝐶

∑
𝑝,𝑞∈𝐿±

𝑘

〈
𝑒𝑝 , 𝐾

⊕
𝑘 𝑒𝑞
〉 (

𝑏𝑘, 𝑝𝑏𝑘,𝑞 − 𝑏∗
𝑘,𝑞

𝑏∗
𝑘, 𝑝

)
(5.2)

=
1
2

∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

(
𝑏𝑘
(
𝐾 ⊕
𝑘 𝑒𝑝
)
𝑏𝑘 (𝑒𝑝) − 𝑏∗𝑘 (𝑒𝑝)𝑏

∗
𝑘

(
𝐾 ⊕
𝑘 𝑒𝑝
) )

in analogy with equation (3.9). As in the bosonic case, K is seen to be a skew-symmetric operator.8
Moreover, unlike the bosonic case, K is now a bounded operator by the same argument that 𝑄𝑘1 (·) and
𝑄𝑘2 (·) are. Therefore, K generates a unitary transformation 𝑒K : H𝑁 → H𝑁 , which is the quasi-bosonic
Bogolubov transformation.

The specific kernels 𝐾 ⊕
𝑘 we will use are those which diagonalize the corresponding bosonic Hamil-

tonian exactly, but first we will consider the action of 𝑒K on quadratic operators and the localized kinetic
operator more generally.

5.1. Transformation of quadratic operators

By exploiting the similarity of our quasi-bosonic definitions with the exact bosonic case, we can now
easily deduce the analogues of Propositions 3.2 and 3.4:

Proposition 5.1. For all 𝑘 ∈ 𝑆𝐶 , 𝜑 ∈ ℓ2(𝐿±
𝑘 ) and symmetric operators (𝐾 ⊕

𝑙 )𝑙∈𝑆𝐶 , it holds that

[K, 𝑏𝑘 (𝜑)] = 𝑏∗𝑘
(
𝐾 ⊕
𝑘 𝜑
)
+ E𝑘 (𝜑),[

K, 𝑏∗𝑘 (𝜑)
]
= 𝑏𝑘

(
𝐾 ⊕
𝑘 𝜑
)
+ E𝑘 (𝜑)∗,

where

E𝑘 (𝜑) =
1
2

∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

{
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝜀𝑘,𝑙

(
𝜑; 𝑒𝑞

)}
.

Proof. We calculate using the commutation relations of (4.15) that

[K, 𝑏𝑘 (𝜑)] =
1
2

∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

( [
𝑏𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
𝑏𝑙 (𝑒𝑝), 𝑏𝑘 (𝜑)

]
−
[
𝑏∗𝑙
(
𝑒𝑞
)
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝑏𝑘 (𝜑)

] )
=

1
2

∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

(
𝑏∗𝑙
(
𝑒𝑞
) [

𝑏𝑘 (𝜑), 𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
) ]

+
[
𝑏𝑘 (𝜑), 𝑏∗𝑙

(
𝑒𝑞
) ]

𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
) )

8In the case of complex spaces, K is skew-symmetric if the 𝐾 ⊕
𝑘

’s are symmetric and
〈
𝑒𝑝 , 𝐾

⊕
𝑘
𝑒𝑞
〉

are real. In our application,
all relevant operators have real matrix elements, and hence, we can think of the case of real spaces.
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=
1
2

∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

𝑏∗𝑙
(
𝑒𝑞
) (
𝛿𝑘,𝑙
〈
𝜑, 𝐾 ⊕

𝑙 𝑒𝑞
〉
+ 𝜀𝑘,𝑙

(
𝜑;𝐾 ⊕

𝑙 𝑒𝑞
) )

+ 1
2

∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

(
𝛿𝑘,𝑙
〈
𝜑, 𝑒𝑞

〉
+ 𝜀𝑘,𝑙

(
𝜑; 𝑒𝑞

) )
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)

=
1
2
𝑏∗𝑘
!"#
∑
𝑞∈𝐿±

𝑘

〈
𝜑, 𝐾 ⊕

𝑘 𝑒𝑞
〉
𝑒𝑞
$%& + 1

2
𝑏∗𝑘
!"#𝐾 ⊕

𝑘

∑
𝑞∈𝐿±

𝑘

〈
𝜑, 𝑒𝑞

〉
𝑒𝑞
$%& + E𝑘 (𝜑)

= 𝑏∗𝑘
(
𝐾 ⊕
𝑘 𝜑
)
+ E𝑘 (𝜑) (5.3)

for E𝑘 (𝜑) given by

E𝑘 (𝜑) =
1
2

∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

(
𝑏∗𝑙
(
𝑒𝑞
)
𝜀𝑘,𝑙
(
𝜑;𝐾 ⊕

𝑙 𝑒𝑞
)
+ 𝜀𝑘,𝑙

(
𝜑; 𝑒𝑞

)
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
) )

=
1
2

∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

{
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝜀𝑘,𝑙

(
𝜑; 𝑒𝑞

)}
, (5.4)

where we used Lemma 3.3 to simplify the expression (as 𝑥, 𝑦 ↦→ 𝑏∗𝑙 (𝑥)𝜀𝑘,𝑙 (𝜑; 𝑦) is bilinear for fixed 𝜑

and 𝐾 ⊕
𝑘 is symmetric). The commutator

[
K, 𝑏∗𝑘 (𝜑)

]
follows by taking the adjoint. �

From this, we easily deduce the commutator of K with quadratic operators:

Proposition 5.2. For all 𝑘 ∈ 𝑆𝐶 and symmetric operators 𝐴, 𝐵 : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ), it holds that[
K, 𝑄𝑘1 (𝐴)

]
= 𝑄𝑘2

({
𝐾 ⊕
𝑘 , 𝐴
})

+ E 𝑘1 (𝐴)[
K, 𝑄𝑘2 (𝐵)

]
= 𝑄𝑘1

({
𝐾 ⊕
𝑘 , 𝐵
})

+ E 𝑘2 (𝐵),

where

E 𝑘1 (𝐴) =
1
2

∑
𝑙∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

∑
𝑞∈𝐿±

𝑙

({
𝑏∗𝑘 (𝐴𝑒𝑝),

{
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝜀𝑘,𝑙 (𝑒𝑝; 𝑒𝑞)

}}
+
{{

𝜀𝑙,𝑘
(
𝑒𝑞; 𝑒𝑝

)
, 𝑏𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)}

, 𝑏𝑘 (𝐴𝑒𝑝)
})

E 𝑘2 (𝐵) =
1
2

∑
𝑙∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

∑
𝑞∈𝐿±

𝑙

({
𝑏∗𝑘
(
𝐵𝑒𝑝
)
,
{
𝑏𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝜀𝑙,𝑘

(
𝑒𝑞; 𝑒𝑝

)}}
+
{{

𝜀𝑘,𝑙 (𝑒𝑝; 𝑒𝑞), 𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)}

, 𝑏𝑘
(
𝐵𝑒𝑝
)})

.

Proof. We compute using the commutators of the previous proposition (and Lemma 3.3, to simplify
the resulting expressions) that[

K, 𝑄𝑘1 (𝐴)
]
=
∑
𝑝∈𝐿±

𝑘

( [
K, 𝑏∗𝑘 (𝐴𝑒𝑝)𝑏𝑘 (𝑒𝑝)

]
+
[
K, 𝑏𝑘 (𝑒𝑝)𝑏∗𝑘 (𝐴𝑒𝑝)

] )
=
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝐴𝑒𝑝)

[
K, 𝑏𝑘 (𝑒𝑝)

]
+
[
K, 𝑏∗𝑘 (𝐴𝑒𝑝)

]
𝑏𝑘 (𝑒𝑝)

)
+
∑
𝑝∈𝐿±

𝑘

(
𝑏𝑘 (𝑒𝑝)

[
K, 𝑏∗𝑘 (𝐴𝑒𝑝)

]
+
[
K, 𝑏𝑘 (𝑒𝑝)

]
𝑏∗𝑘 (𝐴𝑒𝑝)

)
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=
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝐴𝑒𝑝)

(
𝑏∗𝑘
(
𝐾 ⊕
𝑘 𝑒𝑝
)
+ E𝑘 (𝑒𝑝)

)
+
(
𝑏𝑘
(
𝐾 ⊕
𝑘 𝐴𝑒𝑝

)
+ E𝑘 (𝐴𝑒𝑝)∗

)
𝑏𝑘 (𝑒𝑝)

)
+
∑
𝑝∈𝐿±

𝑘

(
𝑏𝑘 (𝑒𝑝)

(
𝑏𝑘
(
𝐾 ⊕
𝑘 𝐴𝑒𝑝

)
+ E𝑘 (𝐴𝑒𝑝)∗

)
+
(
𝑏∗𝑘
(
𝐾 ⊕
𝑘 𝑒𝑝
)
+ E𝑘 (𝑒𝑝)

)
𝑏∗𝑘 (𝐴𝑒𝑝)

)
=
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘
( (
𝐴𝐾 ⊕

𝑘 + 𝐾 ⊕
𝑘 𝐴
)
𝑒𝑝
)
𝑏∗𝑘 (𝑒𝑝) + 𝑏𝑘 (𝑒𝑝)𝑏𝑘

( (
𝐾 ⊕
𝑘 𝐴 + 𝐾 ⊕

𝑘 𝐴
)
𝑒𝑝
) )

+
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝐴𝑒𝑝)E𝑘 (𝑒𝑝) + E𝑘 (𝑒𝑝)∗𝑏𝑘 (𝐴𝑒𝑝) + 𝑏𝑘 (𝐴𝑒𝑝)E𝑘 (𝑒𝑝)∗ + E𝑘 (𝑒𝑝)𝑏∗𝑘 (𝐴𝑒𝑝)

)
= 𝑄𝑘2

({
𝐾 ⊕
𝑘 , 𝐴
})

+
∑
𝑝∈𝐿±

𝑘

({
𝑏∗𝑘 (𝐴𝑒𝑝), E𝑘 (𝑒𝑝)

}
+
{
E𝑘 (𝑒𝑝)∗, 𝑏𝑘 (𝐴𝑒𝑝)

})
(5.5)

and ∑
𝑝∈𝐿±

𝑘

({
𝑏∗𝑘 (𝐴𝑒𝑝), E𝑘 (𝑒𝑝)

}
+
{
E𝑘 (𝑒𝑝)∗, 𝑏𝑘 (𝐴𝑒𝑝)

})
=

1
2

∑
𝑙∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

∑
𝑞∈𝐿±

𝑙

({
𝑏∗𝑘 (𝐴𝑒𝑝),

{
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝜀𝑘,𝑙 (𝑒𝑝; 𝑒𝑞)

}}
(5.6)

+
{{

𝜀𝑙,𝑘
(
𝑒𝑞; 𝑒𝑝

)
, 𝑏𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)}

, 𝑏𝑘 (𝐴𝑒𝑝)
})

= E 𝑘1 (𝐴)

as 𝜀𝑘,𝑙 (𝑒𝑝; 𝑒𝑞)∗ = 𝜀𝑙,𝑘
(
𝑒𝑞; 𝑒𝑝

)
. The computation of 𝑄𝑘2 (𝐵) is similar. �

Action of 𝒆K on quadratic operators

With the commutators calculated, we are now ready to determine the full action of 𝑒K on the quadratic
operators 𝑄𝑘1 (·) and 𝑄𝑘2 (·). Rather than appeal to the Baker-Campbell-Hausdorff formula, which would
also require describing the commutators

[
K, E 𝑘1 (𝐴)

]
, etc., we will employ a ‘Duhamel-type’ argument

which allows us to more selectively expand the operator 𝑒K.
As in Section 3, we use the notation A𝐾 ⊕

𝑘
=
{
𝐾 ⊕
𝑘 , ·
}

for anticommutators with 𝐾 ⊕
𝑘 .

Before stating the proposition, we must make a remark. To use these identities, we will need to
take limits, and to justify those limits, we need some general estimates on operators of the form
𝑄𝑘1 (·), 𝑄

𝑘
2 (·), E 𝑘1 (·), E 𝑘2 (·). The Propositions 4.6, 4.7 establish these for 𝑄𝑘1 (·) and 𝑄𝑘2 (·), while Propo-

sition 6.4 will establish these for E 𝑘1 (·) and E 𝑘2 (·).
The statement follows:

Proposition 5.3. For all 𝑘 ∈ 𝑆𝐶 and symmetric 𝐴, 𝐵 : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ), it holds that

𝑒K𝑄𝑘1 (𝐴)𝑒
−K =

1
2
𝑄𝑘1

(
𝑒𝐾

⊕
𝑘 𝐴𝑒𝐾

⊕
𝑘 + 𝑒−𝐾

⊕
𝑘 𝐴𝑒−𝐾

⊕
𝑘

)
+ 1

2
𝑄𝑘2

(
𝑒𝐾

⊕
𝑘 𝐴𝑒𝐾

⊕
𝑘 − 𝑒−𝐾

⊕
𝑘 𝐴𝑒−𝐾

⊕
𝑘

)
+
∫ 1

0
𝑒𝑡K
(
E 𝑘1
(
cosh

(
A(1−𝑡)𝐾 ⊕

𝑘

)
(𝐴)
)
+ E 𝑘2

(
sinh

(
A(1−𝑡)𝐾 ⊕

𝑘

)
(𝐴)
))

𝑒−𝑡K 𝑑𝑡

𝑒K𝑄𝑘2 (𝐵)𝑒
−K =

1
2
𝑄𝑘1

(
𝑒𝐾

⊕
𝑘 𝐵𝑒𝐾

⊕
𝑘 − 𝑒−𝐾

⊕
𝑘 𝐵𝑒−𝐾

⊕
𝑘

)
+ 1

2
𝑄𝑘2

(
𝑒𝐾

⊕
𝑘 𝐵𝑒𝐾

⊕
𝑘 + 𝑒−𝐾

⊕
𝑘 𝐵𝑒−𝐾

⊕
𝑘

)
+
∫ 1

0
𝑒𝑡K
(
E 𝑘1
(
sinh

(
A(1−𝑡)𝐾 ⊕

𝑘

)
(𝐵)
)
+ E 𝑘2

(
cosh

(
A(1−𝑡)𝐾 ⊕

𝑘

)
(𝐵)
))

𝑒−𝑡K 𝑑𝑡,

the integrals being Riemann integrals of bounded operators.
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Proof. We consider 𝑒K𝑄𝑘1 (𝐴)𝑒
−K, with the argument for 𝑒K𝑄𝑘2 (𝐵)𝑒

−K being similar. We first claim
that for any 𝑛 ∈ N,

𝑒K𝑄𝑘1 (𝐴)𝑒
−K = 𝑄𝑘1

(
𝑛1∑
𝑚=0

1
(2𝑚)!A

2𝑚
𝐾 ⊕
𝑘

(𝐴)
)
+𝑄𝑘2

(
𝑛2∑
𝑚=0

1
(2𝑚 + 1)!A

2𝑚+1
𝐾 ⊕
𝑘

(𝐴)
)

(5.7)

+
∫ 1

0
𝑒𝑡K

(
E 𝑘1

(
𝑛1∑
𝑚=0

1
(2𝑚)!A

2𝑚
(1−𝑡)𝐾 ⊕

𝑘

(𝐴)
)
+ E 𝑘2

(
𝑛2∑
𝑚=0

1
(2𝑚 + 1)!A

2𝑚+1
(1−𝑡)𝐾 ⊕

𝑘

(𝐴)
))

𝑒−𝑡K 𝑑𝑡

+ 1
(𝑛 − 1)!

∫ 1

0
𝑒𝑡K𝑄𝑘

𝑛−1

(
A𝑛
𝐾 ⊕
𝑘

(𝐴)
)
𝑒−𝑡K (1 − 𝑡)𝑛−1 𝑑𝑡,

where, for brevity, 𝑛 − 1 = 𝑛 − 1 mod 2 and 𝑛1, 𝑛2 are the largest integers such that 2𝑛1 < 𝑛 and
2𝑛2 + 1 < 𝑛, respectively.

We proceed by induction. For 𝑛 = 1, we find by the fundamental theorem of calculus that

𝑒K𝑄𝑘1 (𝐴)𝑒
−K = 𝑄𝑘1 (𝐴) +

∫ 1

0

𝑑

𝑑𝑡

(
𝑒𝑡K𝑄𝑘1 (𝐴)𝑒

−𝑡K
)
𝑑𝑡 = 𝑄𝑘1 (𝐴) +

∫ 1

0
𝑒𝑡K
[
K, 𝑄𝑘1 (𝐴)

]
𝑒−𝑡K 𝑑𝑡

= 𝑄𝑘1 (𝐴) +
∫ 1

0
𝑒𝑡K
(
𝑄𝑘2
({
𝐾 ⊕
𝑘 , 𝐴
})

+ E 𝑘1 (𝐴)
)
𝑒−𝑡K 𝑑𝑡 (5.8)

= 𝑄𝑘1 (𝐴) +
∫ 1

0
𝑒𝑡KE 𝑘1 (𝐴)𝑒−𝑡K 𝑑𝑡 +

∫ 1

0
𝑒𝑡K𝑄𝑘2

(
A𝐾 ⊕

𝑘
(𝐴)
)
𝑒−𝑡K 𝑑𝑡

by the commutator of Proposition 5.2, which is the statement for 𝑛 = 1 (in this case, 𝑛1 = 0 and 𝑛2 = −1,
so
∑𝑛1
𝑚=0 contains one term and

∑𝑛2
𝑚=0 is empty).

For the inductive step, we now assume that case n holds. Integrating the last term of equation (5.7)
by parts, we find that

1
(𝑛 − 1)!

∫ 1

0
𝑒𝑡K𝑄𝑘

𝑛−1

(
A𝑛
𝐾 ⊕
𝑘

(𝐴)
)
𝑒−𝑡K (1 − 𝑡)𝑛−1𝑑𝑡

=
1

(𝑛 − 1)!

[
𝑒𝑡K𝑄𝑘

𝑛−1

(
A𝑛
𝐾 ⊕
𝑘

(𝐴)
)
𝑒−𝑡K

(
− (1 − 𝑡)𝑛

𝑛

)]1
0

− 1
(𝑛 − 1)!

∫ 1

0
𝑒𝑡K
[
K, 𝑄𝑘

𝑛−1

(
A𝑛
𝐾 ⊕
𝑘

(𝐴)
)]

𝑒−𝑡K
(
− (1 − 𝑡)𝑛

𝑛

)
𝑑𝑡 (5.9)

=
1
𝑛!
𝑄𝑘
𝑛−1

(
A𝑛
𝐾 ⊕
𝑘

(𝐴)
)
+ 1
𝑛!

∫ 1

0
𝑒𝑡K
(
𝑄𝑘𝑛

({
𝐾 ⊕
𝑘 ,A

𝑛
𝐾 ⊕
𝑘

(𝐴)
})

+ E 𝑘
𝑛−1

(
A𝑛
𝐾 ⊕
𝑘

(𝐴)
))

𝑒−𝑡K (1 − 𝑡)𝑛𝑑𝑡

= 𝑄𝑘
𝑛−1

(
1
𝑛!
A𝑛
𝐾 ⊕
𝑘

(𝐴)
)
+
∫ 1

0
𝑒𝑡KE 𝑘

𝑛−1

(
1
𝑛!
A𝑛(1−𝑡)𝐾 ⊕

𝑘

(𝐴)
)
𝑒−𝑡K 𝑑𝑡

+ 1
𝑛!

∫ 1

0
𝑒𝑡K𝑄𝑘𝑛

(
A𝑛+1
𝐾 ⊕
𝑘

(𝐴)
)
𝑒−𝑡K (1 − 𝑡)𝑛𝑑𝑡,

where we also used that

(1 − 𝑡)𝑛A𝑛
𝐾 ⊕
𝑘

(𝐴) =
(
(1 − 𝑡)A𝐾 ⊕

𝑘
(𝐴)
)𝑛 = A𝑛(1−𝑡)𝐾 ⊕

𝑘

(𝐴). (5.10)

Inserting this into (5.7) and collecting like terms yields the statement for case 𝑛 + 1.
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We now deduce the statement from (5.7) by taking 𝑛 → ∞. Recall the identities

cosh
(
A𝐾 ⊕

𝑘

)
(𝑇) = 1

2
(
𝑒𝐾

⊕
𝑘 𝑇𝑒𝐾

⊕
𝑘 + 𝑒−𝐾

⊕
𝑘 𝑇𝑒−𝐾

⊕
𝑘
)

(5.11)

sinh
(
A𝐾 ⊕

𝑘

)
(𝑇) = 1

2
(
𝑒𝐾

⊕
𝑘 𝑇𝑒𝐾

⊕
𝑘 − 𝑒−𝐾

⊕
𝑘 𝑇𝑒−𝐾

⊕
𝑘
)

from Proposition 3.5 and note that ((𝑛 − 1)!)−1 A𝑛
𝐾 ⊕
𝑘

(𝐴) → 0 as 𝑛 → ∞. By Proposition 4.6,

𝑄𝑘1

(
𝑛1∑
𝑚=0

1
(2𝑚)!A

2𝑚
𝐾 ⊕
𝑘

(𝐴)
)
→ 1

2
𝑄𝑘1

(
𝑒𝐾

⊕
𝑘 𝐴𝑒𝐾

⊕
𝑘 + 𝑒−𝐾

⊕
𝑘 𝐴𝑒−𝐾

⊕
𝑘

)
and

1
(𝑛 − 1)!

∫ 1

0
𝑒𝑡K𝑄𝑘1

(
A𝑛
𝐾 ⊕
𝑘

(𝐴)
)
𝑒−𝑡K (1 − 𝑡)𝑛−1 𝑑𝑡 → 0.

Similar convergence for 𝑄2 is justified by Proposition 4.7. The convergence for E 𝑘1 and E 𝑘2 follows from
Proposition 6.4. �

Remark on the transformation of excitation operators
Let us make a quick remark on why we choose to approach the Bogolubov transformation from the point
of view of quadratic operators rather than the usual creation and annihilation operator approach. Recall
that in the exact bosonic case the creation and annihilation operators transformed under a Bogolubov
transformation as

𝑒K𝑎(𝜑)𝑒−K = 𝑎 (cosh (𝐾) 𝜑) + 𝑎∗ (sinh (𝐾) 𝜑) (5.12)
𝑒K𝑎∗(𝜑)𝑒−K = 𝑎∗ (cosh (𝐾) 𝜑) + 𝑎 (sinh (𝐾) 𝜑) .

In the quasi-bosonic setting, we can use the commutators of Proposition 5.1 and a similar Duhamel-type
argument to what we just applied to conclude that

𝑒K𝑏𝑘 (𝜑)𝑒−K = 𝑏𝑘
(
cosh

(
𝐾 ⊕
𝑘

)
𝜑
)
+ 𝑏∗𝑘

(
sinh

(
𝐾 ⊕
𝑘

)
𝜑
)

(5.13)

+
∫ 1

0
𝑒𝑡K
(
E𝑘
(
cosh

(
(1 − 𝑡)𝐾 ⊕

𝑘

)
𝜑
)
+ E𝑘

(
sinh

(
(1 − 𝑡)𝐾 ⊕

𝑘

)
𝜑
)∗)

𝑒−𝑡K 𝑑𝑡

with a similar expression for 𝑒K𝑏∗𝑘 (𝜑)𝑒
−K. This is a more cumbersome expression to work with, and if

we were to describe 𝑒K𝑄𝑘1 (𝐴)𝑒
−K by transforming the individual terms of 𝑄𝑘1 (𝐴) like this rather than

transforming 𝑄𝑘1 (𝐴) as a whole, the error terms would not only go from being under a single integral to
involving the product of two integrals, it would also involve cross terms between the bosonic terms and
the error terms of equation (5.13). These cross terms, in particular, would severely reduce the quality of
the final error estimate. Hence, we prefer the quadratic operator approach in the quasi-bosonic setting.

5.2. Transformation of the kinetic operator

There remains the task of describing the action of 𝑒K on the localized kinetic operator 𝐻 ′
kin. For this, we

must first formulate 𝐻 ′
kin – or rather the commutator [𝐻 ′

kin, 𝑏
∗
𝑘, 𝑝] calculated in (1.74) – within the general

framework that we have introduced in this section. Recalling the operators ℎ⊕
𝑘 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) in

(4.11), then by (1.74) and linearity it follows that[
𝐻 ′

kin, 𝑏𝑘 (𝜑)
]
= −2 𝑏𝑘

(
ℎ⊕
𝑘 𝜑
)
,
[
𝐻 ′

kin, 𝑏
∗
𝑘 (𝜑)

]
= 2 𝑏∗𝑘

(
ℎ⊕
𝑘 𝜑
)

(5.14)
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for all 𝜑 ∈ ℓ2(𝐿±
𝑘 ). (The factor of 2 is introduced here because in the analogy of equation (4.9), 𝐻 ′

kin
appears like a dΓ(·) = 1

2𝑄1(·) − 1
2 tr(·) term rather than a pure 𝑄1 (·) term.)

We now calculate
[
K, 𝐻 ′

kin
]

as follows:

Proposition 5.4. 𝐻 ′
kin obeys [

K, 𝐻 ′
kin
]
=
∑
𝑘∈𝑆𝐶

𝑄𝑘2
({
𝐾 ⊕
𝑘 , ℎ

⊕
𝑘

})
.

Proof. We compute, using the commutators of equation (5.14) and Lemma 3.3, that[
K, 𝐻 ′

kin
]
=

1
2

∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

( [
𝑏𝑘
(
𝐾 ⊕
𝑘 𝑒𝑝
)
𝑏𝑘 (𝑒𝑝), 𝐻 ′

kin
]
−
[
𝑏∗𝑘 (𝑒𝑝)𝑏

∗
𝑘

(
𝐾 ⊕
𝑘 𝑒𝑝
)
, 𝐻 ′

kin
] )

=
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝑒𝑝)𝑏

∗
𝑘

(
ℎ⊕
𝑘 𝐾

⊕
𝑘 𝑒𝑝
)
+ 𝑏∗𝑘

(
ℎ⊕
𝑘 𝑒𝑝
)
𝑏∗𝑘
(
𝐾 ⊕
𝑘 𝑒𝑝
) )

(5.15)

+
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

(
𝑏𝑘
(
𝐾 ⊕
𝑘 𝑒𝑝
)
𝑏𝑘
(
ℎ⊕
𝑘 𝑒𝑝
)
+ 𝑏𝑘

(
ℎ⊕
𝑘 𝐾

⊕
𝑘 𝑒𝑝
)
𝑏𝑘 (𝑒𝑝)

)
=
∑
𝑘∈𝑆𝐶

𝑄𝑘2
({
𝐾 ⊕
𝑘 , ℎ

⊕
𝑘

})
.

�

Note that because the commutator
[
𝐻 ′

kin, 𝑏
∗
𝑘 (𝜑)

]
= 2 𝑏∗𝑘

(
ℎ⊕
𝑘 𝜑
)

exactly mirrors the bosonic case (in
that there is no additional error term), the commutator

[
K, 𝐻 ′

kin
]

is likewise ‘purely bosonic’, being
simply a sum of 𝑄𝑘2 (·) terms without error terms such as those appearing in the statement of Proposition
5.2. With the groundwork laid, we can now easily deduce the following:

Proposition 5.5. 𝐻 ′
kin obeys

𝑒K𝐻 ′
kin𝑒

−K = 𝐻 ′
kin

+
∑
𝑘∈𝑆𝐶

(
1
2
𝑄𝑘1

(
𝑒𝐾

⊕
𝑘 ℎ⊕

𝑘 𝑒
𝐾 ⊕
𝑘 + 𝑒−𝐾

⊕
𝑘 ℎ⊕

𝑘 𝑒
−𝐾 ⊕

𝑘 − 2ℎ⊕
𝑘

)
+ 1

2
𝑄𝑘2

(
𝑒𝐾

⊕
𝑘 ℎ⊕

𝑘 𝑒
𝐾 ⊕
𝑘 − 𝑒−𝐾

⊕
𝑘 ℎ⊕

𝑘 𝑒
−𝐾 ⊕

𝑘

))
+
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒𝑡K
(
E 𝑘1
(
cosh

(
A(1−𝑡)𝐾 ⊕

𝑘

) (
ℎ⊕
𝑘

)
− ℎ⊕

𝑘

)
+ E 𝑘2

(
sinh

(
A(1−𝑡)𝐾 ⊕

𝑘

) (
ℎ⊕
𝑘

) ))
𝑒−𝑡K 𝑑𝑡.

Proof. By adding and subtracting, we have

𝑒K𝐻 ′
kin𝑒

−K =
∑
𝑘∈𝑆𝐶

𝑒K𝑄𝑘1
(
ℎ⊕
𝑘

)
𝑒−K + 𝑒K

(
𝐻 ′

kin −
∑
𝑘∈𝑆𝐶

𝑄𝑘1
(
ℎ⊕
𝑘

))
𝑒−K, (5.16)

and the first term on the right-hand side is by Proposition 5.3,∑
𝑘∈𝑆𝐶

𝑒K𝑄𝑘1
(
ℎ⊕
𝑘

)
𝑒−K (5.17)

=
∑
𝑘∈𝑆𝐶

(
1
2
𝑄𝑘1

(
𝑒𝐾

⊕
𝑘 ℎ⊕

𝑘 𝑒
𝐾 ⊕
𝑘 + 𝑒−𝐾

⊕
𝑘 ℎ⊕

𝑘 𝑒
−𝐾 ⊕

𝑘

)
+ 1

2
𝑄𝑘2

(
𝑒𝐾

⊕
𝑘 ℎ⊕

𝑘 𝑒
𝐾 ⊕
𝑘 − 𝑒−𝐾

⊕
𝑘 ℎ⊕

𝑘 𝑒
−𝐾 ⊕

𝑘

))
+
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒𝑡K
(
E 𝑘1
(
cosh

(
A(1−𝑡)𝐾 ⊕

𝑘

) (
ℎ⊕
𝑘

) )
+ E 𝑘2

(
sinh

(
A(1−𝑡)𝐾 ⊕

𝑘

) (
ℎ⊕
𝑘

) ))
𝑒−𝑡K 𝑑𝑡,
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while the second is calculated using the commutators of the Propositions 5.2 and 5.4 to be

𝑒K

(
𝐻 ′

kin −
∑
𝑘∈𝑆𝐶

𝑄𝑘1
(
ℎ⊕
𝑘

))
𝑒−K −

(
𝐻 ′

kin −
∑
𝑘∈𝑆𝐶

𝑄𝑘1
(
ℎ⊕
𝑘

))
=
∫ 1

0
𝑒𝑡K

[
K, 𝐻 ′

kin −
∑
𝑘∈𝑆𝐶

𝑄𝑘1
(
ℎ⊕
𝑘

) ]
𝑒−𝑡K 𝑑𝑡 = −

∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒𝑡KE 𝑘1

(
ℎ⊕
𝑘

)
𝑒−𝑡K 𝑑𝑡, (5.18)

which yields the claim. �

5.3. Fixing the transformation kernels

With all the transformation identities determined, we now choose the transformation kernels (𝐾 ⊕
𝑘 )𝑘∈𝑆𝐶

such that 𝐻 ′
kin +

∑
𝑘∈𝑆𝐶 𝐻𝑘int is diagonalized. For any choice of (𝐾 ⊕

𝑘 )𝑘∈𝑆𝐶 , the Propositions 5.3 and 5.5
imply that

𝑒K

(
𝐻 ′

kin +
∑
𝑘∈𝑆𝐶

𝐻𝑘int

)
𝑒−K

=
1
2

∑
𝑘∈𝑆𝐶

𝑄𝑘1

(
𝑒𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

)
𝑒𝐾

⊕
𝑘 + 𝑒−𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)
𝑒−𝐾

⊕
𝑘 − 2ℎ⊕

𝑘

)
+ 1

2

∑
𝑘∈𝑆𝐶

𝑄𝑘2

(
𝑒𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

)
𝑒𝐾

⊕
𝑘 − 𝑒−𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)
𝑒−𝐾

⊕
𝑘

)
+ 𝐻 ′

kin + error terms.

(5.19)

In analogy with the bosonic case, we consider this expression to be diagonalized provided the 𝑄𝑘2 (·)
terms vanish, whence the diagonalization condition is that

𝑒𝐾
⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

)
𝑒𝐾

⊕
𝑘 = 𝑒−𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)
𝑒−𝐾

⊕
𝑘 , (5.20)

which we note is the same as the diagonalization condition (equation (3.26)) of the exact bosonic
quadratic Hamiltonian

𝐻 = 𝑄1
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘

)
+𝑄2

(
𝐵⊕
𝑘

)
on F+

(
ℓ2 (𝐿±

𝑘

) )
. (5.21)

Recalling the definitions of ℎ⊕
𝑘 , 𝐴⊕

𝑘 and 𝐵⊕
𝑘 from (4.11) and (4.7), we have

ℎ⊕
𝑘 + 𝐴⊕

𝑘 ± 𝐵⊕
𝑘 =

(
ℎ𝑘 + 𝑃𝑣𝑘 ±𝑃𝑣𝑘
±𝑃𝑘 ℎ𝑘 + 𝑃𝑣𝑘

)
> 0.

So by Theorem 3.1, the choice

𝐾 ⊕
𝑘 = −1

2
log
( (
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)− 1
2
( (
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

) 1
2
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

) (
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

) 1
2
) 1

2

(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)− 1
2
)
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is the unique diagonalizing kernel for the Hamiltonian. In this form, it is, however, not easy to see how
𝐾 ⊕
𝑘 acts, so we will proceed slightly differently: we define 𝐾 ⊕

𝑘 : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ) by

𝐾 ⊕
𝑘 =

(
0 𝐾𝑘
𝐾𝑘 0

)
, (5.22)

where the operator 𝐾𝑘 : ℓ2(𝐿𝑘 ) → ℓ2(𝐿𝑘 ) is given by

𝐾𝑘 = −1
2

log
(
ℎ
− 1

2
𝑘

(
ℎ

1
2
𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
ℎ

1
2
𝑘

) 1
2
ℎ
− 1

2
𝑘

)
= −1

2
log
(
ℎ
− 1

2
𝑘

(
ℎ2
𝑘 + 2𝑃

ℎ
1
2
𝑘
𝑣𝑘

) 1
2
ℎ
− 1

2
𝑘

)
. (5.23)

A kernel similar to 𝐾𝑘 also appeared in [5, 6]. Note that 𝐾𝑘 is precisely the diagonalizer of Theorem
3.1 for the exact bosonic quadratic Hamiltonian

𝐻 = 𝑄1
(
ℎ⊕
𝑘 + 𝑃𝑣𝑘

)
+𝑄2 (𝑃𝑣𝑘 ) on F+(ℓ2(𝐿𝑘 )), (5.24)

rather than that of equation (5.21). Now we can verify that this 𝐾 ⊕
𝑘 is, in fact, equal to the diagonalizing

kernel:

Proposition 5.6. The operator 𝐾 ⊕
𝑘 defined by the equations (5.22) and (5.23) satisfies

𝑒𝐾
⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

)
𝑒𝐾

⊕
𝑘 = 𝑒−𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)
𝑒−𝐾

⊕
𝑘 =

(
𝐸𝑘 0
0 𝐸𝑘

)
for 𝐸𝑘 = 𝑒−𝐾𝑘 ℎ𝑘𝑒

−𝐾𝑘 .

Proof. It is easily verified that 𝑒±𝐾
⊕
𝑘 is given by

𝑒±𝐾
⊕
𝑘 =

(
cosh (𝐾𝑘 ) ± sinh (𝐾𝑘 )
± sinh (𝐾𝑘 ) cosh (𝐾𝑘 )

)
, (5.25)

and so

𝑒±𝐾
⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 ± 𝐵⊕
𝑘

)
𝑒±𝐾

⊕
𝑘

=

(
cosh (𝐾𝑘 ) ± sinh (𝐾𝑘 )
± sinh (𝐾𝑘 ) cosh (𝐾𝑘 )

) (
ℎ𝑘 + 𝑃𝑣𝑘 ±𝑃𝑣𝑘
±𝑃𝑣𝑘 ℎ𝑘 + 𝑃𝑣𝑘

) (
cosh (𝐾𝑘 ) ± sinh (𝐾𝑘 )
± sinh (𝐾𝑘 ) cosh (𝐾𝑘 )

)
=

1
2

(
𝑒𝐾𝑘
(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝐾𝑘 + 𝑒−𝐾𝑘 ℎ𝑘𝑒

−𝐾𝑘 ±
(
𝑒𝐾𝑘
(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝐾𝑘 − 𝑒−𝐾𝑘 ℎ𝑘𝑒

−𝐾𝑘
)

±
(
𝑒𝐾𝑘
(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝐾𝑘 − 𝑒−𝐾𝑘 ℎ𝑘𝑒

−𝐾𝑘
)

𝑒𝐾𝑘
(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝐾𝑘 + 𝑒−𝐾𝑘 ℎ𝑘𝑒

−𝐾𝑘

)
. (5.26)

The condition

𝑒𝐾
⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

)
𝑒𝐾

⊕
𝑘 = 𝑒−𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)
𝑒−𝐾

⊕
𝑘 (5.27)

thus holds if and only if

𝑒𝐾𝑘
(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝐾𝑘 = 𝑒−𝐾𝑘 ℎ𝑘𝑒

−𝐾𝑘 , (5.28)

which is the diagonalization condition for the bosonic Hamiltonian of equation (5.24). Theorem 3.1
asserts that this condition is satisfied for our choice of 𝐾𝑘 , and the claim follows. �
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5.4. Full transformation of the bosonizable terms

With the above choice of transformation kernels, we thus conclude that

𝑒K

(
𝐻 ′

kin +
∑
𝑘∈𝑆𝐶

𝐻𝑘int

)
𝑒−K = 𝐻 ′

kin + error terms

+ 1
2

∑
𝑘∈𝑆𝐶

𝑄𝑘1

(
𝑒𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

)
𝑒𝐾

⊕
𝑘 + 𝑒−𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)
𝑒−𝐾

⊕
𝑘 − 2ℎ⊕

𝑘

)
= 𝐻 ′

kin +
∑
𝑘∈𝑆𝐶

𝑄𝑘1

(
𝐸𝑘 − ℎ𝑘 0

0 𝐸𝑘 − ℎ𝑘

)
+ error terms, (5.29)

and so we have succeeded in diagonalizing 𝐻 ′
kin+
∑
𝑘∈𝑆𝐶 𝐻𝑘int while simultanously decoupling the spaces

ℓ2 (𝐿±𝑘 ) ⊂ ℓ2(𝐿±
𝑘 ) in a symmetric fashion. We still need to determine the exact form of the error terms,

which we record in the following proposition:

Proposition 5.7. Let 𝑆𝐶 = 𝐵
(
0, 𝑘𝛾𝐹

)
∩Z3

+ with 𝛾 ∈ (0, 1]. Then the unitary transformation 𝑒K : H𝑁 →
H𝑁 with K defined by (5.2), (5.22), (5.23) satisfies

𝑒K

(
𝐻 ′

kin +
∑
𝑘∈𝑆𝐶

𝐻𝑘int

)
𝑒−K = 𝐻 ′

kin +
∑
𝑘∈𝑆𝐶

𝑄𝑘1 (𝐸
⊕
𝑘 − ℎ⊕

𝑘 )

+
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒 (1−𝑡)K

(
E 𝑘1 (𝐴⊕

𝑘 (𝑡)) + E 𝑘2 (𝐵⊕
𝑘 (𝑡))

)
𝑒−(1−𝑡)K 𝑑𝑡,

where E1 (·), E2(·) are defined in Proposition 5.2 and

𝐸 ⊕
𝑘 − ℎ⊕

𝑘 =

(
𝐸𝑘 − ℎ𝑘 0

0 𝐸𝑘 − ℎ𝑘

)
, 𝐴⊕

𝑘 (𝑡) =
(
𝐴𝑘 (𝑡) 0

0 𝐴𝑘 (𝑡)

)
, 𝐵⊕

𝑘 (𝑡) =
(

0 𝐵𝑘 (𝑡)
𝐵𝑘 (𝑡) 0

)
with 𝐸𝑘 = 𝑒−𝐾𝑘 ℎ𝑘𝑒

−𝐾𝑘 and the operators 𝐴𝑘 (𝑡), 𝐵𝑘 (𝑡) : ℓ2(𝐿𝑘 ) → ℓ2(𝐿𝑘 ) defined by

𝐴𝑘 (𝑡) =
1
2

(
𝑒𝑡𝐾𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝑡𝐾𝑘 + 𝑒−𝑡𝐾𝑘 ℎ𝑘𝑒

−𝑡𝐾𝑘
)
− ℎ𝑘

𝐵𝑘 (𝑡) =
1
2

(
𝑒𝑡𝐾𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝑡𝐾𝑘 − 𝑒−𝑡𝐾𝑘 ℎ𝑘𝑒

−𝑡𝐾𝑘
)
.

Proof. By the Propositions 5.3 and 5.5, the error terms are∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒 (1−𝑡)K

(
E 𝑘1
(
cosh

(
A𝑡𝐾 ⊕

𝑘

) (
ℎ⊕
𝑘 + 𝐴⊕

𝑘

)
+ sinh

(
A𝑡𝐾 ⊕

𝑘

) (
𝐵⊕
𝑘

)
− ℎ⊕

𝑘

))
𝑒−(1−𝑡)K 𝑑𝑡

+
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒 (1−𝑡)K

(
E 𝑘2
(
sinh

(
A𝑡𝐾 ⊕

𝑘

) (
ℎ⊕
𝑘 + 𝐴⊕

𝑘

)
+ cosh

(
A𝑡𝐾 ⊕

𝑘

) (
𝐵⊕
𝑘

) ))
𝑒−(1−𝑡)K 𝑑𝑡,

where we have reparametrized the integral by 𝑡 ↦→ 1 − 𝑡 to simplify the arguments of the E 𝑘1 (·) and
E 𝑘2 (·) operators. By (5.11), the arguments of E 𝑘1 and E 𝑘2 in each term above equal

1
2

(
𝑒𝑡𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

)
𝑒𝑡𝐾

⊕
𝑘 + 𝑒−𝑡𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)
𝑒−𝑡𝐾

⊕
𝑘

)
− ℎ⊕

𝑘 (5.30)
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and

1
2

(
𝑒𝑡𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 + 𝐵⊕
𝑘

)
𝑒𝑡𝐾

⊕
𝑘 − 𝑒−𝑡𝐾

⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 − 𝐵⊕
𝑘

)
𝑒−𝑡𝐾

⊕
𝑘

)
, (5.31)

respectively. By the same identities that we used in the preceding proposition, it holds that

𝑒±𝑡𝐾
⊕
𝑘
(
ℎ⊕
𝑘 + 𝐴⊕

𝑘 ± 𝐵⊕
𝑘

)
𝑒±𝑡𝐾

⊕
𝑘 (5.32)

=
1
2

(
𝑒𝑡𝐾𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝑡𝐾𝑘 + 𝑒−𝑡𝐾𝑘 ℎ𝑘𝑒

−𝑡𝐾𝑘 ±
(
𝑒𝑡𝐾𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝑡𝐾𝑘 − 𝑒−𝑡𝐾𝑘 ℎ𝑘𝑒

−𝑡𝐾𝑘
)

±
(
𝑒𝑡𝐾𝑘

(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝑡𝐾𝑘 − 𝑒−𝑡𝐾𝑘 ℎ𝑘𝑒

−𝑡𝐾𝑘
)

𝑒𝑡𝐾𝑘
(
ℎ𝑘 + 2𝑃𝑣𝑘

)
𝑒𝑡𝐾𝑘 + 𝑒−𝑡𝐾𝑘 ℎ𝑘𝑒

−𝑡𝐾𝑘

)
,

and the claim follows. �

6. Analysis of the exchange terms

In the preceding section, we accomplished a major qualitative goal of this paper, which was diagonalizing
the bosonizable terms 𝐻 ′

kin +
∑
𝑘∈𝑆𝐶 𝐻𝑘int in an explicit, quasi-bosonic fashion. In this section, we begin

the quantitative study of the quasi-bosonic expression in Proposition 5.7.
The aim of this section is to estimate the E 𝑘1 (·), E 𝑘2 (·) operators, which enter in the error terms due

to the presence of the exchange correction 𝜀𝑘,𝑙 (𝜑;𝜓) in the quasi-bosonic commutation relations. We
will therefore refer to them as exchange terms. Since these expressions are complicated, we thus devote
three subsections to the analysis of them. In the first, we carry out a reduction procedure, in which we
systematically consider the type of terms that can appear in the sums defining E 𝑘1 (𝐴) and E 𝑘2 (𝐵) for
given 𝐴, 𝐵, and reduce these to simpler expressions, or schematic forms. In doing so, we will see that
every term appearing in E 𝑘1 (𝐴) and E 𝑘2 (𝐵) can for the purpose of estimation be sorted into one of four
schematic forms. In the second subsection, we provide some basic commutator estimates associated
with the four schematic forms, and in the final subsection we then carry out the quantitative analysis of
these four forms to obtain the desired estimates of E 𝑘1 (·) and E 𝑘2 (·).

6.1. Reduction to simpler expressions

Recall that for 𝑘 ∈ 𝑆𝐶 and symmetric operators 𝐴, 𝐵 : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ), we already defined E 𝑘1 (𝐴) and
E 𝑘2 (𝐵) in Proposition 5.2. Since these expressions are complicated, it is helpful to discuss the general
structure of E 𝑘1 (𝐴) and E 𝑘2 (𝐵). Consider the first term of E 𝑘1 (𝐴), which upon expansion is{

𝑏∗𝑘 (𝐴𝑒𝑝),
{
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝜀𝑘,𝑙

(
𝑒𝑝 , 𝑒𝑞

)}}
= 𝑏∗𝑘 (𝐴𝑒𝑝)

{
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝜀𝑘,𝑙

(
𝑒𝑝 , 𝑒𝑞

)}
+
{
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
, 𝜀𝑘,𝑙

(
𝑒𝑝 , 𝑒𝑞

)}
𝑏∗𝑘 (𝐴𝑒𝑝) (6.1)

= 𝑏∗𝑘 (𝐴𝑒𝑝)𝑏
∗
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑞
)
𝜀𝑘,𝑙
(
𝑒𝑝 , 𝑒𝑞

)
+ 𝑏∗𝑘 (𝐴𝑒𝑝)𝜀𝑘,𝑙

(
𝑒𝑝 , 𝑒𝑞

)
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)

+ 𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
𝜀𝑘,𝑙
(
𝑒𝑝 , 𝑒𝑞

)
𝑏∗𝑘 (𝐴𝑒𝑝) + 𝜀𝑘,𝑙

(
𝑒𝑝 , 𝑒𝑞

)
𝑏∗𝑙
(
𝐾 ⊕
𝑙 𝑒𝑞
)
𝑏∗𝑘 (𝐴𝑒𝑝),

which we may expand further using

𝜀𝑘,𝑙
(
𝑒𝑝 , 𝑒𝑞

)
= 𝜀
(
𝑘, 𝑝; 𝑙, 𝑞

)
= −
(
𝛿𝑝,𝑞𝑐𝑞−𝑙𝑐

∗
𝑝−𝑘

+ 𝛿𝑝−𝑘,𝑞−𝑙𝑐
∗
𝑞𝑐𝑝

)
(6.2)

and then removing the delta on a case-by-case basis. This causes the sums over 𝑝 ∈ 𝐿±
𝑘 and 𝑞 ∈ 𝐿±

𝑙 of
any of these terms to reduce to one of the schematic forms∑

𝑝∈𝑆
𝑏
♮
𝑘

(
𝑇𝑒𝑝1

)
𝑏
♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐∗𝑝3𝑐𝑝4 ,

∑
𝑝∈𝑆

𝑏
♮
𝑘

(
𝑇𝑒𝑝1

)
𝑐∗𝑝3𝑐𝑝4𝑏

♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
,∑

𝑝∈𝑆
𝑐∗𝑝3𝑐𝑝4𝑏

♮
𝑘

(
𝑇𝑒𝑝1

)
𝑏
♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
(6.3)
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subject to the following: S is a subset of 𝐿±
𝑘 ∩ 𝐿±

𝑙 , 𝑏♮𝑘 can denote either 𝑏𝑘 or 𝑏∗𝑘 , 𝜀𝑘,𝑙 (𝑒𝑝 , 𝑒𝑞) may
instead be 𝜀𝑙,𝑘 (𝑒𝑞 , 𝑒𝑝) = 𝜀𝑘,𝑙 (𝑒𝑝 , 𝑒𝑞)∗, T denotes either A or B, the terms 𝑏♮𝑘 (𝑇𝑒𝑝) and 𝑏

♮
𝑙 (𝐾

⊕
𝑙 𝑒𝑞) may

be interchanged, the notation

𝑐𝑝 =

{
𝑐𝑝 𝑝 ∈ 𝐵𝑐𝐹
𝑐∗𝑝 𝑝 ∈ 𝐵𝐹

(6.4)

encodes the correct type of creation/annihilation operator depending on whether p corresponds to a hole
state or an excited state, and 𝑝1, 𝑝2, 𝑝3, 𝑝4 denote indices which depend on p.

The same decomposition holds for every term appearing in either E 𝑘1 (𝐴) or E 𝑘2 (𝐵), so we must
consider the forms of (6.3).

The only important feature of the dependency that the 𝑝𝑖 have with respect to p is that regardless of
the term, when summing over 𝑝 ∈ 𝑆, 𝑝𝑖 ranges either exclusively over excited states (i.e., 𝑝𝑖 ∈ 𝐿±

𝑘 ) or
exclusively over hole states (i.e., 𝑝𝑖 ∈ (𝐿𝑘 − 𝑘) ∪ (𝐿−𝑘 + 𝑘) or the analogous set for 𝐿±

𝑙 ), and that the
assignments 𝑝 ↦→ 𝑝𝑖 (for a given term) are injective. (Additionally, 𝑝1 and 𝑝2 will always be excited
states.)

