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L*(R") BOUNDEDNESS FOR THE COMMUTATORS
OF CONVOLUTION OPERATORS

GUOEN HU!

Abstract. The commutators of convolution operators are considered. By local-
ization and Fourier transform estimates, a sufficient condition such that these
commutators are bounded on L? (]Rn) is given. As applications, some new results
about the L?(IR™) boundedness for the commutators of homogeneous singular
integral operators are established.

§1. Introduction

We will work on R™”, n > 1. Let k£ be a positive integer and b €

BMO(R™). For T a linear operator from C3°(R") to M(R"), the set of
measurable functions on R™, define the k-th order commutator of 7" and b
by
(1) Ty, 1 f (x) = T((b(x) = b(-))" f)(), f € CE(R™).
A celebrated result of Coifman and Meyer [3] states that if 7" is a stan-
dard Calderén-Zygmund singular integral operator, then for 1 < p < oo,
the LP(R™) boundedness for T} ; could be obtained from the weighted L?
estimate with A, weights for the operator 7', where A, denotes the weight
function class of Muckenhoupt (see [9, Chapter 5] for definition and prop-
erties of A,). Alvarez, Bagby, Kurtz and Pérez [1] developed the idea of
Coifman and Meyer, and established a generalized boundedness criterion
for the commutators of linear operators. Let E be a Banach space with
norm || - ||g, denote by M(E) the set of E-valued measurable functions on
R"™. Let u be a weight function on R™, that is, u is real-valued, non-negative
and locally integrable. For 1 < p < oo, define the Banach space L% (E) by

1B = {f: £ € ME) g = ( [ 15@Iuaide) " < ).
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The result of Alvarez, Bagby, Kurtz and Pérez (see [1, Theorem 2.13]) can
be stated as follows.

THEOREM ABKP. Let E be a Banach space, 1 < p, ¢ < 0o. Suppose
that the linear operator T': C§°(R™) — M(E) satisfies the weighted estimate

TNz < Clllpow

for all w € Ay, and C depends only on n, p and éq(w) (the Aq constant
of w), but not on the weight w. Then for any positive integer k and b €
BMO(R™) and any weight function u € Ag, the operator Ty, the k-th
order commutator of T defined by (1), is bounded from LL,(R™) to L% (E)
with bound C(n, p, k, Co(w))[blfy00mm-

This result is of great interest and is suitable for many classical opera-
tors in harmonic analysis, such as the Calderén-Zygmund singular integral
operators, the Bochner-Riesz operators at critical index, the oscillatory sin-
gular integral operator of Ricci and Stein, etc.. But for many important
operators, Theorem ABKP does not applies. A typical example is the fol-
lowing homogeneous singular integral operator.

Let ©2 be homogeneous of degree zero, have mean value zero on the unit
sphere S"~! (n > 2). Define the homogeneous singular integral operator T
by

75w =pv. [ T

n |z —y"

For positive integer k and b € BMO(R™), define the k-th order commutator
of T by

) Tyf(@)= [ ()~ b(w)

The well-known result of Coifman, Rochberg and Weiss [2] tells us that if
Q € Lip,(S™1) (0 < a < 1), then the commutator beg is bounded on
LP(R™) for 1 < p < oo. By the result of Duoandikoetxea [4], we see that
if Q € L9(S™ 1) for some ¢ > 1, then for p > ¢’ (¢ = ¢/(¢g — 1)) and
w € Apy, the operator T is bounded on L5, (R™) with bound depending
only on n, p and the A,/ constant of w. This together with Theorem ABKP
shows that if € LI(S™~!) for some ¢ > 1, then for positive integer k and
b € BMO(R"™), the commutator Tb’k is a bounded operator on LP(R™) for

¢ < p < oo, and then by the standard duality and interpolation argument,

Kx —y)

|z —y|"

f(y)dy.

https://doi.org/10.1017/5002776300000790X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000790X

COMMUTATORS OF CONVOLUTION OPERATORS 57

is bounded on LP(R") for all 1 < p < oc. But if @ ¢ {J -, Li(S" 1), we

do not know T satisfies weighted LP(R™) estimate with general A, weights
for any fixed 1 < p, ¢ < oco. In this case, the LP(R™) boundedness for the
corresponding commutator has not been known.

