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We prove that factor groups of cartesian powers of finite non-abelian
simple groups cannot be countably infinite. This is not our main result,
but it had been our original aim. The proof is based on a similar fact concern-
ing er-complete Boolean algebras, and on a representation of certain sub-
cartesian powers of a group in its group ring over a Boolean ring. This
representation, to which we give the name "Boolean power", will be our
central theme, and we begin with it.

1. Boolean powers

Let G be a group (with unit element e) and R a Boolean ring (with
unit element 1). In the group ring of G over R we consider those finite sums

P = 2,Pa<t (Pa^R.aeG)
that satisfy

PaPb = 0 if a # b, 2 Pa = 1-

They form a group, which we call a Boolean power l of G and denote by

P = BP(G, R).

It is generated by the elements pa-\- (l—p)e, with p and a ranging over R and
G, respectively; for fixed p these elements form an isomorphic copy of G,
which in the special case p = 1 is called the diagonal of P. We define the
support of p e P by

Instead of Boolean rings we could have used arbitrary rings, and we have
allowed for this by writing 1 — p for 1 +p; but the resulting gain in generality
is illusory.

A more important generalization is obtained if G and R are infinite and
infinite sums 2p« a a r e admitted; this requires that the Boolean ring be
complete, or at least in-complete 2 if sums with m terms are to be given a

1 See addendum at end.
* Our notation is that of Sikorski [4].
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meaning. The group so obtained will be called an m-complete Boolean
power, and denoted by

P* = BP*(G, R);

the cardinal ttt will usually be the order |G| of G, unless differently specified.
An important illustration is provided by R* = GF(2)7, where / is an

arbitrary index set; thus R* is the Boolean ring that corresponds to the
Boolean algebra 0>(I) of all subsets oil. As R* is complete, we can form P*.
whatever the group G; and P* is isomorphic to the cartesian power Gr.
If G or / is finite, then P* and P coincide; but if G and / are both infinite,
then P is a proper subgroup of P*, namely that which in the natural isomor-
phism between P* and G1 corresponds to the "bounded" subgroup of G1,
consisting of those functions on / to G that take only finitely many values.

The Boolean powers BP(G, R) will be called finitary if it is necessary
to distinguish them from complete or m-complete ones. We shall concentrate
mainly on the finitary Boolean powers, and treat the others only sketchily.

A representation, similar to ours, of the normal subgroups of G1 that
correspond to ideals of R* has been studied by Teh [5].

2. Ideals and normal subgroups

If <p is a homomorphism of the Boolean ring R into a Boolean ring S
such that <p maps 1 e R on 1 e S, then <p induces a homomorphism ip of
P = BP(G, R) into Q = BP(G, 5) by

Let / denote the kernel of <p and N the kernel of y. Then

(2) N^freP\o(j>)€j};

ihus to every ideal J of R there corresponds a normal subgroup

(3) N = Jv

of P; and v then maps the lattice 3 of all ideals of R into the lattice 9? of all
normal subgroups of P. In fact v is a lattice monomorphism, as can be easily
Verified; but v is not in general an epimorphism.

If R is m-complete and the m-complete Boolean power P* = BP* (G, R)
is considered, the analogue of equation (1) may be devoid of meaning, unless
S is also m-complete; but in analogy to (2), (3) we can define a mapping v*
by

N* = Jv* = {p e P*\a(p) ej};

and N* will be a normal subgroup of P*. It is again easy to verify that v*
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is a lattice monomorphism of £$ into the lattice 31* of all normal subgroups
of P*.

Next let N be a normal subgroup of P = BV(G, R) and put

(4) J = Np = {o<p)\peN}.

Then J will be subset of R, but not in general an ideal.

LEMMA 1. / / the centre of G is trivial then J = Np is an ideal of R;
in this case, for all ideals J of R,

and for all normal subgroups N of P,

N ^ N/iv.