Therefore, when estimating, we can always expand the sum to either all of 𝐵𝐹 or all of 𝐵𝑐𝐹 , which is
why the exact identities of S and the 𝑝𝑖 are of no importance to the estimation. For example,111111∑𝑝∈𝑆 〈Ψ, 𝑐∗𝑝3𝑐𝑝4Ψ

〉111111 ≤ ∑𝑝∈𝑆 ��𝑐𝑝3Ψ
�� ��𝑐𝑝4Ψ

�� ≤ √∑
𝑝∈𝑆

��𝑐𝑝3Ψ
��2√∑

𝑝∈𝑆

��𝑐𝑝4Ψ
��2 ≤ 〈Ψ,N𝐸Ψ〉 (6.5)

independently of S, 𝑝3 and 𝑝4. Here, the two situations when both 𝑝3 and 𝑝4 range over excited states,
and when both 𝑝3 and 𝑝4 range over hole states, can be treated similarly thanks to the particle-hole
symmetry (1.13).

Discussion of estimation strategy
We conclude that both E 𝑘1 (𝐴) and E 𝑘2 (𝐵) reduce to sums over 𝑙 ∈ 𝑆𝐶 of finitely many terms of the
schematic forms of equation (6.3), so it suffices to estimate these. To this end, we must first perform
some additional algebraic manipulation.

To motivate our goal, let us first derive a simple but insufficent estimate for one of these terms:∑
𝑝∈𝑆

𝑏∗𝑘
(
𝑇𝑒𝑝1

)
𝑐∗𝑝3𝑐𝑝4𝑏𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
. (6.6)

Using
��𝑐𝑝��Op = 1, Proposition 4.4 and the Cauchy–Schwarz inequality, we find that∑

𝑝∈𝑆

11〈Ψ, 𝑏∗𝑘
(
𝑇𝑒𝑝1

)
𝑐∗𝑝3𝑐𝑝4𝑏𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
Ψ
〉11 ≤ ∑

𝑝∈𝑆

��𝑏𝑘 (𝑇𝑒𝑝1

)
Ψ
�� ��𝑏𝑙 (𝐾 ⊕

𝑙 𝑒𝑝2

)
Ψ
�� (6.7)

≤
∑
𝑝∈𝑆

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝1

��� ���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙 𝑒𝑝2

��� 〈Ψ, 𝐻 ′
kinΨ
〉
≤
���(ℎ⊕

𝑘

)− 1
2 𝑇
���

HS

���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙

���
HS

〈
Ψ, 𝐻 ′

kinΨ
〉

for any Ψ ∈ H𝑁 . To get a feeling for the quality of this estimate, we must know what to expect of the
quantities on the right-hand side. We will see in the next sections that

��(ℎ⊕
𝑙 )

− 1
2 𝐾 ⊕

𝑙

��
HS ≤ 𝑂 (𝑘−

1
3+𝜖

𝐹 ).
In general, what will take the place of T will be the 𝐴𝑘 (𝑡) and 𝐵𝑘 (𝑡) operators we defined in the last
section, but as a simple example we consider

𝑇 =

(
𝑃𝑣𝑘 0
0 𝑃𝑣𝑘

)
, 𝑃𝑣𝑘 = |𝑣𝑘〉〈𝑣𝑘 |, 𝑣𝑘 =

√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐿𝑘

𝑒𝑝 ∈ ℓ2(𝐿𝑘 ) (6.8)
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for which ���(ℎ⊕
𝑘

)− 1
2 𝑇
���

HS
= 2
����ℎ− 1

2
𝑘 𝑃𝑣𝑘

����
HS

= 2
√

tr
(
𝑃𝑣𝑘 ℎ

−1
𝑘 𝑃𝑣𝑘

)
(6.9)

= 2 ‖𝑣𝑘 ‖
√〈

𝑣𝑘 , ℎ
−1
𝑘 𝑣𝑘
〉
=
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3 |𝐿𝑘 |
1
2

√∑
𝑝∈𝐿𝑘

𝜆−1
𝑘, 𝑝 ≤ 𝑂

(
𝑘

1
2
𝐹

)
when |𝑘 | ∼ 1. Here, we used |𝐿𝑘 | ≤ 𝐶 |𝑘 |𝑘2

𝐹 and the bound
∑
𝑝∈𝐿𝑘 𝜆

−1
𝑘, 𝑝 ≤ 𝐶𝑘𝐹 from Proposition A.2.

Thus, for any state satisfying
〈
Ψ, 𝐻 ′

kinΨ
〉
≤ 𝑂 (𝑘𝐹 ) (c.f. Theorem 1.2), the overall estimate for the right

side of (6.7) is 𝑂 (𝑘
7
6+𝜖
𝐹 ) which is insufficient as the correlation energy is of order 𝑘𝐹 .

The technical issue with the estimation in (6.7) lies in only using that
��𝑐𝑝��Op = 1, for we may get

better bounds by using
〈
Ψ,N𝐸𝐻

′
kinΨ
〉

instead of
〈
Ψ, 𝐻 ′

kinΨ
〉
. For example,∑

𝑝∈𝑆

11〈Ψ, 𝑏∗𝑘
(
𝑇𝑒𝑝1

)
𝑐∗𝑝3𝑐𝑝4𝑏𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
Ψ
〉11 (6.10)

=
∑
𝑝∈𝑆

11〈Ψ, 𝑐∗𝑝3𝑏
∗
𝑘

(
𝑇𝑒𝑝1

)
𝑏𝑙
(
𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

〉11 ≤ ∑
𝑝∈𝑆

��𝑏𝑘 (𝑇𝑒𝑝1

)
𝑐𝑝3Ψ

�� ��𝑏𝑙 (𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

��
≤
∑
𝑝∈𝑆

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝1

��� ���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙 𝑒𝑝2

���√〈𝑐𝑝3Ψ, 𝐻 ′(±1)
kin 𝑐𝑝3Ψ

〉 〈
𝑐𝑝4Ψ, 𝐻 ′(±1)

kin 𝑐𝑝4Ψ
〉

(6.11)

≤
(
max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝

���) √√√∑
𝑝∈𝑆

����(ℎ⊕
𝑙

)− 1
2
𝐾 ⊕
𝑙 𝑒𝑞

����2√∑
𝑝∈𝑆

〈
Ψ, 𝑐∗𝑝3𝐻

′(±1)
kin 𝑐𝑝3Ψ

〉√〈
Ψ, 𝐻 ′

kinΨ
〉

≤
(
max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝

���) ���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙

���
HS

√〈
Ψ,N𝐸𝐻

′
kinΨ
〉 〈

Ψ, 𝐻 ′
kinΨ
〉
,

where we used that
[
𝑐𝑝 , 𝑏𝑘 (·)

]
= 0 (as we will see in Proposition 6.1 below) and momentarily looked

ahead to the definition (6.30) for 𝐻 ′(±1)
kin and Lemma 6.6 (we take supremum over 𝑝4 and sum over 𝑝3

to get the second inequality). Considering again the example in (6.8), we find

max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝

��� = √ 𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3

����ℎ− 1
2
𝑘 𝑣𝑘

���� = 𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3

√∑
𝑘∈𝐿𝑘

𝜆−1
𝑘, 𝑝 ≤ 𝑂 (𝑘−

1
2

𝐹 ). (6.12)

Thus, for any state satisfying
〈
Ψ, 𝐻 ′

kinΨ
〉
≤ 𝑂 (𝑘𝐹 ) and

〈
Ψ,N𝐸𝐻

′
kinΨ
〉
≤ 𝑂 (𝑘2

𝐹 ) (c.f. Theorem 1.2),

the right side of (6.10) is thus bounded by 𝑂 (𝑘
2
3+𝜖
𝐹 ), which is much smaller than the correlation energy.

Our goal is, therefore, to reduce the schematic forms of equation (6.3) to those of the form∑
𝑝∈𝑆 𝑐

∗
𝑝3𝑏

♮
𝑘 (𝑇𝑒𝑝1 )𝑏

♮
𝑙 (𝐾

⊕
𝑙 𝑒𝑝2)𝑐𝑝4 , which we may then estimate as above. While

[
𝑐𝑝 , 𝑏𝑘 (·)

]
= 0, it

is generally the case that
[
𝑐𝑝 , 𝑏

∗
𝑘 (·)
]
≠ 0, so this will also introduce additional commutator terms which

we must then estimate separately.
Taking into account whether 𝑏♮𝑘 = 𝑏𝑘 or 𝑏♮𝑘 = 𝑏∗𝑘 , the schematic forms of equation (6.3) are either of

the form (supressing the summation, the arguments and the subscripts for brevity)

𝑏∗𝑏∗𝑐∗𝑐, 𝑏∗𝑏𝑐∗𝑐, 𝑏𝑏∗𝑐∗𝑐, 𝑏𝑏𝑐∗𝑐, 𝑏∗𝑐∗𝑐𝑏, 𝑏𝑐∗𝑐𝑏, 𝑏𝑐∗𝑐𝑏∗, (6.13)
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or reduce to one of these by taking the adjoint, which as we will estimate, E 𝑘1 (𝐴) and E 𝑘2 (𝐵) as bilinear
forms does not matter. Using that commutators of the form [𝑏, 𝑐], [𝑏∗, 𝑐∗] and [𝑏, [𝑏, 𝑐∗]] vanish
(verified below), these schematic forms reduce to

𝑏∗𝑏∗𝑐∗𝑐 = 𝑐∗𝑏∗𝑏∗𝑐,

𝑏∗𝑏𝑐∗𝑐 = 𝑐∗𝑏∗𝑏𝑐 + [𝑏, 𝑐∗] 𝑏∗𝑐 + [𝑏∗, [𝑏, 𝑐∗]] 𝑐,
𝑏𝑏∗𝑐∗𝑐 = 𝑐∗𝑏𝑏∗𝑐 + [𝑏, 𝑐∗] 𝑏∗𝑐,
𝑏𝑏𝑐∗𝑐 = 𝑐∗𝑏𝑏𝑐 + [𝑏, 𝑐∗] 𝑏𝑐 + [𝑏, 𝑐∗] 𝑏𝑐, (6.14)
𝑏∗𝑐∗𝑐𝑏 = 𝑐∗𝑏∗𝑏𝑐,

𝑏𝑐∗𝑐𝑏 = 𝑐∗𝑏𝑏𝑐 + [𝑏, 𝑐∗] 𝑏𝑐,
𝑏𝑐∗𝑐𝑏∗ = 𝑐∗𝑏𝑏∗𝑐 + [𝑏, 𝑐∗] 𝑏∗𝑐 + 𝑐∗𝑏 [𝑐, 𝑏∗] + [𝑏, 𝑐∗] [𝑐, 𝑏∗] .

Reintroducing the 𝑏♮ notation outside the commutators and using once more our freedom to take
adjoints, we find that every term on the right-hand sides of the two equations above takes one of the four
schematic forms

𝑐∗𝑏♮𝑏♮𝑐, [𝑐, 𝑏∗]∗ 𝑏♮𝑐, [[𝑐, 𝑏∗] , 𝑏]∗ 𝑐, [𝑐, 𝑏∗]∗ [𝑐, 𝑏∗] . (6.15)

These are the final forms which we will explicitly estimate.

6.2. Preliminary commutator estimates

In addition to the general estimates which we derived at the start of this section, we will also need
estimates on the commutator terms which appear in the schematic forms of equation (6.23), which we
now derive. First, we must, however, verify that the commutators [𝑏, 𝑐], [𝑏∗, 𝑐∗] and [𝑏, [𝑏, 𝑐∗]] vanish,
which we relied upon in our reduction procedure:

Proposition 6.1. For all 𝑘, 𝑙 ∈ Z3
+, 𝜑 ∈ ℓ2(𝐿±

𝑘 ), 𝜓 ∈ ℓ2 (𝐿±
𝑙

)
and 𝑝 ∈ Z3 it holds that[

𝑏𝑘 (𝜑), 𝑐𝑝
]
=
[
𝑏∗𝑘 (𝜑), 𝑐

∗
𝑝

]
= 0,

[
𝑏𝑙 (𝜓) ,

[
𝑏𝑘 (𝜑), 𝑐∗𝑝

] ]
= 0.

Proof. We compute from the definitions that for any 𝑞 ∈ 𝐿±
𝑘 ,[

𝑏𝑘,𝑞 , 𝑐𝑝

]
=
[
𝑐∗
𝑞−𝑘

𝑐𝑞 , 𝑐𝑝

]
= 𝑐∗

𝑞−𝑘

{
𝑐𝑞 , 𝑐𝑝

}
−
{
𝑐∗
𝑞−𝑘

, 𝑐𝑝

}
𝑐𝑞

=

⎧⎪⎪⎨⎪⎪⎩
𝑐∗
𝑞−𝑘

{
𝑐𝑞 , 𝑐𝑝

}
−
{
𝑐∗
𝑞−𝑘

, 𝑐𝑝

}
𝑐𝑞 , 𝑝 ∈ 𝐵𝑐𝐹

𝑐∗
𝑞−𝑘

{
𝑐𝑞 , 𝑐

∗
𝑝

}
−
{
𝑐∗
𝑞−𝑘

, 𝑐∗𝑝

}
𝑐𝑞 , 𝑝 ∈ 𝐵𝐹

= 0 (6.16)

as all anticommutators on the second line vanish either directly by the CAR or by disjointness of 𝐵𝐹
and 𝐵𝑐𝐹 . By linearity,

[
𝑏𝑘 (𝜑), 𝑐𝑝

]
= 0, and

[
𝑏∗𝑘 (𝜑), 𝑐

∗
𝑝

]
= −
[
𝑏𝑘 (𝜑), 𝑐𝑝

]∗
= 0.

For the double commutator, we first compute [𝑏𝑘,𝑞 , 𝑐
∗
𝑝]. As above, we find

[
𝑏𝑘,𝑞 , 𝑐

∗
𝑝

]
=

⎧⎪⎪⎨⎪⎪⎩
𝑐∗
𝑞−𝑘

{
𝑐𝑞 , 𝑐

∗
𝑝

}
−
{
𝑐∗
𝑞−𝑘

, 𝑐∗𝑝

}
𝑐𝑞 , 𝑝 ∈ 𝐵𝑐𝐹

𝑐∗
𝑞−𝑘

{
𝑐𝑞 , 𝑐𝑝

}
−
{
𝑐∗
𝑞−𝑘

, 𝑐𝑝

}
𝑐𝑞 , 𝑝 ∈ 𝐵𝐹

=

{
𝛿𝑞,𝑝𝑐𝑞−𝑘 , 𝑝 ∈ 𝐵𝑐𝐹
−𝛿𝑞−𝑘, 𝑝𝑐𝑞 , 𝑝 ∈ 𝐵𝐹
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so

[
𝑏𝑘 (𝜑), 𝑐∗𝑝

]
=
∑
𝑞∈𝐿±

𝑘

〈
𝜑, 𝑒𝑞

〉 [
𝑏𝑘,𝑞 , 𝑐

∗
𝑝

]
=
∑
𝑞∈𝐿±

𝑘

〈
𝜑, 𝑒𝑞

〉 {𝛿𝑞,𝑝𝑐𝑞−𝑘 𝑝 ∈ 𝐵𝑐𝐹
−𝛿𝑞−𝑘, 𝑝𝑐𝑞 𝑝 ∈ 𝐵𝐹

= 1𝐿±
𝑘
(𝑝)
〈
𝜑, 𝑒𝑝

〉
𝑐𝑝−𝑘 − 1𝐿𝑘−𝑘 (𝑝)

〈
𝜑, 𝑒𝑝+𝑘

〉
𝑐𝑝+𝑘 − 1𝐿𝑘+𝑘 (𝑝)

〈
𝜑, 𝑒𝑝−𝑘

〉
𝑐𝑝−𝑘 , (6.17)

where 1𝑆 (·) denotes the indicator function of a set S. Observing that
[
𝑏𝑘 (𝜑), 𝑐∗𝑝

]
is a linear combination

of 𝑐𝑝 terms, we conclude that
[
𝑏𝑙 (𝜓),

[
𝑏𝑘 (𝜑), 𝑐∗𝑝

] ]
= 0 by the first part. �

We now move into the estimation of the nonvanishing commutators. We begin with the single
commutator; we state the estimate and make a remark:

Proposition 6.2. For all 𝑘 ∈ Z3
+, sequences

(
𝜑𝑝
)
𝑝∈Z3 ∈ ℓ2(𝐿±

𝑘 ) and Ψ ∈ H𝑁 , it holds that

∑
𝑝∈Z3

��[𝑐𝑝 , 𝑏∗𝑘 (𝜑𝑝 ) ] Ψ��2 ≤ 3 !"#
∑
𝑝∈𝐿±

𝑘

max
𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112$%& ‖Ψ‖2

∑
𝑝∈Z3

��[𝑐∗𝑝 , 𝑏𝑘 (𝜑𝑝 ) ] Ψ��2 ≤ 4

(
max

𝑝∈𝐿±
𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112) 〈Ψ,N𝐸Ψ〉 .

Remark 6.1. The statement may appear overly general in that it involves general sequences (𝜑𝑝)𝑝∈Z3 ⊂
ℓ2(𝐿±

𝑘 ) rather than the explicit vectors (𝑇𝑒𝑝1 )𝑝∈𝑆 ⊂ ℓ2(𝐿±
𝑘 ) that we must consider. The point of the

generality is, however, only to avoid having to explicitly state the dependencies of the set S and the
𝑝𝑖’s of each possible schematic form, as independently of these it is easy to see that a sum such as∑
𝑝∈𝑆
��[𝑐𝑝3 , 𝑏

∗
𝑘 (𝑇𝑒𝑝1)]Ψ

��2 can always be cast into the form in the statement.

Proof. Taking the adjoint of equation (6.17) yields[
𝑐𝑝 , 𝑏

∗
𝑘 (𝜑)

]
= 1𝐿±

𝑘
(𝑝)
〈
𝑒𝑝 , 𝜑

〉
𝑐∗
𝑝−𝑘

− 1𝐿𝑘−𝑘 (𝑝)
〈
𝑒𝑝+𝑘 , 𝜑

〉
𝑐∗𝑝+𝑘 − 1𝐿𝑘+𝑘 (𝑝)

〈
𝑒𝑝−𝑘 , 𝜑

〉
𝑐∗𝑝−𝑘 , (6.18)

and so we can for any Ψ ∈ H𝑁 estimate by the (squared) triangle inequality, using also that 𝐿±
𝑘 and

(𝐿𝑘 − 𝑘) ∩ (𝐿−𝑘 + 𝑘) are disjoint and
��𝑐∗𝑝��Op = 1, that∑

𝑝∈Z3

��[𝑐𝑝 , 𝑏∗𝑘 (𝜑𝑝 ) ] Ψ��2
≤
∑
𝑝∈𝐿±

𝑘

11〈𝑒𝑝 , 𝜑𝑝〉112 ���𝑐∗𝑝−𝑘Ψ���2 + 2
∑

𝑝∈𝐿𝑘−𝑘

11〈𝑒𝑝+𝑘 , 𝜑𝑝〉112 ���𝑐∗𝑝+𝑘Ψ���2 + 2
∑

𝑝∈𝐿−𝑘+𝑘

11〈𝑒𝑝−𝑘 , 𝜑𝑝〉112 ���𝑐∗𝑝−𝑘Ψ���2
≤ !"#
∑
𝑝∈𝐿±

𝑘

11〈𝑒𝑝 , 𝜑𝑝〉112 + 2
∑

𝑝∈𝐿𝑘−𝑘

11〈𝑒𝑝+𝑘 , 𝜑𝑝〉112 + 2
∑

𝑝∈𝐿−𝑘+𝑘

11〈𝑒𝑝−𝑘 , 𝜑𝑝〉112$%& ‖Ψ‖2

≤ !"#
∑
𝑝∈𝐿±

𝑘

max
𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112 + 2
∑
𝑝∈𝐿𝑘

max
𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112 + 2
∑
𝑝∈𝐿−𝑘

max
𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112$%& ‖Ψ‖2

= 3 !"#
∑
𝑝∈𝐿±

𝑘

max
𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112$%& ‖Ψ‖2 , (6.19)
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which implies the first estimate. For the second estimate, we find in a similar manner (now directly from
equation (6.17)) that∑

𝑝∈Z3

��[𝑐∗𝑝 , 𝑏𝑘 (𝜑𝑝 ) ] Ψ��2 ≤
∑
𝑝∈𝐿±

𝑘

11〈𝑒𝑝 , 𝜑𝑝〉112 ���𝑐𝑝−𝑘Ψ���2 + 2
∑

𝑝∈𝐿𝑘−𝑘

11〈𝑒𝑝+𝑘 , 𝜑𝑝〉112 ��𝑐𝑝+𝑘Ψ��2
+ 2

∑
𝑝∈𝐿−𝑘+𝑘

11〈𝑒𝑝−𝑘 , 𝜑𝑝〉112 ��𝑐𝑝−𝑘Ψ��2
≤
(

max
𝑝∈𝐿±

𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112) !"#
∑
𝑝∈𝐿±

𝑘

���𝑐𝑝−𝑘Ψ���2 + 2
∑

𝑝∈𝐿𝑘−𝑘

��𝑐𝑝+𝑘Ψ��2 + 2
∑

𝑝∈𝐿−𝑘+𝑘

��𝑐𝑝−𝑘Ψ��2$%&
=

(
max

𝑝∈𝐿±
𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112) !"#
∑
𝑝∈𝐿±

𝑘

���𝑐∗
𝑝−𝑘

Ψ
���2 + 2

∑
𝑝∈𝐿𝑘

��𝑐𝑝Ψ��2 + 2
∑
𝑝∈𝐿−𝑘

��𝑐𝑝Ψ��2$%&
≤ 4

(
max

𝑝∈𝐿±
𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112) 〈Ψ,N𝐸Ψ〉 . (6.20)

�
Lastly, we estimate the double commutator:

Proposition 6.3. For all 𝑘, 𝑙 ∈ Z3
+, sequences

(
𝜑𝑝
)
𝑝∈Z3 ⊂ ℓ2(𝐿±

𝑘 ) and
(
𝜓𝑝
)
𝑝∈Z3 ⊂ ℓ2 (𝐿±

𝑙

)
, and

Ψ ∈ H𝑁 , it holds that∑
𝑝∈Z3

��[ [𝑐𝑝 , 𝑏∗𝑘 (𝜑𝑝 ) ] , 𝑏𝑙 (𝜓𝑝 ) ] Ψ��2 ≤ 12

(
max

𝑝∈𝐿±
𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112) ( max
𝑝∈𝐿±

𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜓𝑞〉112) 〈Ψ,N𝐸Ψ〉 .

Proof. From (6.18), we have that[ [
𝑐𝑝 , 𝑏

∗
𝑘

(
𝜑𝑝
) ]

, 𝑏𝑙
(
𝜓𝑝
) ]

= 1𝐿±
𝑘
(𝑝)
〈
𝑒𝑝 , 𝜑

〉 [
𝑐∗
𝑝−𝑘

, 𝑏𝑙
(
𝜓𝑝
) ]

− 1𝐿𝑘−𝑘 (𝑝)
〈
𝑒𝑝+𝑘 , 𝜑

〉 [
𝑐∗𝑝+𝑘 , 𝑏𝑙

(
𝜓𝑝
) ]

(6.21)

− 1𝐿𝑘+𝑘 (𝑝)
〈
𝑒𝑝−𝑘 , 𝜑

〉 [
𝑐∗𝑝−𝑘 , 𝑏𝑙

(
𝜓𝑝
) ]

,

and so, by the triangle inequality and the second estimate of Proposition 6.2,∑
𝑝∈Z𝑛

��[ [𝑐𝑝 , 𝑏∗𝑘 (𝜑𝑝 ) ] , 𝑏𝑙 (𝜓𝑝 ) ] Ψ��2 ≤
∑
𝑝∈𝐿±

𝑘

11〈𝑒𝑝 , 𝜑𝑝〉112 ���[𝑐∗𝑝−𝑘 , 𝑏𝑙 (𝜓𝑝 ) ] Ψ���2
+ 2

∑
𝑝∈𝐿𝑘−𝑘

11〈𝑒𝑝+𝑘 , 𝜑𝑝〉112 ���[𝑐∗𝑝+𝑘 , 𝑏𝑙 (𝜓𝑝 ) ] Ψ���2 + 2
∑

𝑝∈𝐿−𝑘+𝑘

11〈𝑒𝑝−𝑘 , 𝜑𝑝〉112 ���[𝑐∗𝑝−𝑘 , 𝑏𝑙 (𝜓𝑝 ) ] Ψ���2
≤
(

max
𝑝∈𝐿±

𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112) !"#
∑
𝑝∈𝐿±

𝑘

���[𝑐∗
𝑝−𝑘

, 𝑏𝑙
(
𝜓𝑝
) ]

Ψ
���2 + 2

∑
𝑝∈𝐿𝑘

��[𝑐∗𝑝 , 𝑏𝑙 (𝜓𝑝−𝑘 ) ] Ψ��2
+2
∑
𝑝∈𝐿−𝑘

��[𝑐∗𝑝 , 𝑏𝑙 (𝜓𝑝+𝑘 ) ] Ψ��2)
≤ 12

(
max

𝑝∈𝐿±
𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜑𝑞〉112) ( max
𝑝∈𝐿±

𝑘
,𝑞∈Z3

11〈𝑒𝑝 , 𝜓𝑞〉112) 〈Ψ,N𝐸Ψ〉 . (6.22)

�
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6.3. Final estimation of the exchange terms

Now we are ready to derive bounds for the exchange terms E 𝑘1 (𝐴) and E 𝑘2 (𝐵) defined in Proposition
5.2. Recall that we have reduced the estimation of these complicated operators to the task of obtaining
a uniform estimate for the four explicit forms∑

𝑙∈𝑆𝐶

∑
𝑝∈𝑆

𝑐∗𝑝3𝑏
♮
𝑘

(
𝑇𝑒𝑝1

)
𝑏
♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4 ,

∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

[
𝑐𝑝3 , 𝑏

∗
𝑘

(
𝑇𝑒𝑝1

) ]∗
𝑏
♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4∑

𝑙∈𝑆𝐶

∑
𝑝∈𝑆

[ [
𝑐𝑝3 , 𝑏

∗
𝑘

(
𝑇𝑒𝑝1

) ]
, 𝑏𝑙
(
𝐾 ⊕
𝑙 𝑒𝑝2

) ]∗
𝑐𝑝4 ,

∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

[
𝑐𝑝3 , 𝑏

∗
𝑘

(
𝑇𝑒𝑝1

) ]∗ [
𝑐𝑝4 , 𝑏

∗
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

) ]
,

(6.23)

subject to the following rules: 𝑏♮𝑘 denotes either 𝑏𝑘 or 𝑏∗𝑘 , T denotes either A or B, and 𝑏
♮
𝑘

(
𝑇𝑒𝑝1

)
and

𝑏
♮
𝑙 (𝐾

⊕
𝑙 𝑒𝑝2) may be interchanged. Furthermore, the notation 𝑐𝑝 denotes either 𝑐𝑝 or 𝑐∗𝑝 as appropriate

for p, and the set S is such that the assignments 𝑝 ↦→ 𝑝1, 𝑝2, 𝑝3, 𝑝4 are injective and map exclusively
into 𝐵𝐹 or 𝐵𝑐𝐹 .

Let us start by giving estimates in terms of N 2
𝐸 . For the statement, we define the ‖·‖∞,2-norm of an

operator 𝑇 : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ) by

‖𝑇 ‖∞,2 =
√∑
𝑝∈𝐿±

𝑘

max
𝑞∈𝐿±

𝑘

11〈𝑒𝑝 , 𝑇𝑒𝑞〉112. (6.24)

This is a minor but necessary detail, as unlike the simple estimate of equation (6.10), we cannot take the
maximum outside the sum for all schematic terms, so we need this slightly stronger norm. Note that

max
𝑝,𝑞∈𝐿±

𝑘

11〈𝑒𝑝 , 𝑇𝑒𝑞〉11 ≤ max
𝑝∈𝐿±

𝑘

��𝑇𝑒𝑝�� ≤ ‖𝑇 ‖∞,2 . (6.25)

Now the estimate the follows.

Proposition 6.4. For all 𝑘 ∈ Z3
+, symmetric 𝑇 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ H𝑁 , it holds that

11〈Ψ, E 𝑘𝑖 (𝑇)Ψ
〉11 ≤ 𝐶 ‖𝑇 ‖∞,2

(∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2

) 〈
Ψ,
(
1 +N 2

𝐸

)
Ψ
〉

with 𝑖 = 1, 2, for a constant 𝐶 > 0 independent of all relevant quantities.

Proof. We estimate each schematic form of (6.23) using the estimates of the Propositions 4.2, 6.2, 6.3
and Lemma 4.3, as well as the Cauchy-Schwarz inequality. First is 𝑐∗𝑏♮𝑏♮𝑐:∑

𝑙∈𝑆𝐶

∑
𝑝∈𝑆

111〈Ψ, 𝑐∗𝑝3𝑏
♮
𝑘

(
𝑇𝑒𝑝1

)
𝑏
♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

〉111 ≤ ∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

���𝑏♯𝑘 (𝑇𝑒𝑝1

)∗
𝑐𝑝3Ψ

��� ���𝑏♮𝑙 (𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

���
≤ 𝐶

∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

��𝑇𝑒𝑝1

�� ��𝐾 ⊕
𝑙 𝑒𝑝2

��√〈𝑐𝑝3Ψ,
(
1 +N (±1)

𝐸

)
𝑐𝑝3Ψ

〉 〈
𝑐𝑝4Ψ,

(
1 +N (±1)

𝐸

)
𝑐𝑝4Ψ

〉
(6.26)

≤ 𝐶 max
𝑝∈𝐿±

𝑘

��𝑇𝑒𝑝�� ∑
𝑙∈𝑆𝐶

max
𝑞∈𝐿±

𝑙

��𝐾 ⊕
𝑙 𝑒𝑞
��√∑

𝑝∈𝑆

〈
Ψ,
(
𝑐∗𝑝3N

(±1)
𝐸 𝑐𝑝3 + 𝑐∗𝑝3𝑐𝑝3

)
Ψ
〉

·
√∑
𝑝∈𝑆

〈
Ψ,
(
𝑐∗𝑝4N

(±1)
𝐸 𝑐𝑝4 + 𝑐∗𝑝4𝑐𝑝4

)
Ψ
〉
≤ 𝐶 ‖𝑇 ‖∞,2

(∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2

) 〈
Ψ,N 2

𝐸Ψ
〉
.
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Then, [𝑐, 𝑏∗]∗ 𝑏♮𝑐:∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

111〈Ψ,
[
𝑐𝑝3 , 𝑏

∗
𝑘

(
𝑇𝑒𝑝1

) ]∗
𝑏
♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

〉111
≤
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

��[𝑐𝑝3 , 𝑏
∗
𝑘

(
𝑇𝑒𝑝1

) ]
Ψ
�� ���𝑏♮𝑙 (𝐾 ⊕

𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

���
≤ 𝐶

∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

��[𝑐𝑝3 , 𝑏
∗
𝑘

(
𝑇𝑒𝑝1

) ]
Ψ
�� ��𝐾 ⊕

𝑙 𝑒𝑝2

��√〈𝑐𝑝4Ψ,
(
1 +N (±1)

𝐸

)
𝑐𝑝4Ψ

〉
≤ 𝐶

∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2

√∑
𝑝∈𝑆

��[𝑐𝑝3 , 𝑏
∗
𝑘

(
𝑇𝑒𝑝1

) ]
Ψ
��2√∑

𝑝∈𝑆

〈
𝑐𝑝4Ψ,

(
1 +N (±1)

𝐸

)
𝑐𝑝4Ψ

〉
(6.27)

≤ 𝐶
∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2

√∑
𝑝∈𝐿±

𝑘

max
𝑞∈𝐿±

𝑘

11〈𝑒𝑝 , 𝑇𝑒𝑞〉112 ‖Ψ‖2
√〈

Ψ,N 2
𝐸Ψ
〉

≤ 𝐶 ‖𝑇 ‖∞,2

(∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2

)
‖Ψ‖

√〈
Ψ,N 2

𝐸Ψ
〉
.

Now, [[𝑐, 𝑏∗] , 𝑏]∗ 𝑐:∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

11〈Ψ,
[ [
𝑐𝑝3 , 𝑏

∗
𝑘

(
𝑇𝑒𝑝1

) ]
, 𝑏𝑙
(
𝐾 ⊕
𝑙 𝑒𝑝2

) ]∗
𝑐𝑝4Ψ

〉11
≤
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

��[ [𝑐𝑝3 , 𝑏
∗
𝑘

(
𝑇𝑒𝑝1

) ]
, 𝑏𝑙
(
𝐾 ⊕
𝑙 𝑒𝑝2

) ]
Ψ
�� ��𝑐𝑝4Ψ

��
≤
∑
𝑙∈𝑆𝐶

√√∑
𝑝∈𝑆

���[ [𝑐𝑝3 , 𝑏
∗
𝑘

(
𝑇𝑒𝑝1

) ]
, 𝑏𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)]
Ψ
���2√∑

𝑝∈𝑆

��𝑐𝑝4Ψ
��2 (6.28)

≤ 𝐶
∑
𝑙∈𝑆𝐶

√√√(
max
𝑝,𝑞∈𝐿±

𝑘

11〈𝑒𝑝 , 𝑇𝑒𝑞〉112) ( max
𝑝,𝑞∈𝐿±

𝑙

11〈𝑒𝑝 , 𝐾 ⊕
𝑙 𝑒𝑞
〉112) 〈Ψ,N𝐸Ψ〉

√
〈Ψ,N𝐸Ψ〉

≤ 𝐶 ‖𝑇 ‖∞,2
∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2 〈Ψ,N𝐸Ψ〉 .

And finally, [𝑐, 𝑏∗]∗ [𝑐, 𝑏∗]:∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

11〈Ψ,
[
𝑐𝑝3 , 𝑏

∗
𝑘

(
𝑇𝑒𝑝1

) ]∗ [
𝑐𝑝4 , 𝑏

∗
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

) ]
Ψ
〉11

≤
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

��[𝑐𝑝3 , 𝑏
∗
𝑘

(
𝑇𝑒𝑝1

) ]
Ψ
�� ��[𝑐𝑝4 , 𝑏

∗
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

) ]
Ψ
��

≤
∑
𝑙∈𝑆𝐶

√∑
𝑝∈𝑆

��[𝑐𝑝3 , 𝑏
∗
𝑘

(
𝑇𝑒𝑝1

) ]
Ψ
��2√√∑

𝑝∈𝑆

���[𝑐𝑝4 , 𝑏
∗
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)]
Ψ
���2 (6.29)

≤ 𝐶
∑
𝑙∈𝑆𝐶

√∑
𝑝∈𝐿±

𝑘

max
𝑞∈𝐿±

𝑘

11〈𝑒𝑝 , 𝑇𝑒𝑞〉112 ‖Ψ‖2
√∑
𝑝∈𝐿±

𝑙

max
𝑞∈𝐿±

𝑙

11〈𝑒𝑝 , 𝐾 ⊕
𝑙 𝑒𝑞
〉112 ‖Ψ‖2

≤ 𝐶 ‖𝑇 ‖∞,2
∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2 ‖Ψ‖2 .

�
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Now we derive a kinetic bound.

Proposition 6.5. For all 𝑘 ∈ Z3
+, symmetric 𝑇 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ 𝐷

(
𝐻 ′

kin
)
,11〈Ψ, E 𝑘𝑖 (𝑇)Ψ

〉11 ≤ 𝐶
∑
𝑙∈𝑆𝐶

(���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙

���
HS

+
��𝐾 ⊕

𝑙

��
∞,2

)
×
[ (

max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝

���) √〈Ψ, 𝐻 ′
kinΨ
〉 〈

Ψ,N𝐸𝐻
′
kinΨ
〉

+ ‖𝑇 ‖∞,2
(〈
Ψ,
(
1 + 𝐻 ′

kin
)
Ψ
〉
+ ‖Ψ‖

√〈
Ψ,N𝐸𝐻

′
kinΨ
〉) ]

for 𝑖 = 1, 2, for a constant 𝐶 > 0 independent of all relevant quantities.

As a technical preparation, let us observe that from (1.14) we may associate to 𝐻 ′
kin the operators

𝐻 ′(±1)
kin =

∑
𝑝∈𝐵𝑐𝐹

| |𝑝 |2 − 𝜁 | 𝑐∗𝑝𝑐𝑝 +
∑
𝑝∈𝐵𝐹

| |𝑝 |2 − 𝜁 | 𝑐𝑝𝑐∗𝑝 (6.30)

acting on H𝑁±1 (the expressions of 𝐻 ′(+1)
kin and 𝐻 ′(−1)

kin are the same, but the domains are different). With
this interpretation, we have the following lemma (c.f. Lemma 4.3):

Lemma 6.6. It holds that

𝑐∗𝑝𝐻
′(±1)
kin 𝑐𝑝 ≤ 𝐻 ′

kin

for all 𝑝 ∈ Z3 and ∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝐻
′(−1)
kin 𝑐𝑝 ≤ N𝐸𝐻

′
kin,

∑
𝑝∈𝐵𝐹

𝑐𝑝𝐻
′(+1)
kin 𝑐∗𝑝 ≤ N𝐸𝐻

′
kin.

Proof. By the CAR, we have that

∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝐻
′(−1)
kin 𝑐𝑝 =

∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝
!"#
∑
𝑞∈𝐵𝑐𝐹

| |𝑞 |2 − 𝜁0 | 𝑐∗𝑞𝑐𝑞 +
∑
𝑞∈𝐵𝐹

| |𝑞 |2 − 𝜁0 | 𝑐𝑞𝑐∗𝑞
$%& 𝑐𝑝

=
!"#
∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝
$%& !"#
∑
𝑞∈𝐵𝑐𝐹

| |𝑞 |2 − 𝜁0 | 𝑐∗𝑞𝑐𝑞 +
∑
𝑞∈𝐵𝐹

| |𝑞 |2 − 𝜁0 | 𝑐𝑞𝑐∗𝑞
$%& +
∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝

⎡⎢⎢⎢⎢⎣
∑
𝑞∈𝐵𝑐𝐹

| |𝑞 |2 − 𝜁0 | 𝑐∗𝑞𝑐𝑞 , 𝑐𝑝
⎤⎥⎥⎥⎥⎦

= N𝐸𝐻
′
kin −

∑
𝑝,𝑞∈𝐵𝑐𝐹

| |𝑞 |2 − 𝜁0 | 𝛿𝑝,𝑞𝑐∗𝑝𝑐𝑞 ≤ N𝐸𝐻
′
kin, (6.31)

and the inequality for 𝑐𝑝𝐻 ′(+1)
kin 𝑐∗𝑝 can be derived similarly. That 𝑐∗𝑝𝐻

′(±1)
kin 𝑐𝑝 ≤ 𝐻 ′

kin follows exactly as
the inequality 𝑐∗𝑝N

(±1)
𝐸 𝑐𝑝 ≤ N𝐸 did in Lemma 4.3. �

Now we are ready to give the

Proof of Proposition 6.5. For all schematic forms except∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

𝑐∗𝑝3𝑏
♮
𝑘

(
𝑇𝑒𝑝1

)
𝑏
♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4 , (6.32)
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we can use the estimates derived in Proposition 6.4, specifically the equations (6.27) through (6.29),
and the fact that N𝐸 ≤ 𝐻 ′

kin. For the schematic form in (6.32), we can by Proposition 4.4 estimate that∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

111〈Ψ, 𝑐∗𝑝3𝑏
♮
𝑘

(
𝑇𝑒𝑝1

)
𝑏
♮
𝑙

(
𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

〉111 ≤ ∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

���𝑏♮𝑘 (𝑇𝑒𝑝1

)
𝑐𝑝3Ψ

��� ���𝑏♮𝑙 (𝐾 ⊕
𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

���
≤
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝1

��� ���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙 𝑒𝑝2

���√〈𝑐𝑝3Ψ, 𝐻 ′(±1)
kin 𝑐𝑝3Ψ

〉 〈
𝑐𝑝4Ψ, 𝐻 ′(±1)

kin 𝑐𝑝4Ψ
〉

+
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝1

��� ��𝐾 ⊕
𝑙 𝑒𝑝2

��√〈𝑐𝑝3Ψ, 𝐻 ′(±1)
kin 𝑐𝑝3Ψ

〉 ��𝑐𝑝4Ψ
��

+
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

��𝑇𝑒𝑝1

�� ���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙 𝑒𝑝2

��� ��𝑐𝑝3Ψ
��√〈𝑐𝑝4Ψ, 𝐻 ′(±1)

kin 𝑐𝑝4Ψ
〉

+
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

��𝑇𝑒𝑝1

�� ��𝐾 ⊕
𝑙 𝑒𝑝2

�� ��𝑐𝑝3Ψ
�� ��𝑐𝑝4Ψ

��
=: 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4. (6.33)

The terms 𝐴1 through 𝐴4 can be estimated by the Cauchy-Schwarz inequality, Lemma 6.6, the inequality
N𝐸 ≤ 𝐻 ′

kin and the fact that max𝑝∈𝐿±
𝑘

��𝑇𝑒𝑝�� ≤ ‖𝑇 ‖∞,2 as

𝐴1 ≤
(
max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝

���) (∑
𝑙∈𝑆𝐶

���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙

���
HS

) √〈
Ψ, 𝐻 ′

kinΨ
〉 〈

Ψ,N𝐸𝐻
′
kinΨ
〉
,

𝐴2 ≤
(
max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝑇𝑒𝑝

���) (∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2

) √〈
Ψ, 𝐻 ′

kinΨ
〉 〈

Ψ,N𝐸𝐻
′
kinΨ
〉
, (6.34)

𝐴3 ≤ ‖𝑇 ‖∞,2

(∑
𝑙∈𝑆𝐶

���(ℎ⊕
𝑙

)− 1
2 𝐾 ⊕

𝑙

���
HS

) 〈
Ψ, 𝐻 ′

kinΨ
〉
,

𝐴4 ≤ ‖𝑇 ‖∞,2

(∑
𝑙∈𝑆𝐶

��𝐾 ⊕
𝑙

��
∞,2

) 〈
Ψ, 𝐻 ′

kinΨ
〉
,

all of which are also accounted for by the statement. �

7. Analysis of the one-body operators K, 𝑨(𝒕) and 𝑩(𝒕)

In this section, we study the one-body operators on ℓ2(𝐿𝑘 ) defined in Section 5, including 𝐾𝑘 introduced
in (5.23) and 𝐴𝑘 , 𝐵𝑘 defined in Proposition 5.7:

𝐾𝑘 = −1
2

log
(
ℎ
− 1

2
𝑘

(
ℎ2
𝑘 + 2𝑃

ℎ
1
2
𝑘
𝑣𝑘

) 1
2 ℎ

− 1
2
𝑘

)
,

𝐴𝑘 (𝑡) =
1
2
(𝑒𝑡𝐾𝑘 (ℎ𝑘 + 2𝑃𝑣𝑘 )𝑒𝑡𝐾𝑘 + 𝑒−𝑡𝐾𝑘 ℎ𝑘𝑒

−𝑡𝐾𝑘 ) − ℎ𝑘 ,

𝐵𝑘 (𝑡) =
1
2
(𝑒𝑡𝐾𝑘 (ℎ𝑘 + 2𝑃𝑣𝑘 )𝑒𝑡𝐾𝑘 − 𝑒−𝑡𝐾𝑘 ℎ𝑘𝑒

−𝑡𝐾𝑘 ), (7.1)
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where

ℎ𝑘𝑒𝑝 = 𝜆𝑘, 𝑝𝑒𝑝 , 𝜆𝑘, 𝑝 =
1
2

(
|𝑝 |2 − |𝑝 − 𝑘 |2

)
, 𝑃𝑣𝑘 = |𝑣𝑘〉〈𝑣𝑘 |, 𝑣𝑘 =

√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐿𝑘

𝑒𝑝 , (7.2)

and (𝑒𝑝)𝑝∈𝐿𝑘 is the standard orthonormal basis of ℓ2(𝐿𝑘 ). We will need precise estimates on these
operators to control the quasi-bosonic Bogolubov transformation 𝑒K diagonalizing the bosonizable
terms. In particular, we will prove the following bounds.

Proposition 7.1 (Trace formulas). For all 𝑘 ∈ Z3
∗, it holds that 𝐾𝑘 ≤ 0 and

tr (𝐾𝑘 ) = −1
4

log

(
1 + 2𝑉̂𝑘

(
𝑘−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆−1
𝑘, 𝑝

))
≥ −𝐶𝑉̂𝑘 .

Moreover, with 𝐸𝑘 = 𝑒−𝐾𝑘 ℎ𝑘𝑒
−𝐾𝑘 , we have

tr (𝐸𝑘 − ℎ𝑘 ) −
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3 |𝐿𝑘 | =
1
𝜋

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡,

with 𝐹 (𝑥) = log (1 + 𝑥) − 𝑥, and11111tr (𝐸𝑘 − ℎ𝑘 ) −
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3 |𝐿𝑘 |

11111 ≤ 𝐶𝑘𝐹𝑉̂
2
𝑘 |𝑘 |, 𝑘𝐹 → ∞.

Here, 𝐶 > 0 is a constant independent of k and 𝑘𝐹 .

Proposition 7.2 (Matrix element estimates). For all 𝑘 ∈ 𝐵 (0, 2𝑘𝐹 ) ∩ Z3
∗, it holds that

‖𝐾𝑘 ‖∞,2 ≤ 𝐶𝑉̂𝑘 log (𝑘𝐹 )
1
3 𝑘

− 2
3

𝐹 |𝑘 |1+
5
6 ,

and for all 𝑡 ∈ [0, 1], that

‖𝐴𝑘 (𝑡)‖∞,2 , ‖𝐵𝑘 (𝑡)‖∞,2 ≤ 𝐶𝑉̂𝑘 |𝑘 |
1
2
(
1 + 𝑉̂𝑘

)
.

Moreover, with 𝐸𝑘 = 𝑒−𝐾𝑘 ℎ𝑘𝑒
−𝐾𝑘 , we have

max
𝑝∈𝐿𝑘

11〈𝑒𝑝 , (𝐸𝑘 − ℎ𝑘 ) 𝑒𝑝
〉11 ≤ 𝐶𝑘−1

𝐹 𝑉̂𝑘
(
1 + 𝑉̂𝑘

)
.

Here, 𝐶 > 0 is a constant independent of k and 𝑘𝐹 .

Proposition 7.3 (Kinetic estimates). For all 𝑘 ∈ 𝐵 (0, 2𝑘𝐹 ), it holds as 𝑘𝐹 → ∞ that����ℎ− 1
2
𝑘 𝐾𝑘

����
HS

≤ 𝐶 (log 𝑘𝐹 )
2
3 𝑘

− 1
3

𝐹 𝑉̂𝑘 |𝑘 |3+
2
3����{𝐾𝑘 , ℎ𝑘 } ℎ− 1

2
𝑘

����
HS

≤ 𝐶𝑘
1
2
𝐹𝑉̂𝑘 |𝑘 |

1
2����ℎ− 1

2
𝑘

{𝐾𝑘 , ℎ𝑘 } ℎ
− 1

2
𝑘

����
HS

≤ 𝐶𝑉̂𝑘 ,
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and for all 𝑡 ∈ [0, 1],

max
𝑝∈𝐿𝑘

����ℎ− 1
2
𝑘 𝐴𝑘 (𝑡)𝑒𝑝

���� , max
𝑝∈𝐿𝑘

����ℎ− 1
2
𝑘 𝐵𝑘 (𝑡)𝑒𝑝

���� ≤ 𝐶𝑘
− 1

2
𝐹 𝑉̂𝑘

(
1 + 𝑉̂2

𝑘

)
.

Here, 𝐶 > 0 is a constant independent of k and 𝑘𝐹 .

Notation. In order to simplify the notation, we will throughout this section let ℎ : 𝑉 → 𝑉 denote any
positive self-adjoint operator acting on an n-dimensional Hilbert space V, let (𝑥𝑖)𝑛𝑖=1 be an eigenbasis
for h with eigenvalues (𝜆𝑖)𝑛𝑖=1 and let 𝑣 ∈ 𝑉 be any vector satisfying 〈𝑥𝑖 , 𝑣〉 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛. We
will establish general results for the operators (c.f. (7.1))

𝐾 = −1
2

log
(
ℎ−

1
2
(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2 ℎ−

1
2
)
, (7.3)

𝐴
(
𝑡
)
=

1
2
(
𝑒𝑡𝐾
(
ℎ + 2𝑃𝑣

)
𝑒𝑡𝐾 + 𝑒−𝑡𝐾 ℎ𝑒−𝑡𝐾

)
− ℎ,

𝐵
(
𝑡
)
=

1
2
(
𝑒𝑡𝐾
(
ℎ + 2𝑃𝑣

)
𝑒𝑡𝐾 − 𝑒−𝑡𝐾 ℎ𝑒−𝑡𝐾

)
and then at the end insert the specific choice (7.2) to get explicit estimates.

We will prove the trace formulas first. Then we derive general estimates for the matrix elements of the
operators 𝑒−2𝐾 and 𝑒2𝐾 in terms of a single, simpler operator T. This allows us to show that all matrix
elements of K are non-negative, which in turn implies that all matrix elements of 𝑒−𝑡𝐾 , sinh (−𝑡𝐾) and
cosh (−𝑡𝐾) are convex with respect to t. With these estimates, we can then obtain the desired estimates
of K, 𝐴(𝑡) and 𝐵(𝑡).

7.1. Trace formulas

In this section, we prove Proposition 7.1. We will prove some general results using the notation in (7.3),
and then we insert the special choice of ℎ𝑘 , 𝑣𝑘 in (7.2) to conclude. Let us start with the following:

Proposition 7.4. The operator K in (7.3) satisfies 𝐾 ≤ 0 and

tr(𝐾) = −1
4

log(1 + 2〈𝑣, ℎ−1𝑣〉).