The purpose of this paper is to give a sufficient condition such that
the commutators of convolution operators are bounded on L?(R™), and this
sufficient condition is based on Fourier transform estimate of the kernel
of the convolution operator. As applications, we will establish the L?(R™)
boundedness for the commutator fb’ k when Q & ., LI(S n=1). We remark
that in this paper, we are very much motivated by the work of Pérez [8],
some ideas are from the paper of Hu, Lu and Ma [7]. For function f on R",
denote by fthe Fourier transform of f. Our first result in this paper is

THEOREM 1. Let K(z) be a function on R"\ {0} and K(z)
= ZjeZ K;(x). Let k be a positive integer. Suppose that there are some
constants C > 0,0 < A <1/2 and a > k + 1 such that for each j € Z

(3) 1Kl < C, IVEloo < C27;
(4) 1K;(€)] < Cmin {A]27¢], log™*(2 + |27¢])}.

Then for b € BMO(R"™) and 0 < v < 1 such that av > k+1, the commutator
T1f(@) = [ (00) = b)) Kz = ) f0)dy. | € CF(RY)

is bounded on L*(R™) with bound C(n, k, a, v)log=@v+k+1 (%)HbHEMO(R")'

Remark 1. In our applications, we only use the case A = 1/2. Theorem
1 for the case A < 1/2 seems useful in the study of the LP(R™) boundedness
for the commutators of convolution operators.

As applications of Theorem 1, we will have

THEOREM 2. Let k be a positive integer and b € BMO(R"™), Q be ho-
mogeneous of degree zero and have mean value zero. Suppose that for some
a>k+1,

1

(5) C:;lf_l/gnl |Q(9)|(1og W> df < oo.

Then the commutator Tvb,k defined by (2) is bounded on L*(R™) with bound
C(n, k, «) Hle]%MO(R")'
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Remark 2. The size condition (5) for & > 1 was introduced by Grafakos
and Stefanov [6] in order to study the LP(R™) boundedness for the operator
T. It has been proved in [6] that there exist integrable functions on S™~!
which are not in H'(S™"1) (the Hardy space on S™~!), but satisfy (5) for
all a > 0.

THEOREM 3. Let k be a positive integer and b € BMO(R"™), Q be ho-
mogeneous of degree zero and have mean value zero, h(r) be a function on
(0, o) which satisfies

2R dr
sup/ |h(r)|*— < oo for some s > 1.
R>0JR r

Suppose that for some o > k + 1, Q satisfies the size condition

[ 10w o2 + o) ' < .

Then the commutator defined by

Tyl 0) = [ (0) = o)l — o)

|z =yl
is bounded on L*(R™) with bound C(n, k, a)HbHBMO(R")

f(y)dy

Throughout this paper, C' denotes the constants that are independent
of the main parameters involved but whose value may differ from line to

line. For a locally integrable function f, a positive integer m and a cube I,
define

Il Lgog Lym, 1 = inf{)\ >0: |_}|/1 If()\y) (2 + |f(y)‘>dy < 1}

and

. 1 f Yy 1/m
HfHexp(L)l/mJ = inf {)\ >0: m /Iexp(L)\)U dy < 2}.

Since that ®(t) = tlog™(2 + t) is a Young function on [0, co) and its com-
plementary Young function is ¥(t) ~ expt'/™, the generalized Holder in-
equality

i by < CIAg ey By,

holds for locally integrable functions f and h, see [8, page 168] for details.
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§2. Proof of Theorems

We begin with some lemmas.

LEMMA 1. Let ¢ € Cg°(R™) be a radial function such that supp ¢ C
[ 1/4< [l < 4} and

Y ¢ =1, ¢ £0.

lez

Denote by S; the multiplier operator §l\f(£) = ¢(2*l§)f(§). For any positive
integer k and b € BMO(R"™), denote by S.p, 1 the k-th order commutator of
Sy defined as in (1). Then for 1 < p < oo, the inequality

[( st ®) ™| < o b )bl 151
lEZ

holds.

By the weighted Littlewood-Paley theory, it is easy to see that for
1 <p<ooandwe€ A,

H(ZWI) H < C(n, p, Cp(w) | fllp, w-
leZ

Thus Lemma 1 follows from Theorem ABKP directly. See also [7, page 361].