PROOF. Let a, xej = Nfi and peR. We have to show that a-\-xeJ
and op 6 / . We begin with the latter. There is an element

such that a(p) = a. To each a ^ e that occurs with coefficient pa ^ 0 in p,
we choose an element b(a) eG that does not commute with a: this is possible
because the centre of G is assumed trivial. Put

it is easy to verify that r e P. Also the commutator [p, r] is given by

this is an element of N because N is normal; and a({j>, r]) = op; hence
op € / . It now follows that both ax — a(\— x) and x1 — {\-{-o)x belong to / ;
thus there are elements plt qieN with a(px) = cr1( a{qx) = xt. Then also

. One readily verifies that atxt = 0 and that, therefore,

Hence also a-\-x e / , and / is an ideal, as claimed. The relations Jv[i = J
and N ?S Nfiv follow at once from the definitions, and the lemma is proved.

If G has trivial centre, then p maps the lattice 31 of normal subgroups
of. P onto the lattice 3 of ideals of R: but /i is in general neither a homo-
morphism nor one-to-one.

If the m-complete Boolean power P* = BP*(G, R) is defined, one
can use (4) to define a mapping /i* from the lattice 31* of normal subgroups
of P* to 3» provided that G has trivial centre; and again
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for all J e % and
N* ^N*fi*v*

for all N* e 3J*. We omit the proof.

3. The main result

We now investigate when n and v can be mutually inverse isomorphisms.
Leaving aside the trivial cases that G or R have a single element only, we
see at once that this can be the case only if G is a non-abelian simple group.
Our main result is that this obviously necessary condition is also sufficient.

LEMMA 2. Let G be a non-abelian simple group; then to every pair of
elements a, b of G with a ^ e there is a positive integer n and a sequence of 2w
elements cx, dlt c2, d2, • • •, cn, dnof G such that

c^1 a~* c^1 adc^1 a-1 c2 • • • d~ladn = b.

PROOF. If F denotes the set of all

f(c, d) =c~1a-1cd-1ad

as c, d range over G, then F is clearly self-conjugate in G and self-inverse,
and contains the unit element e but not only e. Hence

F Q F2 Q F3 Q • • • and (J F" = G,

as G is simple; thus there is an integer n such that b e Fn, and the lemma
follows.

We remark that if G is finite, then n can be taken equal to the order of
G, whatever the pair a, b; and probably much smaller. On the other hand,
one can also choose n arbitrarily larger than necessary by adding factors
f(e, e) = e ad libitum. Thus we obtain the following apparent extension of
Lemma 2, which is what will in fact be used later.

COROLLARY 3. Let A, B be finite subsets of the non-abelian simple group
G, and assume e $ A. Then there is a positive integer n and a family of elements
ct{a, b), dt{a, b) with i = 1, 2, • • •, n and a e A, b e B such that, for all such
a and b,

f l ct(a, b^a^c^a, b)dt(a, b^ad^a, b) = b.

One only needs to choose n large enough to suffice for all pairs a e A,
b e B simultaneously.

LEMMA 4. Let G be a non-abelian simple group, R a Boolean ring, and
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two elements of P = BP(G, R). Then q lies in the normal closure NP of p
in P if, and only if,

PM9) = °-

PROOF. The annihilator of pe in R,

J={aeR\Pea=0},

is an ideal of R, and the corresponding normal subgroup of P is

We have to show that N = Nv. As p eN, clearly Nv < N, and only the
reverse inclusion remains to be proved. Let q eN. Put

A = {a e G\a # e and pa ̂  0}; B = {b e G | at # 0}.

These are finite subsets of G, and e $ A. Thus we can apply Corollary 3 and
find n and c^a, b), dt(a, b) accordingly. Put, for i = 1, 2, • • •, n,

s * = 2 Paabct{a,b)-\-Pee,

(a, »

The coefficient in st of an element c e G is 0 or a sum of products paat,
with an additional p, if c = e. These products are mutually orthogonal, and
orthogonal to pe\ hence the coefficients of different elements c eG in s{ are
orthogonal. Their sum is

2 Paab+Pe = 2 Pa 2 ab+Pe = 2 Po + P« = 1-

Thus st e P, and similarly ti e P. By a tedious, but not difficult computa-
tion, which we omit, one verifies that

(5) JJ s!1f-1stt?Pi = 2
t=l (o,l>)^(e,6)

As q eN and thus peab = 0, the coefficient of an element b ̂  e in (5) is

but then the coefficient of e must be ae, as we know that the coefficients are
mutually orthogonal and add up to 1. Hence

and thus q eNv. This completes the proof of the lemma.
We are now ready to prove our main result.
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THEOREM 5. Let G be a non-abelian simple group and R a Boolean ring.
Then v : 5 -> 3i and fi: 31 -> ^ <w« mutually inverse lattice isomorphisms
between the lattices of ideals of R and of normal subgroups of the Boolean
power BP(G, R).