Proof. Since ℎ2 + 2𝑃
ℎ

1
2 𝑣

≥ ℎ2 > 0 and 𝐴 ↦→ 𝐴
1
2 is operator monotone, we find that

ℎ−
1
2
(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2 ℎ−

1
2 ≥ ℎ−

1
2 (ℎ2)

1
2 ℎ−

1
2 = 1. (7.4)

Hence, K is well defined and 𝐾 ≤ 0. By the identity tr (log(𝐴)) = log (det(𝐴)) and multiplicativity of
the determinant, we find

tr
(
𝐾
)
= −1

2
log
(
det
(
ℎ−

1
2
(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2 ℎ−

1
2
) )

= −1
4

log
(
det
(
ℎ
)−1 det

(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

)
det
(
ℎ
)−1)

= −1
4

log
(
det
(
ℎ−1 (ℎ2 + 2𝑃

ℎ
1
2 𝑣

)
ℎ−1) ) = −1

4
log
(
det
(
1 + 2𝑃

ℎ−
1
2 𝑣

) )
, (7.5)

https://doi.org/10.1017/fmp.2023.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.31


62 M. R. Christiansen, C. Hainzl and P. T. Nam

and by Sylvester’s determinant theorem [40], det (1 + 𝛼𝑃𝑥) = 1 + 𝛼 ‖𝑥‖2 for any 𝛼 ∈ C; hence,

tr(𝐾) = −1
4

log
(
1 + 2‖ℎ−

1
2 𝑣‖2) = −1

4
log
(
1 + 2〈𝑣, ℎ−1𝑣〉

)
. (7.6)

�

Another exact trace formula which we will need is the following integral representation of the square
root of a rank one perturbation, first presented in [5].

Proposition 7.5. Let (𝐻, 〈·, ·〉) be a Hilbert space and let 𝐴 : 𝐻 → 𝐻 be a positive self-adjoint operator.
Then for any 𝑥 ∈ 𝐻 and 𝑔 ∈ R such that 𝐴 + 𝑔𝑃𝑥 > 0, it holds that

(𝐴 + 𝑔𝑃𝑥)
1
2 = 𝐴

1
2 + 2𝑔

𝜋

∫ ∞

0

𝑡2

1 + 𝑔
〈
𝑥,
(
𝐴 + 𝑡2

)−1
𝑥
〉 𝑃(𝐴+𝑡2)−1

𝑥
𝑑𝑡

and

tr
(
(𝐴 + 𝑔𝑃𝑥)

1
2

)
= tr
(
𝐴

1
2

)
+ 1
𝜋

∫ ∞

0
log
(
1 + 𝑔

〈
𝑥,
(
𝐴 + 𝑡2

)−1
𝑥

〉)
𝑑𝑡.

Note that Proposition 7.5 follows from the Sherman–Morrison formula [39](
𝐴 + 𝑔𝑃𝑥,𝑦

)−1 = 𝐴−1 − 𝑔

1 + 𝑔
〈
𝑥, 𝐴−1𝑦

〉 𝑃(𝐴∗)−1𝑥,𝐴−1𝑦 , (7.7)

with 𝑃𝑥,𝑦 = |𝑦〉〈𝑥 | = 〈𝑥, ·〉 𝑦, and the functional calculus

√
𝐴 =

2
𝜋

∫ ∞

0

𝐴

𝐴 + 𝑡2
𝑑𝑡 =

2
𝜋

∫ ∞

0

(
1 − 𝑡2

𝐴 + 𝑡2

)
𝑑𝑡 (7.8)

for every self-adjoint non-negative operator A. Using this, we conclude the following:

Proposition 7.6. The trace of 𝐸 − ℎ where 𝐸 = 𝑒−𝐾 ℎ𝑒−𝐾 is given by

tr (𝐸 − ℎ) = 1
𝜋

∫ ∞

0
log
(
1 + 2

〈
𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣

〉)
𝑑𝑡.

Proof. By cyclicity of the trace and the definition of K,

tr
(
𝑒−𝐾 ℎ𝑒−𝐾

)
= tr
(
ℎ𝑒−2𝐾

)
= tr
(
ℎ

(
ℎ−

1
2

(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2
ℎ−

1
2

))
= tr
(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2
, (7.9)

so applying Proposition 7.5 with 𝐴 = ℎ2, 𝑥 = ℎ
1
2 𝑣 and 𝑔 = 2, we get the claim. �

Proof of Proposition 7.1. By inserting ℎ𝑘 and 𝑣𝑘 in Proposition 7.4, we get 𝐾𝑘 ≤ 0 and

tr (𝐾𝑘 ) = −1
4

log
(
1 + 2

〈
𝑣𝑘 , ℎ

−1
𝑘 𝑣𝑘
〉)

. (7.10)

With the choice of ℎ𝑘 and 𝑣𝑘 in (7.2), we have

0 ≤
〈
𝑣𝑘 , ℎ

−1
𝑘 𝑣𝑘
〉
=

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , ℎ

−1
𝑘 𝑒𝑞
〉
=

𝑉̂𝑘 𝑘
−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆−1
𝑘, 𝑝 ≤ 𝐶𝑉̂𝑘 , (7.11)
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where the last inequality is taken from Proposition A.2 in the Appendix. Combining with the bound
log(1 + 𝑥) ≤ 𝑥 with 𝑥 > 0, we find that

tr (𝐾𝑘 ) = −1
4

log

(
1 + 2𝑉̂𝑘

(
𝑘−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆−1
𝑘, 𝑝

))
≥ −𝐶𝑉̂𝑘 . (7.12)

Next, using Proposition 7.6 and the identity (c.f. (7.8))

|𝐿𝑘 | =
∑
𝑝∈𝐿𝑘

1 =
2
𝜋

∫ ∞

0

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

𝑑𝑡, (7.13)

we conclude that

tr (𝐸𝑘 − ℎ𝑘 ) −
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3 |𝐿𝑘 | =
1
𝜋

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡 (7.14)

with 𝐹 (𝑥) = log (1 + 𝑥) − 𝑥. Since |𝐹 (𝑥) | ≤ 1
2𝑥

2, we have11111tr (𝐸𝑘 − ℎ𝑘 ) −
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3 |𝐿𝑘 |

11111 ≤ 1
𝜋

∫ ∞

0

1
2

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)2
𝑑𝑡 (7.15)

=
𝑉̂2
𝑘 𝑘

−2
𝐹

(2𝜋)7

∑
𝑝,𝑞∈𝐿𝑘

∫ ∞

0

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

𝜆𝑘,𝑞

𝜆2
𝑘,𝑞 + 𝑡2

𝑑𝑡,

and by the integral identity ∫ ∞

0

𝑎

𝑎2 + 𝑡2
𝑏

𝑏2 + 𝑡2
𝑑𝑡 =

𝜋

2
1

𝑎 + 𝑏
, 𝑎, 𝑏 > 0, (7.16)

it holds that∑
𝑝,𝑞∈𝐿𝑘

∫ ∞

0

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

𝜆𝑘,𝑞

𝜆2
𝑘,𝑞 + 𝑡2

𝑑𝑡 =
𝜋

2

∑
𝑝,𝑞∈𝐿𝑘

1
𝜆𝑘, 𝑝 + 𝜆𝑘,𝑞

≤ 𝜋

2

∑
𝑝,𝑞∈𝐿𝑘

1√
𝜆𝑘, 𝑝
√
𝜆𝑘,𝑞

=
𝜋

2

( ∑
𝑝∈𝐿𝑘

𝜆
− 1

2
𝑘, 𝑝

)2
. (7.17)

By Proposition A.1, we have for any 𝑘 ∈ Z3
∗ that

∑
𝑝∈𝐿𝑘

𝜆
− 1

2
𝑘, 𝑝 ≤ 𝐶

{
𝑘

3
2
𝐹

√
|𝑘 | |𝑘 | < 2𝑘𝐹

𝑘3
𝐹 |𝑘 |

−1 |𝑘 | ≥ 2𝑘𝐹
≤ 𝐶𝑘

3
2
𝐹

√
|𝑘 |, 𝑘𝐹 → ∞ (7.18)

for a constant 𝐶 > 0 independent of k and 𝑘𝐹 , so we get the desired bound11111tr (𝐸𝑘 − ℎ𝑘 ) −
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3 |𝐿𝑘 |

11111 ≤ 𝐶𝑉̂2
𝑘 𝑘

−2
𝐹

(
𝑘

3
2
𝐹

√
|𝑘 |
)2

= 𝐶𝑘𝐹𝑉̂
2
𝑘 |𝑘 |. (7.19)

�
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7.2. Preliminary estimates for 𝒆−2𝑲 and 𝒆2𝑲

The square root formula also yields the following exact representations of 𝑒−2𝐾 and 𝑒2𝐾 :

Proposition 7.7. The operator K in (7.3) satisfies

𝑒−2𝐾 = 1 + 4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣
〉 𝑃(ℎ2+𝑡2)−1

𝑣
𝑑𝑡

𝑒2𝐾 = 1 − 4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ−1 (ℎ−2 + 𝑡2

)−1
𝑣
〉
𝑡2
𝑃
ℎ−1 (ℎ−2+𝑡2)−1

𝑣
𝑑𝑡.

Proof. Let us consider

𝑒−2𝐾 = ℎ−
1
2

(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2
ℎ−

1
2 . (7.20)

first. Applying Proposition 7.5 with 𝐴 = ℎ2, 𝑥 = ℎ
1
2 𝑣 and 𝑔 = 2, again we find

(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2 = (ℎ2)

1
2 + 4

𝜋

∫ ∞

0

𝑡2

1 + 2〈ℎ 1
2 𝑣, (ℎ2 + 𝑡2)−1ℎ

1
2 𝑣〉

𝑃(ℎ2+𝑡2)−1
ℎ

1
2 𝑣

𝑑𝑡

= ℎ + 4
𝜋

∫ ∞

0

𝑡2

1 + 2〈𝑣, ℎ(ℎ2 + 𝑡2)−1𝑣〉
𝑃
ℎ

1
2 (ℎ2+𝑡2)−1

𝑣
𝑑𝑡 (7.21)

whence

𝑒−2𝐾 = ℎ−
1
2
!""#ℎ +

4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣
〉 𝑃

ℎ
1
2 (ℎ2+𝑡2)−1

𝑣
𝑑𝑡
$%%& ℎ−

1
2

= 1 + 4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣
〉 𝑃(ℎ2+𝑡2)−1

𝑣
𝑑𝑡. (7.22)

For 𝑒2𝐾 = ℎ
1
2
(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

)− 1
2 ℎ

1
2 , we first use (7.7) to write

(ℎ2 + 2𝑃
ℎ

1
2 𝑣
)−1 = (ℎ2)−1 − 2

1 + 2
〈
ℎ

1
2 𝑣,
(
ℎ2)−1

ℎ
1
2 𝑣
〉 𝑃(ℎ2)−1

ℎ
1
2 𝑣

= ℎ−2 − 2
1 + 2

〈
𝑣, ℎ−1𝑣

〉 𝑃
ℎ−

3
2 𝑣

. (7.23)

As this is an equality, the right-hand side is, in fact, positive (as the left-hand side is), so we may apply
Proposition 7.5 with 𝐴 = ℎ−2, 𝑥 = ℎ−

3
2 𝑣 and 𝑔 = −2

(
1 + 2

〈
𝑣, ℎ−1𝑣

〉)−1 for

(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

)− 1
2
=

(
ℎ−2 − 2

1 + 2
〈
𝑣, ℎ−1𝑣

〉 𝑃
ℎ−

3
2 𝑣

) 1
2

=
(
ℎ−2
) 1

2 − 2
1 + 2

〈
𝑣, ℎ−1𝑣

〉 2
𝜋

∫ ∞

0

𝑡2

1 − 2
1+2〈𝑣,ℎ−1𝑣〉

〈
ℎ−

3
2 𝑣,
(
ℎ−2 + 𝑡2

)−1
ℎ−

3
2 𝑣
〉 𝑃(ℎ−2+𝑡2)−1

ℎ−
3
2 𝑣

𝑑𝑡
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= ℎ−1 − 4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ−1𝑣

〉
− 2
〈
𝑣, ℎ−3 (ℎ−2 + 𝑡2

)−1
𝑣
〉 𝑃

ℎ−
3
2 (ℎ−2+𝑡2)−1

𝑣
𝑑𝑡

= ℎ−1 − 4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ−1 (ℎ−2 + 𝑡2

)−1
𝑣
〉
𝑡2
𝑃
ℎ−

3
2 (ℎ−2+𝑡2)−1

𝑣
𝑑𝑡. (7.24)

Hence,

𝑒2𝐾 = ℎ
1
2
!""#ℎ−1 − 4

𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ−1 (ℎ−2 + 𝑡2

)−1
𝑣
〉
𝑡2
𝑃
ℎ−

3
2 (ℎ−2+𝑡2)−1

𝑣
𝑑𝑡
$%%& ℎ

1
2 (7.25)

= 1 − 4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ−1 (ℎ−2 + 𝑡2

)−1
𝑣
〉
𝑡2
𝑃
ℎ−1(ℎ−2+𝑡2)−1

𝑣
𝑑𝑡.

�

These exact formulas now allow us to derive some simple estimates for 𝑒−2𝐾 − 1 and 1 − 𝑒2𝐾 . To
state these estimates, we first define a new operator T on ℓ2(𝐿𝑘 ) with matrix elements

〈
𝑥𝑖 , 𝑇𝑥 𝑗

〉
= 2

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛. (7.26)

Recall that (𝑥𝑖)𝑛𝑖=1 are an eigenbasis of h with eigenvalues 𝜆𝑖’s and 〈𝑥𝑖 , 𝑣〉 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛.

Proposition 7.8. For K in (7.3) and T in (7.26), we have both the operator estimates

0 ≤ 𝑒−2𝐾 − 1 ≤ 𝑇 ≤ (1 + 2〈𝑣, ℎ−1𝑣〉)(𝑒−2𝐾 − 1),
0 ≤ 1 − 𝑒2𝐾 ≤ 𝑇 ≤ (1 + 2〈𝑣, ℎ−1𝑣〉)(1 − 𝑒2𝐾 ),

and for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, the elementwise estimates

0 ≤ 〈𝑥𝑖 , (𝑒−2𝐾 − 1)𝑥 𝑗〉 ≤ 〈𝑥𝑖 , 𝑇𝑥 𝑗〉 ≤ (1 + 2〈𝑣, ℎ−1𝑣〉)〈𝑥𝑖 , (𝑒−2𝐾 − 1)𝑥 𝑗〉,
0 ≤ 〈𝑥𝑖 , (1 − 𝑒2𝐾 )𝑥 𝑗〉 ≤ 〈𝑥𝑖 , 𝑇𝑥 𝑗〉 ≤ (1 + 2〈𝑣, ℎ−1𝑣〉)〈𝑥𝑖 , (1 − 𝑒2𝐾 )𝑥 𝑗〉.

Proof. We first prove the bound 0 ≤ 𝑒−2𝐾 − 1 ≤ 𝑇 . Obviously, 0 ≤ 𝑒−2𝐾 − 1 since 𝐾 ≤ 0. Noting that
〈𝑣, ℎ(ℎ2 + 𝑡2)−1𝑣〉 ≥ 0 and 𝑃(ℎ2+𝑡2)−1

𝑣
≥ 0 for all 𝑡 ∈ [0,∞), we have by the first identity of Proposition

7.7 that

𝑒−2𝐾 − 1 =
4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣
〉 𝑃(ℎ2+𝑡2)−1

𝑣
𝑑𝑡 ≤ 4

𝜋

∫ ∞

0
𝑡2𝑃(ℎ2+𝑡2)−1

𝑣
𝑑𝑡. (7.27)

We claim that the right-hand side is precisely T. To see this, we compute the matrix elements with
respect to (𝑥𝑖)𝑛𝑖=1: For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have
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𝑥𝑖 ,

(
4
𝜋

∫ ∞

0
𝑡2𝑃(ℎ2+𝑡2)−1

𝑣
𝑑𝑡

)
𝑥 𝑗

〉
=

4
𝜋

∫ ∞

0
𝑡2
〈
𝑥𝑖 ,
(
ℎ2 + 𝑡2

)−1
𝑣

〉 〈(
ℎ2 + 𝑡2

)−1
𝑣, 𝑥 𝑗

〉
𝑑𝑡

=
4
𝜋

∫ ∞

0
𝑡2

〈𝑥𝑖 , 𝑣〉
𝜆2
𝑖 + 𝑡2

〈
𝑣, 𝑥 𝑗
〉

𝜆2
𝑗 + 𝑡2

𝑑𝑡 = 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉 !""#

4
𝜋

∫ ∞

0

𝑡2(
𝜆2
𝑖 + 𝑡2

) (
𝜆2
𝑗 + 𝑡2

) 𝑑𝑡$%%&
= 〈𝑥𝑖 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉 ( 4

𝜋

𝜋

2
1

𝜆𝑖 + 𝜆 𝑗

)
= 2

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
=
〈
𝑥𝑖 , 𝑇𝑥 𝑗

〉
, (7.28)

where we used that (𝑥𝑖)𝑛𝑖=1 is an eigenbasis for h as well as the integral identity (7.16).
The lower bound 𝑇 ≤

(
1 + 2

〈
𝑣, ℎ−1𝑣

〉)
(𝑒−2𝐾 − 1) follows by the same argument as〈

𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣
〉
≤
〈
𝑣, ℎ
(
ℎ2)−1

𝑣
〉
=
〈
𝑣, ℎ−1𝑣

〉
(7.29)

for all 𝑡 ∈ [0,∞), so

𝑒−2𝐾 − 1 ≥ 1
1 + 2

〈
𝑣, ℎ−1𝑣

〉 ( 4
𝜋

∫ ∞

0
𝑡2𝑃(ℎ2+𝑡2)−1

𝑣
𝑑𝑡

)
=

1
1 + 2

〈
𝑣, ℎ−1𝑣

〉𝑇. (7.30)

The bounds

0 ≤ 1 − 𝑒2𝐾 ≤ 𝑇 ≤
(
1 + 2

〈
𝑣, ℎ−1𝑣

〉)
(1 − 𝑒2𝐾 ) (7.31)

follow by exactly the same argument, starting from the second identity of Proposition 7.7, using that

0 ≤
〈
𝑣, ℎ−1 (ℎ−2 + 𝑡2

)−1
𝑣
〉
𝑡2 ≤

〈
𝑣, ℎ−1𝑣

〉
(7.32)

for all 𝑡 ∈ [0,∞) as well as the integral identity (7.16).
The matrix element estimates likewise follow by the same argument as, for example,

0 ≤
〈
𝑥𝑖 ,
(
𝑒−2𝐾 − 1

)
𝑥 𝑗

〉
=

4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣
〉 〈𝑥𝑖 , 𝑣〉
𝜆2
𝑖 + 𝑡2

〈
𝑣, 𝑥 𝑗
〉

𝜆2
𝑗 + 𝑡2

𝑑𝑡

= 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉 !""#

4
𝜋

∫ ∞

0

1

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣
〉 𝑡2(

𝜆2
𝑖 + 𝑡2

) (
𝜆2
𝑗 + 𝑡2

) 𝑑𝑡$%%& (7.33)

≤ 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉 !""#

4
𝜋

∫ ∞

0

𝑡2(
𝜆2
𝑖 + 𝑡2

) (
𝜆2
𝑗 + 𝑡2

) 𝑑𝑡$%%& = 2
〈𝑥𝑖 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
=
〈
𝑥𝑖 , 𝑇𝑥 𝑗

〉
by the assumption that the inner products 〈𝑥𝑖 , 𝑣〉 and

〈
𝑣, 𝑥 𝑗
〉

are non-negative. �

Remark 7.1 (Optimality of the estimates). We may observe that the estimates for 𝑒−2𝐾 , 𝑒2𝐾 are, in
general, optimal. To see this, let us add a small parameter 𝑔 ≥ 0 to the problem by substituting √

𝑔𝑣 for
v in equation (7.3) – that is, defining

𝐾𝑔 = −1
2

log
(
ℎ−

1
2
(
ℎ2 + 2𝑔𝑃

ℎ
1
2 𝑣

) 1
2 ℎ−

1
2
)
, 𝑇𝑔 = 𝑔𝑇. (7.34)
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Then the general bounds of the corollary read for 𝐾𝑔 that

1
1 + 2𝑔

〈
𝑣, ℎ−1𝑣

〉𝑇𝑔 ≤ −2𝐾𝑔 ≤ 𝑇𝑔 . (7.35)

Hence,

0 ≥ −2𝐾𝑔 − 𝑇𝑔 ≥ −
(
1 − 1

1 + 2𝑔
〈
𝑣, ℎ−1𝑣

〉 ) 𝑇𝑔 = −
(

2
〈
𝑣, ℎ−1𝑣

〉
1 + 2𝑔

〈
𝑣, ℎ−1𝑣

〉𝑇 ) 𝑔2 ≥ −𝐶𝑔2, (7.36)

which by self-adjointness of the operators involved implies that

−2𝐾𝑔 = 𝑇𝑔 +𝑂
(
𝑔2) = 𝑔𝑇 +𝑂

(
𝑔2) (7.37)

with respect to, say, operator norm. This shows that the operator 𝑇𝑔 = 𝑔𝑇 is, in fact, the first-order
expansion of 𝐾𝑔 with respect to the parameter g, which is then also the case for 𝑒−2𝐾𝑔 − 1, 1 − 𝑒2𝐾𝑔 as,
for example, 𝑒−2𝐾𝑔 − 1 = −2𝐾𝑔 +𝑂

(
𝑔2) = 𝑇𝑔 +𝑂

(
𝑔2) . The estimate〈

𝑥𝑖 ,
(
𝑒−2𝐾𝑔 − 1

)
𝑥 𝑗
〉
≤
〈
𝑥𝑖 , 𝑇𝑔𝑥 𝑗

〉
(7.38)

is therefore (asymptotically) optimal since 𝑇𝑔 is precisely the small g limit of 𝑒−2𝐾𝑔 − 1.
This is relevant for our application, for although we do not have an explicit parameter g to consider, we

do have 𝑉̂𝑘 as an effective one. More precisely, the summability condition of 𝑉̂𝑘 ensures that essentially
all but finitely many coefficients 𝑉̂𝑘 are small, even when the coefficients (𝑉̂𝑘 )𝑘∈Z3 are not finitely
supported.

7.3. Matrix element estimates for K, 𝑨(𝒕), 𝑩(𝒕)

In this section, we prove Proposition 7.1. As before, we will prove some general results using the notation
from (7.3), and then we insert ℎ𝑘 , 𝑣𝑘 from (7.2) at the end. Recall that (𝑥𝑖)𝑖 is an eigenbasis of h. We
start with the following:

Proposition 7.9. For all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have 〈𝑥𝑖 ,−𝐾𝑥 𝑗〉 ≥ 0 and the functions

𝑡 ↦→
〈
𝑥𝑖 ,
(
𝑒−𝑡𝐾 − 1

)
𝑥 𝑗
〉
,
〈
𝑥𝑖 , sinh (−𝑡𝐾) 𝑥 𝑗

〉
,
〈
𝑥𝑖 , (cosh (−𝑡𝐾) − 1) 𝑥 𝑗

〉
are non-negative and convex for 𝑡 ∈ [0,∞).

Proof. By Proposition 7.8, the operator 𝑆 = 1 − 𝑒2𝐾 satisfies that 0 ≤ 𝑆 < 1 and 〈𝑥𝑖 , 𝑆𝑥 𝑗〉 ≥ 0 for all
1 ≤ 𝑖, 𝑗 ≤ 𝑛. By writing

−2𝐾 = − log(1 − 𝑆) = 𝑆 + 𝑆2

2
+ 𝑆3

3
+ 𝑆4

4
+ ..., (7.39)

we find that −2𝐾 also has non-negative matrix elements. By using the series expansion again, we see
that for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑡 ∈ [0,∞),

〈
𝑥𝑖 ,
(
𝑒−𝑡𝐾 − 1

)
𝑥 𝑗
〉
=

∞∑
𝑚=1

〈
𝑥𝑖 , (−𝐾)𝑚𝑥 𝑗

〉
𝑚!

𝑡𝑚 ≥ 0,

𝑑2

𝑑𝑡2
〈
𝑥𝑖 ,
(
𝑒−𝑡𝐾 − 1

)
𝑥 𝑗
〉
=

∞∑
𝑚=3

〈
𝑥𝑖 , (−𝐾)𝑚𝑥 𝑗

〉
(𝑚 − 2)! 𝑡𝑚−2 ≥ 0, (7.40)
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yielding the claim for 𝑡 ↦→
〈
𝑥𝑖 ,
(
𝑒−𝑡𝐾 − 1

)
𝑥 𝑗
〉
. The functions 𝑡 ↦→

〈
𝑥𝑖 , sinh (−𝑡𝐾) 𝑥 𝑗

〉
and 𝑡 ↦→〈

𝑥𝑖 , (cosh (−𝑡𝐾) − 1) 𝑥 𝑗
〉

can be treated similarly. �

Next, we have the key matrix element bounds.

Proposition 7.10. For all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑡 ∈ [0, 1], we have the elementwise estimates11〈𝑥𝑖 , 𝐾𝑥 𝑗
〉11 , 111〈𝑥𝑖 , (𝑒−𝑡𝐾 − 1

)
𝑥 𝑗

〉111 , 111〈𝑥𝑖 , (1 − 𝑒𝑡𝐾
)
𝑥 𝑗

〉111 ,11〈𝑥𝑖 , sinh (−𝑡𝐾) 𝑥 𝑗
〉11 , 11〈𝑥𝑖 , (cosh (−𝑡𝐾) − 1) 𝑥 𝑗

〉11 ≤ 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
.

Proof. The arguments for 𝑒−𝑡𝐾 − 1, sinh (−𝑡𝐾) and cosh (−𝑡𝐾) − 1 are again the same, so we focus on
𝑒−𝑡𝐾 − 1. By the convexity of Proposition 7.9 and the elementwise estimate of Proposition 7.8, we find
for all 𝑡 ∈ [0, 1] that

0 ≤
〈
𝑥𝑖 ,
(
𝑒−𝑡𝐾 − 1

)
𝑥 𝑗

〉
≤
(
1 − 𝑡

2

) 〈
𝑥𝑖 ,
(
𝑒−0·𝐾 − 1

)
𝑥 𝑗

〉
+ 𝑡

2

〈
𝑥𝑖 ,
(
𝑒−2𝐾 − 1

)
𝑥 𝑗

〉
=

𝑡

2

〈
𝑥𝑖 ,
(
𝑒−2𝐾 − 1

)
𝑥 𝑗

〉
≤ 1

2

111〈𝑥𝑖 , (𝑒−2𝐾 − 1
)
𝑥 𝑗

〉111 ≤ 1
2
〈
𝑥𝑖 , 𝑇𝑥 𝑗

〉
=

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
. (7.41)

This also gives us the estimate for K as

0 ≤
〈
𝑥𝑖 , (−𝐾) 𝑥 𝑗

〉
≤

∞∑
𝑚=1

1
𝑚!
〈
𝑥𝑖 , (−𝐾)𝑚 𝑥 𝑗

〉
=
〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
𝑥 𝑗

〉
≤

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
, (7.42)

where we used again the positivity of 〈𝑥𝑖 ,−𝐾𝑥 𝑗〉 from Proposition 7.9. Finally, the estimate for 1− 𝑒−𝑡𝐾

is deduced from that of sinh (−𝑡𝐾) and cosh (−𝑡𝐾) − 1 as

|〈𝑥𝑖 , (1 − 𝑒𝑡𝐾 )𝑥 𝑗〉| =
11〈𝑥𝑖 , sinh (−𝑡𝐾) 𝑥 𝑗

〉
−
〈
𝑥𝑖 , (cosh (−𝑡𝐾) − 1) 𝑥 𝑗

〉11
≤ max

{11〈𝑥𝑖 , sinh (−𝑡𝐾) 𝑥 𝑗
〉11 , 11〈𝑥𝑖 , (cosh (−𝑡𝐾) − 1) 𝑥 𝑗

〉11} ≤ 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
,

(7.43)

where we also used the positivity of
〈
𝑥𝑖 , (cosh (−𝑡𝐾) − 1) 𝑥 𝑗

〉
and
〈
𝑥𝑖 , sinh (−𝑡𝐾) 𝑥 𝑗

〉
from Proposition

7.9 to justify the first inequality. �

As a simple application of these estimates, we can easily obtain the following:

Proposition 7.11. It holds that

‖𝐾 ‖∞,2 ≤ 𝛼
√〈

𝑣, ℎ−2𝑣
〉
,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉
.

Proof. We estimate using Proposition 7.10 that

‖𝐾 ‖2
∞,2 =

𝑛∑
𝑖=1

max
1≤ 𝑗≤𝑛

11〈𝑥𝑖 , 𝐾𝑥 𝑗
〉112 ≤

𝑛∑
𝑖=1

max
1≤ 𝑗≤𝑛

(
〈𝑥𝑖 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

)2
≤
(

max
1≤ 𝑗≤𝑛

11〈𝑣, 𝑥 𝑗 〉112) 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆2
𝑖

= 𝛼2 〈𝑣, ℎ−2𝑣
〉
. (7.44)

�
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Now we consider 𝐴(𝑡) and 𝐵(𝑡), which can be written as

𝐴(𝑡) = 𝐴ℎ (𝑡) + 𝑒𝑡𝐾𝑃𝑣𝑒
𝑡𝐾 , 𝐵(𝑡) = 𝐵ℎ (𝑡) + 𝑒𝑡𝐾𝑃𝑣𝑒

𝑡𝐾 , (7.45)

for

𝐴ℎ (𝑡) =
1
2

(
𝑒𝑡𝐾 ℎ𝑒𝑡𝐾 + 𝑒−𝑡𝐾 ℎ𝑒−𝑡𝐾

)
− ℎ

= cosh (−𝑡𝐾) ℎ cosh (−𝑡𝐾) + sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾) − ℎ

= sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾) + (cosh (−𝑡𝐾) − 1) ℎ (cosh (−𝑡𝐾) − 1) + {ℎ, cosh (−𝑡𝐾) − 1}
(7.46)

and

𝐵ℎ (𝑡) =
1
2

(
𝑒𝑡𝐾 ℎ𝑒𝑡𝐾 − 𝑒−𝑡𝐾 ℎ𝑒−𝑡𝐾

)
= − (cosh (−𝑡𝐾) ℎ sinh (−𝑡𝐾) + sinh (−𝑡𝐾) ℎ cosh (−𝑡𝐾))
= − ((cosh (−𝑡𝐾) − 1) ℎ sinh (−𝑡𝐾) + sinh (−𝑡𝐾) ℎ (cosh (−𝑡𝐾) − 1) + {ℎ, sinh (−𝑡𝐾)}) .

(7.47)

Specifically, we must estimate the ‖·‖∞,2 norms of 𝐴(𝑡) and 𝐵(𝑡) with respect to (𝑥𝑖)𝑛𝑖=1. We begin with
the 𝑒𝑡𝐾𝑃𝑣𝑒

𝑡𝐾 term:

Proposition 7.12. It holds for all 𝑡 ∈ [0, 1] that��𝑒𝑡𝐾𝑃𝑣𝑒𝑡𝐾 ��∞,2 ≤ 𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)
‖𝑣‖ ,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉
.

Proof. We first observe that

��𝑒𝑡𝐾𝑃𝑣𝑒𝑡𝐾 ��2∞,2 =
𝑛∑
𝑖=1

max
1≤ 𝑗≤𝑛

11〈𝑥𝑖 , 𝑒𝑡𝐾𝑃𝑣𝑒𝑡𝐾 𝑥 𝑗 〉112 =
𝑛∑
𝑖=1

max
1≤ 𝑗≤𝑛

11〈𝑥𝑖 , 𝑒𝑡𝐾 𝑣〉112 11〈𝑣, 𝑒𝑡𝐾 𝑥 𝑗 〉112
=

(
max

1≤ 𝑗≤𝑛

11〈𝑣, 𝑒𝑡𝐾 𝑥 𝑗 〉112) ��𝑒𝑡𝐾 𝑣��2 ≤
(

max
1≤ 𝑗≤𝑛

11〈𝑣, 𝑒𝑡𝐾 𝑥 𝑗 〉112) ‖𝑣‖2 , (7.48)

where we used that by monotonicity of 𝑒𝑥 and the fact that 𝐾 ≤ 0,
��𝑒𝑡𝐾 𝑣��2 =

〈
𝑣, 𝑒2𝑡𝐾 𝑣

〉
≤ ‖𝑣‖2. For

the remaining factor, we first write

〈
𝑣, 𝑒𝑡𝐾 𝑥 𝑗

〉
=
〈
𝑣, 𝑥 𝑗
〉
+
〈
𝑣,
(
𝑒𝑡𝐾 − 1

)
𝑥 𝑗

〉
=
〈
𝑣, 𝑥 𝑗
〉
+

𝑛∑
𝑖=1

〈𝑣, 𝑥𝑖〉
〈
𝑥𝑖 ,
(
𝑒𝑡𝐾 − 1

)
𝑥 𝑗

〉
, 1 ≤ 𝑗 ≤ 𝑛

(7.49)

and estimate using Proposition 7.10 that11111 𝑛∑
𝑖=1

〈𝑣, 𝑥𝑖〉
〈
𝑥𝑖 ,
(
𝑒𝑡𝐾 − 1

)
𝑥 𝑗

〉11111 ≤ 𝑛∑
𝑖=1

|〈𝑣, 𝑥𝑖〉|
111〈𝑥𝑖 , (𝑒𝑡𝐾 − 1

)
𝑥 𝑗

〉111 ≤ 𝑛∑
𝑖=1

|〈𝑣, 𝑥𝑖〉|
〈𝑥𝑖 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

≤
〈
𝑣, 𝑥 𝑗
〉 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖
=
〈
𝑣, 𝑥 𝑗
〉 〈

𝑣, ℎ−1𝑣
〉
, 1 ≤ 𝑗 ≤ 𝑛. (7.50)
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Hence,

11〈𝑣, 𝑒𝑡𝐾 𝑥 𝑗 〉11 ≤ 〈𝑣, 𝑥 𝑗 〉 + 11111 𝑛∑
𝑖=1

〈𝑣, 𝑥𝑖〉
〈
𝑥𝑖 ,
(
𝑒𝑡𝐾 − 1

)
𝑥 𝑗

〉11111 ≤ 〈𝑣, 𝑥 𝑗 〉 (1 +
〈
𝑣, ℎ−1𝑣

〉)
, 1 ≤ 𝑗 ≤ 𝑛,

(7.51)

so returning to equation (7.48), we conclude that��𝑒𝑡𝐾𝑃𝑣𝑒𝑡𝐾 ��2∞ ≤
(

max
1≤ 𝑗≤𝑛

111〈𝑣, 𝑥 𝑗 〉 (1 +
〈
𝑣, ℎ−1𝑣

〉)1112) ‖𝑣‖2 = 𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2
‖𝑣‖2 , (7.52)

implying the claim. �

For 𝐴ℎ (𝑡) and 𝐵ℎ (𝑡), we estimate the matrix elements of the operators appearing in the equations
(7.46) and (7.47):

Proposition 7.13. It holds for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑡 ∈ [0, 1] that, for 𝐶𝑡 = cosh (−𝑡𝐾) − 1 and
𝑆𝑡 = sinh (−𝑡𝐾),11〈𝑥𝑖 , 𝐶𝑡ℎ𝐶𝑡𝑥 𝑗 〉11 , 11〈𝑥𝑖 , 𝐶𝑡ℎ𝑆𝑡𝑥 𝑗 〉11 , 11〈𝑥𝑖 , 𝑆𝑡ℎ𝑆𝑡𝑥 𝑗 〉11 ≤ 〈𝑥𝑖 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉 〈

𝑣, ℎ−1𝑣
〉

(7.53)

and 11〈𝑥𝑖 , {ℎ, 𝐶𝑡 } 𝑥 𝑗 〉11 , 11〈𝑥𝑖 , {ℎ, 𝑆𝑡 } 𝑥 𝑗 〉11 ≤ 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉
. (7.54)

Proof. The arguments for the elements of the two groups are the same, so we focus on particular
representatives. For the first, we have by the estimates of Proposition 7.10 that

11〈𝑥𝑖 , sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾) , 𝑥 𝑗
〉11 = 11111 𝑛∑

𝑘=1
𝜆𝑘 〈𝑥𝑖 , sinh (−𝑡𝐾) , 𝑥𝑘〉

〈
𝑥𝑘 , sinh (−𝑡𝐾) , 𝑥 𝑗

〉11111
≤

𝑛∑
𝑘=1

𝜆𝑘
〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉

𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

≤ 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉 𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆𝑘
= 〈𝑥𝑖 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉 〈

𝑣, ℎ−1𝑣
〉

(7.55)

and for the second, that11〈𝑥𝑖 , {ℎ, sinh (−𝑡𝐾)} , 𝑥 𝑗
〉11 = (𝜆𝑖 + 𝜆 𝑗

) 11〈𝑥𝑖 , sinh (−𝑡𝐾) , 𝑥 𝑗
〉11

≤
(
𝜆𝑖 + 𝜆 𝑗

) 〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥 𝑗 〉
𝜆𝑖 + 𝜆 𝑗

= 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉
. (7.56)

�

We can now obtain the desired estimate:

Proposition 7.14. It holds for all 𝑡 ∈ [0, 1] that

‖𝐴(𝑡)‖∞,2 , ‖𝐵(𝑡)‖∞,2 ≤ 3𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)
‖𝑣‖ ,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉
.

https://doi.org/10.1017/fmp.2023.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.31


Forum of Mathematics, Pi 71

Proof. Again, the arguments for 𝐴(𝑡) and 𝐵(𝑡) are the same, so we focus on 𝐴(𝑡). Using that ‖·‖∞,2 is
indeed a norm, and hence obeys the triangle inequality, we have for any 𝑡 ∈ [0, 1] that

‖𝐴(𝑡)‖∞,2 ≤
��𝑒𝑡𝐾𝑃𝑣𝑒𝑡𝐾 ��∞,2 + ‖𝐴ℎ (𝑡)‖∞,2

≤
��𝑒𝑡𝐾𝑃𝑣𝑒𝑡𝐾 ��∞,2 + ‖sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾)‖∞,2
+ ‖(cosh (−𝑡𝐾) − 1) ℎ (cosh (−𝑡𝐾) − 1)‖∞,2 + ‖{ℎ, cosh (−𝑡𝐾) − 1}‖∞,2 . (7.57)

We estimate ‖sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾)‖∞,2 using Proposition 7.13 as

‖sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾)‖2
∞,2 =

𝑛∑
𝑖=1

max
1≤ 𝑗≤𝑛

11〈𝑥𝑖 , sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾) 𝑥 𝑗
〉112

≤
𝑛∑
𝑖=1

max
1≤ 𝑗≤𝑛

11〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥 𝑗 〉 〈𝑣, ℎ−1𝑣
〉112 (7.58)

= 𝛼2 〈𝑣, ℎ−1𝑣
〉2 𝑛∑

𝑖=1
|〈𝑥𝑖 , 𝑣〉|2 = 𝛼2 〈𝑣, ℎ−1𝑣

〉2 ‖𝑣‖2 ,

the same bound holding also for ‖(cosh (−𝑡𝐾) − 1) ℎ (cosh (−𝑡𝐾) − 1)‖2
∞,2. We likewise find

‖{ℎ, cosh (−𝑡𝐾) − 1}‖2
∞,2 =

𝑛∑
𝑖=1

max
1≤ 𝑗≤𝑛

11〈𝑥𝑖 , {ℎ, cosh (−𝑡𝐾) − 1} 𝑥 𝑗
〉112 (7.59)

≤
𝑛∑
𝑖=1

max
1≤ 𝑗≤𝑛

11〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥 𝑗 〉112 = 𝛼2 ‖𝑣‖2 ,

so recalling the estimate of Proposition 7.12, we conclude that

‖𝐴(𝑡)‖∞,2 ≤ 𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)
‖𝑣‖ + 2𝛼

〈
𝑣, ℎ−1𝑣

〉
‖𝑣‖ + 𝛼 ‖𝑣‖ ≤ 3𝛼

(
1 +
〈
𝑣, ℎ−1𝑣

〉)
‖𝑣‖ . (7.60)

�

Now we come to the last ingredient of Proposition 7.1.

Proposition 7.15. Let 𝐸 = 𝑒−𝐾 ℎ𝑒−𝐾 . For all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, it holds that11〈𝑥𝑖 , (𝐸 − ℎ
)
𝑥 𝑗
〉11 ≤ (1 +

〈
𝑣, ℎ−1𝑣

〉) 〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥 𝑗
〉
.

Proof. Using the identity

𝑒−𝐾 ℎ𝑒−𝐾 − ℎ =
{
ℎ, 𝑒−𝐾 − 1

}
+
(
𝑒−𝐾 − 1

)
ℎ
(
𝑒−𝐾 − 1

)
, (7.61)

we can write〈
𝑥𝑖 ,
(
𝑒−𝐾 ℎ𝑒−𝐾 − ℎ

)
𝑥 𝑗
〉
=
(
𝜆𝑖 + 𝜆 𝑗

) 〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉
+
〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
ℎ
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉
. (7.62)

We can apply Proposition 7.10 to estimate the first term of this equation as

11 (𝜆𝑖 + 𝜆 𝑗
) 〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉11 ≤ (𝜆𝑖 + 𝜆 𝑗

) 〈𝑥𝑖 , 𝑣〉〈𝑣, 𝑥 𝑗 〉
𝜆𝑖 + 𝜆 𝑗

=
〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥 𝑗
〉

(7.63)
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and the second term as

11〈𝑥𝑖 , (𝑒−𝐾 − 1
)
ℎ
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉11 = 11111 𝑛∑

𝑘=1
𝜆𝑘
〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
𝑥𝑘
〉〈
𝑥𝑘 ,
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉11111

≤
𝑛∑
𝑘=1

𝜆𝑘

〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥𝑘

〉
𝜆𝑖 + 𝜆𝑘

〈
𝑥𝑘 , 𝑣

〉〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗
(7.64)

≤
〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥 𝑗
〉 𝑛∑
𝑘=1

11〈𝑥𝑘 , 𝑣〉112
𝜆𝑘

=
〈
𝑣, ℎ−1𝑣

〉〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥 𝑗
〉
,

which implies the claim. �

Proof of Proposition 7.2. Now we insert ℎ𝑘 and 𝑣𝑘 to conclude. Using Proposition 7.11, and noting
that ‘𝛼’ of our problem is simply the constant

max
𝑝∈𝐿𝑘

〈
𝑣𝑘 , 𝑒𝑝

〉
=

√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3 , (7.65)

we find that

‖𝐾𝑘 ‖∞,2 ≤

√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

√〈
𝑣𝑘 , ℎ

−2
𝑘 𝑣𝑘
〉
=

√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

√√√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

∑
𝑝∈𝐿𝑘

1
𝜆2
𝑘, 𝑝

≤ 𝐶𝑉̂𝑘 𝑘
−1
𝐹

√∑
𝑝∈𝐿𝑘

1
𝜆2
𝑘, 𝑝

. (7.66)

The desired upper bound

‖𝐾𝑘 ‖∞,2 ≤ 𝐶𝑉̂𝑘 log (𝑘𝐹 )
1
3 𝑘

− 2
3

𝐹 |𝑘 |1+
5
6 (7.67)

then follows from an estimate from Proposition A.3 in the Appendix:∑
𝑝∈𝐿𝑘

1
𝜆2
𝑘, 𝑝

≤ 𝐶 |𝑘 |3+
2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹 , 𝑘𝐹 → ∞.

However, by Proposition 7.14 and (7.11), we conclude that

‖𝐴𝑘 (𝑡)‖∞,2 , ‖𝐵𝑘 (𝑡)‖∞,2 ≤ 3

√
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3

(
1 +
〈
𝑣𝑘 , ℎ

−1
𝑘 𝑣𝑘
〉) √ 𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3 |𝐿𝑘 |

≤ 𝐶𝑉̂𝑘 𝑘
−1
𝐹

√
|𝐿𝑘 |

(
1 + 𝑉̂𝑘 𝑘

−1
𝐹

∑
𝑝∈𝐿𝑘

1
𝜆𝑘, 𝑝

)
≤ 𝐶𝑉̂𝑘 |𝑘 |

1
2
(
1 + 𝑉̂𝑘

)
, (7.68)

where we used

|𝐿𝑘 | ≤ 𝐶 |𝑘 |𝑘2
𝐹 ,

∑
𝑝∈𝐿𝑘

1
𝜆𝑘, 𝑝

≤ 𝐶𝑘𝐹 (7.69)
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from Proposition A.1 and Proposition A.2. Finally, from Proposition 7.15, we have

max
𝑝∈𝐿𝑘

11〈𝑒𝑝 , (𝐸𝑘 − ℎ𝑘 ) 𝑒𝑝
〉11 ≤ (1 +

〈
𝑣𝑘 , ℎ

−1
𝑘 𝑣𝑘
〉)

sup
𝑝∈𝐿𝑘

|
〈
𝑒𝑝 , 𝑣

〉
|2

=

(
1 + 𝑉̂𝑘 𝑘

−1
𝐹

∑
𝑝∈𝐿𝑘

1
𝜆𝑘, 𝑝

)
𝑉̂𝑘 𝑘

−1
𝐹

2(2𝜋)3 ≤ 𝐶𝑘−1
𝐹 𝑉̂𝑘

(
1 + 𝑉̂𝑘

)
, (7.70)

where we used (7.65) and (7.69) again in the last estimate. �

7.4. Kinetic estimates

Now we prove Proposition 7.3. Again, let us start with the notation (7.3). We have the following:

Proposition 7.16. Under the notation (7.3), it holds that���ℎ− 1
2 𝐾
���

HS
≤
〈
𝑣, ℎ−

3
2 𝑣
〉
,���{𝐾, ℎ} ℎ−

1
2

���
HS

≤ 2 ‖𝑣‖
√〈

𝑣, ℎ−1𝑣
〉
,���ℎ− 1

2 {𝐾, ℎ} ℎ−
1
2

���
HS

≤ 2
〈
𝑣, ℎ−1𝑣

〉
.

Proof. Using Proposition 7.10, we estimate

���ℎ− 1
2 𝐾
���2

HS
=

𝑛∑
𝑖, 𝑗=1

1
𝜆𝑖

11〈𝑥𝑖 , 𝐾𝑥 𝑗
〉112 ≤

𝑛∑
𝑖, 𝑗=1

1
𝜆𝑖

11111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

111112 ≤ !"#
𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆
3
2
𝑖

$%&
2

=
〈
𝑣, ℎ−

3
2 𝑣
〉2

,

(7.71)

and for
���{𝐾, ℎ} ℎ− 1

2

���
HS

use that
���{𝐾, ℎ} ℎ− 1

2

���
HS

≤
���𝐾ℎ

1
2

���
HS

+
���ℎ𝐾ℎ−

1
2

���
HS

to estimate

���𝐾ℎ
1
2

���2
HS

=
𝑛∑

𝑖, 𝑗=1
𝜆 𝑗
11〈𝑥𝑖 , 𝐾𝑥 𝑗

〉112 ≤
𝑛∑

𝑖, 𝑗=1
|〈𝑥𝑖 , 𝑣〉|2

11〈𝑥 𝑗 , 𝑣〉112
𝜆 𝑗

= ‖𝑣‖2 〈𝑣, ℎ−1𝑣
〉

���ℎ𝐾ℎ−
1
2

���2
HS

=
𝑛∑

𝑖, 𝑗=1

𝜆2
𝑖

𝜆 𝑗

11〈𝑥𝑖 , 𝐾𝑥 𝑗
〉112 ≤

𝑛∑
𝑖, 𝑗=1

|〈𝑥𝑖 , 𝑣〉|2
11〈𝑥 𝑗 , 𝑣〉112

𝜆 𝑗
= ‖𝑣‖2 〈𝑣, ℎ−1𝑣

〉
(7.72)

for the claimed
���{𝐾, ℎ} ℎ− 1

2

���
HS

≤ 2 ‖𝑣‖
√〈

𝑣, ℎ−1𝑣
〉
. We likewise have that���ℎ− 1

2 {𝐾, ℎ} ℎ−
1
2

���
HS

≤
���ℎ− 1

2 𝐾ℎ
1
2

���
HS

+
���ℎ 1

2 𝐾ℎ−
1
2

���
HS

= 2
���ℎ− 1

2 𝐾ℎ
1
2

���
HS

, (7.73)

so the bound ���ℎ− 1
2 𝐾ℎ

1
2

���2
HS

=
𝑛∑

𝑖, 𝑗=1

𝜆𝑖
𝜆 𝑗

11〈𝑥𝑖 , 𝐾𝑥 𝑗
〉112 ≤

(
𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

)2
=
〈
𝑣, ℎ−1𝑣

〉2 (7.74)

implies the final claim. �

For 𝐴(𝑡) and 𝐵(𝑡), we recall the decompositions (7.45)-(7.47). Recall also that (𝑥𝑖)𝑖 is an eigenbasis
of h and 〈𝑥𝑖 , 𝑣〉 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛. We first estimate the 𝑒𝑡𝐾𝑃𝑣𝑒

𝑡𝐾 term:
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Proposition 7.17. For all 𝑡 ∈ [0, 1], it holds that

max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝑒𝑡𝐾𝑃𝑣𝑒

𝑡𝐾 𝑥 𝑗

��� ≤ 𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2√〈
𝑣, ℎ−1𝑣

〉
,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉
.