LEMMA 2. Let mg € CL(R™) (0 < § < o0) be a family of multipliers
such that suppms C {€ : || < 0} and for some constants C, 0 < A < 1/2
and a > 1,

[mslloc < C'min{Af, log=*(2+0)}, ||[Vmsll, < C

Let Ty be the multiplier operator defined by f;\f(f) = mg(f)f(ﬁ). For positive
intger k and b € BMO(R"™), denote by Ts.p, 1 the k-th order commutator of
Ts. Then for any 0 < e < 1, there exists a positive constant C = C(n, k, €)
such that

_ 1 .
I T5;5, k112 < CllbllEatony (A0)' % log" (DA ll2s i 6 < 10/V/4;
| T5;0.6f 2 < ClblEno e log ™ (2 4 6)| fll2, if 6 > 1/VA.
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Proof. Without loss of generality, we may assume that ||b[|gvo®n) = 1.
Let 1 be a radial function such that suppy C {z : 1/4 <|z| <4}, and

> @z =1, |2 > 0.

IEZ

Set 1o (x) = Y1 (27 ) and () = ¥(27z) for positive integer 1. Let
Kj(xz) = my(x), the inverse Fourier transform of ms. Splite K5 as

Ks(z) = Ks(x)to(z) + Y Ks(x)y(z) = > Ks().
=1 1=0

Let T5; be the convolution operator whose kernel is Ks ;. Recall that
ms C {€ : €] < 0}. Trivial computation shows that ||Kj5 llec < [[Ksllee <
|lms|l1 < Co™. This via the Young inequality says that

(6) 175, 1flloo < C6"[| fl1-

Note that [ ¢(n)dn = 0. Thus

1Rl =|| | (st =2m) = ms(@)dnan]| _
< C2|Vmsll [ nlldmlan < €27
On the other hand, by the Young inequality,
|Kstlloo < 1 Kslloo[2lly < Cmin {45, log™ (2 +8)}.
For each fixed 0 < e < 1, let tg = ¢/3 (0 < t9 < 1/3), we then have
— I 1—to
|Kslloe < €270 (min{ A5, log™(2+6))
which together with the Plancherel theorem tells us that
1—to
M Tl < 27 (min{As, log= @ +6)}) £l

Let T 1.5, be the k-th order commutator of T ;. We want to show the
following refined estimates

1
() ITsr0f 2 < C(A0) 3029 ogh ()], it 6 < 10/v/A

https://doi.org/10.1017/5002776300000790X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000790X

COMMUTATORS OF CONVOLUTION OPERATORS 61

and
9) N Ts, 150,k f|l2 < 271014 log= @ =810)Tk (2 4 §)|| f 2, if 6 > 1/V/A.

If we can do this, summing over these inequalities respectively for all non-
negative integer [ completes the proof of Lemma 2.
Let T5, be the dual operator of T ;, that is,

T3uf@) = | Koy =) f)dy.

To prove the inequality (8) and (9), we will use some basic estimates for
T3 ,. Let I be a cube with side length 2. We claim that if supp f C I, then
for nonnegative integer m,

(10) H(T(;zf)QHL(logL)%,I
< C(A§)X1-2t0)g=nlg—tol 1 e2m (%)H fl2, i 5 < 10/vVA
and

(11) |’(T§zf)2\\L(1ogL)2m,1
< gl ol jog—2a(1=2t0)+2m 9 4 g £|I2, if 6 > 1/V/A,

(for m = 0, H(nglf)QHL(logL)sz = \I\*lﬂTg"lfH%). In fact, without loss of
generality, we may assume that ||f|l2 = 1. By the Schwarz inequality and
the fact that ||Ks |/cc < C0", it follows that

(12) IT5 1 flloo < CO™[|f]l1 < C8™2"V/2,

We consider the following two cases.
Case 1. § < 10/v/A. Take

A\ = (A5)2(172t0)27nl27tol lOng (%)

By the estimate (7) and (12), we have
T £ ()2
/ T3 1 (@) 2 1og?™ (2 + M)dfc

r )

1
2(2n+1)l
An(A5)2(1—2t0)>

< Cthol(A(s)Q(leto) long (%)

< (272t (45)2(1~t0) [pg2m (
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Therefore,

CaseI1. & > 1/v/A. We choose
Ao = log_Za(1_2t°)+2m(2 + §)2 gl

Again by the estimate (7) and (12), we have

Ty f ()|
2 2m e
)\ m/[ (”f )|* log (2—1— \ )d:c

2

S )\Qanl272tol 10g72a(17t0)(2 + 6) 10g2m (2 +
2

nl §2n
)

2nl62n
S C2ftol log72m72ato (2 + 5) 1Og2m (2 + X ) S C.
2

The desired estimate (11) follows directly.