PROOF. It suffices, by Lemma 1, to show that N/iv ^N for every
N e 9i. Let then q eN/iv; then a(q) eN/z, that is to say, there is an element
p e N such that a(q) = o(p). By Lemma 4 then q eNv ^N, and it follows
that N/jtv f^ N, as required. This completes the proof of the theorem.

COROLLARY 6. / / G is a non-abelian simple group then every epimorphic
image of a Boolean power of G is again a Boolean power of G. Specifically,
if R is a Boolean ring, P = BP(G, R) the Boolean power of G, and \p : P -> Q
an epimorphism, then there is an epimorphism <p : R -*• S such that
Q s BP(C, S).

4. A result on Boolean rings

We now turn to the Boolean rings themselves; the following theorem
naturally applies to Boolean algebras, too.3

THEOREM 7. The epimorphic images of a-complete Boolean rings are
finite or uncountable.

Sikorski ([4], § 20 E) remarks that <r-complete Boolean algebras are
themselves finite or uncountable; and he bases this on the fact that every
infinite Boolean algebra contains an infinite set of disjoint elements. As
we need this — apparently well-known — fact, too, but know of no con-
venient reference to its proof, we sketch our proof of it, or rather of its ring
counterpart.

LEMMA 8. Every infinite Boolean ring contains an infinite set of mutually
orthogonal elements.

PROOF. Let R be an infinite Boolean ring. If R contains infinitely
many prime elements, say nlt n2, n3, • • •, then l+7tlt l-\-nt, 1+JI 3 , • • •
are infinitely many mutually orthogonal elements. If R has only a finite
set of prime elements, let their product be n; then n ^ 0, as R is infinite;
and 1+Ti has no prime divisors. We can then form an infinite sequence

1+Ti = Pi, pt, Pa. • • •

of elements of R, each a proper factor of its predecessors, so that for all
i,k>0

Pi^Pi+k and Pi =

* See addendum at end.
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Then Pi+p2, P2+P3. Pz+Pf'' ' form an infinite set of mutually orthogonal
elements, and the lemma follows.

We turn to the proof of Theorem 7. Let R be a cr-complete Boolean
ring and q>: R -*• S an epimorphism. We may assume that S is infinite, and
have to prove it uncountable. Let a1, <r2, a3, • • • be a sequence of (non-zero)
mutually orthogonal elements of S, and let p[, p'2, p'3, • • • be counter-images
in R: thus

p'i<p = a( (i — 1, 2, 3 , • • • ) .

Put Pi = Pi, and inductively

Pi+i = Pi+i(l+Pi+Pz+ !-/><)•

Then plt p2, p3, • • • form a sequence of mutually orthogonal elements of R,
and

PtV = ot (* = 1, 2, 3, • • •)•

If K is a set of positive integers, put

PK = 1,Pu
ieK

this exists because R is (T-complete. Then using the distributive law which is
the ring analogue of that of Sikorski ([4], § 19 (9)), we have

PiPK = Pi i f * e K<

PiPK = 0 if i $ K.

Thus, putting pKq> = aK and applying q>, we get

if i eK,

if

This shows that if K and L are distinct sets of positive integers, then OK and
aL are distinct elements of S, and it follows that S is uncountable. This
completes the proof of the theorem.

COROLLARY 9. Let G be a finite non-abelian simple group, and let R be a
a-complete Boolean ring. Then every epimorphic image of P = BP(G, R)
is either finite or uncountable. In particular the factor groups of cartesian
powers G1 are finite or uncountable.