Proof. We write 𝑒𝑡𝐾𝑃𝑣𝑒
𝑡𝐾 as

𝑒𝑡𝐾𝑃𝑣𝑒
𝑡𝐾 = 𝑃𝑣 +

(
𝑒𝑡𝐾 − 1

)
𝑃𝑣 + 𝑃𝑣

(
𝑒𝑡𝐾 − 1

)
+
(
𝑒𝑡𝐾 − 1

)
𝑃𝑣
(
𝑒𝑡𝐾 − 1

)
(7.75)

and estimate each term separately. By the definition of 𝑃𝑣 , the first term is simply���ℎ− 1
2 𝑃𝑣𝑥 𝑗

��� = 11〈𝑣, 𝑥 𝑗 〉11 ���ℎ− 1
2 𝑣
��� ≤ 𝛼

√〈
𝑣, ℎ−1𝑣

〉
. (7.76)

For the remaining terms, we use Proposition 7.10 to estimate that���ℎ− 1
2

(
𝑒𝑡𝐾 − 1

)
𝑃𝑣𝑥 𝑗

���2 =
𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

〈
𝑥𝑖 ,
(
𝑒𝑡𝐾 − 1

)
𝑥𝑘

〉 〈
𝑥𝑘 , 𝑃𝑣𝑥 𝑗

〉111112
≤

𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉111112 (7.77)

≤
11〈𝑣, 𝑥 𝑗 〉112 ( 𝑛∑

𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

)3
≤ 𝛼2 〈𝑣, ℎ−1𝑣

〉3
, (7.78)

and ���ℎ− 1
2 𝑃𝑣

(
𝑒𝑡𝐾 − 1

)
𝑥 𝑗

���2 =
𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑃𝑣𝑥𝑘〉
〈
𝑥𝑘 ,
(
𝑒𝑡𝐾 − 1

)
𝑥 𝑗

〉111112
≤

𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
〈𝑥𝑘 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

111112 (7.79)

≤
11〈𝑣, 𝑥 𝑗 〉112 ( 𝑛∑

𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

)3
≤ 𝛼2 〈𝑣, ℎ−1𝑣

〉3
and ���ℎ− 1

2

(
𝑒𝑡𝐾 − 1

)
𝑃𝑣

(
𝑒𝑡𝐾 − 1

)
𝑥 𝑗

���2
=

𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘,𝑙=1

〈
𝑥𝑖 ,
(
𝑒𝑡𝐾 − 1

)
𝑥𝑘

〉
〈𝑥𝑘 , 𝑃𝑣𝑥𝑙〉

〈
𝑥𝑙 ,
(
𝑒𝑡𝐾 − 1

)
𝑥 𝑗

〉111112
≤

𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘,𝑙=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉 〈𝑣, 𝑥𝑙〉
〈𝑥𝑙 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑙 + 𝜆 𝑗

111112 (7.80)

≤
11〈𝑣, 𝑥 𝑗 〉112 𝑛∑

𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

(
𝑛∑

𝑘,𝑙=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆𝑘

|〈𝑥𝑙 , 𝑣〉|2

𝜆𝑙

)2
≤ 𝛼2 〈𝑣, ℎ−1𝑣

〉5
,

which imply the claim. �
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Finally, the full estimates on 𝐴(𝑡) and 𝐵(𝑡) are now easily obtained:

Proposition 7.18. It holds for all 𝑡 ∈ [0, 1] that

max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝐴(𝑡)𝑥 𝑗

��� , max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝐵(𝑡)𝑥 𝑗

��� ≤ 2𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2√〈
𝑣, ℎ−1𝑣

〉
,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉
.

Proof. The estimates for 𝐴(𝑡) and 𝐵(𝑡) are similar, so we focus on 𝐴(𝑡). We have���ℎ− 1
2 𝐴(𝑡)𝑥 𝑗

���
≤
���ℎ− 1

2 sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾) 𝑥 𝑗
��� + ���ℎ− 1

2 (cosh (−𝑡𝐾) − 1) ℎ (cosh (−𝑡𝐾) − 1) 𝑥 𝑗
���

+
���ℎ− 1

2 {ℎ, cosh (−𝑡𝐾) − 1} 𝑥 𝑗
��� + ���ℎ− 1

2 𝑒𝑡𝐾𝑃𝑣𝑒
𝑡𝐾 𝑥 𝑗

��� , (7.81)

and by Proposition 7.13, we can estimate that���ℎ− 1
2 sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾) 𝑥 𝑗

���2 =
𝑛∑
𝑖=1

1
𝜆𝑖

11〈𝑥𝑖 , sinh (−𝑡𝐾) ℎ sinh (−𝑡𝐾) 𝑥 𝑗
〉112

≤
11〈𝑣, 𝑥 𝑗 〉112 〈𝑣, ℎ−1𝑣

〉2 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖
≤ 𝛼2 〈𝑣, ℎ−1𝑣

〉3
, (7.82)

the same estimate holding also for
���ℎ− 1

2 (cosh (−𝑡𝐾) − 1) ℎ (cosh (−𝑡𝐾) − 1) 𝑥 𝑗
���, and

���ℎ− 1
2 {ℎ, cosh (−𝑡𝐾) − 1} 𝑥 𝑗

���2 =
𝑛∑
𝑖=1

1
𝜆𝑖

11〈𝑥𝑖 , {ℎ, cosh (−𝑡𝐾) − 1} 𝑥 𝑗
〉112

≤
11〈𝑣, 𝑥 𝑗 〉112 𝑛∑

𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖
≤ 𝛼2 〈𝑣, ℎ−1𝑣

〉
. (7.83)

Inserting also the estimate of Proposition 7.17, we thus obtain

max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝐴(𝑡)𝑥 𝑗

��� ≤ 2𝛼
〈
𝑣, ℎ−1𝑣

〉 3
2 + 𝛼

√〈
𝑣, ℎ−1𝑣

〉
+ 𝛼(1 +

〈
𝑣, ℎ−1𝑣

〉
)2
√〈

𝑣, ℎ−1𝑣
〉

(7.84)

≤ 2𝛼(1 + 〈𝑣, ℎ−1𝑣〉)2
√
〈𝑣, ℎ−1𝑣〉.

�
Proof of Proposition 7.3. The desired bounds follow from applying the general estimates of this section
to ℎ𝑘 and 𝑣𝑘 , plus using the uniform bound on 𝛼 in (7.65) and the estimates

‖𝑣‖2 ≤ 𝐶𝑉̂𝑘 |𝑘 |𝑘𝐹 ,
〈
𝑣𝑘 , ℎ

−1
𝑘 𝑣𝑘
〉
≤ 𝐶𝑉̂𝑘 ,

〈
𝑣𝑘 , ℎ

− 3
2
𝑘 𝑣𝑘

〉
≤ 𝐶𝑉̂𝑘 |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

− 1
3

𝐹 , (7.85)

which hold for all 𝑘 ∈ 𝐵 (0, 2𝑘𝐹 ) due to Propositions A.1, A.2, and A.3. �

8. Gronwall estimates for the Bogolubov transformation

In the previous sections, we have bounded several error terms using the operators 𝐻 ′
kin and N𝐸 . In this

section, we control the propagation of these operators under the Bogolubov transformation 𝑒−K defined
in Section 5. We have the following Gronwall-type estimates.
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Proposition 8.1. Let
∑
𝑘∈Z3 𝑉̂𝑘 |𝑘 | < ∞. Then for all Ψ ∈ 𝐷

(
𝐻 ′

kin
)

and |𝑡 | ≤ 1, it holds that〈
𝑒−𝑡KΨ, (𝐻 ′

kin + 𝑘𝐹 )𝑒−𝑡KΨ
〉
≤ 𝐶
〈
Ψ, (𝐻 ′

kin + 𝑘𝐹 )Ψ
〉
,〈

𝑒−𝑡KΨ, (𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝐻 ′

kin + 𝑘𝐹 )𝑒−𝑡KΨ
〉
≤ 𝐶
〈
Ψ, (𝑘−1

𝐹 N𝐸𝐻
′
kin + 𝐻 ′

kin + 𝑘𝐹 )Ψ
〉

for a constant 𝐶 > 0 independent of 𝑘𝐹 .

As a preparation, let us first prove the following:

Lemma 8.2. Let 𝑋,𝑌, 𝑍 be self-adjoint operators on a Hilbert space such that

𝑋, 𝑍 > 0, [𝑋, 𝑍] = 0, ± [[𝑌, 𝑋] , 𝑋] ≤ 𝑍.

Then,

±
[ [
𝑌,

√
𝑋
]
,
√
𝑋
]
≤ 𝑍

4𝑋
.

Proof of Lemma 8.2. Using (7.8), we can write[
𝑌,

√
𝑋
]
=

2
𝜋

∫ ∞

0

[
𝑌,

𝑋

𝑋 + 𝑡2

]
𝑑𝑡 =

2
𝜋

∫ ∞

0

[
𝑌,

−𝑡2

𝑋 + 𝑡2

]
𝑑𝑡 =

2
𝜋

∫ ∞

0

1
𝑋 + 𝑡2

[𝑌, 𝑋] 1
𝑋 + 𝑡2

𝑡2𝑑𝑡,

(8.1)

and applying this identity twice, we get[ [
𝑌,

√
𝑋
]
,
√
𝑋
]
=

(
2
𝜋

)2 ∫ ∞

0

∫ ∞

0

1
𝑋 + 𝑡2

1
𝑋 + 𝑠2 [[𝑌, 𝑋] , 𝑋] 1

𝑋 + 𝑠2
1

𝑋 + 𝑡2
𝑠2𝑡2𝑑𝑠𝑑𝑡. (8.2)

Therefore, the assumptions ± [[𝑌, 𝑋] , 𝑋] ≤ 𝑍 and [𝑋, 𝑍] = 0 imply that

±
[ [
𝑌,

√
𝑋
]
,
√
𝑋
]
≤
(

2
𝜋

)2 ∫ ∞

0

∫ ∞

0

1
𝑋 + 𝑡2

1
𝑋 + 𝑠2 𝑍

1
𝑋 + 𝑠2

1
𝑋 + 𝑡2

𝑠2𝑡2𝑑𝑠𝑑𝑡 =
𝑍

4𝑋
. (8.3)

�

Now we give the following:

Proof of Proposition 8.1. Write Ψ𝑡 = 𝑒𝑡KΨ for brevity. Recalling Proposition 5.4, we see that

𝑑

𝑑𝑡

〈
Ψ𝑡 , (𝐻 ′

kin + 𝑘𝐹 )Ψ𝑡
〉
=
〈
Ψ𝑡 ,
[
K, 𝐻 ′

kin
]
Ψ𝑡
〉
=
∑
𝑘∈𝑆𝐶

〈
Ψ𝑡 , 𝑄

𝑘
2
({
𝐾 ⊕
𝑘 , ℎ

⊕
𝑘

})
Ψ𝑡
〉
. (8.4)

The right-hand side can be bounded by using Propositions 4.10 and 7.3 as∑
𝑘∈𝑆𝐶

11〈Ψ𝑡 , 𝑄𝑘2 ({𝐾 ⊕
𝑘 , ℎ

⊕
𝑘

})
Ψ𝑡
〉11 ≤ 2

∑
𝑘∈𝑆𝐶

���(ℎ⊕
𝑘

)− 1
2
{
𝐾 ⊕
𝑘 , ℎ

⊕
𝑘

} (
ℎ⊕
𝑘

)− 1
2
���

HS

〈
Ψ𝑡 , 𝐻

′
kinΨ𝑡

〉
+ 2
∑
𝑘∈𝑆𝐶

���{𝐾 ⊕
𝑘 , ℎ

⊕
𝑘

} (
ℎ⊕
𝑘

)− 1
2
���

HS

√〈
Ψ𝑡 , 𝐻 ′

kinΨ𝑡
〉
‖Ψ𝑡 ‖

≤ 𝐶

( ∑
𝑘∈𝑆𝐶

𝑉̂𝑘

) 〈
Ψ𝑡 , 𝐻

′
kinΨ𝑡

〉
+ 𝐶𝑘

1
2
𝐹

( ∑
𝑘∈𝑆𝐶

𝑉̂𝑘 |𝑘 |
1
2

) √〈
Ψ𝑡 , 𝐻 ′

kinΨ𝑡
〉
‖Ψ𝑡 ‖

≤ 𝐶
〈
Ψ𝑡 , (𝐻 ′

kin + 𝑘𝐹 )Ψ𝑡
〉
, (8.5)
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where we also used the Cauchy–Schwarz inequality in the last step. Thus, the first estimate of Proposition
8.1 follows by Gronwall’s lemma. For the second bound of Proposition 8.1, let us denote

𝑋1 = N𝐸 + 𝑘𝐹 ≥ 𝑘𝐹 , 𝑋2 = 𝑘𝐹 + 𝐻 ′
kin ≥ 𝑘𝐹 , 𝑌1 = [K, 𝑋2] and 𝑌2 = [K, 𝑋1] . (8.6)

Note that 𝑌1, 𝑌2 are symmetric since 𝑋1, 𝑋2 are symmetric and K is skew-symmetric. Moreover, since
[𝑋1, 𝑋2] = 0, [K, 𝑋1𝑋2] is also symmetric, and we can write

2[K, 𝑋1𝑋2] = 2
(
𝑋1 [K, 𝑋2] + [K, 𝑋1]𝑋2

)
= 2(𝑋1𝑌1 + 𝑌2𝑋2)

=
2∑
𝑖=1

(𝑋𝑖𝑌𝑖 + 𝑌𝑖𝑋𝑖) =
2∑
𝑖=1

(
2
√
𝑋𝑖𝑌𝑖
√
𝑋𝑖 + [[𝑌𝑖 ,

√
𝑋𝑖],
√
𝑋𝑖]
)
. (8.7)

For 𝑖 = 1, arguing similarly to (8.4) and (8.5), we have

±𝑌1 = ±[K, 𝐻 ′
kin] = ±

∑
𝑘∈𝑆𝐶

𝑄𝑘2
({
𝐾 ⊕
𝑘 , ℎ

⊕
𝑘

})
≤ 𝐶𝑋2, ±

√
𝑋1𝑌1

√
𝑋1 ≤ 𝐶𝑋1𝑋2. (8.8)

Here, we used [𝑋1, 𝑋2] = 0 in the last estimate. To apply Lemma 8.2, let us compute [[𝑌1, 𝑋1], 𝑋1].
Note that for every symmetric operator B on ℓ2(𝐿±

𝑘 ), we deduce from (1.75) that[
𝑄𝑘2 (𝐵),N𝐸

]
= 2

∑
𝑝,𝑞∈𝐿±

𝑘

〈
𝑒𝑝 , 𝐵𝑒𝑞

〉 (
−𝑏∗

𝑘, 𝑝
𝑏∗
𝑘,𝑞

+ 𝑏𝑘,𝑞𝑏𝑘, 𝑝

)
,

[ [
𝑄𝑘2 (𝐵),N𝐸

]
,N𝐸

]
= 4

∑
𝑝,𝑞∈𝐿±

𝑘

〈
𝑒𝑝 , 𝐵𝑒𝑞

〉 (
𝑏∗
𝑘, 𝑝

𝑏∗
𝑘,𝑞

+ 𝑏𝑘,𝑞𝑏𝑘, 𝑝

)
= 4𝑄𝑘2 (𝐵). (8.9)

Using (8.9) and (8.8), we have

±[[𝑌1, 𝑋1], 𝑋1] = ±4
∑
𝑘∈𝑆𝐶

𝑄𝑘2
({
𝐾 ⊕
𝑘 , ℎ

⊕
𝑘

})
≤ 𝐶𝑋2, (8.10)

which implies by Lemma 8.2 that

±[[𝑌1,
√
𝑋1],
√
𝑋1] ≤ 𝐶𝑋2𝑋

−1
1 . (8.11)

Next, we consider the terms of 𝑖 = 2 in (8.7). Let us compute the commutator 𝑌2 = [K,N𝐸 ]. By
linearity, we deduce from (1.75) that [𝑏𝑘 (𝜑),N𝐸 ] = 𝑏𝑘 (𝜑) for any 𝜑 ∈ ℓ2(𝐿±

𝑘 ), and hence from the
definition of K in (5.2),

𝑌2 = [K,N𝐸 ] =
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝑒𝑝)𝑏

∗
𝑘

(
𝐾 ⊕
𝑘 𝑒𝑝
)
+ 𝑏𝑘

(
𝐾 ⊕
𝑘 𝑒𝑝
)
𝑏𝑘 (𝑒𝑝)

)
=
∑
𝑘∈𝑆𝐶

𝑄𝑘2
(
𝐾 ⊕
𝑘

)
. (8.12)

Note that

𝐾 ⊕
𝑘 =

(
0 𝐾𝑘
𝐾𝑘 0

)
=

( 1√
2

1√
2

1√
2
− 1√

2

) (
𝐾𝑘 0
0 −𝐾𝑘

) ( 1√
2

1√
2

1√
2
− 1√

2

)
, (8.13)

and hence by Proposition 7.1, we obtain∑
𝑘∈𝑆𝐶

��𝐾 ⊕
𝑘

��
HS ≤

∑
𝑘∈𝑆𝐶

tr(|𝐾 ⊕
𝑘 |) = 2

∑
𝑘∈𝑆𝐶

tr (|𝐾𝑘 |) ≤ 𝐶
∑
𝑘∈Z3

𝑉̂𝑘 . (8.14)
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Therefore, by Proposition 4.7,

±𝑌2 ≤ 2

( ∑
𝑘∈𝑆𝐶

��𝐾 ⊕
𝑘

��
HS

)
(1 +N𝐸 ) ≤ 𝐶𝑋1, ±

√
𝑋2𝑌2

√
𝑋2 ≤ 𝐶𝑋1𝑋2. (8.15)

Finally, consider

[[𝑌2, 𝑋2], 𝑋2] =
∑
𝑘∈𝑆𝐶

[ [
𝑄𝑘2
(
𝐾 ⊕
𝑘

)
, 𝐻 ′

kin
]
, 𝐻 ′

kin
]
. (8.16)

For every symmetric operator B on ℓ2(𝐿±
𝑘 ), by (1.74), we compute[

𝑄𝑘2 (𝐵), 𝐻
′
kin
]
=
∑

𝑝,𝑞∈𝐿±
𝑘

〈
𝑒𝑝 , 𝐵𝑒𝑞

〉 [(
𝑏∗
𝑘, 𝑝

𝑏∗
𝑘,𝑞

+ 𝑏𝑘,𝑞𝑏𝑘, 𝑝

)
, 𝐻 ′

kin

]
=
∑

𝑝,𝑞∈𝐿±
𝑘

〈
𝑒𝑝 , 𝐵𝑒𝑞

〉
(𝜆𝑘, 𝑝 + 𝜆𝑘,𝑞)

(
−𝑏∗

𝑘, 𝑝
𝑏∗
𝑘,𝑞

+ 𝑏𝑘,𝑞𝑏𝑘, 𝑝

)
,

[ [
𝑄𝑘2 (𝐵), 𝐻

′
kin
]
, 𝐻 ′

kin
]
=
∑

𝑝,𝑞∈𝐿±
𝑘

〈
𝑒𝑝 , 𝐵𝑒𝑞

〉
(𝜆𝑘, 𝑝 + 𝜆𝑘,𝑞)

[(
−𝑏∗

𝑘, 𝑝
𝑏∗
𝑘,𝑞

+ 𝑏𝑘,𝑞𝑏𝑘, 𝑝

)
, 𝐻 ′

kin

]
=
∑

𝑝,𝑞∈𝐿±
𝑘

〈
𝑒𝑝 , 𝐵𝑒𝑞

〉
(𝜆𝑘, 𝑝 + 𝜆𝑘,𝑞)

2
(
𝑏∗
𝑘, 𝑝

𝑏∗
𝑘,𝑞

+ 𝑏𝑘,𝑞𝑏𝑘, 𝑝

)
. (8.17)

By the Cauchy–Schwarz inequality, we can estimate

±
[ [
𝑄𝑘2 (𝐵), 𝐻

′
kin
]
, 𝐻 ′

kin
]
≤
∑

𝑝,𝑞∈𝐿±
𝑘

(
𝜖
(
𝜆𝑘, 𝑝 + 𝜆𝑘,𝑞

)4
𝑏∗
𝑘, 𝑝

𝑏∗
𝑘,𝑞

𝑏𝑘,𝑞𝑏𝑘, 𝑝 + 𝜖−1 |
〈
𝑒𝑝 , 𝐵𝑒𝑞

〉
|2
)

(8.18)

for all 𝜖 > 0. From Propositions 4.5, 4.8 and the commutation relations (1.74), (1.75), we have

0 ≤
∑

𝑝,𝑞∈𝐿±
𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝

𝑏∗
𝑘,𝑞

𝑏𝑘,𝑞𝑏𝑘, 𝑝 ≤
∑
𝑝∈𝐿±

𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝

N𝐸𝑏𝑘, 𝑝 ≤ 𝐻 ′
kinN𝐸 ,

0 ≤
∑

𝑝,𝑞∈𝐿±
𝑘

𝜆𝑘,𝑞𝑏
∗
𝑘, 𝑝

𝑏∗
𝑘,𝑞

𝑏𝑘,𝑞𝑏𝑘, 𝑝 ≤
∑
𝑝∈𝐿±

𝑘

𝑏∗
𝑘, 𝑝

𝐻 ′
kin𝑏𝑘, 𝑝 ≤ 𝐻 ′

kinN𝐸 . (8.19)

Moreover, when 𝑘 ∈ 𝑆𝐶 = 𝐵
(
0, 𝑘𝛾𝐹

)
∩ Z3

+ with 1 ≥ 𝛾 > 0, we have

|𝜆𝑘, 𝑝 | ≤ 𝐶 |𝑘 |𝑘𝐹 , |𝜆𝑘, 𝑝 |
3 ≤ 𝐶 |𝑘 |3𝑘3

𝐹 ≤ 𝐶 |𝑘 |2𝑘4
𝐹 , ∀𝑝 ∈ 𝐿±

𝑘 . (8.20)

Hence, we conclude from (8.18) that

±
[ [
𝑄𝑘2 (𝐵), 𝐻

′
kin
]
, 𝐻 ′

kin
]
≤ 𝐶
(
𝜖 |𝑘 |2𝑘4

𝐹𝐻
′
kinN𝐸 + 𝜖−1‖𝐵‖2

HS

)
(8.21)

for all 𝜖 > 0. Optimizing over 𝜖 gives

±
[ [
𝑄𝑘2 (𝐵), 𝐻

′
kin
]
, 𝐻 ′

kin
]
≤ 𝐶‖𝐵‖HS |𝑘 |𝑘𝐹

(
𝐻 ′

kinN𝐸 + 𝑘2
𝐹

)
(8.22)

for all symmetric operators B on ℓ2(𝐿±
𝑘 ). Inserting this in (8.16) and using∑

𝑘∈𝑆𝐶

|𝑘 |
��𝐾 ⊕

𝑘

��
HS ≤

∑
𝑘∈𝑆𝐶

|𝑘 |tr(|𝐾 ⊕
𝑘 |) = 2

∑
𝑘∈𝑆𝐶

|𝑘 |tr ( |𝐾𝑘 |) ≤ 𝐶
∑
𝑘∈Z3

|𝑘 |𝑉̂𝑘 (8.23)
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(which is similar to (8.14)), we find that

±[[𝑌1, 𝑋2], 𝑋2] = ±
∑
𝑘∈𝑆𝐶

[ [
𝑄𝑘2
(
𝐾 ⊕
𝑘

)
, 𝐻 ′

kin
]
, 𝐻 ′

kin
]
≤ 𝐶𝑘𝐹

(
𝐻 ′

kinN𝐸 + 𝑘2
𝐹

)
≤ 𝐶𝑋1𝑋

2
2 . (8.24)

Applying Lemma 8.2, we obtain

±[[𝑌1,
√
𝑋2],
√
𝑋2] ≤ 𝐶𝑋1𝑋2. (8.25)

Putting together (8.8), (8.11), (8.15) and (8.25), we conclude from (8.7) that

±[K, 𝑋1𝑋2] ≤ 𝐶𝑋1𝑋2. (8.26)

Thus, 1111 𝑑𝑑𝑡 〈Ψ𝑡 , 𝑋1𝑋2Ψ𝑡 〉
1111 = |〈Ψ𝑡 , [K, 𝑋1𝑋2]Ψ𝑡 〉| ≤ 𝐶 〈Ψ𝑡 , 𝑋1𝑋2Ψ𝑡 〉 . (8.27)

By Gronwall’s lemma, we have

〈Ψ𝑡 , 𝑋1𝑋2Ψ𝑡 〉 ≤ 𝐶 〈Ψ, 𝑋1𝑋2Ψ〉 , ∀|𝑡 | ≤ 1. (8.28)

This implies the desired bound since 1
2 𝑋1𝑋2 ≤ N𝐸𝐻

′
kin + 𝑘𝐹𝐻

′
kin + 𝑘2

𝐹 ≤ 𝑋1𝑋2. Here, we used again
Proposition 2.1. �

9. The second Bogolubov transformation

Recall that after the conjugation by 𝑒K, up to negligible error terms, we obtain the correlation energy
and the operator

𝐻 ′
kin + 2

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
. (9.1)

In the bosonic analogy, where we informally consider 𝐻 ′
kin ∼ 2

∑
𝑘∈Z3

+
𝑄̃𝑘1 (ℎ

⊕
𝑘 ), this expression would

be manifestly non-negative as 𝐻 ′
kin cancels the negative terms 2

∑
𝑘∈𝑆𝐶 𝑄̃𝑘1 (−ℎ

⊕
𝑘 ) (and 𝐸 ⊕

𝑘 > 0 as
𝐸𝑘 = 𝑒−𝐾𝑘 ℎ𝑘𝑒

−𝐾𝑘 > 0), so this term could be neglected for the lower bound. This analogy is only
formal, however. One might still hope that 𝐸 ⊕

𝑘 − ℎ⊕
𝑘 ≥ 0 since 𝐸𝑘 is isospectral to 𝐸𝑘 and 𝐸𝑘 ≥ ℎ𝑘 , but

this fails too; it can be shown that 𝐸𝑘 − ℎ𝑘 is indefinite. While these two ideas – the bosonic analogy
and the fact that 𝐸𝑘 − ℎ𝑘 ≥ 0 – fail on their own, we will overcome this issue by combining them. In this
section, we will carry out another unitary transformation which effectively replaces 𝐸𝑘 by 𝐸𝑘 in (9.1).

Consider the unitary transformation 𝑒J : H𝑁 → H𝑁 , where J : H𝑁 → H𝑁 is now of the form

J =
∑
𝑘∈𝑆𝐶

∑
𝑝,𝑞∈𝐿±

𝑘

〈
𝑒𝑝 , 𝐽

⊕
𝑘 𝑒𝑞
〉
𝑏∗𝑘 (𝑒𝑝)𝑏𝑘

(
𝑒𝑞
)
=
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

𝑏∗𝑘
(
𝐽⊕𝑘 𝑒𝑝

)
𝑏𝑘 (𝑒𝑝), (9.2)

where 𝑆𝐶 = 𝐵
(
0, 𝑘𝛾𝐹

)
∩ Z3

+ with 1 ≥ 𝛾 > 0 and

𝐽⊕𝑘 =

(
𝐽𝑘 0
0 𝐽𝑘

)
, 𝐽𝑘 = log (𝑈𝑘 ) , 𝑈𝑘 =

(
ℎ

1
2
𝑘 𝑒

−2𝐾𝑘 ℎ
1
2
𝑘

) 1
2

ℎ
− 1

2
𝑘 𝑒𝐾𝑘 . (9.3)
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Here, 𝑈𝑘 : ℓ2(𝐿𝑘 ) → ℓ2(𝐿𝑘 ) is the unitary transformation which takes 𝐸𝑘 to 𝐸𝑘 , namely,

𝑈𝑘𝐸𝑘𝑈
∗
𝑘 =

(
ℎ

1
2
𝑘 𝑒

−2𝐾𝑘 ℎ
1
2
𝑘

) 1
2
(
ℎ

1
2
𝑘 𝑒

−2𝐾𝑘 ℎ
1
2
𝑘

) 1
2

= ℎ
1
2
𝑘 𝑒

−2𝐾𝑘 ℎ
1
2
𝑘 = 𝐸𝑘 , (9.4)

and 𝐽𝑘 is the (principal) logarithm of 𝑈𝑘 , so that 𝑒𝐽𝑘 = 𝑈𝑘 . Since 𝐽𝑘 is skew-symmetric, so are 𝐽⊕𝑘 and
J , and hence, 𝑒J is a unitary operator on H𝑁 .

In the exact bosonic case, it is not difficult to see that for every skew-symmetric operator 𝐽 : 𝑉 → 𝑉 ,
the unitary operator 𝑒J with J = dΓ (𝐽) =

∑
𝑖 𝑎

∗ (𝐽𝑒𝑖) 𝑎(𝑒𝑖) is a Bogolubov transformation on F+(𝑉)
which acts on a second-quantized operator as

𝑒J dΓ(𝐴)𝑒−J = dΓ
(
𝑒𝐽 𝐴𝑒−𝐽

)
. (9.5)

Returning to the quasi-bosonic case, we will show that

𝑒J

( ∑
𝑘∈𝑆𝐶

𝑄̃𝑘1 (𝐸
⊕
𝑘 )
)
𝑒−J ≈

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1

(
𝑒𝐽

⊕
𝑘 𝐸 ⊕

𝑘 𝑒
−𝐽⊕
𝑘

)
=
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1

(
𝐸 ⊕
𝑘

)
(9.6)

up to error terms which are similar to the exchange terms coming from the first transformation. More-
over, although 𝐻 ′

kin ∼ 2
∑
𝑘∈Z3

+
𝑄̃𝑘1 (ℎ

⊕
𝑘 ) does not hold precisely, it is valid from the point of view of

commutators as explained in (1.72), which results in 𝐻 ′
kin − 2

∑
𝑘∈Z3

+
𝑄̃𝑘1 (ℎ

⊕
𝑘 ) being essentially invariant

under the Bogolubov transformation 𝑒J . The overall transformation then takes the form

𝑒J

(
𝐻 ′

kin + 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

))
𝑒−J ≈ 𝐻 ′

kin + 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1

(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
, (9.7)

and we now have the desired non-negative operator 𝐸 ⊕
𝑘 − ℎ⊕

𝑘 ≥ 0 on the right-hand side.
While the error terms in (9.7) are similar to those coming from the first transformation, they are in

practice more difficult to estimate, for although we derived simple, optimal estimates for the transforma-
tion kernels (𝐾𝑘 )𝑘∈𝑆𝐶 in Section 7, we cannot obtain the same for the transformation kernels (𝐽𝑘 )𝑘∈𝑆𝐶 .
The justification that the second transformation works as claimed will therefore take more effort than
was needed for the first transformation.

9.1. Actions on the bosonizable terms

The first step of justifying (9.7) is to prove the following exact equality.

Proposition 9.1. The unitary transformation 𝑒J : H𝑁 → H𝑁 given in (9.2)-(9.3) satisfies

𝑒J

(
𝐻 ′

kin + 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

))
𝑒−J

= 𝐻 ′
kin + 2

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1

(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
+ 2
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒 (1−𝑡)J E 𝑘3 (𝐹⊕

𝑘 (𝑡))𝑒
−(1−𝑡)J 𝑑𝑡,

where for all 𝑘 ∈ Z3
∗ and 𝑡 ∈ [0, 1], we defined the operator 𝐹⊕

𝑘 (𝑡) : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ) by

𝐹⊕
𝑘 (𝑡) =

(
𝑒𝑡 𝐽𝑘𝐸𝑘𝑒

−𝑡 𝐽𝑘 − ℎ𝑘 0
0 𝑒𝑡 𝐽𝑘𝐸𝑘𝑒

−𝑡 𝐽𝑘 − ℎ𝑘

)
,
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and for symmetric 𝐴 : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ), we defined the new exchange operator

E 𝑘3 (𝐴) = 2
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

∑
𝑞∈𝐿±

𝑙

Re
(
𝑏∗𝑘 (𝐴𝑒𝑝)𝜀𝑘,𝑙 (𝑒𝑝; 𝑒𝑞)𝑏𝑙 (𝐽⊕𝑙 𝑒𝑞)

)
= 2
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

∑
𝑞∈𝐿±

𝑙

Re
(
𝑏∗𝑘 (𝐴𝑒𝑝)

(
𝛿𝑝,𝑞𝑐𝑞−𝑘𝑐

∗
𝑝−𝑘

+ 𝛿𝑝−𝑘,𝑞−𝑘𝑐
∗
𝑞𝑐𝑝

)
𝑏𝑙 (𝐽⊕𝑙 𝑒𝑞)

)
.

We will follow the same strategy as we did when we considered the action of the quasi-bosonic
Bogolubov transformation on the 𝑄𝑘1 (𝐴) and 𝑄𝑘2 (𝐵) terms. First, we calculate the commutator:

Proposition 9.2. For all 𝑘 ∈ 𝑆𝐶 and symmetric 𝐴 : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ), it holds that[
J , 𝑄̃𝑘1 (𝐴)

]
= 𝑄̃𝑘1 ([𝐽

⊕
𝑘 , 𝐴]) + E 𝑘3 (𝐴).

Proof. We first calculate, using the commutation relations of the excitation operators 𝑏𝑘 (𝜑) and 𝑏∗𝑘 (𝜑),
that for any 𝑘 ∈ 𝑆𝐶 and 𝜑 ∈ ℓ2(𝐿±

𝑘 ),

[J , 𝑏𝑘 (𝜑)] = −
∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

(
𝑏∗𝑙 (𝐽

⊕
𝑙 𝑒𝑞)

[
𝑏𝑘 (𝜑), 𝑏𝑙

(
𝑒𝑞
) ]

+
[
𝑏𝑘 (𝜑), 𝑏∗𝑙 (𝐽

⊕
𝑙 𝑒𝑞)

]
𝑏𝑙
(
𝑒𝑞
) )

= −
∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

(
𝛿𝑘,𝑙
〈
𝜑, 𝐽⊕𝑙 𝑒𝑞

〉
+ 𝜀𝑘,𝑙

(
𝜑; 𝐽⊕𝑙 𝑒𝑞

) )
𝑏𝑙
(
𝑒𝑞
)

(9.8)

= −
∑
𝑞∈𝐿±

𝑘

〈
𝜑, 𝐽⊕𝑘 𝑒𝑞

〉
𝑏𝑘
(
𝑒𝑞
)
−
∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

𝜀𝑘,𝑙
(
𝜑; 𝐽⊕𝑙 𝑒𝑞

)
𝑏𝑙
(
𝑒𝑞
)

=
∑
𝑞∈𝐿±

𝑘

〈
𝐽⊕𝑘 𝜑, 𝑒𝑞

〉
𝑏𝑘
(
𝑒𝑞
)
+
∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

𝜀𝑘,𝑙
(
𝜑; 𝑒𝑞

)
𝑏𝑙 (𝐽⊕𝑙 𝑒𝑞)

= 𝑏𝑘
(
𝐽⊕𝑘 𝜑
)
+ EJ

𝑘 (𝜑)

for

EJ
𝑘 (𝜑) =

∑
𝑙∈𝑆𝐶

∑
𝑞∈𝐿±

𝑙

𝜀𝑘,𝑙
(
𝜑; 𝑒𝑞

)
𝑏𝑙 (𝐽⊕𝑙 𝑒𝑞), (9.9)

where we used the skew-symmetry of 𝐽⊕𝑘 , anti-linearity of 𝜑 ↦→ 𝑏𝑘 (𝜑), and Lemma 3.3. Consequently,
we compute for 𝑄̃𝑘1 (𝐴) that[

J , 𝑄̃𝑘1 (𝐴)
]
=
∑
𝑝∈𝐿±

𝑘

[
J , 𝑏∗𝑘 (𝐴𝑒𝑝)𝑏𝑘 (𝑒𝑝)

]
=
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝐴𝑒𝑝)

[
J , 𝑏𝑘 (𝑒𝑝)

]
+
[
J , 𝑏𝑘 (𝐴𝑒𝑝)

]∗
𝑏𝑘 (𝑒𝑝)

)
=
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝐴𝑒𝑝)

(
𝑏𝑘
(
𝐽⊕𝑘 𝑒𝑝

)
+ EJ

𝑘 (𝑒𝑝)
)
+
(
𝑏𝑘
(
𝐽⊕𝑘 𝐴𝑒𝑝

)
+ EJ

𝑘 (𝐴𝑒𝑝)
)∗

𝑏𝑘 (𝑒𝑝)
)

=
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝐴𝑒𝑝)𝑏𝑘

(
𝐽⊕𝑘 𝑒𝑝

)
+ 𝑏∗𝑘

(
𝐽⊕𝑘 𝐴𝑒𝑝

)
𝑏𝑘 (𝑒𝑝)

)
(9.10)

+
∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘 (𝐴𝑒𝑝)EJ

𝑘 (𝑒𝑝) +
(
𝑏∗𝑘 (𝑒𝑝)EJ

𝑘 (𝐴𝑒𝑝)
)∗)
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=
∑
𝑝∈𝐿±

𝑘

𝑏∗𝑘
( (
𝐽⊕𝑘 𝐴 − 𝐴𝐽⊕𝑘

)
𝑒𝑝
)
𝑏𝑘 (𝑒𝑝) + 2

∑
𝑙∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

∑
𝑞∈𝐿±

𝑙

Re
(
𝑏∗𝑘 (𝐴𝑒𝑝)𝜀𝑘,𝑙 (𝑒𝑝; 𝑒𝑞)𝑏𝑙 (𝐽⊕𝑙 𝑒𝑞)

)
= 𝑄̃𝑘1 ([𝐽

⊕
𝑘 , 𝐴]) + E 𝑘3 (𝐴).

�

To derive an expression for 𝑒J 𝑄̃𝑘1 (𝐴)𝑒
−J , we will use the Baker-Campbell-Hausdorff formula

exp
(
C𝐽⊕

𝑘

)
(𝐴) =

∞∑
𝑚=0

1
𝑚!

C𝑚
𝐽⊕
𝑘

(𝐴) = 𝑒𝐽
⊕
𝑘 𝐴𝑒−𝐽

⊕
𝑘 , with C𝐽⊕

𝑘
(𝐴) =

[
𝐽⊕𝑘 , 𝐴

]
. (9.11)

Imitating the proof of Proposition 5.3, we deduce the following:

Proposition 9.3. For all 𝑘 ∈ 𝑆𝐶 and symmetric 𝐴 : ℓ2(𝐿±
𝑘 ) → ℓ2(𝐿±

𝑘 ), it holds that

𝑒J 𝑄̃𝑘1 (𝐴)𝑒
−J = 𝑄̃𝑘1

(
𝑒𝐽

⊕
𝑘 𝐴𝑒−𝐽

⊕
𝑘

)
+
∫ 1

0
𝑒𝑡J E 𝑘3

(
𝑒 (1−𝑡)𝐽

⊕
𝑘 𝐴𝑒−(1−𝑡)𝐽

⊕
𝑘

)
𝑒−𝑡J 𝑑𝑡,

the integrals being Riemann integrals of bounded operators.

Proof. We claim that for any 𝑛 ∈ N, it holds that

𝑒J 𝑄̃𝑘1 (𝐴)𝑒
−J = 𝑄̃𝑘1

(
𝑛−1∑
𝑚=0

1
𝑚!

C𝑚
𝐽⊕
𝑘

(𝐴)
)
+
∫ 1

0
𝑒𝑡J E 𝑘3

(
𝑛−1∑
𝑚=0

1
𝑚!

C𝑚(1−𝑡)𝐽⊕
𝑘

(𝐴)
)
𝑒−𝑡J 𝑑𝑡

+ 1
(𝑛 − 1)!

∫ 1

0
𝑒𝑡J 𝑄̃𝑘1

(
C𝑛
𝐽⊕
𝑘

(𝐴)
)
𝑒−𝑡J (1 − 𝑡)𝑛−1𝑑𝑡. (9.12)

We proceed by induction. For 𝑛 = 1, we have by the fundamental theorem of calculus and Proposition
9.2 that

𝑒J 𝑄̃𝑘1 (𝐴)𝑒
−J = 𝑄̃𝑘1 (𝐴) +

∫ 1

0
𝑒𝑡J
[
J , 𝑄̃𝑘1 (𝐴)

]
𝑒−𝑡J 𝑑𝑡

= 𝑄̃𝑘1 (𝐴) +
∫ 1

0
𝑒𝑡J 𝑄̃𝑘1 ([𝐽

⊕
𝑘 , 𝐴])𝑒

−𝑡J 𝑑𝑡 +
∫ 1

0
𝑒𝑡J E 𝑘3 (𝐴)𝑒−𝑡J 𝑑𝑡, (9.13)

which is the claim. For the inductive step, we assume that case n holds and integrate the last term of
equation (9.12) by parts:

1
(𝑛 − 1)!

∫ 1

0
𝑒𝑡J 𝑄̃𝑘1

(
C𝑛
𝐽⊕
𝑘

(𝐴)
)
𝑒−𝑡J (1 − 𝑡)𝑛−1𝑑𝑡

=
1

(𝑛 − 1)!

[
𝑒𝑡J 𝑄̃𝑘1

(
C𝑛
𝐽⊕
𝑘

(𝐴)
)
𝑒−𝑡J

(
− (1 − 𝑡)𝑛

𝑛

)]1
0

− 1
(𝑛 − 1)!

∫ 1

0
𝑒𝑡J
[
J , 𝑄̃𝑘1

(
C𝑛
𝐽⊕
𝑘

(𝐴)
)]

𝑒−𝑡J
(
− (1 − 𝑡)𝑛

𝑛

)
𝑑𝑡 (9.14)

=
1
𝑛!
𝑄̃𝑘1

(
C𝑛
𝐽⊕
𝑘

(𝐴)
)
+ 1
𝑛!

∫ 1

0
𝑒𝑡J
(
𝑄̃𝑘1

( [
𝐽⊕𝑘 , C

𝑛
𝐽⊕
𝑘

(𝐴)
] )

+ E 𝑘3
(
C𝑛
𝐽⊕
𝑘

(𝐴)
))

𝑒−𝑡J (1 − 𝑡)𝑛𝑑𝑡

= 𝑄̃𝑘1

(
1
𝑛!
C𝑛
𝐽⊕
𝑘

(𝐴)
)
+
∫ 1

0
𝑒𝑡J E 𝑘3

(
1
𝑛!
C𝑛(1−𝑡)𝐽⊕

𝑘

(𝐴)
)
𝑒−𝑡J 𝑑𝑡

+ 1
𝑛!

∫ 1

0
𝑒𝑡J 𝑄̃𝑘1

(
C𝑛+1
𝐽⊕
𝑘

(𝐴)
)
𝑒−𝑡J (1 − 𝑡)𝑛𝑑𝑡.
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Insertion of this identity into equation (9.12) yields the statement for case 𝑛 + 1, so our claim (9.12)
holds. We can now take 𝑛 → ∞ and appeal to equation (9.11) to get the claim. �

Proposition 9.2 also allows us to describe the action of 𝑒J on 𝐻 ′
kin:

Proposition 9.4. It holds that

𝑒J

(
𝐻 ′

kin − 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
ℎ⊕
𝑘

))
𝑒−J = 𝐻 ′

kin − 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
ℎ⊕
𝑘

)
− 2
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒𝑡J E 𝑘3

(
ℎ⊕
𝑘

)
𝑒−𝑡J 𝑑𝑡.

Proof. By the fundemental theorem of calculus and the fact that 𝜕𝑡 (𝑒𝑡 𝐴𝐵𝑒−𝑡 𝐴) = 𝑒𝑡 𝐴[𝐴, 𝐵]𝑒−𝑡 𝐴, the
left side is equal to

𝐻 ′
kin − 2

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
ℎ⊕
𝑘

)
+
∫ 1

0
𝑒𝑡J

[
J , 𝐻 ′

kin − 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
ℎ⊕
𝑘

) ]
𝑒−𝑡J 𝑑𝑡.

Recalling (1.74), we may compute using Lemma 3.3 that[
J , 𝐻 ′

kin
]
= −

∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

[
𝐻 ′

kin, 𝑏
∗
𝑘

(
𝐽⊕𝑘 𝑒𝑝

)
𝑏𝑘 (𝑒𝑝)

]
− 2
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

(
−𝑏∗𝑘

(
𝐽⊕𝑘 𝑒𝑝

)
𝑏𝑘
(
ℎ⊕
𝑘 𝑒𝑝
)
+ 𝑏∗𝑘

(
ℎ⊕
𝑘 𝐽

⊕
𝑘 𝑒𝑝
)
𝑏𝑘 (𝑒𝑝)

)
= 2
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

𝑏∗𝑘
( (
𝐽⊕𝑘 ℎ

⊕
𝑘 − ℎ⊕

𝑘 𝐽
⊕
𝑘

)
𝑒𝑝
)
𝑏𝑘 (𝑒𝑝) = 2

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
( [
𝐽⊕𝑘 , ℎ

⊕
𝑘

] )
. (9.15)

Combining with Proposition 9.2, we have that[
J , 𝐻 ′

kin − 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
ℎ⊕
𝑘

) ]
=
[
J , 𝐻 ′

kin
]
− 2
∑
𝑘∈𝑆𝐶

[
J , 𝑄̃𝑘1

(
ℎ⊕
𝑘

) ]
= −2

∑
𝑘∈𝑆𝐶

E 𝑘3
(
ℎ⊕
𝑘

)
, (9.16)

which implies the claim. �

We can now conclude:

Proof of Proposition 9.1. By the Propositions 9.3 and 9.4, we see that

𝑒J

(
𝐻 ′

kin − 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
ℎ⊕
𝑘

)
+ 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
𝐸 ⊕
𝑘

))
𝑒−J

= 𝐻 ′
kin − 2

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
ℎ⊕
𝑘

)
− 2
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒𝑡J E 𝑘3

(
ℎ⊕
𝑘

)
𝑒−𝑡J 𝑑𝑡

+ 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1

(
𝑒𝐽

⊕
𝑘 𝐸 ⊕

𝑘 𝑒
−𝐽⊕
𝑘

)
+ 2
∫ 1

0
𝑒𝑡J E 𝑘3

(
𝑒 (1−𝑡)𝐽

⊕
𝑘 𝐸 ⊕

𝑘 𝑒
−(1−𝑡)𝐽⊕

𝑘

)
𝑒−𝑡J 𝑑𝑡

= 𝐻 ′
kin + 2

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1

(
𝑒𝐽

⊕
𝑘 𝐸 ⊕

𝑘 𝑒
−𝐽⊕
𝑘 − ℎ⊕

𝑘

)
+ 2
∫ 1

0
𝑒 (1−𝑡)J E 𝑘3

(
𝑒𝑡 𝐽

⊕
𝑘 𝐸 ⊕

𝑘 𝑒
−𝑡 𝐽⊕

𝑘 − ℎ⊕
𝑘

)
𝑒−(1−𝑡)J 𝑑𝑡,

(9.17)
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where we also reparametrized the integral. From the choice of 𝐽⊕𝑘 in (9.3), we have

𝑒𝑡 𝐽
⊕
𝑘 𝐸 ⊕

𝑘 𝑒
−𝑡 𝐽⊕

𝑘 − ℎ⊕
𝑘 =

(
𝑒𝑡 𝐽𝑘𝐸𝑘𝑒

−𝑡 𝐽𝑘 − ℎ𝑘 0
0 𝑒𝑡 𝐽𝑘𝐸𝑘𝑒

−𝑡 𝐽𝑘 − ℎ𝑘

)
= 𝐸 ⊕

𝑘 (𝑡) (9.18)

for all 𝑡 ∈ [0, 1]. Moreover, using 𝑒𝐽𝑘 = 𝑈𝑘 and (9.4), we get 𝑒𝐽
⊕
𝑘 𝐸 ⊕

𝑘 𝑒
−𝑡 𝐽⊕

𝑘 = 𝐸 ⊕
𝑘 . �

9.2. Estimates for the exchange terms

Now we estimate the new exchange term E3 in Proposition 9.1. We have the following:

Proposition 9.5. For all 𝑘 ∈ Z3
+, symmetric 𝐸 : ℓ2(𝐿±

𝑘 ) → ℓ2(𝐿±
𝑘 ) and Ψ ∈ 𝐷

(
𝐻 ′

kin
)
, it holds that

11〈Ψ, E 𝑘3 (𝐸)Ψ
〉11 ≤ 𝐶

(
max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝐸𝑒𝑝

���) (∑
𝑙∈𝑆𝐶

���(ℎ⊕
𝑙

)− 1
2 𝐽⊕𝑙

���
HS

) √〈
Ψ, 𝐻 ′

kinΨ
〉 〈

Ψ,N𝐸𝐻
′
kinΨ
〉

for a constant 𝐶 > 0 independent of all quantities.

Proof of Proposition 9.5. We can follow the analysis in Section 6. In particular, the same reduction in
Section 6.1 applies to E 𝑘3 (𝐸), but in this case, it is significantly simpler. By definition, up to taking
adjoints, every term of E 𝑘3 (𝐸) immediately reduces to the schematic form∑

𝑙∈𝑆𝐶

∑
𝑝∈𝑆

𝑏∗𝑘
(
𝐸𝑒𝑝1

)
𝑐∗𝑝3𝑐𝑝4𝑏𝑙

(
𝐽⊕𝑙 𝑒𝑝2

)
, (9.19)

and recalling that commutators of the forms
[
𝑐𝑝 , 𝑏𝑘 (𝜑)

]
and
[
𝑐∗𝑝 , 𝑏

∗
𝑘 (𝜑)

]
also vanish, we may normal-

order this schematic form without introducing additional terms. Controlling E 𝑘3 (𝐸) thus reduces entirely
to the estimation of the single schematic form∑

𝑙∈𝑆𝐶

∑
𝑝∈𝑆

𝑐∗𝑝3𝑏
∗
𝑘

(
𝐸𝑒𝑝1

)
𝑏𝑙
(
𝐽⊕𝑙 𝑒𝑝2

)
𝑐𝑝4 . (9.20)

We estimate the schematic form of equation (9.20) using Proposition 4.4, Lemma 6.6 and the Cauchy-
Schwarz inequality:∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

11〈Ψ, 𝑐∗𝑝3𝑏
∗
𝑘

(
𝐸𝑒𝑝1

)
𝑏𝑙
(
𝐽⊕𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

〉11 ≤ ∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

��𝑏𝑘 (𝐸𝑒𝑝1

)
𝑐𝑝3Ψ

�� ��𝑏𝑙 (𝐽⊕𝑙 𝑒𝑝2

)
𝑐𝑝4Ψ

��
≤
∑
𝑙∈𝑆𝐶

∑
𝑝∈𝑆

���(ℎ⊕
𝑘

)− 1
2 𝐸𝑒𝑝1

��� ���(ℎ⊕
𝑙

)− 1
2 𝐽⊕𝑙 𝑒𝑝2

���√〈𝑐𝑝3Ψ, 𝐻 ′(±1)
kin 𝑐𝑝3Ψ

〉 〈
𝑐𝑝4Ψ, 𝐻 ′(±1)

kin 𝑐𝑝4Ψ
〉

≤
(
max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝐸𝑒𝑝

���) √〈Ψ, 𝐻 ′
kinΨ
〉 ∑
𝑙∈𝑆𝐶

√√√∑
𝑝∈𝑆

����(ℎ⊕
𝑙

)− 1
2
𝐽⊕𝑙 𝑒𝑝2

����2√∑
𝑝∈𝑆

〈
Ψ, 𝑐∗𝑝4𝐻

′(±1)
kin 𝑐𝑝4Ψ

〉
≤
(
max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝐸𝑒𝑝1

���) (∑
𝑙∈𝑆𝐶

���(ℎ⊕
𝑙

)− 1
2 𝐽⊕𝑙

���
HS

) √〈
Ψ, 𝐻 ′

kinΨ
〉 〈

Ψ,N𝐸𝐻
′
kinΨ
〉
. (9.21)

�
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9.3. One-body operator estimates

In this subsection, we derive estimates on the one-body quantities

max
𝑝∈𝐿𝑘

����ℎ− 1
2
𝑘 𝐸𝑘 (𝑡)𝑒𝑝

���� , ����ℎ− 1
2
𝑘 𝐽𝑘

����
HS

,

����ℎ− 1
2

𝑘
[𝐽𝑘 , ℎ𝑘 ] ℎ

− 1
2

𝑘

����
HS

, tr(ℎ−1/2
𝑘 (𝐸𝑘 − ℎ𝑘 )ℎ−1/2

𝑘 ). (9.22)

The first two quantities arise from the analysis of the exchange terms in the previous subsection, while
the third quantity will be needed in order to derive Gronwall-type estimates for the kinetic operator. The
last one is useful to remove the cutoff 𝑆𝐶 on the right-hand side of (9.7) at the end. The estimates we
will establish are the following:

Proposition 9.6. Assume
∑
𝑘∈Z3

∗
𝑉̂𝑘 |𝑘 | < ∞. Then for all 𝑘 ∈ Z3

∗, we have

tr
(
ℎ−1/2
𝑘 (𝐸𝑘 − ℎ𝑘 )ℎ−1/2

𝑘

)
≤ 𝐶𝑉̂𝑘 .

Moreover, if 𝑘 ∈ 𝐵
(
0, 𝑘𝛾𝐹

)
∩ Z3

∗, 0 < 𝛾 < 1
47 and 𝑡 ∈ [0, 1], it holds that

max
𝑝∈𝐿𝑘

����ℎ− 1
2
𝑘 𝐸𝑘 (𝑡)𝑒𝑝

���� ≤ 𝐶𝑘
− 1

2
𝐹

(
𝑉̂𝑘 + 𝑉̂3

𝑘 |𝑘 |
6 log (𝑘𝐹 )

)
,����ℎ− 1

2
𝑘 𝐽𝑘

����
HS

≤ 𝐶 (log 𝑘𝐹 )
2
3 𝑘

− 1
3

𝐹 𝑉̂𝑘 ,����ℎ− 1
2
𝑘 [𝐽𝑘 , ℎ𝑘 ] ℎ

− 1
2
𝑘

����
HS

≤ 𝐶𝑉̂𝑘 .

Here, the constant 𝐶 > 0 is independent of k and 𝑘𝐹 .

Proposition 9.6 is the main source of the technical restriction 𝛾 < 1
47 which comes from the use of

the first bound in Proposition A.3 (we need 𝛾 < 4+3𝛽
8−3𝛽 with 𝛽 = − 5

4 ).
As in Section 7, in order to simplify the notation, let ℎ : 𝑉 → 𝑉 denote a self-adjoint operator acting

on an n-dimensional Hilbert space V, let (𝑥𝑖)𝑛𝑖=1 denote an eigenbasis for h with eigenvalues (𝜆𝑖)𝑛𝑖=1, and
let 𝑣 ∈ 𝑉 be any vector such that 〈𝑣, 𝑥𝑖〉 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛. As before, we take

𝐾 = −1
2

log
(
ℎ−

1
2

(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2
ℎ−

1
2

)
. (9.23)

We will establish general estimates for the operators

𝑈 =
(
ℎ

1
2 𝑒−2𝐾 ℎ

1
2

) 1
2
ℎ−

1
2 𝑒𝐾 , 𝐽 = log(𝑈), 𝐸 (𝑡) = 𝑒𝑡 𝐽 𝑒−𝐾 ℎ𝑒−𝐾 𝑒−𝑡 𝐽 − ℎ (9.24)

and then at the end insert the explicit choice (7.2) to get the desired estimates.
Unlike the case in Section 7, we will now also take V to be a complex Hilbert space. This is not a

strictly necessary assumption, but it allows us to streamline the presentation significantly, as it implies
that the unitary operator U is diagonalizable and so lets us describe the operators 𝐽 = log(𝑈) and 𝑒𝑡 𝐽

solely in terms of eigenvectors of U.
The main difficulty of the proof of Proposition 9.6 is that we cannot extend the argument leading

to matrix element estimates for 𝑒−2𝐾 − 1 and 1 − 𝑒2𝐾 in Section 7 to handle the operators J and 𝑒𝑡 𝐽 .
Instead, we will utilize a technique which effectively lets us replace relevant quantities of J by these of
𝑈 − 1, by exploiting the diagonalizability of U.

We start with the easy part of Proposition 9.6.
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Proposition 9.7. With 𝐸 =
(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2 , we have

tr
(
ℎ−1/2(𝐸 − ℎ)ℎ−1/2

)
≤ 〈𝑣, ℎ−1𝑣〉.

Proof. Using (7.21) for 𝐸 =
(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
2 , we can write

ℎ−1/2(𝐸 − ℎ)ℎ−1/2 =
4
𝜋

∫ ∞

0

𝑡2

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡2

)−1
𝑣
〉 𝑃(ℎ2+𝑡2)−1

𝑣
𝑑𝑡 ≤ 4

𝜋

∫ ∞

0
𝑃(ℎ2+𝑡2)−1

𝑣
𝑡2 𝑑𝑡.

(9.25)

Taking the trace and using (7.8), we complete the proof. �

Estimates for U
Let us consider the unitary operator 𝑈 : 𝑉 → 𝑉 defined by

𝑈 = (ℎ
1
2 𝑒−2𝐾 ℎ

1
2 )

1
2 ℎ−

1
2 𝑒𝐾 = (ℎ2 + 2𝑃

ℎ
1
2 𝑣
)

1
4 ℎ−

1
2 𝑒𝐾 . (9.26)

First, the analysis of (ℎ2 + 2𝑃
ℎ

1
2 𝑣
) 1

2 in Section 7 can be extended to (ℎ2 + 2𝑃
ℎ

1
2 𝑣
) 1

4 . We have the
following:

Proposition 9.8. For all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, it holds that1111〈𝑥𝑖 , ((ℎ2 + 2𝑃
ℎ

1
2 𝑣

) 1
4 − ℎ

1
2

)
𝑥 𝑗

〉1111 ≤ 2
√
𝜆𝑖𝜆 𝑗

√
𝜆𝑖 +
√
𝜆 𝑗

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
.

Note that by using the integral identity

𝐴
1
4 =

2
√

2
𝜋

∫ ∞

0

(
1 − 𝑡4

𝐴 + 𝑡4

)
𝑑𝑡 (9.27)

for every self-adjoint non-negative operator A instead of (7.8), we obtain the following analogue of
Proposition 7.5:

Proposition 9.9. Let (𝐻, 〈·, ·〉) be a Hilbert space and let 𝐴 : 𝐻 → 𝐻 be a positive self-adjoint operator.
Then for any 𝑥 ∈ 𝐻 and 𝑔 ∈ R such that 𝐴 + 𝑔𝑃𝑥 > 0, it holds that

(𝐴 + 𝑔𝑃𝑥)
1
4 = 𝐴

1
4 + 2

√
2𝑔
𝜋

∫ ∞

0

𝑡4

1 + 𝑔
〈
𝑣,
(
𝐴 + 𝑡4

)−1
𝑣
〉 𝑃(𝐴+𝑡4)−1

𝑣
𝑑𝑡.

Proof of Proposition 9.8. Applying Proposition 9.9 with 𝐴 = ℎ2, 𝑥 = ℎ
1
2 𝑣 and 𝑔 = 2, we find(

ℎ2 + 2𝑃
ℎ

1
2 𝑣

) 1
4
=
(
ℎ2
) 1

4 + 4
√

2
𝜋

∫ ∞

0

𝑡4

1 + 2
〈
ℎ

1
2 𝑣,
(
ℎ2 + 𝑡4

)−1
ℎ

1
2 𝑣
〉 𝑃(ℎ2+𝑡4)−1

ℎ
1
2 𝑣

𝑑𝑡 (9.28)

= ℎ
1
2 + 4

√
2

𝜋

∫ ∞

0

𝑡4

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡4

)−1
𝑣
〉 𝑃

ℎ
1
2 (ℎ2+𝑡4)−1

𝑣
𝑑𝑡,
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and so we can estimate that

0 ≤
〈
𝑥𝑖 ,

((
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
4 − ℎ

1
2

)
𝑥 𝑗

〉
=

4
√

2
𝜋

∫ ∞

0

𝑡4

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡4

)−1
𝑣
〉 〈𝑥𝑖 , 𝑃

ℎ
1
2 (ℎ2+𝑡4)−1

𝑣
𝑥 𝑗

〉
𝑑𝑡

=
4
√

2
𝜋

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉 ∫ ∞

0

𝑡4

1 + 2
〈
𝑣, ℎ
(
ℎ2 + 𝑡4

)−1
𝑣
〉 √

𝜆𝑖

𝜆2
𝑖 + 𝑡4

√
𝜆 𝑗

𝜆2
𝑗 + 𝑡4

𝑑𝑡 (9.29)

≤ 4
√

2
𝜋

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉 ∫ ∞

0

√
𝜆𝑖

𝜆2
𝑖 + 𝑡4

√
𝜆 𝑗

𝜆2
𝑗 + 𝑡4

𝑡4 𝑑𝑡 =
2
√
𝜆𝑖𝜆 𝑗

√
𝜆𝑖 +
√
𝜆 𝑗

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
,

where we also applied the integral identity∫ ∞

0

√
𝑎

𝑎2 + 𝑡4

√
𝑏

𝑏2 + 𝑡4
𝑡4 𝑑𝑡 =

𝜋

2
√

2

√
𝑎𝑏

√
𝑎 +

√
𝑏

1
𝑎 + 𝑏

, 𝑎, 𝑏 > 0. (9.30)

�

We may then conclude the following:

Proposition 9.10. For all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, it holds that

11〈𝑥𝑖 , (𝑈 − 1) 𝑥 𝑗
〉11 , 11〈𝑥𝑖 , (𝑈∗ − 1) 𝑥 𝑗

〉11 ≤ 3
(
1 +
〈
𝑣, ℎ−1𝑣

〉) 〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥 𝑗 〉
𝜆𝑖 + 𝜆 𝑗

.

Proof. As
11〈𝑥𝑖 , (𝑈 − 1) 𝑥 𝑗

〉11 = 11〈𝑥 𝑗 , (𝑈∗ − 1) 𝑥𝑖
〉11 and the claimed estimate is symmetric with respect to

i and j, it suffices to consider 𝑈 − 1. We write

𝑈 − 1 =
(
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
4
ℎ−

1
2 𝑒𝐾 − 1 =

((
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
4 − ℎ

1
2

)
ℎ−

1
2 𝑒𝐾 + 𝑒𝐾 − 1 (9.31)

= 𝑒𝐾 − 1 +
((
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
4 − ℎ

1
2

)
ℎ−

1
2 +
((
ℎ2 + 2𝑃

ℎ
1
2 𝑣

) 1
4 − ℎ

1
2

)
ℎ−

1
2

(
𝑒𝐾 − 1

)
and estimate each term separately. The first is directly covered by Proposition 7.10, with111〈𝑥𝑖 , (𝑒𝐾 − 1

)
𝑥 𝑗

〉111 ≤ 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
. (9.32)

For the second term, we can by Proposition 9.8 estimate that1111〈𝑥𝑖 , ((ℎ2 + 2𝑃
ℎ

1
2 𝑣

) 1
4 − ℎ

1
2

)
ℎ−

1
2 𝑥 𝑗

〉1111 = 1√
𝜆 𝑗

1111〈𝑥𝑖 , ((ℎ2 + 2𝑃
ℎ

1
2 𝑣

) 1
4 − ℎ

1
2

)
𝑥 𝑗

〉1111 (9.33)

≤ 1√
𝜆 𝑗

2
√
𝜆𝑖𝜆 𝑗

√
𝜆𝑖 +
√
𝜆 𝑗

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
≤ 2

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗
.

For the final term, we carry out an orthonormal expansion and apply the previous two estimates to see
that
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ℎ

1
2 𝑣

) 1
4 − ℎ

1
2

)
ℎ−

1
2

(
𝑒𝐾 − 1

)
𝑥 𝑗

〉1111
≤

𝑛∑
𝑘=1

1111〈𝑥𝑖 , ((ℎ2 + 2𝑃
ℎ

1
2 𝑣

) 1
4 − ℎ

1
2

)
ℎ−

1
2 𝑥𝑘

〉1111 111〈𝑥𝑘 , (𝑒𝐾 − 1
)
𝑥 𝑗

〉111
≤ 2

𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗
= 2

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

𝑛∑
𝑘=1

𝜆𝑖 + 𝜆 𝑗

(𝜆𝑖 + 𝜆𝑘 )
(
𝜆𝑘 + 𝜆 𝑗

) |〈𝑥𝑘 , 𝑣〉|2
≤ 2

〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆𝑘
= 2
〈
𝑣, ℎ−1𝑣

〉 〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥 𝑗 〉
𝜆𝑖 + 𝜆 𝑗

, (9.34)

where we also applied the elementary inequality

𝑎 + 𝑏

(𝑎 + 𝑐) (𝑐 + 𝑏) =
𝑎 + 𝑏

𝑐(𝑎 + 𝑏) + 𝑎𝑏 + 𝑐2 <
1
𝑐
, ∀𝑎, 𝑏, 𝑐 > 0. (9.35)

Combining the estimates now yields the claim. �

Estimates for J
Recall that we defined 𝐽 : 𝑉 → 𝑉 to be the principal logarithm of U. Since U is a unitary operator
on the finite-dimensional complex Hilbert space V, by the spectral theorem it is diagonalizable – that
is, there exists an orthonormal basis (𝑤 𝑗 )𝑛𝑗=1 for V of eigenstates of U with eigenvalues

(
𝑒𝑖 𝜃 𝑗
)𝑛
𝑗=1,(

𝜃 𝑗
)𝑛
𝑗=1 ⊂ (−𝜋, 𝜋], (i.e., 𝑈𝑤 𝑗 = 𝑒𝑖 𝜃 𝑗𝑤 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛). Thus, J can be explicitly written as

𝐽𝑤 𝑗 = 𝑖𝜃 𝑗𝑤 𝑗 , 1 ≤ 𝑗 ≤ 𝑛. (9.36)

To estimate the quantity
���ℎ− 1

2 𝐽
���

HS
, we will apply the following:

Proposition 9.11. It holds that

𝐽𝐽∗ ≤ 𝜋2

4
(𝑈 − 1)∗ (𝑈 − 1) .

Proof. We note the elementary inequality

|𝑥 | ≤ 𝜋

2
√

2 (1 − cos(𝑥)) = 𝜋

2
11𝑒𝑖𝑥 − 1

11 , 𝑥 ∈ [−𝜋, 𝜋] , (9.37)

which can be deduced from the fact that 𝑥 ↦→
11𝑒𝑖𝑥 − 1

11 is an even function and concave on 𝑥 ∈ [0, 𝜋].
As the eigenbasis (𝑤 𝑗 )𝑛𝑗=1 obeys

𝑈𝑤 𝑗 = 𝑒𝑖 𝜃 𝑗𝑤 𝑗 , 𝑈∗𝑤 𝑗 = 𝑒−𝑖 𝜃 𝑗𝑤 𝑗 , 𝐽𝑤 𝑗 = 𝑖𝜃 𝑗𝑤 𝑗 , 𝐽∗𝑤 𝑗 = −𝑖𝜃 𝑗𝑤 𝑗 , (9.38)

we can for any 𝑤 ∈ 𝑉 perform an orthonormal expansion in terms of (𝑤 𝑗 )𝑛𝑗=1 to see that

〈𝑤, 𝐽𝐽∗𝑤〉 = ‖𝐽∗𝑤‖2 =
𝑛∑
𝑗=1

11𝜃 𝑗 112 11〈𝑤 𝑗 , 𝑤
〉112 ≤

𝑛∑
𝑗=1

( 𝜋
2
11𝑒𝑖 𝜃 𝑗 − 1

11)2 11〈𝑤 𝑗 , 𝑤
〉112

=
𝜋2

4

𝑛∑
𝑗=1

11〈(𝑈∗ − 1) 𝑤 𝑗 , 𝑤
〉112 =

𝜋2

4
‖(𝑈 − 1) 𝑤‖2 =

𝜋2

4
〈
𝑤, (𝑈 − 1)∗ (𝑈 − 1) 𝑤

〉
, (9.39)

which is the claim. �
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Corollary 9.12. There exists a universal constant 𝐶 > 0 such that���ℎ− 1
2 𝐽
���

HS
≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉) 〈
𝑣, ℎ−

3
2 𝑣
〉
.

Proof. By cyclicity of the trace and the estimate of the previous proposition, we have that���ℎ− 1
2 𝐽
���2

HS
= tr
(
𝐽∗ℎ−1𝐽

)
= tr
(
ℎ−

1
2 𝐽𝐽∗ℎ−

1
2

)
≤ 𝜋2

4
tr
(
ℎ−

1
2 (𝑈 − 1)∗ (𝑈 − 1) ℎ−

1
2

)
=

𝜋2

4

���(𝑈 − 1) ℎ−
1
2

���2
HS

, (9.40)

and by the matrix element estimate of Proposition 9.10,���(𝑈 − 1) ℎ−
1
2

���2
HS

=
𝑛∑

𝑖, 𝑗=1

111〈𝑥𝑖 , (𝑈 − 1) ℎ−
1
2 𝑥 𝑗

〉1112 =
𝑛∑

𝑖, 𝑗=1

1
𝜆 𝑗

11〈𝑥𝑖 , (𝑈 − 1) 𝑥 𝑗
〉112

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖, 𝑗=1

1
𝜆 𝑗

11111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

111112 ≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖, 𝑗=1

1
𝜆 𝑗

111111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆
3
4
𝑖 𝜆

1
4
𝑗

111111
2

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 !""#
𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆
3
2
𝑗

$%%&
2

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−

3
2 𝑣
〉2

, (9.41)

which gives the claim. �

Next, consider ‖ℎ− 1
2 [𝐽, ℎ]ℎ− 1

2 ‖HS. By the triangle inequality, it suffices to bound ‖ℎ− 1
2 𝐽ℎ

1
2 ‖HS.

Unlike ‖ℎ− 1
2 𝐽‖HS, this is more involved as the presence of factors of h on both sides of J prevents us

from combining J and 𝐽∗ in ‖ℎ− 1
2 𝐽ℎ

1
2 ‖2

HS = tr(𝐽∗ℎ−1𝐽ℎ), and so we need to proceed differently. First,
we note the following elementary estimate:

Lemma 9.13. There exists a constant 𝐶 > 0 such that1111𝑖𝜃 − 1
2

(
𝑒𝑖 𝜃 − 𝑒−𝑖 𝜃

)1111 ≤ 𝐶
11𝑒𝑖 𝜃 − 1

113 , 𝜃 ∈ [−𝜋, 𝜋] .

Proof. The left-hand side is |𝜃 − sin(𝜃) | = 𝑂 (|𝜃 |3), while |𝜃 | ≥
11𝑒𝑖 𝜃 − 1

11 ≥ 𝐶−1𝜃. �

Proposition 9.14. There exists a universal constant 𝐶 > 0 such that���ℎ− 1
2 [𝐽, ℎ] ℎ−

1
2

���
HS

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)3 (〈
𝑣, ℎ−1𝑣

〉
+
〈
𝑣, ℎ−

1
2 𝑣
〉 〈

𝑣, ℎ−
5
4 ℎ
〉2)

.

Proof. It suffices to bound ‖ℎ− 1
2 𝐽ℎ

1
2 ‖HS. By writing

𝐽 =
1
2
(𝑈 − 1) + 1

2
(1 −𝑈∗) + 𝐽, 𝐽 = 𝐽 − 1

2
(𝑈 −𝑈∗) , (9.42)

we see by the triangle inequality that���ℎ− 1
2 𝐽ℎ

1
2

���
HS

≤ 1
2

���ℎ− 1
2 (𝑈 − 1) ℎ

1
2

���
HS

+ 1
2

���ℎ− 1
2 (1 −𝑈∗) ℎ

1
2

���
HS

+
���ℎ− 1

2 𝐽ℎ
1
2

���
HS

. (9.43)
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By Proposition 9.10, we have

���ℎ− 1
2 (𝑈 − 1) ℎ

1
2

���2
HS

=
𝑛∑

𝑖, 𝑗=1

111〈𝑥𝑖 , ℎ− 1
2 (𝑈 − 1) ℎ

1
2 𝑥 𝑗

〉1112 =
𝑛∑

𝑖, 𝑗=1

𝜆 𝑗

𝜆𝑖

11〈𝑥𝑖 , (𝑈 − 1) 𝑥 𝑗
〉112

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖, 𝑗=1

𝜆 𝑗

𝜆𝑖

11111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

111112
≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 ( 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

)2
= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−1𝑣

〉2 (9.44)

and likewise for ‖ℎ− 1
2 (1 − 𝑈∗)ℎ 1

2 ‖2
HS. For ℎ−

1
2 𝐽ℎ

1
2 , we instead apply Lemma 9.13 and the Cauchy-

Schwarz inequality to see that for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

111〈𝑥𝑖 , ℎ− 1
2 𝐽ℎ

1
2 𝑥 𝑗

〉1112 =

11111 𝑛∑
𝑘=1

(
𝑖𝜃𝑘 −

1
2

(
𝑒𝑖 𝜃𝑘 − 𝑒−𝑖 𝜃𝑘

)) 〈
ℎ−

1
2 𝑥𝑖 , 𝑤𝑘

〉 〈
𝑤𝑘 , ℎ

1
2 𝑥 𝑗

〉111112
≤ 𝐶

(
𝑛∑
𝑘=1

11𝑒𝑖 𝜃𝑘 − 1
113 111〈ℎ− 1

2 𝑥𝑖 , 𝑤𝑘

〉111 111〈𝑤𝑘 , ℎ 1
2 𝑥 𝑗

〉111)2
≤ 𝐶

(
𝑛∑
𝑘=1

11𝑒𝑖 𝜃𝑘 − 1
114 111〈𝑤𝑘 , ℎ− 1

2 𝑥𝑖

〉1112) ( 𝑛∑
𝑘=1

11𝑒𝑖 𝜃𝑘 − 1
112 111〈𝑤𝑘 , ℎ 1

2 𝑥 𝑗

〉1112)
= 𝐶

(
𝑛∑
𝑘=1

111〈(𝑈∗ − 1)2 𝑤𝑘 , ℎ
− 1

2 𝑥𝑖

〉1112) ( 𝑛∑
𝑘=1

111〈(𝑈∗ − 1) 𝑤𝑘 , ℎ
1
2 𝑥 𝑗

〉1112)
= 𝐶
���(𝑈 − 1)2 ℎ−

1
2 𝑥𝑖

���2 ���(𝑈 − 1) ℎ
1
2 𝑥 𝑗

���2 . (9.45)

Summing over 𝑖, 𝑗 , we obtain���ℎ− 1
2 𝐽ℎ

1
2

���2
HS

≤ 𝐶
���(𝑈 − 1)2 ℎ−

1
2

���2
HS

���(𝑈 − 1) ℎ
1
2

���2
HS

. (9.46)

We can now again apply Proposition 9.10 to estimate that

���(𝑈 − 1) ℎ
1
2

���2
HS

=
𝑛∑

𝑖, 𝑗=1

111〈𝑥𝑖 , (𝑈 − 1) ℎ
1
2 𝑥 𝑗

〉1112 =
𝑛∑

𝑖, 𝑗=1
𝜆 𝑗
11〈𝑥𝑖 , (𝑈 − 1) 𝑥 𝑗

〉112
≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖, 𝑗=1

𝜆 𝑗

11111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

111112

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖, 𝑗=1

𝜆 𝑗

111111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆
1
4
𝑖 𝜆

3
4
𝑗

111111
2

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−

1
2 𝑣
〉2
(9.47)
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and���(𝑈 − 1)2 ℎ−
1
2

���2
HS

=
𝑛∑

𝑖, 𝑗=1

111〈𝑥𝑖 , (𝑈 − 1)2 ℎ−
1
2 𝑥 𝑗

〉1112
=

𝑛∑
𝑖, 𝑗=1

1
𝜆 𝑗

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , (𝑈 − 1) 𝑥𝑘〉
〈
𝑥𝑘 , (𝑈 − 1) 𝑥 𝑗

〉111112
≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖, 𝑗=1

1
𝜆 𝑗

(
𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

)2

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖, 𝑗=1

|〈𝑥𝑖 , 𝑣〉|2
11〈𝑥 𝑗 , 𝑣〉112

𝜆 𝑗

!""#
𝑛∑
𝑘=1

〈𝑣, 𝑥𝑘〉

𝜆
5
8
𝑖 𝜆

3
8
𝑘

〈𝑥𝑘 , 𝑣〉

𝜆
7
8
𝑘𝜆

1
8
𝑗

$%%&
2

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 !"#
𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆
5
4
𝑖

$%&
4

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−

5
4 𝑣
〉4

(9.48)

so ��ℎ− 1
2 𝐽ℎ

1
2
��

HS ≤
(
1 +
〈
𝑣, ℎ−1𝑣

〉)3〈
𝑣, ℎ−

1
2 𝑣
〉〈
𝑣, ℎ−

5
4 𝑣
〉2
. (9.49)

Combining the estimates yields the claim. �

Remark 9.1 (Remarks on the estimation technique). As we will use the same approach to obtain
estimates on 𝐸 (𝑡), let us consider the technique of the proof in detail. The idea is that, as we have a good
estimate for the matrix elements of𝑈−1 and𝑈∗ −1, we should attempt to express our operator solely in
terms of these. The first step is therefore to decompose J as in (9.42). The error term 𝐽 = 𝐽 − 1

2 (𝑈 −𝑈∗)
cannot be simplified further in terms of U but by orthonormal expansion and Lemma 9.13, we can
nonetheless estimate it solely in terms of 𝑈 − 1, despite being unable to apply an operator inequality, as
we did for ‖ℎ− 1

2 𝐽‖HS, to ‘substitute’ 𝑈 − 1 for J directly. The utility of the estimate (9.46) is thus that it
allows us to replace the unknown error operator with factors of 𝑈 − 1, which we can estimate well. The
downside to this is that it simultanously ‘decouples’ the ℎ−

1
2 and ℎ

1
2 factors, which prevents us from

exploiting the cancellation between these.
This decoupling is also the reason why it is important that in (9.46) we distribute two factors of𝑈 −1

to ℎ−
1
2 rather than only one. One can by the same argument estimate that��ℎ− 1

2 𝐽ℎ
1
2
��

HS ≤ 𝐶
��(𝑈 − 1

)
ℎ−

1
2
��

HS

��(𝑈 − 1
)2
ℎ

1
2
��

HS

≤ 𝐶
(
1 +
〈
𝑣, ℎ−3𝑣

〉)3〈
𝑣, ℎ−

3
4 𝑣
〉2〈

𝑣, ℎ−
3
2 𝑣
〉
, (9.50)

but in Proposition A.3, we only have the good estimates
〈
𝑣𝑘 , ℎ

𝛼
𝑘 𝑣𝑘
〉
∼ 𝐶𝑘1+𝛼

𝐹 for 𝛼 > − 4
3 , which makes

(9.50) a worse estimate due to the
〈
𝑣, ℎ−

3
2 𝑣
〉

factor. There is therefore a limit to how low the exponent 𝛼
can be without affecting our estimates, and so it is advantageous to distribute the factors of 𝑈 − 1 such
that the overall minimal exponent is not too small.

Estimation of 𝑬(𝒕)
We now estimate max 𝑗 ‖ℎ−

1
2 𝐸 (𝑡)𝑥 𝑗 ‖ using the technique outlined above. First, we decompose

𝐸 (𝑡) = 𝑒𝑡 𝐽 𝑒−𝐾 ℎ𝑒−𝐾 𝑒−𝑡 𝐽 − ℎ = (𝑒𝑡 𝐽 ℎ𝑒−𝑡 𝐽 − ℎ) + 𝑒𝑡 𝐽 (𝑒−𝐾 ℎ𝑒−𝐾 − ℎ)𝑒−𝑡 𝐽 =: 𝐸1(𝑡) + 𝐸2 (𝑡) (9.51)
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and using the algebraic identity

𝐴𝐵𝐶 = 𝐵 + (𝐴 − 1) 𝐵 + 𝐵 (𝐶 − 1) + (𝐴 − 1) 𝐵 (𝐶 − 1) (9.52)

with 𝐴 = 𝑒𝑡 𝐽 , 𝐵 = ℎ and 𝐶 = 𝑒−𝑡 𝐽 further decompose 𝐸1 (𝑡) as

𝐸1 (𝑡) = 𝑒𝑡 𝐽 ℎ𝑒−𝑡 𝐽 − ℎ =
( (
𝑒𝑡 𝐽 − 1

)
ℎ + ℎ

(
𝑒−𝑡 𝐽 − 1

) )
+
(
𝑒𝑡 𝐽 − 1

)
ℎ
(
𝑒−𝑡 𝐽 − 1

)
=: 𝐸1,1 (𝑡) + 𝐸1,2 (𝑡). (9.53)

Defining 𝐸0 = 𝐸
(
0
)
= 𝑒−𝐾 ℎ𝑒−𝐾 − ℎ, we likewise decompose 𝐸2 (𝑡) according to

𝐸2 (𝑡) = 𝑒𝑡 𝐽𝐸0𝑒
−𝑡 𝐽 = 𝐸0 +

( (
𝑒𝑡 𝐽 − 1

)
𝐸0 + 𝐸0

(
𝑒−𝑡 𝐽 − 1

) )
+
(
𝑒𝑡 𝐽 − 1

)
𝐸0
(
𝑒−𝑡 𝐽 − 1

)
=: 𝐸0 + 𝐸2,1 (𝑡) + 𝐸2,2 (𝑡). (9.54)

The 𝐸1,1(𝑡), 𝐸1,2 (𝑡) and 𝐸2,1 (𝑡), 𝐸2,2 (𝑡) terms differ only in replacing the operator h by 𝐸0. We can
therefore estimate these terms similarly, provided we have an estimate on 𝐸0. This is given by the
following:

Proposition 9.15. For all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, it holds that11〈𝑥𝑖 , 𝐸0𝑥 𝑗
〉11 = 11〈𝑥𝑖 , (𝑒−𝐾 ℎ𝑒−𝐾 − ℎ

)
𝑥 𝑗
〉11 ≤ (1 +

〈
𝑣, ℎ−1𝑣

〉) 〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥 𝑗
〉
.

Consequently,

max
1≤ 𝑗≤𝑛

��ℎ− 1
2 𝐸0𝑥 𝑗

�� ≤ 𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)√〈
𝑣, ℎ−1𝑣

〉
,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉
.

Proof. Using the identity of equation (9.52) with 𝐴 = 𝑒−𝐾 = 𝐶 and 𝐵 = ℎ, we have that

𝑒−𝐾 ℎ𝑒−𝐾 − ℎ =
{
ℎ, 𝑒−𝐾 − 1

}
+
(
𝑒−𝐾 − 1

)
ℎ
(
𝑒−𝐾 − 1

)
. (9.55)

Hence,〈
𝑥𝑖 ,
(
𝑒−𝐾 ℎ𝑒−𝐾 − ℎ

)
𝑥 𝑗
〉
=
(
𝜆𝑖 + 𝜆 𝑗

) 〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉
+
〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
ℎ
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉
. (9.56)

We can apply Proposition 7.10 to estimate the first term of this equation as

11 (𝜆𝑖 + 𝜆 𝑗
) 〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉11 ≤ (𝜆𝑖 + 𝜆 𝑗

) 〈𝑥𝑖 , 𝑣〉〈𝑣, 𝑥 𝑗 〉
𝜆𝑖 + 𝜆 𝑗

=
〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥 𝑗
〉

(9.57)

and the second term as11〈𝑥𝑖 , (𝑒−𝐾 − 1
)
ℎ
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉11 = 11 𝑛∑

𝑘=1
𝜆𝑘
〈
𝑥𝑖 ,
(
𝑒−𝐾 − 1

)
𝑥𝑘
〉〈
𝑥𝑘 ,
(
𝑒−𝐾 − 1

)
𝑥 𝑗
〉11

≤
𝑛∑
𝑘=1

𝜆𝑘

〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥𝑘

〉
𝜆𝑖 + 𝜆𝑘

〈
𝑥𝑘 , 𝑣

〉〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

≤
〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥 𝑗
〉 𝑛∑
𝑘=1

11〈𝑥𝑘 , 𝑣〉112
𝜆𝑘

=
〈
𝑣, ℎ−1𝑣

〉〈
𝑥𝑖 , 𝑣
〉〈
𝑣, 𝑥 𝑗
〉
, (9.58)
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which implies the first claim. Consequently,���ℎ− 1
2 𝐸0𝑥 𝑗

���2 =
𝑛∑
𝑖=1

111〈𝑥𝑖 , ℎ− 1
2

(
𝑒−𝐾 ℎ𝑒−𝐾 − ℎ

)
𝑥 𝑗

〉1112 =
𝑛∑
𝑖=1

1
𝜆𝑖

111〈𝑥𝑖 , (𝑒−𝐾 ℎ𝑒−𝐾 − ℎ
)
𝑥 𝑗

〉1112
≤
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖=1

1
𝜆𝑖

11〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥 𝑗 〉112 ≤ 𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−1𝑣

〉
. (9.59)

�

Now it remains to consider the operators 𝑒𝑡 𝐽 − 1 and 𝑒−𝑡 𝐽 − 1 =
(
𝑒𝑡 𝐽 − 1

)∗. To implement the above
estimation technique, from the following analogue of Lemma 9.13,1111 (𝑒𝑖𝑡 𝜃 − 1

)
− 𝑡
(
𝑒𝑖 𝜃 − 1

)
+ 𝑡 (1 − 𝑡)

2
(
𝑒𝑖 𝜃 + 𝑒−𝑖 𝜃 − 2

) 1111 ≤ 𝐶
11𝑒𝑖 𝜃 − 1

113 , 𝑡 ∈ [0, 1] , 𝜃 ∈ [−𝜋, 𝜋] , (9.60)

we are motivated in approximating 𝑒𝑡 𝐽 − 1 by

𝐹𝑡 = 𝑡 (𝑈 − 1) − 𝑡 (1 − 𝑡)
2

(𝑈 +𝑈∗ − 2) , 𝑡 ∈ [0, 1] , (9.61)

with the error term being cubic with respect to 𝑈 − 1. We then have the following bounds for 𝐹𝑡 and the
associated error terms:

Proposition 9.16. For any 𝑇 : 𝑉 → 𝑉 , 𝑥 ∈ 𝑉 , 𝑚 ∈ {1, 2} and 𝑡 ∈ [0, 1], it holds that��𝑇 (𝑒𝑡 𝐽 − 1 − 𝐹𝑡
)
𝑥
�� , ��𝑇 (𝑒−𝑡 𝐽 − 1 − 𝐹∗

𝑡

)
𝑥
�� ≤ 𝐶

��𝑇 (𝑈 − 1
)𝑚��

HS

���(𝑈 − 1
)3−𝑚

𝑥
���

and for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑡 ∈ [0, 1],11〈𝑥𝑖 , 𝐹𝑡𝑥 𝑗 〉11 , 11〈𝑥𝑖 , 𝐹∗
𝑡 𝑥 𝑗
〉11 ≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉 ) 〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥 𝑗 〉
𝜆𝑖 + 𝜆 𝑗

for a constant 𝐶 > 0 independent of all quantities.

Proof. Recall that (𝑤 𝑗 )𝑛𝑗=1 is an orthonormal eigenbasis of J, namely, 𝑒𝑡 𝐽𝑤 𝑗 = 𝑒𝑖𝑡 𝜃 𝑗𝑤 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛.
Using (9.60) and the Cauchy-Schwarz inequality, we have that���𝑇 (𝑒𝑡 𝐽 − 1 − 𝐹𝑡

)
𝑥
���2 =

𝑛∑
𝑗=1

111〈𝑤 𝑗 , 𝑇
(
𝑒𝑡 𝐽 − 1 − 𝐹𝑡

)
𝑥
〉1112

=
𝑛∑
𝑗=1

11111 𝑛∑
𝑘=1

((
𝑒𝑖𝑡 𝜃𝑘 − 1

)
− 𝑡
(
𝑒𝑖 𝜃𝑘 − 1

)
+ 𝑡 (1 − 𝑡)

2

(
𝑒𝑖 𝜃𝑘 + 𝑒−𝑖 𝜃𝑘 − 2

)) 〈
𝑤 𝑗 , 𝑇𝑤𝑘

〉
〈𝑤𝑘 , 𝑥〉

111112
≤ 𝐶

𝑛∑
𝑗=1

(
𝑛∑
𝑘=1

11𝑒𝑖 𝜃𝑘 − 1
113 11〈𝑤 𝑗 , 𝑇𝑤𝑘

〉11 |〈𝑤𝑘 , 𝑥〉|)2
≤ 𝐶

𝑛∑
𝑗=1

(
𝑛∑
𝑘=1

11𝑒𝑖 𝜃𝑘 − 1
112𝑚 11〈𝑤 𝑗 , 𝑇𝑤𝑘

〉112) ( 𝑛∑
𝑘=1

11𝑒𝑖 𝜃𝑘 − 1
112(3−𝑚) |〈𝑤𝑘 , 𝑥〉|2

)

= 𝐶
!"#

𝑛∑
𝑗 ,𝑘=1

11〈𝑤 𝑗 , 𝑇 (𝑈 − 1)𝑚 𝑤𝑘
〉112$%&
(
𝑛∑
𝑘=1

111〈(𝑈∗ − 1)3−𝑚 𝑤𝑘 , 𝑥
〉1112)

= 𝐶 ‖𝑇 (𝑈 − 1)𝑚‖2
HS
��(𝑈 − 1)3−𝑚 𝑥

��2 , (9.62)
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the same estimate holding also for
��𝑇 (𝑒−𝑡 𝐽 − 1 − 𝐹∗

𝑡

)
𝑥
��. For the matrix element estimate of 𝐹𝑡 , we

have by Proposition 9.10 that

11〈𝑥𝑖 , 𝐹𝑡𝑥 𝑗 〉11 = 1111〈𝑥𝑖 , ( 𝑡 (1 + 𝑡)
2

(𝑈 − 1) − 𝑡 (1 − 𝑡)
2

(𝑈∗ − 1)
)
𝑥 𝑗

〉1111
≤ 𝑡 (1 + 𝑡)

2
11〈𝑥𝑖 , (𝑈 − 1) 𝑥 𝑗

〉11 + 𝑡 (1 − 𝑡)
2

11〈𝑥𝑖 , (𝑈∗ − 1) 𝑥 𝑗
〉11

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉) 〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥 𝑗 〉
𝜆𝑖 + 𝜆 𝑗

(9.63)

as we only consider 𝑡 ∈ [0, 1], and likewise for
11〈𝑥𝑖 , 𝐹∗

𝑡 𝑥 𝑗
〉11. �

Estimation of 𝑬1(𝒕)
We are now ready to estimate 𝐸1 (𝑡) = 𝐸1,1 (𝑡)+𝐸1,2(𝑡), starting with 𝐸1,1(𝑡) =

(
𝑒𝑡 𝐽 − 1

)
ℎ+ℎ

(
𝑒−𝑡 𝐽 − 1

)
.

Recall that (𝑥𝑖)𝑖 are an eigenbasis of h with 〈𝑥𝑖 , 𝑣〉 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛.

Proposition 9.17. For all 𝑡 ∈ [0, 1], it holds that

max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝐸1,1 (𝑡)𝑥 𝑗

��� ≤ 𝐶𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉) √〈
𝑣, ℎ−1𝑣

〉
+ 𝐶𝛼

(
1 +
〈
𝑣, ℎ−1𝑣

〉)3 (
‖𝑣‖
〈
𝑣, ℎ−

5
4 ℎ
〉2

+
〈
𝑣, ℎ−

1
2 𝑣
〉 〈

𝑣, ℎ−
4
3 𝑣
〉 3

2
)
,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉

and 𝐶 > 0 is a constant independent of all quantities.

Proof. We write

𝐸1,1 (𝑡) = 𝐹𝑡ℎ + ℎ𝐹∗
𝑡 + (𝑒𝑡 𝐽 − 1 − 𝐹𝑡 )ℎ + ℎ(𝑒−𝑡 𝐽 − 1 − 𝐹∗

𝑡 ) (9.64)

so that for any 1 ≤ 𝑗 ≤ 𝑛, we can estimate by Proposition 9.16���ℎ− 1
2 𝐸1,1 (𝑡)𝑥 𝑗

��� ≤ ���ℎ− 1
2 𝐹𝑡ℎ𝑥 𝑗

��� + ���ℎ 1
2 𝐹∗
𝑡 𝑥 𝑗

��� + 𝐶
���ℎ− 1

2 (𝑈 − 1)2
���

HS

��(𝑈 − 1) ℎ𝑥 𝑗
��

+ 𝐶
���ℎ 1

2 (𝑈 − 1)
���

HS

��(𝑈 − 1)2 𝑥 𝑗
�� . (9.65)

We consider each term above for the following. By Proposition 9.16, we see that independently of
1 ≤ 𝑗 ≤ 𝑛,

���ℎ− 1
2 𝐹𝑡ℎ𝑥 𝑗

���2 =
𝑛∑
𝑖=1

𝜆2
𝑗

𝜆𝑖

11〈𝑥𝑖 , 𝐹𝑡𝑥 𝑗 〉112 ≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖=1

𝜆2
𝑗

𝜆𝑖

11111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

111112
≤ 𝐶
11〈𝑣, 𝑥 𝑗 〉112 (1 +

〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖
≤ 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−1𝑣

〉
,

���ℎ 1
2 𝐹∗
𝑡 𝑥 𝑗

���2 =
𝑛∑
𝑖=1

𝜆𝑖
11〈𝑥𝑖 , 𝐹∗

𝑡 𝑥 𝑗
〉112 ≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖=1

𝜆𝑖

11111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

111112
≤ 𝐶
11〈𝑣, 𝑥 𝑗 〉112 (1 +

〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖
≤ 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−1𝑣

〉
. (9.66)
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For the remaining terms of equation (9.65), we recall that we already estimated
��ℎ− 1

2
(
𝑈 − 1

)2��
HS and��ℎ 1

2
(
𝑈 − 1

)��
HS in the equations (9.47) and (9.48) to be���ℎ 1

2 (𝑈 − 1)
���

HS
=
���(𝑈 − 1) ℎ

1
2

���
HS

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉) 〈
𝑣, ℎ−

1
2 𝑣
〉
, (9.67)���ℎ− 1

2 (𝑈 − 1)2
���

HS
=
���(𝑈 − 1)2 ℎ−

1
2

���
HS

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−

5
4 𝑣
〉2

,

the equalities holding by normality of U. The only unknown quantities are thus
��(𝑈 − 1) ℎ𝑥 𝑗

�� and��(𝑈 − 1)2 𝑥 𝑗
��, which we estimate using Proposition 9.10 as

��(𝑈 − 1) ℎ𝑥 𝑗
��2 =

𝑛∑
𝑖=1

𝜆2
𝑗

11〈𝑥𝑖 , (𝑈 − 1) 𝑥 𝑗
〉112 ≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖=1

𝜆2
𝑗

11111 〈𝑥𝑖 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑖 + 𝜆 𝑗

111112
≤ 𝐶
11〈𝑣, 𝑥 𝑗 〉112 (1 +

〈
𝑣, ℎ−1𝑣

〉)2 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2 ≤ 𝐶𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2
‖𝑣‖2 , (9.68)

��(𝑈 − 1)2 𝑥 𝑗
��2 =

𝑛∑
𝑖=1

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , (𝑈 − 1) 𝑥𝑘〉
〈
𝑥𝑘 , (𝑈 − 1) 𝑥 𝑗

〉111112
≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

111112
≤ 𝐶
11〈𝑣, 𝑥 𝑗 〉112 (1 +

〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2
!"#
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆
2
3
𝑖 𝜆

4
3
𝑘

$%&
2

≤ 𝐶𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−

4
3 𝑣
〉3

. (9.69)

Thus, ��ℎ− 1
2
(
𝑈 − 1

)2��
HS

��(𝑈 − 1
)
ℎ𝑥 𝑗
�� ≤ 𝐶𝛼

(
1 +
〈
𝑣, ℎ−1𝑣

〉)3��𝑣��〈𝑣, ℎ− 5
4 ℎ
〉2��ℎ 1

2
(
𝑈 − 1

)��
HS

��(𝑈 − 1
)2
𝑥 𝑗
�� ≤ 𝐶𝛼

(
1 +
〈
𝑣, ℎ−1𝑣

〉)3〈
𝑣, ℎ−

1
2 𝑣
〉〈
𝑣, ℎ−

4
3 𝑣
〉 3

2 , (9.70)

which, upon combination with the estimates of equation (9.66), imply the claim. �

Proposition 9.18. For all 𝑡 ∈
[
0, 1
]
, it holds that

(𝐶𝛼)−1 max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝐸1,2 (𝑡)𝑥 𝑗

���
≤
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−1𝑣

〉 3
2 +
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 〈
𝑣, ℎ−

1
2 𝑣
〉2 〈

𝑣, ℎ−
5
4 ℎ
〉2 〈

𝑣, ℎ−
4
3 𝑣
〉 3

2

+
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 (√〈
𝑣, ℎ−1𝑣

〉 〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
〈
𝑣, ℎ−

4
3 𝑣
〉 3

2 +
〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
〈
𝑣, ℎ−

5
4 𝑣
〉2)

,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉

and 𝐶 > 0 is a constant independent of all quantities.

Proof. We write 𝐸1,2 (𝑡) =
(
𝑒𝑡 𝐽 − 1

)
ℎ
(
𝑒−𝑡 𝐽 − 1

)
as

𝐸1,2 (𝑡) = 𝐹𝑡ℎ𝐹
∗
𝑡 + 𝐹𝑡ℎ

(
𝑒−𝑡 𝐽 − 1 − 𝐹∗

𝑡

)
+
(
𝑒𝑡 𝐽 − 1 − 𝐹𝑡

)
ℎ𝐹∗

𝑡 +
(
𝑒𝑡 𝐽 − 1 − 𝐹𝑡

)
ℎ
(
𝑒−𝑡 𝐽 − 1 − 𝐹∗

𝑡

)
(9.71)
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and see by Proposition 9.16 that���ℎ− 1
2 𝐸1,2 (𝑡)𝑥 𝑗

��� ≤ ���ℎ− 1
2 𝐹𝑡ℎ𝐹

∗
𝑡 𝑥 𝑗

��� + 𝐶
���ℎ− 1

2 𝐹𝑡ℎ (𝑈 − 1)
���

HS

��(𝑈 − 1)2 𝑥 𝑗
��

+ 𝐶
���ℎ− 1

2 (𝑈 − 1)2
���

HS

��(𝑈 − 1) ℎ𝐹∗
𝑡 𝑥 𝑗
�� (9.72)

+ 𝐶
���ℎ− 1

2 (𝑈 − 1)2
���

HS
‖(𝑈 − 1) ℎ (𝑈 − 1)‖HS

��(𝑈 − 1)2 𝑥 𝑗
�� .

We estimate by Propositions 9.10 and 9.16 that

���ℎ− 1
2 𝐹𝑡ℎ𝐹

∗
𝑡 𝑥 𝑗

���2 ≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

𝜆𝑘
〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉

𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

111112
≤ 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

(
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆𝑘

)2
= 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−1𝑣

〉3
,

(9.73)

and

���ℎ− 1
2 𝐹𝑡ℎ (𝑈 − 1)

���2
HS

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖, 𝑗=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

𝜆𝑘
〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉

𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

111112

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖, 𝑗=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

11〈𝑥 𝑗 , 𝑣〉112 !""#
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆
2
3
𝑘𝜆

1
3
𝑗

$%%&
2

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−1𝑣

〉 〈
𝑣, ℎ−

2
3 𝑣
〉3

, (9.74)

and

��(𝑈 − 1) ℎ𝐹∗
𝑡 𝑥 𝑗
��2 ≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

11111 𝑛∑
𝑘=1

𝜆𝑘
〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉

𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

111112
≤ 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2
!"#
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆
1
3
𝑖 𝜆

2
3
𝑘

$%&
2

= 𝐶𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−

2
3 𝑣
〉3

, (9.75)

and

‖(𝑈 − 1) ℎ (𝑈 − 1)‖2
HS ≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖, 𝑗=1

11111 𝑛∑
𝑘=1

𝜆𝑘
〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉

𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

111112

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖, 𝑗=1

|〈𝑥𝑖 , 𝑣〉|2
11〈𝑥 𝑗 , 𝑣〉112 !""#

𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆
1
4
𝑖 𝜆

1
4
𝑗 𝜆

1
2
𝑘

$%%&
2

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−

1
2 𝑣
〉4

. (9.76)
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Combining these with the estimates of the equations (9.67) and (9.69) yields

���ℎ− 1
2 𝐹𝑡ℎ (𝑈 − 1)

���
HS

��(𝑈 − 1)2 𝑥 𝑗
�� ≤ 𝐶𝛼

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4√〈
𝑣, ℎ−1𝑣

〉 〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
〈
𝑣, ℎ−

4
3 𝑣
〉 3

2
,���ℎ− 1

2 (𝑈 − 1)2
���

HS

��(𝑈 − 1) ℎ𝐹∗
𝑡 𝑥 𝑗
�� ≤ 𝐶𝛼

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
〈
𝑣, ℎ−

5
4 𝑣
〉2

(9.77)

and ���ℎ− 1
2 (𝑈 − 1)2

���
HS

‖(𝑈 − 1) ℎ (𝑈 − 1)‖HS
��(𝑈 − 1)2 𝑥 𝑗

��
≤ 𝐶𝛼

(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 〈
𝑣, ℎ−

1
2 𝑣
〉2 〈

𝑣, ℎ−
5
4 𝑣
〉2 〈

𝑣, ℎ−
4
3 𝑣
〉 3

2
, (9.78)

which imply the claim. �

Estimation of 𝑬2(𝒕)
We now repeat the same steps for 𝐸2(𝑡) = 𝐸0 + 𝐸2,1 (𝑡) + 𝐸2,2(𝑡) where

𝐸2,1 (𝑡) = 𝐹𝑡𝐸0 + 𝐸0𝐹
∗
𝑡 +
(
𝑒𝑡 𝐽 − 1 − 𝐹𝑡

)
𝐸0 + 𝐸0

(
𝑒−𝑡 𝐽 − 1 − 𝐹∗

𝑡

)
. (9.79)

Proposition 9.19. For all 𝑡 ∈ [0, 1], it holds that

max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝐸2,1 (𝑡)𝑥

��� ≤ 𝐶𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−1𝑣

〉 3
2

+ 𝐶𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
〈
𝑣, ℎ−

5
4 𝑣
〉2

+ 𝐶𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4√〈
𝑣, ℎ−1𝑣

〉 〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
〈
𝑣, ℎ−

4
3 𝑣
〉 3

2
,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉

and 𝐶 > 0 is a constant independent of all quantities.