5. A counterexample

Our main result, Theorem 5, deals with finitary Boolean powers only;
the finiteness conditions enter the proof through Corollary 3 and so through
the crucial Lemma 4. To show that these finiteness conditions are not just
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an accident of the proof method, but an essential feature of the situation,
we show that the analogue of Theorem 5 for BP*(G, R) and ft* and v* is
not in general valid. To do this we specify an infinite simple group G and
a normal subgroup N* of P* — BP*(G, R), where R is an arbitrary infinite
tr-complete Boolean ring, such that

N* =£N*/n*v*.

Let G be the finitary alternating group on Z = {1, 2, 3, • • •}, that is
the group of even permutations of Z that move only finitely many elements
of Z; this group is well known to be simple. The Boolean ring R is to be
infinite and a-complete, but otherwise arbitrary; in P* = BP*(G, R)
we consider the diagonal D, which consists of all elements la with a eG;
denote its normal closure in P* by N*. By the extension of Lemma 1 men-
tioned at the end of § 2 then N*fi* = R, and so N*n*v* — P*. We have to
show that

(6) N* =£ P*.

Let us first remark that the normal closure of D in P = BP(G, R) is the
whole of P, by Lemma 4; hence P ^ N*. However, as we shall see later, also

(7) P ,& N*.

We define the degree d(a) of a permutation a e G to be the number of
elements of Z that are actually moved by a. The definition of G implies that
this is always finite. Next, if p = 2p«a> w e define the bound fi(p) by

This is clearly finite for all peP, but infinite for some p* e P*; for if we
choose a sequence ax, a2, a3, • • • of elements of G of strictly increasing degrees
and a sequence Pi,ps,P3, • • • of mutually orthogonal non-zero elements of R,
and then put

then clearly /?(/>*) = oo. On the other hand, there are also elements with
finite bound in P* — P: we only have to take ax, a2, a3, • • • to be distinct
transpositions, and form the same sum p*\ then fi{p*) = 2. Hence (6) and
(7) will follow from:

LEMMA 10. N* consists precisely of the elements pe P* with finite bound

PROOF. Firstly let p = 2 Paa have finite bound fi(p). To each element
a e G we can choose an element b(a) such that a' — b(a)~1ab(a) moves only
the numbers 1, 2, • • •, d(a) and leaves the rest of Z fixed. Put
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* = ZP.H*);
then

Now each a' moves 1, 2, • • •, fi(p) at most, and leaves the rest of Z fixed;
hence there are only finitely many distinct a', and it follows that p' e P.
Thus every element with finite bound is conjugate to an element of P.
As we have already remarked that P ^ N*, this shows that every element
with finite bound lies in N*. and also that P ^N*. Next we remark that

P(P~1)=P(P) and 0<Pq)£filP)+P(q),

so that the elements with finite bound form a subgroup: this follows from
the obvious relations

6{a-1)=d(a) and d(ab) ̂  d(a) + d(b).

Finally, using the equally obvious relation

d(b-*ab) = d(a),
one readily verifies that

here a, b range over G and p, t over P*. It follows that the set of elements
with finite bounds is self-conjugate in P*; thus it must coincide with iV*,
and the lemma is proved.

Finally we remark that there are infinite simple groups for which the
analogue of Theorem 5 for complete Boolean powers and //,* and v* is valid:
examples are the algebraically closed groups of Scott [3], the group C of
P. Hall [1], and the infinite groups with only two classes of conjugate ele-
ments [2]; for in all these groups the number n of Lemma 2 does not have to
depend on the pair a, b — in fact in all these groups n = 1 will do —, so that
in these groups a strengthened form of Corollary 3, for infinite sets A and B
and still with n = 1, is valid.

Addendum (19 February, 1965). Aspirant I. E. BurmistroviS, of the
Department of Higher Algebra, Moscow State University, has kindly drawn
our attention to some pertinent references. The definition of Boolean powers,
not just of groups, but of arbitrarily general algebraic systems, is to be found
in Foster [0]. Our Theorem 7 is Theorem 4.4 of Smith and Tarski [4J].
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