Proof. By Proposition 9.16, we can estimate that���ℎ− 1
2 𝐸2,1(𝑡)𝑥 𝑗

��� ≤ ���ℎ− 1
2 𝐹𝑡𝐸0𝑥 𝑗

��� + ���ℎ− 1
2 𝐸0𝐹

∗
𝑡 𝑥 𝑗

��� + 𝐶
���ℎ− 1

2 (𝑈 − 1)2
���

HS

��(𝑈 − 1) 𝐸0𝑥 𝑗
��

+ 𝐶
���ℎ− 1

2 𝐸0 (𝑈 − 1)
���

HS

��(𝑈 − 1)2 𝑥 𝑗
�� . (9.80)

Then let us consider each term separately. By the Propositions 9.10, 9.15, 9.16, we have that

���ℎ− 1
2 𝐹𝑡𝐸0𝑥 𝑗

���2 ≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉111112

≤ 𝐶𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

(
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆𝑘

)2
= 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−1𝑣

〉3
, (9.81)
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and ���ℎ− 1
2 𝐸0𝐹𝑡𝑥 𝑗

���2 ≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
〈𝑥𝑘 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

111112
≤ 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

(
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆𝑘

)2
= 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−1𝑣

〉3
,

(9.82)

and

��(𝑈 − 1) 𝐸0𝑥 𝑗
��2 ≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉
〈
𝑣, 𝑥 𝑗
〉111112

≤ 𝐶𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2
!"#
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆
1
3
𝑖 𝜆

2
3
𝑘

$%&
2

= 𝐶𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−

2
3 𝑣
〉3

, (9.83)

and ���ℎ− 1
2 𝐸0 (𝑈 − 1)

���2
HS

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖, 𝑗=1

1
𝜆𝑖

11111 𝑛∑
𝑘=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
〈𝑥𝑘 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑘 + 𝜆 𝑗

111112

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 𝑛∑
𝑖, 𝑗=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

11〈𝑥 𝑗 , 𝑣〉112 !""#
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆
2
3
𝑘𝜆

1
3
𝑗

$%%&
2

= 𝐶 (1 + 〈𝑣, ℎ−1𝑣〉)4〈𝑣, ℎ−1𝑣〉〈𝑣, ℎ−
2
3 𝑣〉3. (9.84)

Combining these with our prior estimates that��ℎ− 1
2
(
𝑈 − 1

)2��
HS ≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)2〈
𝑣, ℎ−

5
4 𝑣
〉2
,��(𝑈 − 1

)2
𝑥 𝑗
��

HS ≤ 𝐶𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2〈
𝑣, ℎ−

4
3 𝑣
〉 3

2 , (9.85)

we obtain the claim. �

Proposition 9.20. For all 𝑡 ∈
[
0, 1
]
, it holds that(

𝐶𝛼
)−1 max

1≤ 𝑗≤𝑛

��ℎ− 1
2 𝐸2,2 (𝑡)𝑥 𝑗

��
≤
(
1 +
〈
𝑣, ℎ−1𝑣

〉)3〈
𝑣, ℎ−1𝑣

〉 5
2 +
(
1 +
〈
𝑣, ℎ−1𝑣

〉)7〈
𝑣, ℎ−

2
3
〉3〈

𝑣, ℎ−
5
4 𝑣
〉2〈

𝑣, ℎ−
4
3 𝑣
〉 3

2

+
(
1 +
〈
𝑣, ℎ−1𝑣

〉)5〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
(〈
𝑣, ℎ−1𝑣

〉 3
2
〈
𝑣, ℎ−

4
3 𝑣
〉 3

2 +
〈
𝑣, ℎ−1𝑣

〉〈
𝑣, ℎ−

5
4 𝑣
〉2)

,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉

and 𝐶 > 0 is a constant independent of all quantities.

Proof. We decompose 𝐸2,2 (𝑡) =
(
𝑒𝑡 𝐽 − 1

)
𝐸0
(
𝑒−𝑡 𝐽 − 1

)
as

𝐹𝑡𝐸0𝐹
∗
𝑡 + 𝐹𝑡𝐸0

(
𝑒−𝑡 𝐽 − 1 − 𝐹∗

𝑡

)
+
(
𝑒𝑡 𝐽 − 1 − 𝐹𝑡

)
𝐸0𝐹

∗
𝑡 +
(
𝑒𝑡 𝐽 − 1 − 𝐹𝑡

)
𝐸0
(
𝑒−𝑡 𝐽 − 1 − 𝐹∗

𝑡

)
(9.86)
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and estimate by Proposition 9.16 that

���ℎ− 1
2 𝐸2,2 (𝑡)𝑥 𝑗

��� ≤ ���ℎ− 1
2 𝐹𝑡𝐸0𝐹

∗
𝑡 𝑥 𝑗

��� + 𝐶
���ℎ− 1

2 𝐹𝑡𝐸0 (𝑈 − 1)
���

HS

��(𝑈 − 1)2 𝑥 𝑗
��

+ 𝐶
���ℎ− 1

2 (𝑈 − 1)2
���

HS

��(𝑈 − 1) 𝐸0𝐹
∗
𝑡 𝑥 𝑗
��

+ 𝐶
���ℎ− 1

2 (𝑈 − 1)2
���

HS
‖(𝑈 − 1) 𝐸0 (𝑈 − 1)‖HS

��(𝑈 − 1)2 𝑥 𝑗
�� . (9.87)

We estimate as in the previous proposition that

���ℎ− 1
2 𝐹𝑡𝐸0𝐹

∗
𝑡 𝑥 𝑗

���2
≤ 𝐶

(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 𝑛∑
𝑖=1

1
𝜆𝑖

11111 𝑛∑
𝑘,𝑙=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉 〈𝑣, 𝑥𝑙〉
〈𝑥𝑙 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑙 + 𝜆 𝑗

111112
≤ 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

(
𝑛∑
𝑘=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆𝑘

|〈𝑥𝑙 , 𝑣〉|2

𝜆𝑙

)2
= 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 〈
𝑣, ℎ−1𝑣

〉5
, (9.88)

and

���ℎ− 1
2 𝐹𝑡𝐸0 (𝑈 − 1)

���2
HS

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 𝑛∑
𝑖, 𝑗=1

1
𝜆𝑖

11111 𝑛∑
𝑘,𝑙=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉 〈𝑣, 𝑥𝑙〉
〈𝑥𝑙 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑙 + 𝜆 𝑗

111112

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 𝑛∑
𝑖, 𝑗=1

|〈𝑥𝑖 , 𝑣〉|2

𝜆𝑖

11〈𝑥 𝑗 , 𝑣〉112 !""#
𝑛∑

𝑘,𝑙=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆𝑘

|〈𝑥𝑙 , 𝑣〉|2

𝜆
2
3
𝑙 𝜆

1
3
𝑗

$%%&
2

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 〈
𝑣, ℎ−1𝑣

〉3 〈
𝑣, ℎ−

2
3 𝑣
〉3

, (9.89)

and

��(𝑈 − 1) 𝐸0𝐹
∗
𝑡 𝑥 𝑗
��2

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 𝑛∑
𝑖=1

11111 𝑛∑
𝑘,𝑙=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉 〈𝑣, 𝑥𝑙〉
〈𝑥𝑙 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑙 + 𝜆 𝑗

111112
≤ 𝐶𝛼2

(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 𝑛∑
𝑖=1

|〈𝑥𝑖 , 𝑣〉|2
!"#

𝑛∑
𝑘,𝑙=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆
1
3
𝑖 𝜆

2
3
𝑘

|〈𝑥𝑙 , 𝑣〉|2

𝜆𝑙

$%&
2

= 𝐶𝛼2
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 〈
𝑣, ℎ−1𝑣

〉2 〈
𝑣, ℎ−

2
3 𝑣
〉3

, (9.90)
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and finally that

‖(𝑈 − 1) 𝐸0 (𝑈 − 1)‖2
HS

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 𝑛∑
𝑖, 𝑗=1

11111 𝑛∑
𝑘,𝑙=1

〈𝑥𝑖 , 𝑣〉 〈𝑣, 𝑥𝑘〉
𝜆𝑖 + 𝜆𝑘

〈𝑥𝑘 , 𝑣〉 〈𝑣, 𝑥𝑙〉
〈𝑥𝑙 , 𝑣〉

〈
𝑣, 𝑥 𝑗
〉

𝜆𝑙 + 𝜆 𝑗

111112

≤ 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 𝑛∑
𝑖, 𝑗=1

|〈𝑥𝑖 , 𝑣〉|2
11〈𝑥 𝑗 , 𝑣〉112

111111 𝑛∑𝑘,𝑙=1

|〈𝑥𝑘 , 𝑣〉|2

𝜆
1
3
𝑖 𝜆

2
3
𝑘

|〈𝑥𝑙 , 𝑣〉|2

𝜆
2
3
𝑙 𝜆

1
3
𝑗

111111
2

= 𝐶
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 〈
𝑣, ℎ−

2
3

〉6
. (9.91)

Combining these bounds with equation (9.85) yields the claim. �

Combining the estimates from Proposition 9.17 through 9.20 and the last bound of Proposition 9.15,
we obtain

(𝐶𝛼)−1 max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝐸 (𝑡)𝑥 𝑗

���
≤
(
1 +
〈
𝑣, ℎ−1𝑣

〉) √〈
𝑣, ℎ−1𝑣

〉
+
(
1 +
〈
𝑣, ℎ−1𝑣

〉)2 〈
𝑣, ℎ−1𝑣

〉 3
2

+
(
1 +
〈
𝑣, ℎ−1𝑣

〉)3 (〈
𝑣, ℎ−1𝑣

〉 5
2 + ‖𝑣‖

〈
𝑣, ℎ−

5
4 𝑣
〉2

+
〈
𝑣, ℎ−

1
2 𝑣
〉 〈

𝑣, ℎ−
4
3 𝑣
〉 3

2
)

+
(
1 +
〈
𝑣, ℎ−1𝑣

〉)4 〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
(√〈

𝑣, ℎ−1𝑣
〉 〈

𝑣, ℎ−
4
3 𝑣
〉 3

2 +
〈
𝑣, ℎ−

5
4 𝑣
〉2)

+
(
1 +
〈
𝑣, ℎ−1𝑣

〉)5 〈
𝑣, ℎ−

2
3 𝑣
〉 3

2
(〈
𝑣, ℎ−1𝑣

〉 3
2
〈
𝑣, ℎ−

4
3 𝑣
〉 3

2 +
〈
𝑣, ℎ−1𝑣

〉 〈
𝑣, ℎ−

5
4 𝑣
〉2)

+
(
1 +
〈
𝑣, ℎ−1𝑣

〉)6 〈
𝑣, ℎ−

1
2 𝑣
〉2 〈

𝑣, ℎ−
5
4 𝑣
〉2 〈

𝑣, ℎ−
4
3 𝑣
〉 3

2

+
(
1 +
〈
𝑣, ℎ−1𝑣

〉)7 〈
𝑣, ℎ−

2
3 𝑣
〉3 〈

𝑣, ℎ−
5
4 𝑣
〉2 〈

𝑣, ℎ−
4
3 𝑣
〉 3

2
. (9.92)

The right hand can be simplified further using the Hölder estimates〈
𝑣, ℎ−

1
2 𝑣
〉
≤ ‖𝑣‖

〈
𝑣, ℎ−1𝑣

〉 1
2 ,

〈
𝑣, ℎ−

2
3 𝑣
〉 3

2 ≤ ‖𝑣‖
〈
𝑣, ℎ−1𝑣

〉
. (9.93)

All this gives the following:

Proposition 9.21. For all 𝑡 ∈ [0, 1], it holds that

max
1≤ 𝑗≤𝑛

���ℎ− 1
2 𝐸 (𝑡)𝑥 𝑗

��� ≤ 𝐶𝛼
(
1 +
〈
𝑣, ℎ−1𝑣

〉)8 (
〈𝑣, ℎ−1𝑣〉

1
2 + ‖𝑣‖〈𝑣, ℎ−

5
4 𝑣〉2
) (

1 + ‖𝑣‖〈𝑣, ℎ−
4
3 𝑣〉

3
2

)
,

where 𝛼 = max1≤ 𝑗≤𝑛
〈
𝑣, 𝑥 𝑗
〉

and 𝐶 > 0 is a constant independent of all quantities.

Conclusion of Proposition 9.6: Inserting ℎ𝑘 and 𝑣𝑘 in Proposition 9.7 and (7.11), we have imme-
diately

tr
111ℎ−1/2
𝑘 (𝐸𝑘 − ℎ𝑘 )ℎ−1/2

𝑘

111 ≤ 〈𝑣𝑘 , ℎ−1
𝑘 𝑣𝑘〉 ≤ 𝐶𝑉̂𝑘 . (9.94)
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Next, consider the corresponding expressions on the right-hand side of Proposition 9.21. Recall that
𝛼𝑘 = max𝑝∈𝐿𝑘

〈
𝑣𝑘 , 𝑒𝑝

〉
≤ 𝐶 (𝑉̂𝑘 )

1
2 𝑘

− 1
2

𝐹 . Moreover, by Propositions A.1, A.2 and A.3, we get〈
𝑣𝑘 , ℎ

𝛽
𝑘 𝑣𝑘

〉
≤ 𝐶𝑉̂𝑘 𝑘

−1
𝐹

∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 𝐶𝑉̂𝑘 (|𝑘 |𝑘𝐹 )1+𝛽 , 0 ≥ 𝛽 ≥ −5

4
,

〈
𝑣𝑘 , ℎ

𝛽
𝑘 𝑣𝑘

〉 3
2 ≤ 𝐶 (𝑉̂𝑘 )

3
2 (|𝑘 |𝑘𝐹 )−

1
2 |𝑘 |6 log (𝑘𝐹 ) , 𝛽 ≤ −4

3
. (9.95)

Putting these bounds together, we deduce from Proposition 9.21 that

max
𝑝∈𝐿𝑘

����ℎ− 1
2
𝑘 𝐸𝑘 (𝑡)𝑒𝑝

���� ≤ 𝐶 (𝑉̂𝑘 )
1
2 𝑘

− 1
2

𝐹

(
1 + 𝑉̂𝑘

)8 ((𝑉̂𝑘 ) 1
2 + (𝑉̂𝑘 )

5
2

) (
1 + 𝑉̂2

𝑘 |𝑘 |
6 log 𝑘𝐹

)
≤ 𝐶𝑘

− 1
2

𝐹

(
𝑉̂𝑘 + 𝑉̂3

𝑘 |𝑘 |
6 log (𝑘𝐹 )

)
(9.96)

for |𝑘 | ≤ 𝑘
𝛾
𝐹 , as claimed. Similarly, inserting (9.95) in Corollary 9.12 and Proposition 9.14, we see that���ℎ− 1

2 𝐽
���

HS
≤ 𝐶

(
1 +
〈
𝑣𝑘 , ℎ

−1
𝑘 𝑣𝑘
〉) 〈

𝑣𝑘 , ℎ
− 3

2
𝑘 𝑣𝑘

〉
≤ 𝐶 (log 𝑘𝐹 )

2
3 𝑘

− 1
3

𝐹 𝑉̂𝑘
(
1 + 𝑉̂𝑘

)
|𝑘 |3+

2
3 ,���ℎ− 1

2 [𝐽, ℎ] ℎ−
1
2

���
HS

≤ 𝐶
(
1 +
〈
𝑣𝑘 , ℎ

−1
𝑘 𝑣𝑘
〉)3 (〈

𝑣𝑘 , ℎ
−1
𝑘 𝑣𝑘
〉
+
〈
𝑣𝑘 , ℎ

− 1
2
𝑘 𝑣𝑘

〉 〈
𝑣𝑘 , ℎ

− 5
4
𝑘 𝑣𝑘

〉2
)

≤ 𝐶
(
1 + 𝑉̂𝑘

)3 (
𝑉̂𝑘 + 𝑉̂𝑘 (|𝑘 |𝑘𝐹 )

1
2

(
𝑉̂𝑘 (|𝑘 |𝑘𝐹 )−

1
4

)2)
≤ 𝐶𝑉̂𝑘 . (9.97)

Here, we also note that 𝑉̂𝑘 is uniformly bounded, and hence, the constant C may depend on V, but it is
still independent of k and 𝑘𝐹 .

9.4. Gronwall estimates for the kinetic operator

We now come to the kinetic Gronwall estimates for the transformation 𝑒J . We have the following:

Proposition 9.22. Assume
∑
𝑘∈Z3 𝑉̂𝑘 |𝑘 | < ∞ and 𝑆𝐶 = Z3

+ ∩ 𝐵
(
0, 𝑘𝛾𝐹

)
with 0 < 𝛾 < 1

47 . Then for all
Ψ ∈ 𝐷

(
𝐻 ′

kin
)

and |𝑡 | ≤ 1, it holds that〈
𝑒𝑡JΨ, 𝐻 ′

kin𝑒
𝑡JΨ
〉
≤ 𝐶
〈
Ψ, 𝐻 ′

kinΨ
〉〈

𝑒𝑡JΨ,N𝐸𝐻
′
kin𝑒

𝑡JΨ
〉
≤ 𝐶
〈
Ψ,N𝐸𝐻

′
kinΨ
〉

for a constant 𝐶 > 0 independent of 𝑘𝐹 .

Proof. Write Ψ𝑡 = 𝑒𝑡JΨ for brevity. By the commutator in (9.15), we have

− 𝑑

𝑑𝑡

〈
Ψ𝑡 , 𝐻

′
kinΨ𝑡

〉
=
〈
Ψ𝑡 ,
[
J , 𝐻 ′

kin
]
Ψ𝑡
〉
= 2
∑
𝑘∈𝑆𝐶

〈
Ψ𝑡 , 𝑄̃

𝑘
1
( [
𝐽⊕𝑘 , ℎ

⊕
𝑘

] )
Ψ𝑡
〉

(9.98)

with 𝑄̃𝑘1 defined in (4.35). Moreover, Proposition 4.8 allows us to estimate∑
𝑘∈𝑆𝐶

11〈Ψ𝑡 , 𝑄̃𝑘1 ( [𝐽⊕𝑘 , ℎ⊕
𝑘

] )
Ψ𝑡
〉11 ≤ ∑

𝑘∈𝑆𝐶

���(ℎ⊕
𝑘

)− 1
2
[
𝐽⊕𝑘 , ℎ

⊕
𝑘

] (
ℎ⊕
𝑘

)− 1
2
���

Op

〈
Ψ𝑡 , 𝐻

′
kinΨ𝑡

〉
. (9.99)
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Since

(
ℎ⊕
𝑘

)− 1
2
[
𝐽⊕𝑘 , ℎ

⊕
𝑘

] (
ℎ⊕
𝑘

)− 1
2 =

(
ℎ
− 1

2
𝑘

[𝐽𝑘 , ℎ𝑘 ] ℎ
− 1

2
𝑘 0

0 ℎ
− 1

2
𝑘

[𝐽𝑘 , ℎ𝑘 ] ℎ
− 1

2
𝑘

)
, (9.100)

by Proposition 9.6 we can estimate further that∑
𝑘∈𝑆𝐶

���(ℎ⊕
𝑘

)− 1
2
[
𝐽⊕𝑘 , ℎ

⊕
𝑘

] (
ℎ⊕
𝑘

)− 1
2
���

Op
=
∑
𝑘∈𝑆𝐶

����ℎ− 1
2
𝑘

[𝐽𝑘 , ℎ𝑘 ] ℎ
− 1

2
𝑘

����
Op

≤
∑
𝑘∈𝑆𝐶

����ℎ− 1
2
𝑘

[𝐽𝑘 , ℎ𝑘 ] ℎ
− 1

2
𝑘

����
HS

≤ 𝐶
∑
𝑘∈𝑆𝐶

𝑉̂𝑘 ≤ 𝐶. (9.101)

Hence,
11 𝑑
𝑑𝑡

〈
Ψ𝑡 , 𝐻 ′

kinΨ𝑡
〉11 ≤ 𝐶

〈
Ψ𝑡 , 𝐻 ′

kinΨ𝑡
〉
, so by Gronwall’s lemma〈

Ψ𝑡 , 𝐻
′
kinΨ𝑡

〉
≤
〈
Ψ, 𝐻 ′

kinΨ
〉
𝑒𝐶 |𝑡 | ≤ 𝐶

〈
Ψ, 𝐻 ′

kinΨ
〉
, |𝑡 | ≤ 1. (9.102)

For
〈
Ψ𝑡 ,N𝐸𝐻

′
kinΨ𝑡

〉
, besides the commutator in (9.15), we also note that

[J ,N𝐸 ] =
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

[
𝑏∗𝑘
(
𝐽⊕𝑘 𝑒𝑝

)
𝑏𝑘 (𝑒𝑝),N𝐸

]
=
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘
(
𝐽⊕𝑘 𝑒𝑝

) [
𝑏𝑘 (𝑒𝑝),N𝐸

]
+
[
𝑏∗𝑘
(
𝐽⊕𝑘 𝑒𝑝

)
,N𝐸

]
𝑏𝑘 (𝑒𝑝)

)
(9.103)

=
∑
𝑘∈𝑆𝐶

∑
𝑝∈𝐿±

𝑘

(
𝑏∗𝑘
(
𝐽⊕𝑘 𝑒𝑝

)
𝑏𝑘 (𝑒𝑝) − 𝑏∗𝑘

(
𝐽⊕𝑘 𝑒𝑝

)
𝑏𝑘 (𝑒𝑝)

)
= 0.

Here again, we used [N𝐸 , 𝑏𝑘 (𝜑)] = −𝑏𝑘 for all 𝜑 ∈ ℓ2(𝐿±
𝑘 ), which follows from (1.75) and linearity.

Hence,

− 𝑑

𝑑𝑡

〈
Ψ𝑡 ,N𝐸𝐻

′
kinΨ𝑡

〉
=
〈
Ψ𝑡 ,N𝐸

[
J , 𝐻 ′

kin
]
Ψ𝑡
〉
= 2
∑
𝑘∈𝑆𝐶

〈
Ψ𝑡 ,N𝐸𝑄̃

𝑘
1
( [
𝐽⊕𝑘 , ℎ

⊕
𝑘

] )
Ψ𝑡
〉
.

Now, it holds that [N𝐸 , 𝑄̃
𝑘
1 ([𝐽

⊕
𝑘 , ℎ

⊕
𝑘 ])] = 0 (as can be seen by a computation similar to that of

equation (9.103)), so we may estimate as above for∑
𝑘∈𝑆𝐶

11〈Ψ𝑡 ,N𝐸𝑄̃
𝑘
1
( [
𝐽⊕𝑘 , ℎ

⊕
𝑘

] )
Ψ𝑡
〉11 = ∑

𝑘∈𝑆𝐶

1111〈N 1
2
𝐸Ψ𝑡 , 𝑄̃

𝑘
1
( [
𝐽⊕𝑘 , ℎ

⊕
𝑘

] )
N

1
2
𝐸Ψ𝑡

〉1111
≤
∑
𝑘∈𝑆𝐶

���(ℎ⊕
𝑘

)− 1
2
[
𝐽⊕𝑘 , ℎ

⊕
𝑘

] (
ℎ⊕
𝑘

)− 1
2
���

Op

〈
N

1
2
𝐸Ψ𝑡 , 𝐻

′
kinN

1
2
𝐸Ψ𝑡

〉
≤ 𝐶
〈
Ψ𝑡 ,N𝐸𝐻

′
kinΨ𝑡

〉
, (9.104)

where we also used that [N𝐸 , 𝐻
′
kin] = 0. The second claim now follows. �

10. Conclusion of the main results

Now we are ready to provide the proof of the main theorems stated in the introduction.

10.1. Proof of Theorem 1.1

The proof follows almost immediately by the analysis we have performed throughout the paper, for we
will simply take U = 𝑒J 𝑒K where 𝑒K is the quasi-bosonic Bogolubov transformation 𝑒K of Section 4
and 𝑒J is the second transformation of Section 9.
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Step 1: Let us start from the decomposition (1.22):

𝐻𝑁 − 𝐸FS = 𝐻 ′
kin + 𝑘−1

𝐹 𝐻 ′
int = 𝐻 ′

kin +
∑
𝑘∈𝑆𝐶

(
𝐻𝑘int −

𝑉̂𝑘 𝑘
−1
𝐹

(2𝜋)3 |𝐿𝑘 |
)
+ ENB, (10.1)

where 𝐻𝑘int is given in (1.29), ENB is given in (2.22), and 𝑆𝐶 = 𝐵
(
0, 𝑘𝛾𝐹

)
∩ Z3

+ with 0 < 𝛾 < 1
47 . From

Proposition 2.4, the non-bosonizable term ENB is estimated as

±ENB ≤ 𝐶𝑘
−𝛾/2
𝐹 (𝐻 ′

kin + 𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝑘𝐹 ). (10.2)

By the Gronwall estimates of Propositions 8.1, 9.22 and the choice U = 𝑒J 𝑒K, we have

±UENBU∗ ≤ 𝐶𝑘
−𝛾/2
𝐹 (𝐻 ′

kin + 𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝑘𝐹 ). (10.3)

Thus, it remains to apply the transformations 𝑒K and 𝑒J to the bosonizable terms.
Step 2: Now we apply the transformation 𝑒K. By Proposition 5.7, we have

𝑒K

(
𝐻 ′

kin +
∑
𝑘∈𝑆𝐶

𝐻𝑘int

)
𝑒−K

= 𝐻 ′
kin +

∑
𝑘∈𝑆𝐶

𝑄𝑘1 (𝐸
⊕
𝑘 − ℎ⊕

𝑘 ) +
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒 (1−𝑡)K

(
E 𝑘1 (𝐴⊕

𝑘 (𝑡)) + E 𝑘2 (𝐵⊕
𝑘 (𝑡))

)
𝑒−(1−𝑡)K 𝑑𝑡. (10.4)

We will use the kinetic estimate of Proposition 6.5 and the Gronwall estimates of Proposition 8.1 to
bound the exchange terms in (10.4). Thanks to the one-body estimates in Propositions 7.3, 7.2 and our
assumption

∑
𝑘∈𝑆𝐶 𝑉̂𝑘 |𝑘 | < ∞, we get

∑
𝑘∈𝑆𝐶

max
𝑡 ∈[0,1]

{
max
𝑝∈𝐿𝑘

����ℎ− 1
2
𝑘 𝐴⊕

𝑘 (𝑡)𝑒𝑝
���� , max

𝑝∈𝐿𝑘

����ℎ− 1
2
𝑘 𝐵⊕

𝑘 (𝑡)𝑒𝑝
����} ≤ 𝐶

∑
𝑘∈𝑆𝐶

𝑘
− 1

2
𝐹 𝑉̂𝑘

(
1 + 𝑉̂2

𝑘

)
≤ 𝐶𝑘

− 1
2

𝐹 ,∑
𝑘∈𝑆𝐶

max
𝑡 ∈[0,1]

{��𝐴⊕
𝑘 (𝑡)
��
∞,2 ,
��𝐵⊕

𝑘 (𝑡)
��
∞,2

}
≤ 𝐶

∑
𝑘∈𝑆𝐶

𝑉̂𝑘 |𝑘 |
1
2
(
1 + 𝑉̂𝑘

)
≤ 𝐶,∑

𝑘∈𝑆𝐶

(���(ℎ⊕
𝑘

)− 1
2 𝐾 ⊕

𝑘

���
HS

+
��𝐾 ⊕

𝑘

��
∞,2

)
≤ 𝐶 (log 𝑘𝐹 )

2
3 𝑘

− 1
3

𝐹

∑
𝑘∈𝑆𝐶

𝑉̂𝑘 |𝑘 |3+
2
3 . (10.5)

All this gives that for every state Ψ ∈ 𝐷
(
𝐻 ′

kin
)

and Ψ𝑡 = 𝑒−(1−𝑡)KΨ,

∑
𝑘∈𝑆𝐶

∫ 1

0

111〈Ψ𝑡 , (E 𝑘1 (𝐴⊕
𝑘 (𝑡)) + E 𝑘2 (𝐵⊕

𝑘 (𝑡))
)
Ψ𝑡
〉111 𝑑𝑡 ≤ 𝐶 (log 𝑘𝐹 )

2
3

( ∑
𝑘∈𝑆𝐶

𝑉̂𝑘 |𝑘 |3+
2
3

)
×
(
𝑘
− 5

6
𝐹 max

𝑡 ∈[0,1]

√〈
Ψ𝑡 , 𝐻 ′

kinΨ𝑡
〉 〈

Ψ𝑡 ,N𝐸𝐻
′
kinΨ𝑡

〉
+ 𝑘

− 1
3

𝐹 max
𝑡 ∈[0,1]

〈
Ψ𝑡 , 𝐻

′
kinΨ𝑡

〉
+ 𝑘

− 1
3

𝐹 max
𝑡 ∈[0,1]

√〈
Ψ𝑡 ,N𝐸𝐻

′
kinΨ𝑡

〉)
≤ 𝐶 (log 𝑘𝐹 )

2
3 𝑘

− 1
3

𝐹

( ∑
𝑘∈𝑆𝐶

𝑉̂𝑘 |𝑘 |3+
2
3

) (〈
Ψ, 𝐻 ′

kinΨ
〉
+ 𝑘−1

𝐹

〈
Ψ,N𝐸𝐻

′
kinΨ
〉
+ 𝑘𝐹 ‖Ψ‖2

)
, (10.6)
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where we also used the Cauchy–Schwarz inequality to split the square roots at the end. Thus, the
exchange terms in (10.4) can be estimated as

±
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒 (1−𝑡)K

(
E 𝑘1 (𝐴⊕

𝑘 (𝑡)) + E 𝑘2 (𝐵⊕
𝑘 (𝑡))

)
𝑒−(1−𝑡)K𝑑𝑡

≤ 𝐶 (log 𝑘𝐹 )
2
3 𝑘

− 1
3

𝐹

( ∑
𝑘∈𝑆𝐶

𝑉̂𝑘 |𝑘 |3+
2
3

) (
𝐻 ′

kin + 𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝑘𝐹

)
. (10.7)

It remains to consider the main term 𝑄1 (𝐸 ⊕
𝑘 − ℎ⊕

𝑘 ) on the right side of (10.4). We use the normal
order form in (4.34):∑

𝑘∈𝑆𝐶

𝑄1 (𝐸 ⊕
𝑘 − ℎ⊕

𝑘 ) =
∑
𝑘∈𝑆𝐶

2𝑄1 (𝐸 ⊕
𝑘 − ℎ⊕

𝑘 ) +
∑
𝑘∈𝑆𝐶

2tr(𝐸𝑘 − ℎ𝑘 ) +
∑
𝑘∈𝑆𝐶

𝜀𝑘 (𝐸 ⊕
𝑘 − ℎ⊕

𝑘 ). (10.8)

By Propositions 4.9, 7.2 and 2.1,

±
∑
𝑘∈𝑆𝐶

𝜀𝑘
(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
≤ 𝐶

∑
𝑘∈𝑆𝐶

𝑘−1
𝐹 𝑉̂𝑘

(
1 + 𝑉̂𝑘

)
N𝐸 ≤ 𝐶𝑘−1

𝐹 𝐻 ′
kin. (10.9)

Moreover, by Proposition 7.1, we have∑
𝑘∈𝑆𝐶

(
2 tr (𝐸𝑘 − ℎ𝑘 ) −

𝑉̂𝑘 𝑘
−1
𝐹

(2𝜋)3 |𝐿𝑘 |
)
=
∑
𝑘∈𝑆𝐶

2
𝜋

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡 (10.10)

with 𝐹 (𝑥) = log (1 + 𝑥) − 𝑥. Thus in summary, we conclude from (10.4) that

𝑒K

(
𝐻 ′

kin +
∑
𝑘∈𝑆𝐶

(
𝐻𝑘int −

𝑉̂𝑘 𝑘
−1
𝐹

(2𝜋)3 |𝐿𝑘 |
))

𝑒−K

= 𝐻 ′
kin + 2

∑
𝑘∈𝑆𝐶

𝑄𝑘1 (𝐸
⊕
𝑘 − ℎ⊕

𝑘 ) +
∑
𝑘∈𝑆𝐶

2
𝜋

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡 + EK, (10.11)

where

±EK ≤ 𝐶 (log 𝑘𝐹 )
2
3 𝑘

− 1
3

𝐹

( ∑
𝑘∈𝑆𝐶

𝑉̂𝑘 |𝑘 |3+
2
3

) (
𝐻 ′

kin + 𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝑘𝐹

)
. (10.12)

Step 3: Next, we apply the transformation 𝑒J to the right-hand side of (10.11). From (10.12) and the
Gronwall estimates of Proposition 9.22, we have

±𝑒J EK𝑒−J ≤ 𝐶 (log 𝑘𝐹 )
2
3 𝑘

− 1
3

𝐹

( ∑
𝑘∈𝑆𝐶

𝑉̂𝑘 |𝑘 |3+
2
3

) (
𝐻 ′

kin + 𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝑘𝐹

)
. (10.13)

For the main terms, by Proposition 9.1,

𝑒J

(
𝐻 ′

kin + 2
∑
𝑘∈𝑆𝐶

𝑄̃𝑘1
(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

))
𝑒−J (10.14)

= 𝐻 ′
kin + 2

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1

(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
+ 2
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒 (1−𝑡)J E 𝑘3 (𝐹⊕

𝑘 (𝑡))𝑒
−(1−𝑡)J 𝑑𝑡.
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Let us bound the exchange term E3(·). For all 𝑘 ∈ 𝐵
(
0, 𝑘𝛾𝐹

)
∩ Z3

∗ with 0 < 𝛾 < 1
47 and 𝑡 ∈ [0, 1], by

Proposition 9.6, we have

max
𝑝∈𝐿±

𝑘

���(ℎ⊕
𝑘

)− 1
2 𝐸𝑘 (𝑡)𝑒𝑝

��� ≤ 𝐶𝑘
− 1

2
𝐹

(
𝑉̂𝑘 + 𝑉̂3

𝑘 |𝑘 |
6 log (𝑘𝐹 )

)
≤ 𝐶𝑘

− 1
2

𝐹

(
𝑉̂𝑘 + 𝑉̂3

𝑘 |𝑘 |
3𝑘

3
47
𝐹 log (𝑘𝐹 )

)
,∑

𝑙∈𝑆𝐶

���(ℎ⊕
𝑙

)− 1
2 𝐽⊕𝑙

���
HS

≤ 𝐶 (log 𝑘𝐹 )
2
3 𝑘

− 1
3

𝐹

∑
𝑙∈𝑆𝐶

𝑉̂𝑙
(
1 + 𝑉̂𝑙

)
≤ 𝐶 (log 𝑘𝐹 )

2
3 𝑘

− 1
3

𝐹 . (10.15)

Hence, using the kinetic estimate of Proposition 9.5, Gronwall’s bounds of Proposition 9.22 and the
assumption

∑
𝑘∈Z3

∗
𝑉̂𝑘 |𝑘 | < ∞, we find that for every state Ψ ∈ 𝐷

(
𝐻 ′

kin
)

and Ψ𝑡 = 𝑒−(1−𝑡)JΨ,∑
𝑘∈𝑆𝐶

∫ 1

0

11〈Ψ𝑡 , E 𝑘3 (𝐹⊕
𝑘 (𝑡))Ψ𝑡〉

11 𝑑𝑡 (10.16)

≤
∑
𝑘∈𝑆𝐶

𝐶 (log 𝑘𝐹 )
2
3 𝑘

− 1
3

𝐹 𝑘
− 1

2
𝐹

(
𝑉̂𝑘 + 𝑉̂3

𝑘 |𝑘 |
3𝑘

3
47
𝐹 log (𝑘𝐹 )

)
max
𝑡 ∈[0,1]

√〈
Ψ𝑡 , 𝐻 ′

kinΨ𝑡
〉 〈

Ψ𝑡 ,N𝐸𝐻
′
kinΨ𝑡

〉
≤ 𝐶 (log 𝑘𝐹 )

5
3 𝑘

− 1
3

𝐹

〈
Ψ, (𝑘−1

𝐹 N𝐸𝐻
′
kin + 𝐻 ′

kin + 𝑘𝐹 )Ψ
〉
.

Here, we used
∑
𝑘∈Z3

∗
𝑉̂3
𝑘 |𝑘 |

3 ≤
(∑

𝑘∈Z3
∗
𝑉̂𝑘 |𝑘 |

)3
< ∞. Consequently,

±
∑
𝑘∈𝑆𝐶

∫ 1

0
𝑒 (1−𝑡)J E 𝑘3 (𝐹⊕

𝑘 (𝑡))𝑒
−(1−𝑡)J 𝑑𝑡 ≤ 𝐶 (log 𝑘𝐹 )

5
3 𝑘

− 1
3

𝐹 (𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝐻 ′

kin + 𝑘𝐹 ). (10.17)

In summary, we have for U = 𝑒J 𝑒K and 0 < 𝛾 < 1
47 ,

U𝐻𝑁U∗ = 𝐸FS + 𝐻 ′
kin + 2

∑
𝑘∈𝑆𝐶

𝑄̃𝑘1

(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
+
∑
𝑘∈𝑆𝐶

2
𝜋

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡 + EJ ,

(10.18)

where the error term is collected from (10.3), (10.13), (10.17) which satisfies

±EJ ≤ 𝐶𝑘
−𝛾/2
𝐹 (𝑘−1

𝐹 N𝐸𝐻
′
kin + 𝐻 ′

kin + 𝑘𝐹 ). (10.19)

Step 4: Finally, let us remove the cutoff 𝑆𝐶 = Z3
+ ∩ 𝐵

(
0, 𝑘𝛾𝐹

)
on the right-hand side of (10.18). By

Proposition 7.1, we can bound111111 1𝜋 ∑
𝑘∈Z3

∗\𝑆𝐶

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡

111111 ≤ 𝐶𝑘𝐹
∑

𝑘∈Z3
∗\𝑆𝐶

𝑉̂2
𝑘 |𝑘 | ≤ 𝐶𝑘

1−𝛾
𝐹 . (10.20)

Here, we used
∑
𝑘∈Z3

∗
𝑉̂2
𝑘 |𝑘 |

2 ≤
(∑

𝑘∈Z3
∗
𝑉̂𝑘 |𝑘 |

)2
< ∞. Moreover, by Propositions 4.8 and 9.6 (together

with the fact that the trace norm dominates the operator norm), we can bound

±𝑄̃𝑘1
(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
≤
���(ℎ⊕

𝑘

)− 1
2
(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

) (
ℎ⊕
𝑘

)− 1
2
���

Op
𝐻 ′

kin

=

����ℎ− 1
2
𝑘

(
𝐸𝑘 − ℎ𝑘

)
ℎ
− 1

2
𝑘

����
Op

𝐻 ′
kin ≤ 𝐶𝑉̂𝑘𝐻

′
kin (10.21)
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for all 𝑘 ∈ Z3
+, and hence,

±
∑

𝑘∈Z3
+\𝑆𝐶

𝑄̃𝑘1

(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
≤ 𝐶
!"#
∑

𝑘∈Z3
+\𝑆𝐶

𝑉̂𝑘
$%&𝐻 ′

kin ≤ 𝐶𝑘
−𝛾
𝐹 𝐻 ′

kin. (10.22)

Therefore, we can deduce from (10.18) that for U = 𝑒J 𝑒K and 0 < 𝛾 < 1
47 ,

U𝐻𝑁U∗ = 𝐸FS + 𝐻 ′
kin + 2

∑
𝑘∈Z3

+

𝑄̃𝑘1

(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
+
∑
𝑘∈Z3

∗

1
𝜋

∫ ∞

0
𝐹

(
𝑉̂𝑘 𝑘

−1
𝐹

(2𝜋)3

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

𝜆2
𝑘, 𝑝 + 𝑡2

)
𝑑𝑡 + EU ,

(10.23)

where

±EU ≤ 𝐶𝑘
−𝛾/2
𝐹 (𝑘−1

𝐹 N𝐸𝐻
′
kin + 𝐻 ′

kin + 𝑘𝐹 ). (10.24)

The statement of Theorem 1.1 follows by recognizing the identity

2
∑
𝑘∈Z3

+

𝑄̃𝑘1

(
𝐸 ⊕
𝑘 − ℎ⊕

𝑘

)
= 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 ,
(
𝐸𝑘 − ℎ𝑘

)
𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 ,

which follows from the definition of 𝑄̃𝑘1 in (4.35).

10.2. Proof of Theorem 1.2

Let Ψ ∈ 𝐷
(
𝐻 ′

kin
)

be a normalized eigenstate of 𝐻𝑁 with energy 〈Ψ, 𝐻𝑁Ψ〉 ≤ 𝐸FS + 𝜅𝑘𝐹 for some
𝜅 > 0. Denoting 𝐻̃𝑁 = 𝐻𝑁 − 𝐸FS, we have 𝐻̃𝑁Ψ = 𝐸 ′Ψ with 𝐸 ′ ≤ 𝜅𝑘𝐹 . Using (1.22) and the obvious
inequality 𝐴∗𝐴 ≥ 0, we obtain the Onsager-type estimate

𝐻̃𝑁 − 𝐻 ′
kin =

𝑘−1
𝐹

2(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘

(
dΓ(𝑒−𝑖𝑘 ·𝑥)∗dΓ(𝑒−𝑖𝑘 ·𝑥) − |𝐿𝑘 |

)
(10.25)

≥ −
𝑘−1
𝐹

2(2𝜋)3

∑
𝑘∈Z3

∗

𝑉̂𝑘 |𝐿𝑘 | ≥ −𝐶𝑘𝐹
∑
𝑘∈Z3

|𝑘 |𝑉̂𝑘 .

Here, we used |𝐿𝑘 | ≤ 𝐶𝑘2
𝐹 |𝑘 | for all 𝑘 ∈ Z3

∗ (see Proposition A.1). From (10.25) and the assumption
𝐻̃𝑁Ψ = 𝐸 ′Ψ with 𝐸 ′ ≤ 𝜅𝑘𝐹 , we deduce immediately that

〈Ψ, 𝐻 ′
kinΨ〉 ≤ 𝐶 (𝜅 + 1)𝑘𝐹 . (10.26)

To prove the bound for N𝐸𝐻
′
kin, we use the operator inequality

N 2
𝐸𝐻

′
kin = N𝐸𝐻

′
kinN𝐸 ≤ N𝐸 𝐻̃𝑁N𝐸 + 𝐶𝑘𝐹N 2

𝐸

=
1
2

(
N 2
𝐸 𝐻̃𝑁 + 𝐻̃𝑁N 2

𝐸 −
[
N𝐸 ,

[
N𝐸 , 𝐻̃𝑁

] ] )
+ 𝐶𝑘𝐹N 2

𝐸 , (10.27)

which follows from (10.25) and the fact that
[
N𝐸 , 𝐻

′
kin
]
= 0. Thanks to the eigenvalue equation

𝐻̃𝑁Ψ = 𝐸 ′Ψ with 𝐸 ′ ≤ 𝜅𝑘𝐹 , we deduce that〈
Ψ,N 2

𝐸𝐻
′
kinΨ
〉
≤ 𝐶 (𝜅 + 1)𝑘𝐹

〈
Ψ,N 2

𝐸Ψ
〉
− 1

2
〈
Ψ,
[
N𝐸 ,

[
N𝐸 , 𝐻̃𝑁

] ]
Ψ
〉
. (10.28)
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Using N𝐸 =
∑
𝑠∈𝐵𝑐𝐹 𝑐∗𝑠𝑐𝑠 and

[𝑐∗𝑠𝑐𝑠 , 𝑐∗𝑝+𝑘𝑐
∗
𝑞−𝑘𝑐𝑞𝑐𝑝] = 𝑐∗𝑝+𝑘𝑐

∗
𝑞−𝑘𝑐𝑞𝑐𝑝 (𝛿𝑠, 𝑝+𝑘 + 𝛿𝑠,𝑞−𝑘 − 𝛿𝑠,𝑞 − 𝛿𝑠, 𝑝), (10.29)

we deduce from (1.8) that

[
N𝐸 ,

[
N𝐸 , 𝐻̃𝑁

] ]
=

𝑘−1
𝐹

2(2𝜋)3

∑
𝑘∈Z3

∑
𝑝,𝑞∈Z3

𝑉̂𝑘𝑐
∗
𝑝+𝑘𝑐

∗
𝑞−𝑘𝑐𝑞𝑐𝑝

( ∑
𝑠∈𝐵𝑐𝐹

(𝛿𝑠, 𝑝+𝑘 + 𝛿𝑠,𝑞−𝑘 − 𝛿𝑠,𝑞 − 𝛿𝑠, 𝑝)
)2
.

(10.30)

Using the obvious bound

0 ≤
( ∑
𝑠∈𝐵𝑐𝐹

(𝛿𝑠, 𝑝+𝑘 + 𝛿𝑠,𝑞−𝑘 − 𝛿𝑠,𝑞 − 𝛿𝑠, 𝑝)
)2

≤ 4 (10.31)

and the Cauchy–Schwarz inequality, we estimate11〈Ψ,
[
N𝐸 ,

[
N𝐸 , 𝐻̃𝑁

] ]
Ψ
〉11 ≤ 𝐶𝑘−1

𝐹

∑
𝑘∈Z3

∑
𝑝,𝑞∈Z3

𝑉̂𝑘 ‖𝑐𝑝+𝑘𝑐𝑞−𝑘Ψ‖‖𝑐𝑞𝑐𝑝Ψ‖

≤ 𝐶𝑘−1
𝐹

∑
𝑘∈Z3

𝑉̂𝑘
∑
𝑝,𝑞∈Z3

(‖𝑐𝑝+𝑘𝑐𝑞−𝑘Ψ‖2 + ‖𝑐𝑞𝑐𝑝Ψ‖2) ≤ 𝐶𝑘−1
𝐹

∑
𝑘∈Z3

𝑉̂𝑘 〈Ψ,N 2
𝐸Ψ〉. (10.32)

Since 𝑉̂ is summable, (10.28) and (10.32) imply that〈
Ψ,N 2

𝐸𝐻
′
kinΨ
〉
≤ 𝐶 (𝜅 + 1)𝑘𝐹

〈
Ψ,N 2

𝐸Ψ
〉
. (10.33)

Combining with the inequality 𝐻 ′
kin ≥ N𝐸 from Proposition 2.1, we deduce by Hölder’s inequality〈

Ψ,N 2
𝐸Ψ
〉
≤
〈
Ψ,N 3

𝐸Ψ
〉2/3 ≤

〈
Ψ,N 2

𝐸𝐻
′
kinΨ
〉2/3 ≤

(
𝐶 (𝜅 + 1)𝑘𝐹

〈
Ψ,N 2

𝐸Ψ
〉 )2/3

, (10.34)

which implies that
〈
Ψ,N 2

𝐸Ψ
〉
≤ 𝐶 (𝜅 + 1)2𝑘2

𝐹 , and hence by (10.33) again,

〈Ψ,N 2
𝐸𝐻

′
kinΨ〉 ≤ 𝐶 (𝜅 + 1)3𝑘3

𝐹 . (10.35)

The bound
〈
Ψ,N𝐸𝐻

′
kinΨ
〉
≤ 𝐶 (𝜅 + 1)2𝑘2

𝐹 follows from (10.26) and (10.35). In summary, we have〈
Ψ, (𝑘−1

𝐹 N𝐸𝐻
′
kin + 𝐻 ′

kin + 𝑘𝐹 )Ψ
〉
≤ 𝐶 (𝜅 + 1)2𝑘𝐹 . (10.36)

By the Gronwall estimates of Propositions 8.1, 9.22 and the choice U = 𝑒J 𝑒K, we also obtain〈
UΨ, (𝑘−1

𝐹 N𝐸𝐻
′
kin + 𝐻 ′

kin + 𝑘𝐹 )UΨ
〉
≤ 𝐶 (𝜅 + 1)2𝑘𝐹 . (10.37)

10.3. Proof of Theorem 1.2

Taking the expectation against ΨFS of the operator estimate in Theorem 1.1, we have

inf 𝜎(𝐻𝑁 ) = inf 𝜎(U𝐻𝑁U∗) ≤ 〈ΨFS,U𝐻𝑁U∗ΨFS〉 = 𝐸FS + 𝐸corr +𝑂 (𝑘1− 1
94+𝜖

𝐹 ). (10.38)

Here, we used the bound on E𝑈 from Theorem 1.1 and the identities 𝐻 ′
kinΨFS = 𝐻effΨFS = 0.
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To see the lower bound, let ΨGS ∈ 𝐷
(
𝐻 ′

kin
)

be the normalized ground state of 𝐻𝑁 . By the definition
of ΨGS and the above upper bound, we have

〈ΨGS, 𝐻𝑁ΨGS〉 = inf 𝜎(𝐻𝑁 ) ≤ 𝐸FS + 𝐶𝑘𝐹 , (10.39)

and hence, Theorem 1.2 implies that the state Ψ′
GS = UΨGS satisfies〈

Ψ′
GS, (𝑘

−1
𝐹 N𝐸𝐻

′
kin + 𝐻 ′

kin + 𝑘𝐹 )Ψ′
GS
〉
≤ 𝐶𝑘𝐹 . (10.40)

Taking the expectation against Ψ′
GS of the operator estimate in Theorem 1.1, we conclude that

inf 𝜎(𝐻𝑁 ) = 〈ΨGS, 𝐻𝑁ΨGS〉 =
〈
Ψ′

GS,U𝐻𝑁U∗Ψ′
GS
〉

(10.41)

= 𝐸FS + 𝐸corr +
〈
Ψ′

GS,
(
𝐻 ′

kin + 𝐻eff + EU
)
Ψ′

GS
〉
≥ 𝐸FS + 𝐸corr +𝑂 (𝑘1− 1

94+𝜖
𝐹 ).

Here, we used the operator inequalities

𝐻 ′
kin ≥ 0, 𝐻eff ≥ 0, EU ≥ 𝐶𝑘

1− 1
94+𝜖

𝐹 (𝑘−1
𝐹 N𝐸𝐻

′
kin + 𝐻 ′

kin + 𝑘𝐹 ) (10.42)

and the a priori estimate (10.40). This completes the proof of Theorem 1.3.

10.4. Proof of Theorems 1.4 and 1.5

In this subsection, we study the effective operator 𝐻eff in Theorem 1.1 in more detail. First, we prove
the following remarkable fact.

Proposition 10.1. We have the operator identity on 𝐷 (𝐻 ′
kin):

2
∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 = N𝐸𝐻

′
kin.

Proof of Proposition 10.1. The idea is simply to interchange the summation on 𝑘 ∈ Z3
∗ and 𝑝 ∈ 𝐿𝑘 . By

rephrasing the condition that 𝑝 ∈ 𝐿𝑘 , we have the equivalences(
𝑘 ∈ Z3

∗

)
∧ (𝑝 ∈ 𝐿𝑘 ) ⇔

(
𝑘 ∈ Z3

∗

)
∧ (|𝑝 − 𝑘 | ≤ 𝑘𝐹 < |𝑝 |)

⇔
(
𝑘 ∈ Z3

∗

)
∧
(
𝑘 ∈ 𝐵 (𝑝, 𝑘𝐹 )

)
∧
(
𝑝 ∈ 𝐵𝑐𝐹

)
(10.43)

⇔
(
𝑝 ∈ 𝐵𝑐𝐹

)
∧
(
𝑘 ∈ 𝐵 (𝑝, 𝑘𝐹 ) ∩ Z3

)
,

where we could replace Z3
∗ by Z3 in the last line as the conditions 𝑝 ∈ 𝐵𝑐𝐹 = Z3\𝐵(0, 𝑘𝐹 ) and

𝑘 ∈ 𝐵 (𝑝, 𝑘𝐹 ) exclude 𝑘 = 0 automatically. Recognizing that 𝐵 (𝑝, 𝑘𝐹 ) ∩ Z3 = 𝐵𝐹 + 𝑝, we can now
write

2
∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 =

∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

(
|𝑝 |2 − |𝑝 − 𝑘 |2

)
𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 (10.44)

=
∑
𝑝∈𝐵𝑐𝐹

∑
𝑘∈(𝐵𝐹+𝑝)

|𝑝 |2𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 −
∑
𝑝∈𝐵𝑐𝐹

∑
𝑘∈(𝐵𝐹+𝑝)

|𝑝 − 𝑘 |2𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 ,
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and by expanding the excitation operators, we find for the first sum that∑
𝑝∈𝐵𝑐𝐹

∑
𝑘∈(𝐵𝐹+𝑝)

|𝑝 |2𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 =
∑
𝑝∈𝐵𝑐𝐹

∑
𝑘∈(𝐵𝐹+𝑝)

|𝑝 |2𝑐∗𝑝𝑐𝑝−𝑘𝑐∗𝑝−𝑘𝑐𝑝

=
∑
𝑝∈𝐵𝑐𝐹

!"#
∑

𝑘∈(𝐵𝐹+𝑝)
𝑐𝑝−𝑘𝑐

∗
𝑝−𝑘
$%& |𝑝 |2𝑐∗𝑝𝑐𝑝

=
∑
𝑝∈𝐵𝑐𝐹

( ∑
𝑘∈𝐵𝐹

𝑐−𝑘𝑐
∗
−𝑘

)
|𝑝 |2𝑐∗𝑝𝑐𝑝 = N𝐸

∑
𝑝∈𝐵𝑐𝐹

|𝑝 |2𝑐∗𝑝𝑐𝑝 (10.45)

as
∑
𝑘∈𝐵𝐹 𝑐−𝑘𝑐

∗
−𝑘 =

∑
𝑘∈𝐵𝐹 𝑐𝑘𝑐

∗
𝑘 = N𝐸 by the particle-hole symmetry, and similarly,∑

𝑝∈𝐵𝑐𝐹

∑
𝑘∈(𝐵𝐹+𝑝)

|𝑝 − 𝑘 |2𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 =
∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝
∑

𝑘∈(𝐵𝐹+𝑝)
|𝑝 − 𝑘 |2𝑐𝑝−𝑘𝑐∗𝑝−𝑘 (10.46)

=
∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝
∑
𝑘∈𝐵𝐹

|𝑘 |2𝑐𝑘𝑐∗𝑘 = N𝐸

∑
𝑘∈𝐵𝐹

|𝑘 |2𝑐𝑘𝑐∗𝑘

for the claimed equality of

𝑇 = 2
∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 = N𝐸

!"#
∑
𝑝∈𝐵𝑐𝐹

|𝑝 |2𝑐∗𝑝𝑐𝑝 −
∑
𝑝∈𝐵𝐹

|𝑝 |2𝑐𝑝𝑐∗𝑝
$%& = N𝐸𝐻

′
kin. (10.47)

To complete the proof, let us show that the relevant operators are well defined on the domain
𝐷 (𝐻 ′

kin). This is clear for N𝐸𝐻
′
kin since N𝐸 is a bounded operator (0 ≤ N𝐸 ≤ 𝑁 on H𝑁 ). For T, we can

interchange the summations of k and p using the same observation in (10.43). This gives the quadratic
form estimate

𝑇 = 2
∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝𝑏
∗
𝑘, 𝑝𝑏𝑘, 𝑝 =

∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

| |𝑝 |2 − 𝜁 | 𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝 +
∑
𝑘∈Z3

∗

∑
𝑝∈𝐿𝑘

| |𝑝 − 𝑘 |2 − 𝜁 | 𝑏∗𝑘, 𝑝𝑏𝑘, 𝑝

≤
∑
𝑝∈𝐵𝑐𝐹

( ∑
𝑘∈𝐵𝐹

𝑐𝑘𝑐
∗
𝑘

)
| |𝑝 |2 − 𝜁 | 𝑐∗𝑝𝑐𝑝 +

∑
𝑝∈𝐵𝑐𝐹

𝑐∗𝑝𝑐𝑝
∑
𝑘∈𝐵𝐹

| |𝑘 |2 − 𝜁 | 𝑐𝑘𝑐∗𝑘 ≤ N𝐸𝐻
′
kin, (10.48)

where 𝜁 > 0 is the constant in (1.14). Moreover, it is easily seen that T commutes with both N𝐸 and
𝐻 ′

kin. Therefore, the above quadratic form estimate also implies the stronger estimate

𝑇2 ≤
(
N𝐸𝐻

′
kin
)2
, (10.49)

which justifies that 𝐷 (𝑇) ⊂ 𝐷 (N𝐸𝐻
′
kin) ⊂ 𝐷 (𝐻 ′

kin). �

Now we are ready to give the

Proof of Theorem 1.5. Thanks to Proposition 10.1 and the identity 〈𝑒𝑝 , ℎ𝑘𝑒𝑞〉 = 𝜆𝑘, 𝑝𝛿𝑝,𝑞 , we have

𝐻eff = 𝐻 ′
kin + 2

∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 ,
(
𝐸𝑘 − ℎ𝑘

)
𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞

= 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈𝑒𝑝 , 𝐸𝑘𝑒𝑞〉𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 − (N𝐸 − 1) 𝐻 ′
kin. (10.50)

https://doi.org/10.1017/fmp.2023.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.31


110 M. R. Christiansen, C. Hainzl and P. T. Nam

Since [𝐻eff,N𝐸 ] = 0, we can restrict 𝐻eff to the eigenspaces of N𝐸 : for every 𝑀 = {1, 2, ...}, we can
write the restriction to {N𝐸 = 𝑀} for 𝑀 ∈ N in the quasi-bosonic form

𝐻eff |N𝐸=𝑀 = 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 ,
(
𝐸𝑘 −

(
1 − 𝑀−1

)
ℎ𝑘

)
𝑒𝑞

〉
𝑏∗𝑘, 𝑝𝑏𝑘,𝑞 . (10.51)

�

Proof of Theorem 1.4. We only need to verify the statement on the effective operator 𝐻eff |N𝐸=𝑀 with
𝑀 = 1. In this case, it is convenient to introduce the total momentum 𝑃 = (𝑃1, 𝑃2, 𝑃3), where each 𝑃 𝑗
is given by 𝑃 𝑗 =

∑
𝑝∈Z3 𝑝 𝑗𝑐

∗
𝑝𝑐𝑝 . It is easily checked that 𝑃 𝑗 obeys the commutators[
𝑃 𝑗 , 𝑏𝑘, 𝑝

]
= −𝑘 𝑗𝑏𝑘, 𝑝 ,

[
𝑃 𝑗 , 𝑏

∗
𝑘, 𝑝

]
= 𝑘 𝑗𝑏

∗
𝑘, 𝑝 , (10.52)

and additionally
[
𝑃 𝑗 , 𝐻

′
kin
]
= 0, whence the effective Hamiltonian 𝐻eff also commutes with 𝑃 𝑗 , 𝑗 =

1, 2, 3. It also holds that
[
N𝐸 , 𝑃 𝑗

]
= 0, so we may restrict 𝐻eff to the simultanous eigenspaces of N𝐸

and P. It follows from
[
𝑃 𝑗 , 𝑏

∗
𝑘, 𝑝

]
= 𝑘 𝑗𝑏

∗
𝑘, 𝑝 that this simultaneous eigenspace is precisely

{Ψ ∈ H𝑁 | N𝐸Ψ = Ψ, 𝑃Ψ = 𝑘Ψ} = span
(
𝑏∗𝑘, 𝑝𝜓FS

)
𝑝∈𝐿𝑘

=
{
𝑏∗𝑘 (𝜑)𝜓FS | 𝜑 ∈ 𝐿2 (𝐿𝑘 )

}
. (10.53)

In fact, the mapping 𝑈 : 𝜑 ↦→ 𝑏∗𝑘 (𝜑)𝜓FS is an isomorphism. To see that, we compute, using the
commutation relations of the excitation operators and the fact that 𝑏𝑘 (𝜙)𝜓FS = 0 = 𝜀𝑘,𝑘 (𝜙; 𝜑)𝜓FS for
any 𝜙, 𝜑 ∈ 𝐿2 (𝐿𝑘 ), that

〈𝑈𝜙,𝑈𝜑〉 =
〈
𝑏∗𝑘 (𝜙)𝜓FS, 𝑏

∗
𝑘 (𝜑)𝜓FS

〉
=
〈
𝜓FS,

(
𝑏∗𝑘 (𝜑)𝑏𝑘 (𝜙) + 〈𝜙, 𝜑〉 + 𝜀𝑘,𝑘 (𝜙; 𝜑)

)
𝜓FS
〉

(10.54)
= 〈𝜙, 𝜑〉 〈𝜓FS, 𝜓FS〉 = 〈𝜙, 𝜑〉 ,

so U is a unitary embedding of 𝐿2 (𝐿𝑘 ) into {Ψ ∈ H𝑁 | N𝐸Ψ = Ψ, 𝑃Ψ = 𝑘Ψ} and hence an isomor-
phism for dimensional reasons.

Similarly, we find as 𝐻eff |N𝐸=1 = 2
∑
𝑙∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑙

〈
𝑒𝑝 , 𝐸𝑙𝑒𝑞

〉
𝑏∗𝑙, 𝑝𝑏𝑙,𝑞 that for any 𝜙, 𝜑 ∈ 𝐿2 (𝐿𝑘 ),

〈𝑈𝜙, 𝐻eff𝑈𝜑〉 = 2
∑
𝑙∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑙

〈
𝑒𝑝 , 𝐸𝑙𝑒𝑞

〉 〈
𝑏𝑙, 𝑝𝑏

∗
𝑘 (𝜙)𝜓FS, 𝑏𝑙,𝑞𝑏

∗
𝑘 (𝜑)𝜓FS

〉
(10.55)

= 2
∑
𝑘∈Z3

∗

∑
𝑝,𝑞∈𝐿𝑘

〈
𝑒𝑝 , 𝐸𝑙𝑒𝑞

〉
𝛿𝑘,𝑙
〈
𝜙, 𝑒𝑝

〉 〈
𝑒𝑞 , 𝜑

〉
= 2
〈
𝜙, 𝐸𝑘𝜑

〉
,

whence 𝑈∗𝐻eff𝑈 = 2𝐸𝑘 . By elaborating the above argument slightly, one finds that the mapping

𝑈̃ :
⊕
𝑘∈Z3

∗

𝐿2 (𝐿𝑘 ) → {Ψ ∈ H𝑁 | N𝐸Ψ = Ψ} (10.56)

defined by

𝑈̃
⊕
𝑘∈Z3

∗

𝜑𝑘 =
∑
𝑘∈Z3

∗

𝑏∗𝑘 (𝜑𝑘 ) 𝜓FS (10.57)

is likewise a unitary isomorphism under which 𝑈̃∗𝐻eff𝑈̃ =
⊕

𝑘∈Z3
∗
𝐸𝑘 . �

https://doi.org/10.1017/fmp.2023.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.31


Forum of Mathematics, Pi 111

A. Appendix: Lattice estimates and Riemann sums

In this appendix, we collect several useful estimates for the lattice points and Riemann sums. In particular,
we want to obtain estimates on the sum

∑
𝑝∈𝐿𝑘 𝜆

𝛽
𝑘,𝑝 , where 𝛽 ≤ 0 and

𝐿𝑘 = (𝐵𝐹 + 𝑘) \𝐵𝐹 =
(
𝐵 (𝑘, 𝑘𝐹 ) \𝐵(0, 𝑘𝐹 )

)
∩ Z3, 𝜆𝑘, 𝑝 =

1
2

(
|𝑝 |2 − |𝑝 − 𝑘 |2

)
= 𝑘 · 𝑝 − 1

2
|𝑘 |2.

It is natural to expect the sum to be approximated by the corresponding integrals – that is,∑
𝑝∈𝐿𝑘

𝑓 (𝜆𝑘, 𝑝) ∼
∫
𝐵 (𝑘,𝑘𝐹 )\𝐵 (0,𝑘𝐹 )

𝑓

(
𝑘 · 𝑝 − 1

2
|𝑘 |2
)
𝑑𝑝, (A.1)

with 𝑓 (𝑡) = 𝑡𝛽 . Indeed, when −1 < 𝛽 ≤ 0, the Riemann sum is well behaved, and using general
estimation methods based on (A.1), we have the following:

Proposition A.1. For all 𝑘 ∈ Z3
∗ and −1 < 𝛽 ≤ 0, it holds that∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 𝐶

{
𝑘

2+𝛽
𝐹 |𝑘 |1+𝛽 |𝑘 | < 2𝑘𝐹

𝑘3
𝐹 |𝑘 |

2𝛽 |𝑘 | ≥ 2𝑘𝐹

for a constant 𝐶 > 0 depending only on 𝛽.

For 𝛽 ≤ −1, the summands are, however, too divergent to obtain good estimates using only general
methods. For example, when 𝛽 = −1, using standard estimates based on (A.1), we obtain∑

𝑝∈𝐿𝑘

𝜆−1
𝑘, 𝑝 ≤ 𝐶

{(
1 + |𝑘 |−1 log (𝑘𝐹 )

)
𝑘𝐹 |𝑘 | < 2𝑘𝐹

𝑘3
𝐹 |𝑘 |

−2 |𝑘 | ≥ 2𝑘𝐹 ,
(A.2)

which is non-optimal when |𝑘 | < 2𝑘𝐹 . To obtain good estimates on the sums
∑
𝑝∈𝐿𝑘 𝑓

(
𝜆𝑘, 𝑝
)

for more
singular f, we will instead derive a summation formula which reduces the 3-dimensional Riemann sum to
two 1-dimensional Riemann sums plus an error term. The utility of this summation formula, apart from
reducing the dimensionality of the sums, is that the 1-dimensional Riemann sums contain weighting
factors which explicitly cancel the divergent behaviour of the summands. To derive this summation
formula, we need to carry out a detailed analysis of the structure of the lunes 𝐿𝑘 , which is related to a
lattice point counting problem in the plane and can be handled by classical results from analytic number
theory.

With the summation formula at our disposal, we can improve (A.2) to the following:

Proposition A.2. For all 𝑘 ∈ Z3
∗, it holds that∑

𝑝∈𝐿𝑘

𝜆−1
𝑘, 𝑝 ≤ 𝐶𝑘𝐹 , 𝑘𝐹 → ∞,

for a constant 𝐶 > 0 independent of k and 𝑘𝐹 .

We refer to [24, Lemma 4.7] and [6, Eq. B.1] for results similar to Proposition A.2. However, the
k-independence of the constant C was not completely clear in these previous results.

For more singular functions, we have the following:

Proposition A.3. For − 4
3 < 𝛽 < −1 and 𝑘 ∈ 𝐵

(
0, 𝑘𝛾𝐹

)
with 0 < 𝛾 < 4+3𝛽

8−3𝛽 , we have∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 𝐶𝑘

2+𝛽
𝐹 |𝑘 |1+𝛽 , 𝑘𝐹 → ∞.
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Moreover, for 𝛽 ≤ − 4
3 and 𝑘 ∈ 𝐵 (0, 2𝑘𝐹 ), we have∑

𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 𝐶 |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹 , 𝑘𝐹 → ∞.

Here, the constant 𝐶 > 0 is independent of k and 𝑘𝐹 .

In Proposition A.3, the first bound is optimal in terms of both 𝑘
2+𝛽
𝐹 and |𝑘 |𝛽 . The second bound is

unlikely to be optimal but is sufficient in applications if |𝑘 | is relatively small.
Finally, for the kinetic estimate in Proposition 2.3, we need the following proposition, which can be

obtained by the same argument of the above results.

Proposition A.4. Let 𝑆1
𝑘,𝜆, 𝑆

2
𝑘,𝜆 as in (2.14), (2.19) with 𝑘 ∈ 𝐵(0, 𝑘𝐹 ) ∩ Z3

∗ and 0 < 𝜆 = 𝜆 (𝑘𝐹 , 𝑘) ≤
1
6 𝑘

2
𝐹 . Then there exists a constant 𝐶 > 0 independent of k, 𝑘𝐹 , 𝜆 such that

|𝑆1
𝑘,𝜆 | + |𝑆2

𝑘,𝜆 | ≤ 𝐶

(
|𝑘 |−1𝜆 + |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

)
(𝜆 + |𝑘 |) , 𝑘𝐹 → ∞.

In the rest of the appendix, we will discuss some preliminary results in Sections A.1 and A.2 and
then turn to the proofs of Propositions A.1, A.2, A.3 and A.4.

A.1. Some lattice concepts

Let V be a real n-dimensional vector space. The lattice Λ ⊂ 𝑉 generated by (𝑣𝑖)𝑛𝑖=1 is

Λ = Λ(𝑣1, · · · , 𝑣𝑛) =
{
𝑛∑
𝑖=1

𝑚𝑖𝑣𝑖 | 𝑚1, . . . , 𝑚𝑛 ∈ Z
}
. (A.3)

Given two bases (𝑣𝑖)𝑛𝑖=1 and (𝑤𝑖)𝑛𝑖=1, it may happen that Λ(𝑣1, . . . , 𝑣𝑛) = Λ(𝑤1, . . . , 𝑤𝑛) even if the
bases are not equal. The following is well known (see, for example, [28, p. 4])

Proposition A.5. Let (𝑣𝑖)𝑛𝑖=1 and (𝑤𝑖)𝑛𝑖=1 be bases of V. Then Λ(𝑣1, . . . , 𝑣𝑛) = Λ(𝑤1, . . . , 𝑤𝑛) if and
only if the transition matrix 𝑇 =

(
𝑇𝑖, 𝑗
)𝑛
𝑖, 𝑗=1 defined by

𝑤𝑖 =
𝑛∑
𝑗=1

𝑇𝑖, 𝑗𝑣 𝑗 , 1 ≤ 𝑖 ≤ 𝑛

has integer entries and determinant ±1.

This result has an important consequence when V is endowed with an inner product.

Proposition A.6. Let Λ be a lattice in (𝑉, 〈·, ·〉) and let (𝑣𝑖)𝑛𝑖=1 generate Λ. Then the quantity

𝑑 (Λ) =

1111111det
!""#
〈𝑒1, 𝑣1〉 · · · 〈𝑒𝑛, 𝑣1〉

...
. . .

...
〈𝑒1, 𝑣𝑛〉 · · · 〈𝑒𝑛, 𝑣𝑛〉

$%%&
1111111 =
√√√√√√√

det
!""#
〈𝑣1, 𝑣1〉 · · · 〈𝑣𝑛, 𝑣1〉

...
. . .

...
〈𝑣1, 𝑣𝑛〉 · · · 〈𝑣𝑛, 𝑣𝑛〉

$%%&
is independent of the choice of generators (𝑣𝑖)𝑛𝑖=1. Here, (𝑒𝑖)𝑛𝑖=1 is any orthonormal basis for V.

Here, 𝑑 (Λ) is referred to as the covolume (or simply determinant) of Λ. The fact that 𝑑 (Λ) is inde-
pendent of (𝑒𝑖)𝑛𝑖=1 follows by a standard orthonormal expansion, while the fact that 𝑑 (Λ) is independent
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of (𝑣𝑖)𝑛𝑖=1 follows from the previous proposition: if (𝑣𝑖)𝑛𝑖=1 and (𝑤𝑖)𝑛𝑖=1 are two bases with transition
matrix T, then 1111111det

!""#
〈𝑒1, 𝑤1〉 · · · 〈𝑒𝑛, 𝑤1〉

...
. . .

...
〈𝑒1, 𝑤𝑛〉 · · · 〈𝑒𝑛, 𝑤𝑛〉

$%%&
1111111 = |det(𝑇) |

1111111det
!""#
〈𝑒1, 𝑣1〉 · · · 〈𝑒𝑛, 𝑣1〉

...
. . .

...
〈𝑒1, 𝑣𝑛〉 · · · 〈𝑒𝑛, 𝑣𝑛〉

$%%&
1111111 . (A.4)

Given a lattice Λ in an n-dimensional inner product space V, one defines the successive minima
(𝜆𝑖)𝑛𝑖=1 (relative to the closed unit ball 𝐵 (0, 1)) by

𝜆𝑖 = inf
{
𝜆 | 𝐵 (0, 𝜆) ∩ Λ contains 𝑖 linearly independent vectors

}
, 1 ≤ 𝑖 ≤ 𝑛. (A.5)

A well-known theorem due to Minkowski provides an inequality relating the successive minima of a
lattice Λ to its covolume:

Theorem A.7 (Minkowski’s second theorem). Let Λ be a lattice in an n-dimensional inner product
space V. Then it holds that

2𝑛𝑑 (Λ)
𝑛! Vol(𝐵(0, 1))

≤ 𝜆1 · · · 𝜆𝑛 ≤ 2𝑛𝑑 (Λ)
Vol(𝐵(0, 1))

.

Note that although 𝐵 (0, 𝜆𝑛) ∩ Λ contains n linearly independent vectors, it is not ensured that these
n vectors can be chosen to generate Λ. For 𝑛 = 2, this is nonetheless the case:

Corollary A.8. Let Λ be a lattice in a 2-dimensional inner product space V. Then there exist vectors
𝑣1, 𝑣2 ∈ Λ which generate Λ such that

|𝑣1 | |𝑣2 | ≤
4
𝜋
𝑑 (Λ) .

Proof. By definition of 𝜆2, there exists linearly independent vectors 𝑣1, 𝑣2 ∈ Λ such that |𝑣1 |, |𝑣2 | ≤ 𝜆2
and by Minkowski’s second theorem |𝑣1 | |𝑣2 | ≤ 4

𝜋 𝑑 (Λ). We argue that 𝑣1 and 𝑣2 must necessarily
generate Λ. Suppose otherwise (i.e., that there exists a 𝑣 ∈ Λ such that 𝑣 ≠ 𝑚1𝑣1+𝑚2𝑣2 for 𝑚1, 𝑚2 ∈ Z).
As 𝑣1 and 𝑣2 are linearly independent and dim (𝑉) = 2, these do nonetheless span V (i.e., there must
exist 𝑐1, 𝑐2 ∈ R such that 𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2).

Now we can assume that |𝑐1 | , |𝑐2 | ≤ 1
2 , since as Λ is a lattice and 𝑣1, 𝑣2, 𝑣 ∈ Λ, we may subtract

multiples of 𝑣1 and 𝑣2 from v until this is the case. Then, since |〈𝑣1, 𝑣2〉| < |𝑣1 | |𝑣2 | by the Cauchy-
Schwarz inequality (strict inequality being a consequence of the linear independence of 𝑣1 and 𝑣2), we
can estimate that

|𝑣 |2 = |𝑣1 |2𝑐2
1 + |𝑣2 |2𝑐2

2 + 2 〈𝑣1, 𝑣2〉 𝑐1𝑐2 < |𝑣1 |2𝑐2
1 + |𝑣2 |2𝑐2

2 + 2|𝑣1 | |𝑣2 | |𝑐1 | |𝑐2 | (A.6)

= (|𝑐1 | |𝑣1 | + |𝑐2 | |𝑣2 |)2 ≤
(

1
2
𝜆2 +

1
2
𝜆2

)2
= 𝜆2

2,

or |𝑣 | < 𝜆2. But this contradicts the minimality of 𝜆2 as 𝑣 ≠ 0, and at least one of {𝑣1, 𝑣} and {𝑣2, 𝑣}
must be a linearly independent set, so such a v cannot exist. �

The sublattice orthogonal to a vector 𝒌 ∈ Z3

Consider Z3 as a lattice in R3 endowed with the usual dot product. Let 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ Z3\ {0} be
arbitrary and write 𝑘̂ = |𝑘 |−1𝑘 . Now we consider the set

{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

}
, namely, the sublattice

orthogonal to k. Let us recall the following well-known result.
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Theorem A.9. For (𝑘1, 𝑘2, 𝑘3) ∈ Z3\ {0} and 𝑐 ∈ Z, the linear Diophantine equation

𝑘1𝑚1 + 𝑘2𝑚2 + 𝑘3𝑚3 = 𝑐

is solvable with (𝑚1, 𝑚2, 𝑚3) ∈ Z3 if and only if c is a multiple of gcd (𝑘1, 𝑘2, 𝑘3). Moreover, in this case,
there exist linearly independent vectors 𝑣1, 𝑣2 ∈ Z3, which do not depend on c, such that if

(
𝑚∗

1, 𝑚
∗
2, 𝑚

∗
3
)

is any particular solution of the equation, then all solutions are given by{
(𝑚1, 𝑚2, 𝑚3) ∈ Z3 | 𝑘1𝑚1 + 𝑘2𝑚2 + 𝑘3𝑚3 = 𝑐

}
=
(
𝑚∗

1, 𝑚
∗
2, 𝑚

∗
3
)
+ {𝑎1𝑣1 + 𝑎2𝑣2 | 𝑎1, 𝑎2 ∈ Z} .

Note that the second part of the proposition states that (up to translation by a particular solution) the
solution set of a linear Diophantine equation forms a lattice, much as the solution set of a real-variable
linear equation forms a linear subspace. This result implies the following:

Proposition A.10. Let 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ Z3\ {0} be given. Then with 𝑙 = |𝑘 |−1 gcd (𝑘1, 𝑘2, 𝑘3), the
following disjoint union of nonempty sets holds:

Z
3 =
⋃
𝑚∈Z

{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
.

Additionally, there exist linearly independent vectors 𝑣1, 𝑣2 ∈ Z3, which span
{
𝑝 ∈ R3 | 𝑘̂ · 𝑝 = 0

}
, such

that for any 𝑚 ∈ Z, it holds for all 𝑞 ∈
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
that{

𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚
}
= 𝑞 + {𝑎1𝑣1 + 𝑎2𝑣2 | 𝑎1, 𝑎2 ∈ Z} .

Proof. Clearly, Z3 =
⋃
𝑡 ∈R
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑡

}
, so we must determine for which values of t it holds that{

𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑡
}
≠ ∅. The equation 𝑘̂ · 𝑝 = 𝑡 is equivalent to

𝑘1𝑝1 + 𝑘2𝑝2 + 𝑘3𝑝3 = |𝑘 |𝑡, (A.7)

where 𝑝 = (𝑝1, 𝑝2, 𝑝3) ∈ Z3, and as the left-hand side is an integer, we must have 𝑡 = |𝑘 |−1𝑐 for some
𝑐 ∈ Z. Theorem A.9 now furthermore implies that 𝑐 = gcd (𝑘1, 𝑘2, 𝑘3) · 𝑚 for some 𝑚 ∈ Z, so that
𝑡 = |𝑘 |−1 gcd (𝑘1, 𝑘2, 𝑘3) ·𝑚 = 𝑙𝑚, and as p was arbitrary, we see that Z3 =

⋃
𝑚∈Z
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
as claimed.

That all the sets
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
, 𝑚 ∈ Z, are also nonempty similarly follows from the ‘only

if’ part of Theorem A.9, and the representation{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
= 𝑞 + {𝑎1𝑣1 + 𝑎2𝑣2 | 𝑎1, 𝑎2 ∈ Z} (A.8)

for linearly independent 𝑣1, 𝑣2 ∈ Z3 is likewise a simple restatement of the second part of the theorem.
Finally, that 𝑣1 and 𝑣2 span

{
𝑝 ∈ R3 | 𝑘̂ · 𝑝 = 0

}
follows by noting that 𝑞 = (0, 0, 0) is a particular

solution of 𝑘̂ · 𝑝 = 0, whence by the previous part

{𝑣1, 𝑣2} ⊂ 𝑞 + {𝑎1𝑣1 + 𝑎2𝑣2 | 𝑎1, 𝑎2 ∈ Z} =
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

}
⊂
{
𝑝 ∈ R3 | 𝑘̂ · 𝑝 = 0

}
, (A.9)

so we find that span ({𝑣1, 𝑣2}) =
{
𝑝 ∈ R3 | 𝑘̂ · 𝑝 = 0

}
by linear independence of {𝑣1, 𝑣2} and dimen-

sionality consideration. �

Proposition A.10 implies that
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

}
is a lattice in {𝑘}⊥ =

{
𝑝 ∈ R3 | 𝑘̂ · 𝑝 = 0

}
. Since{

𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0
}

is a lattice, it has a well-defined covolume√
det
(
𝑣1 · 𝑣1 𝑣2 · 𝑣1
𝑣1 · 𝑣2 𝑣2 · 𝑣2

)
=
√
|𝑣1 |2 |𝑣2 |2 − (𝑣1 · 𝑣2)2 (A.10)

for any choice of generators 𝑣1 and 𝑣2. This covolume is explicitly given by the following:
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Proposition A.11. For any 𝑣1, 𝑣2 ∈ Z3 generating
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

}
, it holds that

|𝑣1 |2 |𝑣2 |2 − (𝑣1 · 𝑣2)2 = 𝑙−2

with 𝑙 = |𝑘 |−1 gcd (𝑘1, 𝑘2, 𝑘3). Additionally, 𝑣1 and 𝑣2 can be chosen such that |𝑣1 |2 + |𝑣2 |2 ≤ 8
𝜋2𝑙2

.

Proof. Let 𝑣1 and 𝑣2 generate
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

}
and let 𝑤 ∈

{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙

}
be arbitrary. By

linearity, it holds that{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
= 𝑚𝑤 +

{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

}
, 𝑚 ∈ Z, (A.11)

so by the Proposition A.10,

Z
3 =
⋃
𝑚∈Z

(
𝑚𝑤 +

{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

})
= {𝑚1𝑣1 + 𝑚2𝑣2 + 𝑚3𝑤 | 𝑚1, 𝑚2, 𝑚3 ∈ Z} (A.12)

(i.e., (𝑣1, 𝑣2, 𝑤) is a set of generators for Z3). Now, let {𝑘}⊥ =
{
𝑝 ∈ R3 | 𝑘̂ · 𝑝 = 0

}
be the orthogonal

complement of {𝑘}. Let (𝑒1, 𝑒2) be an orthonormal basis for {𝑘}⊥ so that
(
𝑒1, 𝑒2, 𝑘̂

)
forms an orthonor-

mal basis for R3. Then 𝑑
(
Z

3) is equal to111111det !"#
𝑒1 · 𝑣1 𝑒2 · 𝑣1 𝑘̂ · 𝑣1
𝑒1 · 𝑣2 𝑒2 · 𝑣2 𝑘̂ · 𝑣2
𝑒1 · 𝑤 𝑒2 · 𝑤 𝑘̂ · 𝑤

$%&
111111 =
111111det !"#

𝑒1 · 𝑣1 𝑒2 · 𝑣1 0
𝑒1 · 𝑣2 𝑒2 · 𝑣2 0
𝑒1 · 𝑤 𝑒2 · 𝑤 𝑙

$%&
111111 = 𝑙

1111det
(
𝑒1 · 𝑣1 𝑒2 · 𝑣1
𝑒1 · 𝑣2 𝑒2 · 𝑣2

)1111
= 𝑙

√
det
(
𝑣1 · 𝑣1 𝑣2 · 𝑣1
𝑣1 · 𝑣2 𝑣2 · 𝑣2

)
= 𝑙

√
|𝑣1 |2 |𝑣2 |2 − (𝑣1 · 𝑣2)2, (A.13)

but it is also clear that 𝑑
(
Z

3) = 1, so the first result follows. From this result, (A.10) and Corollary A.8,
we deduce that there exist generators 𝑣1 and 𝑣2 such that

|𝑣1 | |𝑣2 | ≤
4
𝜋
𝑑
({
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

})
=

4
𝜋
𝑙−1. (A.14)

Since 𝑣1, 𝑣2 ∈ Z3\ {0}, we have |𝑣1 |, |𝑣2 | ≥ 1, and hence,

|𝑣1 |2 + |𝑣2 |2 ≤ 2|𝑣1 |2 |𝑣2 |2 ≤ 8
𝜋2 𝑙

−2. (A.15)

�

A.2. Plane decomposition of 𝑳𝒌 and the summation formula

Now we turn to consider the lune 𝐿𝑘 =
{
𝑝 ∈ Z3 | |𝑝 − 𝑘 | ≤ 𝑘𝐹 < |𝑝 |

}
. Throughout this subsection,

we let 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ Z3\ {0} be fixed and write 𝑘̂ = |𝑘 |−1𝑘 and 𝑙 = |𝑘 |−1 gcd (𝑘1, 𝑘2, 𝑘3) for the
sake of brevity. The integrands of the Riemann sums we must consider only depend on the quantity
𝜆𝑘, 𝑝 = 𝑘 · 𝑝 − 1

2 |𝑘 |
2 = |𝑘 |

(
𝑘̂ · 𝑝 − 1

2 |𝑘 |
)
, so we begin by decomposing 𝐿𝑘 along the 𝑘̂ · 𝑝 = constant

planes. By the definition of 𝐿𝑘 , it easily follows that

𝐿𝑘 ⊂
{
𝑝 ∈ R3 | 1

2
|𝑘 | < 𝑘̂ · 𝑝 ≤ 𝑘𝐹 + |𝑘 |

}
. (A.16)
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Letting 𝑚∗ be the least integer and 𝑀∗ the greatest integer such that

1
2
|𝑘 | < 𝑙𝑚∗, 𝑙𝑀∗ ≤ 𝑘𝐹 + |𝑘 |, (A.17)

we see that the lune 𝐿𝑘 can be expressed as the disjoint union

𝐿𝑘 =
𝑀 ∗⋃
𝑚=𝑚∗

𝐿𝑚𝑘 , 𝐿𝑚𝑘 =
{
𝑝 ∈ 𝐿𝑘 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
. (A.18)

So for any function 𝑓 : R→ R, we may express a sum of the form
∑
𝑝∈𝐿𝑘 𝑓

(
𝜆𝑘, 𝑝
)

as

∑
𝑝∈𝐿𝑘

𝑓 (𝜆𝑘, 𝑝) =
𝑀 ∗∑
𝑚=𝑚∗

∑
𝑝∈𝐿𝑚

𝑘

𝑓

(
|𝑘 |
(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
))

=
𝑀 ∗∑
𝑚=𝑚∗

𝑓

(
|𝑘 |
(
𝑙𝑚 − 1

2
|𝑘 |
))

|𝐿𝑚𝑘 |. (A.19)

Rewriting 𝑳𝒎
𝒌

To proceed, we must analyze |𝐿𝑚𝑘 |, the number of points contained in 𝐿𝑚𝑘 . For this we first rewrite

𝐿𝑘 =
{
𝑝 ∈ Z3 | |𝑝 − 𝑘 | ≤ 𝑘𝐹 < |𝑝 |

}
=
{
𝑝 ∈ Z3 | 𝑘2

𝐹 < |𝑝 |2 ≤ 𝑘2
𝐹 − |𝑘 |2 + 2𝑘 · 𝑝

}
. (A.20)

Now let 𝑃⊥ : R3 → {𝑘}⊥ denote the orthogonal projection onto {𝑘}⊥. Then for any 𝑝 ∈ R3, |𝑝 |2 =

|𝑃⊥𝑝 |2 +
(
𝑘̂ · 𝑝
)2

, whence

𝐿𝑘 =

{
𝑝 ∈ Z3 | 𝑘2

𝐹 −
(
𝑘̂ · 𝑝
)2

< |𝑃⊥𝑝 |2 ≤ 𝑘2
𝐹 − |𝑘 |2 + 2𝑘 · 𝑝 −

(
𝑘̂ · 𝑝
)2}

=

{
𝑝 ∈ Z3 | 𝑘2

𝐹 −
(
𝑘̂ · 𝑝
)2

< |𝑃⊥𝑝 |2 ≤ 𝑘2
𝐹 −
(
𝑘̂ · 𝑝 − |𝑘 |

)2}
, (A.21)

and so the sets 𝐿𝑚𝑘 = 𝐿𝑘 ∩
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
may be written as

𝐿𝑚𝑘 =
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚, 𝑘2

𝐹 − (𝑙𝑚)2 < |𝑃⊥𝑝 |2 ≤ 𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2}

=
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚,

(
𝑅𝑚1
)2

< |𝑃⊥𝑝 |2 ≤
(
𝑅𝑚2
)2}

, (A.22)

where the real numbers 𝑅𝑚1 and 𝑅𝑚2 are

𝑅𝑚1 =
√
𝑘2
𝐹 − (𝑙𝑚)2, 𝑅𝑚2 =

√
𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2, 𝑚∗ < 𝑚 ≤ 𝑀∗, (A.23)

which are well defined by definition of 𝑚∗ and 𝑀∗.
Now by Proposition A.10, we can find the generators 𝑣1, 𝑣2 ∈ Z3 of

{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 0

}
. Moreover,

a fixed 𝑚∗ ≤ 𝑚 ≤ 𝑀∗, there exists 𝑞 ∈
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
, and any 𝑝 ∈ Z3 is an element of{

𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚
}

if and only if it can be written as

𝑝 = 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑞 (A.24)

for some 𝑎1, 𝑎2 ∈ Z. Since 𝑃⊥𝑞 ∈ {𝑘}⊥ by definition and the proposition likewise asserts that 𝑣1 and 𝑣2
span {𝑘}⊥, there must also exist 𝑏1, 𝑏2 ∈ R such that 𝑃⊥𝑞 = 𝑏1𝑣1 + 𝑏2𝑣2. Consequently, 𝑃⊥𝑝 for our
arbitrary element p takes the form

𝑃⊥𝑝 = 𝑎1𝑃⊥𝑣1 + 𝑎2𝑃⊥𝑣2 + 𝑃⊥𝑞 = (𝑎1 + 𝑏1) 𝑣1 + (𝑎2 + 𝑏2) 𝑣2 (A.25)
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whence

|𝑃⊥𝑝 |2 = (𝑎1 + 𝑏1)2 |𝑣1 |2 + (𝑎2 + 𝑏2)2 |𝑣2 |2 + 2 (𝑎1 + 𝑏1) (𝑎2 + 𝑏2) (𝑣1 · 𝑣2) , (A.26)

so by equation (A.22) we conclude that

|𝐿𝑚𝑘 | =
111{ (𝑎1, 𝑎2) ∈ Z2 |

(
𝑅𝑚1
)2

< (𝑎1 + 𝑏1)2 |𝑣1 |2 + (𝑎2 + 𝑏2)2 |𝑣2 |2

+ 2 (𝑎1 + 𝑏1) (𝑎2 + 𝑏2) (𝑣1 · 𝑣2) ≤
(
𝑅𝑚2
)2 }111

=
11 (𝐸𝑚2 \𝐸𝑚1 − (𝑏1, 𝑏2)

)
∩ Z211 , (A.27)

where the sets 𝐸𝑚1 and 𝐸𝑚2 , defined by

𝐸𝑚𝑖 =
{
(𝑥, 𝑦) ∈ R2 | |𝑣1 |2𝑥2 + |𝑣2 |2𝑦2 + 2 (𝑣1 · 𝑣2) 𝑥𝑦 ≤

(
𝑅𝑚𝑖
)2}

, 𝑖 = 1, 2, (A.28)

are seen to be (the closed interiors of) ellipses. The analysis of |𝐿𝑚𝑘 | thus reduces to the estimation of
the number of lattice points enclosed by these.

Lattice point estimation
To estimate |𝐿𝑚𝑘 | =

11 (𝐸𝑚2 \𝐸𝑚1 − (𝑏1, 𝑏2)
)
∩ Z2

11, we will use the following result on the number of lattice
points contained in compact, strictly convex regions in the plane:

Theorem A.12 [19]. Let 𝐾 ⊂ R2 be a compact, strictly convex set with 𝐶2 boundary and let 𝜕𝐾 have
minimal and maximal radii of curvature 0 < 𝑟1 ≤ 𝑟2. If 𝑟2 ≥ 1, then1111𝐾 ∩ Z211 − Area (𝐾)

11 ≤ 𝐶
𝑟2
𝑟1
𝑟

2
3
2 log

(
1 + 2

√
2𝑟2

) 2
3

for a constant 𝐶 > 0 independent of K, 𝑟1 and 𝑟2.

This result follows from the techniques of Chapter 8 of [19].
From the theorem, we deduce the following practical corollary:

Corollary A.13. Let 𝐸 ⊂ R2 be an ellipse with radii of curvature 0 < 𝑟1 ≤ 𝑟2. Then,1111𝐸 ∩ Z211 − Area(𝐸)
11 ≤ 𝐶

(
1 + 𝑟2

𝑟1
𝑟

2
3
2 log

(
1 + 2

√
2𝑟2

) 2
3
)

for a constant 𝐶 > 0 independent of E, 𝑟1 and 𝑟2.

Proof. The theorem gives the case that 𝑟2 ≥ 1. If 𝑟2 < 1, then we can circumscribe some disk D of
radius 1 around E, and trivially1111𝐸 ∩ Z211 − Area(𝐸)

11 ≤ max
(11𝐸 ∩ Z211 ,Area(𝐸)

)
≤ max

(11𝐷 ∩ Z211 ,Area (𝐷)
)
≤ 𝐶 (A.29)

as the right-hand side is seen to be bounded irrespective of the exact position of D. �

This corollary lets us estimate that

|𝐿𝑚𝑘 | = Area
(
𝐸𝑚2 \𝐸𝑚1

)
+𝑂

(
1 + 𝑟2

𝑟1
𝑟

2
3
2 log

(
1 + 2

√
2𝑟2

) 2
3 +

𝑟 ′2
𝑟 ′1

(
𝑟 ′2
) 2

3 log
(
1 + 2

√
2𝑟 ′2
) 2

3

)
, (A.30)

where 𝑟𝑖 and 𝑟 ′𝑖 , 𝑖 = 1, 2 denote the radii of curvature of 𝐸𝑚1 and 𝐸𝑚2 , as the translation by (𝑏1, 𝑏2)
affects neither the areas nor the radii of curvature of the ellipses.
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To proceed, we must obtain some information on the geometry of the ellipses 𝐸𝑚𝑖 . By the definition
(A.28), the semi-axes 𝑎𝑖 ≥ 𝑏𝑖 > 0 of 𝐸𝑚𝑖 are given by

𝑎𝑖 =
√

2𝑅𝑚𝑖

(
|𝑣1 |2 + |𝑣2 |2 −

√(
|𝑣1 |2 − |𝑣2 |2

)2 + 4 (𝑣1 · 𝑣2)2
)− 1

2

,

𝑏𝑖 =
√

2𝑅𝑚𝑖

(
|𝑣1 |2 + |𝑣2 |2 +

√(
|𝑣1 |2 − |𝑣2 |2

)2 + 4 (𝑣1 · 𝑣2)2
)− 1

2

. (A.31)

We can now describe the geometry of the ellipses 𝐸𝑚𝑖 in terms of k and m:

Proposition A.14. If |𝑘 | ≤ 2𝑘𝐹 , then

Area
(
𝐸𝑚2 \𝐸𝑚1

)
=

⎧⎪⎪⎨⎪⎪⎩
2𝜋 |𝑘 |

(
𝑙𝑚 − 1

2 |𝑘 |
)
𝑙 if 𝑙𝑚∗ ≤ 𝑙𝑚 ≤ 𝑘𝐹 ,

𝜋
(
𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2

)
𝑙 if 𝑘𝐹 < 𝑙𝑚 ≤ 𝑙𝑀∗,

and the radii of curvature 0 < 𝑟1 ≤ 𝑟2 of both 𝐸𝑚1 , 𝐸𝑚2 obey

𝑟2
𝑟1

≤ 𝐶𝑙−3, 𝑟2 ≤ 𝐶𝑙−1𝑘𝐹 ,

for a constant 𝐶 > 0 independent of k and m.

(The condition |𝑘 | ≤ 2𝑘𝐹 ensures that the lune does not degenerate into a ball, in which case the
area formula must be modified.)

Proof. Let 𝑣1 and 𝑣2 be the generators given by Proposition A.11. The area enclosed by an ellipse with
semi-axes a and b is 𝜋𝑎𝑏, so as 𝐸𝑚1 ⊂ 𝐸𝑚2 for any 𝑚∗ ≤ 𝑚 ≤ 𝑀∗ and 𝐸𝑚1 ≠ ∅ when 𝑙𝑚 ≤ 𝑘𝐹 , we find
in this case that

Area
(
𝐸𝑚2 \𝐸𝑚1

)
= 𝜋 (𝑎2𝑏2 − 𝑎1𝑏1) =

2𝜋
( (
𝑅𝑚2
)2 − (𝑅𝑚1 )2)√(

|𝑣1 |2 + |𝑣2 |2
)2 − ( (|𝑣1 |2 − |𝑣2 |2

)2 + 4 (𝑣1 · 𝑣2)2
)

=
2𝜋
(
𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2 −

(
𝑘2
𝐹 − (𝑙𝑚)2) )√

4|𝑣1 |2 |𝑣2 |2 + 4 (𝑣1 · 𝑣2)2
= 2𝜋 |𝑘 |

(
𝑙𝑚 − 1

2
|𝑘 |
)
𝑙 (A.32)

and similarly in the case 𝑘𝐹 < 𝑙𝑚 that

Area
(
𝐸𝑚2 \𝐸𝑚1

)
= Area

(
𝐸𝑚2
)
= 𝜋𝑎2𝑏2 =

2𝜋
(
𝑅𝑚2
)2

2𝑙−1 = 𝜋
(
𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2

)
𝑙. (A.33)

For the radii of curvature, we note that for an ellipse with semi-axes 𝑎 ≥ 𝑏 > 0, these are given by
𝑟1 = 𝑎−1𝑏2 and 𝑟2 = 𝑏−1𝑎2, respectively, so for the ratio 𝑟−1

1 𝑟2, we can for either of 𝐸𝑚1 and 𝐸𝑚2 estimate
using equation (A.31) that
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𝑟2
𝑟1

=

(
𝑎𝑖
𝑏𝑖

)3
=
!""#
|𝑣1 |2 + |𝑣2 |2 +

√(
|𝑣1 |2 − |𝑣2 |2

)2 + 4 (𝑣1 · 𝑣2)2

|𝑣1 |2 + |𝑣2 |2 −
√(

|𝑣1 |2 − |𝑣2 |2
)2 + 4 (𝑣1 · 𝑣2)2

$%%&
3
2

=

!""""#
(
|𝑣1 |2 + |𝑣2 |2 +

√(
|𝑣1 |2 − |𝑣2 |2

)2 + (𝑣1 · 𝑣2)2
)2

(
|𝑣1 |2 + |𝑣2 |2

)2 − ( (|𝑣1 |2 − |𝑣2 |2
)2 + 4 (𝑣1 · 𝑣2)2

) $%%%%&
3
2

≤
( (

2(|𝑣1 |2 + |𝑣2 |2)
)2

4(|𝑣1 |2 |𝑣2 |2 − (𝑣1 · 𝑣2)2)

) 3
2

≤
(
(𝐶𝑙−2)2

𝑙2

)3/2

≤ 𝐶𝑙−3 (A.34)

and likewise estimate for 𝑟2 that

𝑟2 =
𝑎2
𝑖

𝑏𝑖
=
√

2𝑅𝑚𝑖

√
|𝑣1 |2 + |𝑣2 |2 +

√(
|𝑣1 |2 − |𝑣2 |2

)2 + 4 (𝑣1 · 𝑣2)2

|𝑣1 |2 + |𝑣2 |2 −
√(

|𝑣1 |2 − |𝑣2 |2
)2 + 4 (𝑣1 · 𝑣2)2

=
√

2𝑅𝑚𝑖

(
|𝑣1 |2 + |𝑣2 |2 +

√(
|𝑣1 |2 − |𝑣2 |2

)2 + 4 (𝑣1 · 𝑣2)2
) 3

2

(
|𝑣1 |2 + |𝑣2 |2

)2 − ( (|𝑣1 |2 − |𝑣2 |2
)2 + 4 (𝑣1 · 𝑣2)2

)
≤
√

2𝑅𝑚𝑖

(
2
(
|𝑣1 |2 + |𝑣2 |2

) ) 3
2

4(|𝑣1 |2 |𝑣2 |2 − (𝑣1 · 𝑣2)2)
≤
(
𝐶𝑙−2

) 3
2
𝑙2𝑅𝑚𝑖 ≤ 𝐶𝑙−1𝑘𝐹 . (A.35)

Here, we also used that 𝑅𝑚1 , 𝑅𝑚2 ≤ 𝑘𝐹 for all 𝑚∗ ≤ 𝑚 ≤ 𝑀∗. �

The summation formula
We can now present the summation formula that we will use to estimate the sums

∑
𝑝∈𝐿𝑘 𝑓

(
𝜆𝑘, 𝑝
)
.

Noting that the quantity 𝑙 = |𝑘 |−1 gcd (𝑘1, 𝑘2, 𝑘3) obeys the lower bound 𝑙 ≥ |𝑘 |−1 independently of k,
we can by equation (A.30) and Proposition A.14 estimate (provided |𝑘 | ≤ 2𝑘𝐹 ) that

11|𝐿𝑚𝑘 | − Area
(
𝐸𝑚2 \𝐸𝑚1

) 11 ≤ 𝐶

(
1 + 𝑙−3

(
𝑙−1𝑘𝐹

) 2
3 log

(
1 + 2

√
2
(
𝑙−1𝑘𝐹

) 1
2
) 2

3
)

≤ 𝐶

(
1 + |𝑘 |3+

2
3 𝑘

2
3
𝐹 log

(
1 +
√
|𝑘 |𝑘𝐹

) 2
3
)
≤ 𝐶 |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹 (A.36)

as 𝑘𝐹 → ∞, for a constant 𝐶 > 0 independent of k and m. Inserting the expression for Area
(
𝐸𝑚2 \𝐸𝑚1

)
that we determined in Proposition A.14, we then have

|𝐿𝑚𝑘 | =
⎧⎪⎪⎨⎪⎪⎩

2𝜋 |𝑘 |
(
𝑙𝑚 − 1

2 |𝑘 |
)
𝑙 𝑙𝑚∗ ≤ 𝑙𝑚 ≤ 𝑘𝐹

𝜋
(
𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2

)
𝑙 𝑘𝐹 < 𝑙𝑚 ≤ 𝑙𝑀∗

+𝑂

(
|𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

)
. (A.37)
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Letting M denote the greatest integer such that 𝑙𝑀 ≤ 𝑘𝐹 , it now follows from equation (A.19) that for
any 𝑓 : (0,∞) → R, it holds that∑

𝑝∈𝐿𝑘

𝑓 (𝜆𝑘, 𝑝) = 2𝜋 |𝑘 |
𝑀∑

𝑚=𝑚∗
𝑓

(
|𝑘 |
(
𝑙𝑚 − 1

2
|𝑘 |
)) (

𝑙𝑚 − 1
2
|𝑘 |
)
𝑙

+ 𝜋
𝑀 ∗∑

𝑚=𝑀+1
𝑓

(
|𝑘 |
(
𝑙𝑚 − 1

2
|𝑘 |
)) (

𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2

)
𝑙

+𝑂

(
|𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

𝑀 ∗∑
𝑚=𝑚∗

1111 𝑓 (|𝑘 | (𝑙𝑚 − 1
2
|𝑘 |
))1111) , (A.38)

so the 3-dimensional Riemann sum
∑
𝑝∈𝐿𝑘 𝑓

(
𝜆𝑘, 𝑝
)

has been reduced to two 1-dimensional Riemann
sums plus an error term. In fact, these two 1-dimensional Riemann sums are just what one would expect,
since by 3D integrating along the 𝑘̂ axis it is not difficult to show that, in general,∫

𝐵 (𝑘,𝑘𝐹 )\𝐵 (0,𝑘𝐹 )
𝑓

(
𝑘 · 𝑝 − 1

2
|𝑘 |2
)
𝑑𝑝 = 2𝜋 |𝑘 |

∫ 𝑘𝐹

1
2 |𝑘 |

𝑓

(
|𝑘 |
(
𝑡 − 1

2
|𝑘 |
)) (

𝑡 − 1
2
|𝑘 |
)
𝑑𝑡

+ 𝜋

∫ 𝑘𝐹+|𝑘 |

𝑘𝐹

𝑓

(
|𝑘 |
(
𝑡 − 1

2
|𝑘 |
)) (

𝑘2
𝐹 − (𝑡 − |𝑘 |)2

)
𝑑𝑡, (A.39)

and the two Riemann sums of equation (A.38) are seen to be Riemann sums for the two 1-dimensional
integrals above.

In the statement in the following proposition, we make a minor adjustment: We expand the factor
𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2 as

𝑘2
𝐹 − (𝑙𝑚 − |𝑘 |)2 = 𝑘2

𝐹 − (𝑙𝑚)2 − |𝑘 |2 + 2|𝑘 |𝑙𝑚 =
(
𝑘2
𝐹 − (𝑙𝑚)2

)
+ 2|𝑘 |

(
𝑙𝑚 − 1

2
|𝑘 |
)

(A.40)

and collect the 2|𝑘 | (𝑙𝑚 − 1
2 |𝑘 |) terms in the first sum. We have the summation formula:

Proposition A.15. Let 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ Z3\ {0} with |𝑘 | ≤ 2𝑘𝐹 , 𝑓 : (0,∞) → R. Let
𝑙 = |𝑘 |−1 gcd (𝑘1, 𝑘2, 𝑘3) and 𝑚∗ is the least integer and M, 𝑀∗ the greatest integers for which

1
2
|𝑘 | < 𝑙𝑚∗, 𝑙𝑀 ≤ 𝑘𝐹 , 𝑙𝑀∗ ≤ 𝑘𝐹 + |𝑘 |.

Then for all functions 𝑓 : (0,∞) → R, it holds that∑
𝑝∈𝐿𝑘

𝑓 (𝜆𝑘, 𝑝) = 2𝜋 |𝑘 |
𝑀 ∗∑
𝑚=𝑚∗

𝑓

(
|𝑘 |
(
𝑙𝑚 − 1

2
|𝑘 |
)) (

𝑙𝑚 − 1
2
|𝑘 |
)
𝑙

+ 𝜋
𝑀 ∗∑

𝑚=𝑀+1
𝑓

(
|𝑘 |
(
𝑙𝑚 − 1

2
|𝑘 |
)) (

𝑘2
𝐹 − (𝑙𝑚)2

)
𝑙

+𝑂

(
|𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

𝑀 ∗∑
𝑚=𝑚∗

1111 𝑓 (|𝑘 | (𝑙𝑚 − 1
2
|𝑘 |
))1111) , 𝑘𝐹 → ∞.

A.3. Proof of Proposition A.1

Now we prove Proposition A.1 and (A.2). In this part, we do not use Proposition A.15.
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Some Riemann sum estimation techniques
We must first establish some preliminary Riemann sum estimation results. Let 𝑆 ⊂ R𝑛, 𝑛 ∈ N, be given,
define for 𝑘 ∈ Z𝑛 the translated unit cube C𝑘 by

C𝑘 =
[
−2−1, 2−1]𝑛 + 𝑘 (A.41)

and let C𝑆 =
⋃
𝑘∈𝑆∩Z𝑛 C𝑘 denote the union of the cubes centered at the lattice points contained in S.

The first result we will establish is that for a convex function f, the integral
∫
C𝑆

𝑓 (𝑝)𝑑𝑝 always yields an
upper bound to the Riemann sum

∑
𝑘∈𝑆∩Z𝑛 𝑓 (𝑘):

Proposition A.16. Let 𝑓 ∈ 𝐶 (C𝑆) be a function which is convex on C𝑘 for all 𝑘 ∈ 𝑆 ∩ Z𝑛. Then,∑
𝑘∈𝑆∩Z𝑛

𝑓 (𝑘) ≤
∫
C𝑆

𝑓 (𝑝)𝑑𝑝.

Proof. As a convex function admits a supporting hyperplane at every interior point of its domain, we
see that for every 𝑘 ∈ 𝑆 ∩ Z𝑛, there exists a 𝑐 ∈ R𝑛 such that

𝑓 (𝑝) ≥ 𝑓 (𝑘) + 𝑐 · (𝑝 − 𝑘) , 𝑝 ∈ C𝑘 , (A.42)

which upon integration over C𝑘 yields∫
C𝑘

𝑓 (𝑝)𝑑𝑝 ≥
∫
C𝑘

𝑓 (𝑘)𝑑𝑝 +
∫
C𝑘

𝑐 · (𝑝 − 𝑘) 𝑑𝑝 = 𝑓 (𝑘) (A.43)

as
∫
C𝑆

𝑓 (𝑘)𝑑𝑝 = 𝑓 (𝑘) since Vol (C𝑘 ) = 1 and
∫
C𝑆

𝑐 · (𝑝 − 𝑘) 𝑑𝑝 = 0, as C𝑘 is symmetric with respect to
k but the integrand 𝑝 ↦→ 𝑐 · (𝑝 − 𝑘) is antisymmetric. Consequently,∑

𝑘∈𝑆∩Z𝑛
𝑓 (𝑘) ≤

∑
𝑘∈𝑆∩Z𝑛

∫
C𝑘

𝑓 (𝑝)𝑑𝑝 =
∫
C𝑆

𝑓 (𝑝)𝑑𝑝. (A.44)

�

This proposition lets us replace the sum by an integral but over an integration domain C𝑆 which will
generally be complicated. An exception is the 𝑛 = 1 case which we record in the following (generalizing
also the statement to any lattice spacing l):

Proposition A.17. Let 𝑎, 𝑏 ∈ Z, 𝑙 > 0, and 𝑓 ∈ 𝐶
( [
𝑙𝑎 − 1

2 𝑙, 𝑙𝑏 + 1
2 𝑙
] )

be a convex function. Then,

𝑏∑
𝑚=𝑎

𝑓 (𝑙𝑚)𝑙 ≤
∫ 𝑙𝑏+ 1

2 𝑙

𝑙𝑎− 1
2 𝑙

𝑓 (𝑥)𝑑𝑥.

For 𝑛 ≠ 1, we instead require an additional result that lets us replace C𝑆 by a simpler integration
domain. We define a subset 𝑆+ ⊂ R𝑛 by

𝑆+ =

{
𝑝 ∈ R𝑛 | inf

𝑞∈𝑆
|𝑝 − 𝑞 | ≤

√
𝑛

2

}
(A.45)

and observe the following:

Proposition A.18. It holds that C𝑆 ⊂ 𝑆+. Consequently,

|𝑆 ∩ Z𝑛 | ≤ Vol (𝑆+) .
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Proof. We first note that for any 𝑝 ∈ R𝑛, every point of the translated cube
( [
−2−1, 2−1] + 𝑝

)𝑛 is a
distance of at most

√
𝑛

2 separated from p itself. Now, let 𝑝 ∈ C𝑆 . Then by definition of C𝑆 and the previous
observation, there exists some 𝑘 ∈ 𝑆 ∩ Z𝑛 such that |𝑝 − 𝑘 | ≤

√
𝑛

2 , and hence, 𝑝 ∈ 𝑆+ since

inf
𝑞∈𝑆

|𝑝 − 𝑞 | ≤ |𝑝 − 𝑘 | ≤
√
𝑛

2
. (A.46)

Clearly, |𝑆 ∩ Z𝑛 | =
∑
𝑘∈𝑆∩Z𝑛 1 =

∑
𝑘∈𝑆∩Z𝑛 Vol (C𝑘 ) = Vol (C𝑆), so the inclusion C𝑆 ⊂ 𝑆+ immedi-

ately implies that |𝑆 ∩ Z𝑛 | ≤ Vol (𝑆+). �

Lune geometry
Returning to Proposition A.1 and (A.2), we now let 𝑘 ∈ Z3

∗ and −1 ≤ 𝛽 ≤ 0 be fixed. The Riemann sum
ranges over 𝑝 ∈ 𝐿𝑘 = (𝐵(𝑘, 𝑘𝐹 )\𝐵(0, 𝑘𝐹 )) ∩ Z3, so in the notation of the above discussion we must
consider 𝑆 = 𝐵(𝑘, 𝑘𝐹 )\𝐵(0, 𝑘𝐹 ). The relevant integrand,

𝑝 ↦→ 𝜆
𝛽
𝑘,𝑝 =

(
1
2

(
|𝑝 |2 − |𝑝 − 𝑘 |2

))𝛽
= |𝑘 |𝛽

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

, (A.47)

is convex on {𝑝 ∈ R3 | 𝑘̂ · 𝑝 > 1
2 |𝑘 |} but singular at {𝑝 ∈ R3 | 𝑘̂ · 𝑝 = 1

2 |𝑘 |}. For this reason, we must
introduce a cutoff to the Riemann sum

∑
𝑝∈𝐿𝑘 𝜆

𝛽
𝑘,𝑝 . We write 𝑆 = 𝑆1 ∪ 𝑆2

𝑆1 =

{
𝑝 ∈ 𝑆 | 𝑘̂ · 𝑝 ≤ 1

2
|𝑘 | + 2 +

√
3

2

}
, 𝑆2 =

{
𝑝 ∈ 𝑆 | 𝑘̂ · 𝑝 >

1
2
|𝑘 | + 2 +

√
3

2

}
, (A.48)

so that likewise, 𝐿𝑘 = 𝐿1
𝑘 ∪ 𝐿2

𝑘 where 𝐿1
𝑘 = 𝐿𝑘 ∩ 𝑆1, 𝐿2

𝑘 = 𝐿𝑘 ∩ 𝑆2. Hence, by Proposition A.18,

∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 =

∑
𝑝∈𝐿1

𝑘

𝜆
𝛽
𝑘,𝑝 +

∑
𝑝∈𝐿2

𝑘

𝜆
𝛽
𝑘,𝑝 ≤

(
inf
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

)𝛽 11𝐿1
𝑘

11 + ∫
C𝑆2

|𝑘 |𝛽
(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝

≤
(

inf
𝑝∈𝐿𝑘

𝜆𝑘, 𝑝

)𝛽
Vol
(
𝑆1
+

)
+ |𝑘 |𝛽

∫
𝑆2
+

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝, (A.49)

where we also used that 𝑝 ↦→ ( 𝑘̂ · 𝑝 − 1
2 |𝑘 |)

𝛽 is non-negative to expand the integration range of the
integral. In order to apply this inequality, we will again replace the sets 𝑆1

+, 𝑆2
+ by ones which are easier

to work with. We have the following:

Proposition A.19. For all 𝑘 ∈ Z3, it holds that

𝑆+ =

{
𝑝 ∈ R3 | inf

𝑞∈𝑆
|𝑝 − 𝑞 | ≤

√
3

2

}
⊂ 𝑆 = 𝐵

(
𝑘, 𝑘𝐹 +

√
3

2

)
\𝐵
(
0, 𝑘𝐹 −

√
3

2

)
,

𝑆1
+ =

{
𝑝 ∈ R3 | inf

𝑞∈𝑆1
|𝑝 − 𝑞 | ≤

√
3

2

}
⊂ 𝑆1 =

{
𝑝 ∈ 𝑆 | −

√
3

2
≤ 𝑘̂ · 𝑝 − 1

2
|𝑘 | ≤ 1 +

√
3

}
,

𝑆2
+ =

{
𝑝 ∈ R3 | inf

𝑞∈𝑆2
|𝑝 − 𝑞 | ≤

√
3

2

}
⊂ 𝑆2 =

{
𝑝 ∈ 𝑆 | 𝑘̂ · 𝑝 − 1

2
|𝑘 | ≥ 1

}
.
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Proof. We first show that 𝑆+ ⊂ 𝑆. For every 𝑝 ∈ 𝑆+ by the triangle inequality, we can estimate

|𝑝 | ≥ sup
𝑞∈𝑆

(
|𝑞 | − |𝑝 − 𝑞 |

)
> 𝑘𝐹 − inf

𝑞∈𝑆
|𝑝 − 𝑞 | ≥ 𝑘𝐹 −

√
3

2
, (A.50)

|𝑝 − 𝑘 | ≤ inf
𝑞∈𝑆

(
|𝑞 − 𝑘 | + |𝑝 − 𝑞 |

)
≤ 𝑘𝐹 + inf

𝑞∈𝑆
|𝑝 − 𝑞 | ≤ 𝑘𝐹 +

√
3

2
,

and hence, 𝑝 ∈ 𝑆. Next, we prove 𝑆1
+ ⊂ 𝑆1: for every 𝑝 ∈ 𝑆1

+, we have

𝑘̂ · 𝑝 − 1
2
|𝑘 | = inf

𝑞∈𝑆1

(
𝑘̂ · 𝑞 − 1

2
|𝑘 | + 𝑘̂ · (𝑝 − 𝑞)

)
≤ 2 +

√
3

2
+ inf
𝑞∈𝑆1

|𝑝 − 𝑞 | ≤ 1 +
√

3, (A.51)

𝑘̂ · 𝑝 − 1
2
|𝑘 | = sup

𝑞∈𝑆1

(
𝑘̂ · 𝑞 − 1

2
|𝑘 | + 𝑘̂ · (𝑝 − 𝑞)

)
≥ − inf

𝑞∈𝑆1
|𝑝 − 𝑞 | ≥ −

√
3

2
(A.52)

and hence, 𝑝 ∈ 𝑆1. Here, we used the definition of 𝑆1 and 𝑆1 ⊂ 𝑆 ⊂
{
𝑞 ∈ R3 | 𝑘̂ · 𝑞 > 1

2 |𝑘 |
}
. That

𝑝 ∈ 𝑆2
+ implies 𝑘̂ · 𝑝 − 1

2 |𝑘 | ≥ 1 follows by the same argument. �

Thanks to the simple bound 𝜆𝑘, 𝑝 ≥ 1
2 for all 𝑝 ∈ 𝐿𝑘 , we can now conclude the inequality

∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 2−𝛽 Vol(𝑆1) + |𝑘 |𝛽

∫
𝑆2

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝. (A.53)

Hence, we need only consider the sets 𝑆1 and 𝑆2, which consist of ‘slices’ of 𝑆:

𝑆 =
⋃
𝑡

𝑆𝑡 , 𝑆𝑡 = {𝑝 ∈ 𝑆 | 𝑘̂ · 𝑝 = 𝑡}. (A.54)

Recalling the definition of 𝑆 from Proposition A.19 and using elementary trigonometry, we can show
that

Area
(
𝑆𝑡

)
= 𝜋
!"#
(
𝑘𝐹 +

√
3

2

)2
− (𝑡 − |𝑘 |)2$%& − 𝜋

!"#
(
𝑘𝐹 −

√
3

2

)2
− |𝑡 |2$%&

= 𝜋
(
2
√

3𝑘𝐹 −
(
|𝑘 |2 − 2|𝑘 |𝑡

))
= 2𝜋

(
|𝑘 |
(
𝑡 − 1

2
|𝑘 |
)
+
√

3𝑘𝐹
)

(A.55)

for |𝑘 |/2 −
√

3/2 ≤ 𝑡 ≤ 𝑘𝐹 −
√

3/2, and that

Area
(
𝑆𝑡

)
= 𝜋
!"#
(
𝑘𝐹 +

√
3

2

)2
− (𝑡 − |𝑘 |)2$%& = 𝜋

!"#
(
𝑘𝐹 +

√
3

2

)2
−
(
𝑡2 − 2|𝑘 |

(
𝑡 − 1

2
|𝑘 |
))$%&

= 2𝜋
(
|𝑘 |
(
𝑡 − 1

2
|𝑘 |
)
+
√

3𝑘𝐹
)
+ 𝜋
!"#
(
𝑘𝐹 −

√
3

2

)2
− 𝑡2
$%&

≤ 2𝜋
(
|𝑘 |
(
𝑡 − 1

2
|𝑘 |
)
+
√

3𝑘𝐹
)

(A.56)

for 𝑘𝐹 −
√

3/2 ≤ 𝑡 ≤ 𝑘𝐹 +
√

3/2 + |𝑘 |.
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With these formulas, we can now give the following:

Proof of the|𝑘 | < 2𝑘𝐹case of Proposition A.1 and (A.2). By equation (A.53), we have∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 2−𝛽 Vol(𝑆1) + |𝑘 |𝛽

∫
𝑆2

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝, (A.57)

and we can estimate

Vol(𝑆1) =
∫ 1

2 |𝑘 |+1+
√

3

1
2 |𝑘 |−

√
3

2

Area(𝑆𝑡 )𝑑𝑡 = 2𝜋
∫ 1

2 |𝑘 |+1+
√

3

1
2 |𝑘 |−

√
3

2

(
|𝑘 |
(
𝑡 − 1

2
|𝑘 |
)
+
√

3𝑘𝐹
)
𝑑𝑡 (A.58)

= 2𝜋
∫ 1+

√
3

−
√

3
2

(
|𝑘 |𝑡 +

√
3𝑘𝐹
)
𝑑𝑡 ≤ 𝐶 (|𝑘 | + 𝑘𝐹 ) ≤ 𝐶𝑘𝐹 = 𝑂

(
𝑘

2+𝛽
𝐹 |𝑘 |1+𝛽

)
,

for all −1 ≤ 𝛽 ≤ 0, and∫
𝑆2

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝 =
∫ 𝑘𝐹+

√
3

2 +|𝑘 |

1
2 |𝑘 |+1

(
𝑡 − 1

2
|𝑘 |
)𝛽

Area
(
𝑆𝑡

)
𝑑𝑡

≤ 2𝜋
∫ 𝑘𝐹+

√
3

2 +|𝑘 |

1
2 |𝑘 |+1

(
𝑡 − 1

2
|𝑘 |
)𝛽 (

|𝑘 |
(
𝑡 − 1

2
|𝑘 |
)
+
√

3𝑘𝐹
)
𝑑𝑡

= 2𝜋

(
|𝑘 |
∫ 𝑘𝐹+

√
3

2 + 1
2 |𝑘 |

1
𝑡1+𝛽 𝑑𝑡 +

√
3𝑘𝐹
∫ 𝑘𝐹+

√
3

2 + 1
2 |𝑘 |

1
𝑡𝛽 𝑑𝑡

)
≤ 2𝜋 !"# |𝑘 |

2 + 𝛽

(
𝑘𝐹 +

√
3

2
+ 1

2
|𝑘 |
)2+𝛽

+
√

3
1 + 𝛽

𝑘𝐹

(
𝑘𝐹 +

√
3

2
+ 1

2
|𝑘 |
)1+𝛽$%& ≤ 𝐶𝑘

2+𝛽
𝐹 |𝑘 | (A.59)

for −1 < 𝛽 ≤ 0, and∫
𝑆2

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)−1

𝑑𝑝 ≤ 2𝜋

(
|𝑘 |
∫ 𝑘𝐹+

√
3

2 + 1
2 |𝑘 |

1
1 𝑑𝑡 +

√
3𝑘𝐹
∫ 𝑘𝐹+

√
3

2 + 1
2 |𝑘 |

1
𝑡−1 𝑑𝑡

)
≤ 𝐶

(
|𝑘 |𝑘𝐹 + 𝑘𝐹 log

(
𝑘𝐹 +

√
3

2
+ 1

2
|𝑘 |
))

≤ 𝐶 |𝑘 |
(
1 + |𝑘 |−1 log (𝑘𝐹 )

)
𝑘𝐹

(A.60)

for 𝛽 = −1. Combining the estimates yields the claim. �

Proof of the |𝑘 | ≥ 2𝑘𝐹 case of Proposition A.1. For |𝑘 | ≥ 2𝑘𝐹 , the lune 𝑆 = 𝐵 (𝑘, 𝑘𝐹 ) \𝐵(0, 𝑘𝐹 ) de-
generates into a ball, and so we must adapt our argument. Now it is simply the case that

𝑆+ = 𝑆 = 𝐵

(
𝑘, 𝑘𝐹 +

√
3

2

)
. (A.61)

If 1
2 |𝑘 | ≥ 𝑘𝐹 + 2+

√
3

2 , then every 𝑝 ∈ 𝑆 satisfies 𝑘̂ · 𝑝 − 1
2 |𝑘 | ≥ 1 and the cutoff set 𝑆1 is unnecessary.

Otherwise, the equation (A.53),∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 2−𝛽 Vol

(
𝑆1
)
+ |𝑘 |𝛽

∫
𝑆2

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝, (A.62)
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still holds for

𝑆1 =

{
𝑝 ∈ 𝑆 | 𝑘̂ · 𝑝 − 1

2
|𝑘 | ≤ 1 +

√
3
}
, 𝑆2 =

{
𝑝 ∈ 𝑆 | 𝑘̂ · 𝑝 − 1

2
|𝑘 | ≥ +1

}
, (A.63)

where we simplified the description for 𝑆1 using that 𝑘̂ · 𝑝 − 1
2 |𝑘 | ≥ −

√
3

2 holds for all 𝑝 ∈ 𝑆 when
|𝑘 | ≥ 2𝑘𝐹 . We can then easily estimate Vol

(
𝑆1

)
, as it is now seen to be a spherical cap of radius 𝑘𝐹 +

√
3

2
and height (

1
2
|𝑘 | + 1 +

√
3
)
−
(
|𝑘 | − 𝑘𝐹 −

√
3

2

)
≤ 𝑘𝐹 − 1

2
|𝑘 | + 2 + 3

√
3

2
≤ 2 + 3

√
3

2
, (A.64)

whence

Vol
(
𝑆1
)
≤ 𝜋

3

(
2 + 3

√
3

2

)2 (
3

(
𝑘𝐹 +

√
3

2

)
− 2 + 3

√
3

2

)
≤ 𝐶𝑘𝐹 , (A.65)

so as 𝑘𝐹 = 𝑂
(
𝑘3
𝐹 |𝑘 |

2𝛽 ) for all −1 ≤ 𝛽 ≤ 0 when 2𝑘𝐹 ≤ |𝑘 | ≤ 2𝑘𝐹 +
√

3
2 , this is again negligible. �

We estimate the integrals to conclude the following:

Proof of the second part of Proposition A.1. We again note that the area of the slice 𝑆𝑡 is given by

Area
(
𝑆𝑡

)
= 𝜋
!"#
(
𝑘𝐹 +

√
3

2

)2
− (𝑡 − |𝑘 |)2$%& , (A.66)

now for |𝑘 | − 𝑘𝐹 −
√

3
2 ≤ 𝑡 ≤ |𝑘 | + 𝑘𝐹 +

√
3

2 . If |𝑘 | ≤ 2𝑘𝐹 + 1 +
√

3, we just saw that the contribution
coming from the cutoff set 𝑆1 is negligible, while the integral term is

|𝑘 |𝛽
∫
𝑆2

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝 = |𝑘 |𝛽
∫ 𝑘𝐹+

√
3

2 +|𝑘 |

1
2 |𝑘 |+1

(
𝑡 − 1

2
|𝑘 |
)𝛽

Area
(
𝑆𝑡

)
𝑑𝑡 ≤ 𝐶𝑘

2+𝛽
𝐹 |𝑘 |1+𝛽 (A.67)

as calculated in equation (A.59), which is 𝑂
(
𝑘3
𝐹 |𝑘 |

2𝛽 ) for 2𝑘𝐹 ≤ |𝑘 | ≤ 2𝑘𝐹 + 1 +
√

3 (here we also use
that for 𝛽 = −1, the logarithmic term in the estimate of equation (A.60) is negligible when |𝑘 | ≥ 2𝑘𝐹
due to the additional factor of |𝑘 |−1).

If |𝑘 | > 2𝑘𝐹 + 2+
√

3
2 , we simply have

∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ |𝑘 |𝛽

∫
𝑆

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝 = |𝑘 |𝛽
∫ |𝑘 |+𝑘𝐹+

√
3

2

|𝑘 |−𝑘𝐹−
√

3
2

(
𝑡 − 1

2
|𝑘 |
)𝛽

Area
(
𝑆𝑡

)
𝑑𝑡, (A.68)

and by writing (𝑡 − |𝑘 |)2 =
(
𝑡 − 1

2 |𝑘 |
)2

− |𝑘 |
(
𝑡 − 1

2 |𝑘 |
)
+ 1

4 |𝑘 |
2, we can furthermore estimate that

Area
(
𝑆𝑡

)
= 𝜋
!"#
(
𝑘𝐹 +

√
3

2

)2
−
((
𝑡 − 1

2
|𝑘 |
)2

− |𝑘 |
(
𝑡 − 1

2
|𝑘 |
)
+ 1

4
|𝑘 |2
)$%&

= 𝜋
!"#|𝑘 |
(
𝑡 − 1

2
|𝑘 |
)
− !"#1

4
|𝑘 |2 −

(
𝑘𝐹 +

√
3

2

)2$%& −
(
𝑡 − 1

2
|𝑘 |
)2$%& ≤ 𝜋 |𝑘 |

(
𝑡 − 1

2
|𝑘 |
)
, (A.69)
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so ∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 𝜋 |𝑘 |1+𝛽

∫ |𝑘 |+𝑘𝐹+
√

3
2

|𝑘 |−𝑘𝐹−
√

3
2

(
𝑡 − 1

2
|𝑘 |
)1+𝛽

𝑑𝑡

=
𝜋 |𝑘 |1+𝛽
2 + 𝛽

!"#
(

1
2
|𝑘 | + 𝑘𝐹 +

√
3

2

)2+𝛽
−
(

1
2
|𝑘 | − 𝑘𝐹 −

√
3

2

)2+𝛽$%&
≤ 𝐶 |𝑘 |1+𝛽

(
1
2
|𝑘 | + 𝑘𝐹 +

√
3

2

)2+𝛽
≤ 𝐶 |𝑘 |3+2𝛽 . (A.70)

If additionally |𝑘 | ≤ 3𝑘𝐹 (say), then this is again 𝑂
(
𝑘3
𝐹 |𝑘 |

2𝛽 ) . If this is not the case, however, then we
can instead trivially estimate that

∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ |𝑘 |𝛽

∫
𝑆

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)𝛽

𝑑𝑝 ≤ |𝑘 |𝛽
(

inf
𝑝∈𝑆

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
))𝛽 ∫

𝑆
1 𝑑𝑝

≤ |𝑘 |𝛽
(

1
2
|𝑘 | − 𝑘𝐹 −

√
3

2

)𝛽
Vol

(
𝐵

(
0, 𝑘𝐹 +

√
3

2

))
≤ 𝐶𝑘3

𝐹 |𝑘 |
𝛽

(
1
2
|𝑘 | − 1

3
|𝑘 | −

√
3

2

)𝛽
≤ 𝐶𝑘3

𝐹 |𝑘 |
2𝛽 . (A.71)

�

A.4. Proof of Proposition A.2

In the cases |𝑘 | ≥ 2𝑘𝐹 and 2𝑘𝐹 ≥ |𝑘 | ≥ log(𝑘𝐹 ), the claim has been proved. Thus, it remains to
consider the case |𝑘 | ≤ log(𝑘𝐹 ), for which we will apply the summation formula in Proposition A.15
to improve (A.2). By Proposition A.15, we have∑

𝑝∈𝐿𝑘

1
𝜆𝑘, 𝑝

= 2𝜋 |𝑘 |
𝑀 ∗∑
𝑚=𝑚∗

𝑙𝑚 − 1
2 |𝑘 |

|𝑘 |
(
𝑙𝑚 − 1

2 |𝑘 |
) 𝑙 + 𝜋

𝑀 ∗∑
𝑚=𝑀+1

𝑘2
𝐹 − (𝑙𝑚)2

|𝑘 |
(
𝑙𝑚 − 1

2 |𝑘 |
) 𝑙

+𝑂
!""#|𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

𝑀 ∗∑
𝑚=𝑚∗

1

|𝑘 |
(
𝑙𝑚 − 1

2 |𝑘 |
) $%%&

≤ 2𝜋
𝑀 ∗∑
𝑚=𝑚∗

𝑙 +𝑂

(
|𝑘 |2+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

𝑀 ∗∑
𝑚=𝑚∗

1
𝑙𝑚 − 1

2 |𝑘 |

)
, 𝑘𝐹 → ∞, (A.72)

where we used that by definition of M, (𝑘2
𝐹 − (𝑙𝑚)2) < 0 for all 𝑚 ≥ 𝑀 + 1. As |𝑘 | ≤ 2𝑘𝐹 ,

𝑀 ∗∑
𝑚=𝑚∗

𝑙 = 𝑙 (𝑀∗ − 𝑚∗ + 1) ≤ 𝑘𝐹 + |𝑘 | + 𝑙 ≤ 𝐶𝑘𝐹 , 𝑘𝐹 → ∞, (A.73)

where we also used that

𝑙 = |𝑘 |−1 gcd (𝑘1, 𝑘2, 𝑘3) ≤
max ( |𝑘1 | , |𝑘2 | , |𝑘3 |)√

𝑘2
1 + 𝑘2

2 + 𝑘2
3

≤ 1. (A.74)

https://doi.org/10.1017/fmp.2023.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.31


Forum of Mathematics, Pi 127

We now consider the sum
∑𝑀 ∗
𝑚=𝑚∗

(
𝑙𝑚 − 1

2 |𝑘 |
)−1

. To apply Proposition A.17, we must estimate the
𝑚 = 𝑚∗ term separately, so that the integration range does not cross the point 𝑥 = 1

2 |𝑘 |, where the
integrand diverges. Note that using 𝜆𝑘, 𝑝 ≥ 1

2 for all 𝑝 ∈ 𝐿𝑘 , we have

𝑙𝑚∗ − 1
2
|𝑘 | = min

𝑝∈𝐿𝑘

(
𝑘̂ · 𝑝 − 1

2
|𝑘 |
)
= |𝑘 |−1

(
min
𝑝∈𝐿𝑘

(
𝑘 · 𝑝 − 1

2
|𝑘 |2
))

≥ 1
2
|𝑘 |−1. (A.75)

Therefore,

𝑀 ∗∑
𝑚=𝑚∗

1
𝑙𝑚 − 1

2 |𝑘 |
≤ 2|𝑘 | +

𝑀 ∗∑
𝑚=𝑚∗+1

1
𝑙𝑚 − 1

2 |𝑘 |
≤ 2|𝑘 | + |𝑘 |

∫ 𝑙𝑀 ∗+ 1
2 𝑙

𝑙𝑚∗+ 1
2 𝑙

1
𝑥 − 1

2 |𝑘 |
𝑑𝑥

≤ 𝐶 |𝑘 |
(
1 + log

(
𝑙𝑀∗ + 1

2 𝑙 −
1
2 |𝑘 |

𝑙𝑚∗ + 1
2 𝑙 −

1
2 |𝑘 |

))
≤ 𝐶 |𝑘 |

(
1 + log

(
𝑘𝐹 + |𝑘 | + 1

2 𝑙 −
1
2 |𝑘 |

1
2 𝑙

))
≤ 𝐶 |𝑘 | (1 + log (|𝑘 |𝑘𝐹 )) ≤ 𝐶 |𝑘 | log (𝑘𝐹 ) , 𝑘𝐹 → ∞, (A.76)

yielding the total bound when |𝑘 | ≤ log(𝑘𝐹 )∑
𝑝∈𝐿𝑘

1
𝜆𝑘, 𝑝

≤ 𝐶

(
𝑘𝐹 + |𝑘 |3+

2
3 log (𝑘𝐹 )

5
3 𝑘

2
3
𝐹

)
≤ 𝐶𝑘𝐹 . (A.77)

A.5. Proof of Proposition A.3

First, consider the case − 4
3 ≤ 𝛽 < −1 and 𝑘 ∈ 𝐵(0, 2𝑘𝐹 ). By Proposition A.15, we can estimate using

the argument leading to (A.77) that∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 = 2𝜋 |𝑘 |

𝑀 ∗∑
𝑚=𝑚∗

(
|𝑘 |
(
𝑙𝑚 − 1

2
|𝑘 |
))𝛽 (

𝑙𝑚 − 1
2
|𝑘 |
)
𝑙

+ 𝜋
𝑀 ∗∑

𝑚=𝑀+1

(
|𝑘 |
(
𝑙𝑚 − 1

2
|𝑘 |
))𝛽 (

𝑘2
𝐹 − (𝑙𝑚)2

)
𝑙

+𝑂

(
|𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

𝑀 ∗∑
𝑚=𝑚∗

(
|𝑘 |
(
𝑙𝑚 − 1

2
|𝑘 |
))𝛽)

≤ 2𝜋 |𝑘 |1+𝛽
𝑀 ∗∑
𝑚=𝑚∗

(
𝑙𝑚 − 1

2
|𝑘 |
)1+𝛽

𝑙 +𝑂

(
|𝑘 |3+

2
3+𝛽 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

𝑀 ∗∑
𝑚=𝑚∗

(
𝑙𝑚 − 1

2
|𝑘 |
)𝛽)

. (A.78)

Applying Proposition A.17 and A.75, again we have

𝑀 ∗∑
𝑚=𝑚∗

(
𝑙𝑚 − 1

2
|𝑘 |
)1+𝛽

𝑙 =

(
𝑙𝑚∗ − 1

2
|𝑘 |
)1+𝛽

𝑙 +
𝑀 ∗∑

𝑚=𝑚∗+1

(
𝑙𝑚 − 1

2
|𝑘 |
)1+𝛽

𝑙

≤
(

1
2
|𝑘 |−1

)1+𝛽
+
∫ 𝑙𝑀 ∗+ 1

2 𝑙

𝑙𝑚∗+ 1
2 𝑙

(
𝑙𝑚 − 1

2
|𝑘 |
)1+𝛽

𝑑𝑥

=

(
1
2
|𝑘 |−1

)1+𝛽
+ 1

2 + 𝛽

((
𝑙𝑀∗ + 1

2
𝑙 − 1

2
|𝑘 |
)2+𝛽

−
(
𝑙𝑚∗ + 1

2
𝑙 − 1

2
|𝑘 |
)2+𝛽)

≤ 𝐶

(
|𝑘 |−(1+𝛽) +

(
𝑘𝐹 + 1

2
𝑙 + 1

2
|𝑘 |
)2+𝛽)

≤ 𝐶𝑘
2+𝛽
𝐹 , 𝑘𝐹 → ∞, (A.79)
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and likewise,

𝑀 ∗∑
𝑚=𝑚∗

(
𝑙𝑚 − 1

2
|𝑘 |
)𝛽

=

(
𝑙𝑚∗ − 1

2
|𝑘 |
)𝛽

+ 𝑙−1
𝑀 ∗∑

𝑚=𝑚∗+1

(
𝑙𝑚 − 1

2
|𝑘 |
)𝛽

𝑙

≤
(

1
2
|𝑘 |−1

)𝛽
+ |𝑘 |

∫ 𝑙𝑀 ∗+ 1
2 𝑙

𝑙𝑚∗+ 1
2 𝑙

(
𝑙𝑚 − 1

2
|𝑘 |
)𝛽

𝑑𝑥

= 2−𝛽 |𝑘 |−𝛽 + |𝑘 |
1 + 𝛽

((
𝑙𝑚∗ + 1

2
𝑙 − 1

2
|𝑘 |
)1+𝛽

−
(
𝑙𝑀∗ + 1

2
𝑙 − 1

2
|𝑘 |
)1+𝛽)

≤ 𝐶

(
|𝑘 |−𝛽 + |𝑘 |

(
𝑙𝑚∗ + 1

2
𝑙 − 1

2
|𝑘 |
)1+𝛽)

≥ 𝐶

(
|𝑘 |−𝛽 + |𝑘 |

(
1
2
|𝑘 |−1

)1+𝛽)
≤ 𝐶 |𝑘 |−𝛽 . (A.80)

Combining these, we find that for all − 4
3 ≤ 𝛽 < −1 and 𝑘 ∈ 𝐵(0, 2𝑘𝐹 ),∑

𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 𝐶

(
𝑘

2+𝛽
𝐹 |𝑘 |1+𝛽 + |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

)
, 𝑘𝐹 → ∞. (A.81)

Consequently, if 𝛽 ≤ − 4
3 and 𝑘 ∈ 𝐵(0, 2𝑘𝐹 ), then using 𝜆𝑘, 𝑝 ≥ 1

2 , we have∑
𝑝∈𝐿𝑘

𝜆
𝛽
𝑘,𝑝 ≤ 𝐶

∑
𝑝∈𝐿𝑘

𝜆
− 4

3
𝑘, 𝑝 ≤ 𝐶 |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹 . (A.82)

Moreover, if − 4
3 < 𝛽 < −1 and |𝑘 | ≤ 𝑘

𝛾
𝐹 with 𝛾 < 4+3𝛽

8−3𝛽 , then the right-hand side of (A.81) can be
simplified to 𝐶𝑘

2+𝛽
𝐹 |𝑘 |1+𝛽 .

A.6. Proof of Proposition A.4

In this subsection, we prove Proposition A.4. We first establish a simple upper bound:

Proposition A.20. For all 𝑘 ∈ Z3
∗ and any 𝜆 > 0, it holds that

111𝑆1
𝑘,𝜆

111 + 111𝑆2
𝑘,𝜆

111 ≤ 11𝑆𝑘,𝜆11, where

𝑆𝑘,𝜆 =

{
𝑝 ∈ Z3 | | |𝑝 |2 − 𝜁 | < 𝜆 and

1111𝑘̂ · 𝑝 − 1
2
|𝑘 |
1111 < 1

2
|𝑘 |−1𝜆

}
.

Proof. As 𝑆1
𝑘,𝜆 ∩ 𝑆2

𝑘,𝜆 = ∅, the claim will follow if we can show that 𝑆1
𝑘,𝜆, 𝑆

2
𝑘,𝜆 ⊂ 𝑆𝑘,𝜆. Consider an

arbitrary 𝑝 ∈ 𝑆1
𝑘,𝜆. By definition of 𝑆1

𝑘,𝜆,

| |𝑝 |2 − 𝜁 | ≤ max
{
| |𝑝 |2 − 𝜁 |, | |𝑝 − 𝑘 |2 − 𝜁 |

}
< 𝜆, (A.83)

so the first condition for 𝑆𝑘,𝜆 is satisfied. For the other, we note that112𝑘 · 𝑝 − |𝑘 |2
11 = 11|𝑝 |2 − |𝑝 − 𝑘 |2

11 = 11| |𝑝 |2 − 𝜁 | − | |𝑝 − 𝑘 |2 − 𝜁 |
11 (A.84)

≤ max
{
| |𝑝 |2 − 𝜁 |, | |𝑝 − 𝑘 |2 − 𝜁 |

}
< 𝜆,

where in the second equality we used that both 𝑝, (𝑝 − 𝑘) ∈ 𝐵𝐹 if 𝑝 ∈ 𝑆𝑘,𝜆. This now implies that
𝑝 ∈ 𝑆𝑘,𝜆, so indeed, 𝑆1

𝑘,𝜆 ⊂ 𝑆𝑘,𝜆. The inclusion 𝑆2
𝑘,𝜆 ⊂ 𝑆𝑘,𝜆 follows similarly. �

The quantity
11𝑆𝑘,𝜆11 can in turn be estimated with exactly the same techniques which we used for

the estimation of Riemann sums in the previous subsections. Let us start by using the arguments from
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Proposition A.10. Now, the condition that | |𝑝 |2 − 𝜁 | < 𝜆 is equivalent with 𝜁 − 𝜆 < |𝑝 |2 < 𝜁 + 𝜆,
and writing |𝑝 |2 = ( 𝑘̂ · 𝑝)2 + |𝑃⊥𝑝 |2 (where 𝑃⊥ : R3 → R

3 denotes the orthogonal projection onto
{𝑘}⊥ =

{
𝑝 ∈ R3 | 𝑘̂ · 𝑝 = 0

}
), this is equivalent with

𝜁 −
(
𝑘̂ · 𝑝
)2 − 𝜆 <

11𝑃⊥𝑝
112 < 𝜁 −

(
𝑘̂ · 𝑝
)2 + 𝜆. (A.85)

Consequently, if we let 𝑚− and 𝑚+ be the least and greatest integers, respectively, such that

1
2
(
|𝑘 | − |𝑘 |−1𝜆

)
< 𝑙𝑚− and 𝑙𝑚+ <

1
2
(
|𝑘 | + |𝑘 |−1𝜆

)
, (A.86)

it follows that we can decompose 𝑆𝑘,𝜆 =
⋃𝑚+
𝑚=𝑚− 𝑆

𝑚
𝑘,𝜆, where

𝑆𝑚𝑘,𝜆 = 𝑆𝑘,𝜆 ∩
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚

}
=
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚, | |𝑝 |2 − 𝜁 | < 𝜆

}
=
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚, 𝜁 − (𝑙𝑚)2 − 𝜆 < |𝑃⊥𝑝 |2 < 𝜁 − (𝑙𝑚)2 + 𝜆

}
(A.87)

=
{
𝑝 ∈ Z3 | 𝑘̂ · 𝑝 = 𝑙𝑚, (𝑅𝑚− )2 < |𝑃⊥𝑝 |2 < (𝑅𝑚− )2}

for (
𝑅𝑚±
)2 = 𝜁 − (𝑙𝑚)2 ± 𝜆, 𝑚− ≤ 𝑚 ≤ 𝑚+. (A.88)

We see that the sets 𝑆𝑚𝑘,𝜆 are of the same form as the sets 𝐿𝑚𝑘 which we considered in Section A.2.
The arguments which we used to estimate |𝐿𝑚𝑘 | thus immediately carry over, provided we can establish
some basic estimates on 𝑅𝑚− and 𝑅𝑚+ . We have the following:

Proposition A.21. For all 𝑘 ∈ 𝐵(0, 𝑘𝐹 ) ∩ Z3
∗ and 0 < 𝜆 = 𝜆 (𝑘𝐹 , 𝑘) ≤ 1

6 𝑘
2
𝐹 , it holds that

𝐶−1𝑘𝐹 < 𝑅𝑚− < 𝑅𝑚+ ≤ 𝐶𝑘𝐹 , ∀𝑚− ≤ 𝑚 ≤ 𝑚+, (A.89)

as 𝑘𝐹 → ∞ for a constant 𝐶 > 0 independent of k, 𝑘𝐹 and 𝜆.

Proof. First, recall that 𝜁 is the midpoint of the interval 𝐼 =
[
sup𝑝∈𝐵𝐹 |𝑝 |2, inf 𝑝∈𝐵𝑐𝐹 |𝑝 |2

]
. Since 𝑘2

𝐹 ∈ 𝐼

by definition of the Fermi ball, we can bound

|𝜁 − 𝑘2
𝐹 | ≤

|𝐼 |
2

=
1
2

(
inf
𝑞∈𝐵𝑐𝐹

|𝑝 |2 − sup
𝑞∈𝐵𝐹

|𝑝 |2
)
≤ 𝑘𝐹 + 1. (A.90)

Here, the last inequality can be seen by taking the trial points 𝑝− = (�𝑘𝐹 � , 0, 0) ∈ 𝐵𝐹 and 𝑝+ =
(�𝑘𝐹 � + 1, 0, 0) ∈ 𝐵𝑐𝐹 . Combining (A.90), the definitions of 𝑚−, 𝑚+ and the assumptions of the
statement, we may estimate independently of m that

(𝑅𝑚− )2 ≥ 𝜁 − max
{
(𝑙𝑚−)2 , (𝑙𝑚+)2} − 𝜆

≥ 𝜁 − 1
4

((
|𝑘 | − |𝑘 |−1𝜆

)2
+
(
|𝑘 | + |𝑘 |−1𝜆

)2)
− 𝜆 (A.91)

≥ 𝜁 − 1
2

(
|𝑘 |2 + |𝑘 |−2𝜆

)
− 𝜆 ≥ 𝜁 − 1

2
𝑘2
𝐹 − 3

2
𝜆 ≥ 1

4
𝑘2
𝐹 − 𝑘𝐹 − 1,

and

(𝑅𝑚+ )2 = 𝜁 − (𝑙𝑚)2 + 𝜆 ≤ 𝜁 + 1
6
𝑘2
𝐹 ≤ 7

6
𝑘2
𝐹 + 𝑘𝐹 + 1. (A.92)

�
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This allows us to estimate |𝑆𝑚𝑘,𝜆 | with the same error term as that of |𝐿𝑚𝑘 |, which is to say

𝐶 |𝑘 |3+ 2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹 . We can now give the following:

Proof of Proposition A.4. By Proposition A.21 and the above arguments, we can estimate111𝑆𝑚𝑘,𝜆111 ≤ 2𝜋
(
(𝑅𝑚+ )2 − (𝑅𝑚− )2)

2𝑙−1 + 𝐶 |𝑘 |3+
2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

= 2𝜋𝜆 (𝑘𝐹 , 𝑘) 𝑙 + 𝐶 |𝑘 |3+
2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹 (A.93)

for 𝑚− ≤ 𝑚 ≤ 𝑚+. By the decomposition 𝑆𝑘,𝜆 =
⋃𝑚+
𝑚=𝑚− 𝑆

𝑚
𝑘,𝜆, we can then estimate further

11𝑆𝑘,𝜆11 = 𝑚+∑
𝑚=𝑚−

111𝑆𝑚𝑘,𝜆111 ≤ 2𝜋𝜆
𝑚+∑
𝑚=𝑚−

𝑙 + 𝐶 |𝑘 |3+
2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

𝑚+∑
𝑚=𝑚−

1

≤ 𝐶

(
𝜆 + |𝑘 |4+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

)
(𝑙𝑚+ − 𝑙𝑚− + 𝑙) (A.94)

≤ 𝐶

(
𝜆 + |𝑘 |4+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

) (
1
2

(
|𝑘 | + |𝑘 |−1𝜆

)
− 1

2

(
|𝑘 | − |𝑘 |−1𝜆

)
+ 𝑙

)
≤ 𝐶

(
|𝑘 |−1𝜆 + |𝑘 |3+

2
3 (log 𝑘𝐹 )

2
3 𝑘

2
3
𝐹

)
(𝜆 + |𝑘 |) ,

where we also applied the estimate |𝑘 |−1 ≤ 𝑙 ≤ 1. �
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