Now we turn our attention to the L?(R™) estimate for Ty ;.5 . Write
R™ = UjeZ I;, where each I; is a cube with side length 2! and these cubes
have disjoint interiors. Let f; be the restriction of f on I;. Then

x) = ij(az), a.e. z € R

JET

Observe that supp Ks; C {|z| < 2!72}, it is obvious that the support of
Ts 1.5, is contained in a fixed multiple of I;, and that the supports of
various terms Tj ;. 1 f; have bounded overlaps. So we have

M
15,00 f 13 <Y Y D50 kfieirlls = O 150,153,

JEL jl=—M =

where M is a positive integer which is independent of j. Thus we may
assume that supp f C I for a cube I with side length 2!. We also assume
Ifll2 = 1. Set I* = 10nI, I = 20nl. Let ¢ € C(R™), 0 < ¢ < 1,
¢ is identically one on I* and vanishes outside I**. Let b(x) = (b(x) —
my«(b))p(x), where m«(b) denotes the mean value of b on I*. Obviously,

|T5,0;0,1.f ()] < ch b7 () T5,1 (0™ £) ().
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Note that supp 75 ;(b*~™f) C I*. Recall that IbllBMO®RR) = 1. For each
fixed integer m, 0 < m < k, by the generalized Holder inequality,

57 a0 )3 < L™ oo 1518 )P g o, 1
< CI||[(Ts,1(B5~™ f))? 1L (10g Ly2m, 1+

The last inequality follows from the well-known John-Nirenberg inequality
which states that for positive constants C'y, C depending only on n,

L[ gy () (0]

[ Jr C1blBmo®n)

)dw < (.

To computate H(Ta,l(l_)kfmf)f”]#(]og L)2m, %> We first observe that by (6),
(13) 15,00 ) < COMIBE 1 < Com2"72,

where we have invoked the corollary of the John-Nirenberg inequality (see
9, page 144]) and the fact that |m- (b)) —m;(b)| < C|b|lgpmo(rn)- A standard
duality argument gives us that

a9 12,0 "l = s | [ Tg,l@’f—mf)(x)h(w)dx(
Alle<1®JI*

supp hCI*,

- ‘/ T h(@)bE " ( )f(x)da:‘
supp hCI* lAllo<1 /1>

* 12(k—m 1/2
< sp ([T (@) PR @) dr )
supp hCI*,|h|2<1 ~JI*

nl/2 72(k—m)11/2
<C2 / sup Hb ( )Hexp(L)l/ﬂkfm) I*
supp hCI*, ||hll2<1 ’

* 211/2
(G A0

<Cc2? sup (T3 h)2 |32 .
supp hC T, [hl|2<1 L(log L)2(k=m), 1

If § < 10/V/A, it follows from the inequality (10) that

R 1
I Ts. (05~ £)||2 < C(A5)2(1-2t0)g~tol gg2(k=m) (Z)'

Set A3 = (A§)2(1-3t0)g=nip—tl/2 ook (L), The last inequality together with
the estimate (13) shows that

Lk—m 2
[ 13520 p o (2 TR0,
I* ’ )\3
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9(2n+1)l
An(A5)2(13t0))

< C(A§)(1=3t0)gt0l/2 142k (%), if § < 10/VA.

C(A(s)Q(l 2t0)2—t0l 10g2(/€ m) (A)log (

This in turn implies that
5™ T5,1 (55~ )13

< C2nl”(T6,l(6k7mf))2”L (log L)2™, I'*

< 02"\ = C(A5)2(1-80)g~1l/2 |60 (Z)’ if § < 10/V/A,

and the estimate (8) follows. On the other hand, if § > 1/v/A, set A\, =
9-nlg—tol/2 1og=20(1=3%0)+2k(9 4 §) The same argument involving the in-
equalities (13) and (14) as above yields that

HBmTé,l(i)kimf)Hg < C2nl)\4 _ 27t0l/2 1ng2a(173to)+2k(2 + 5)
This leads to the inequality (9).

Proof of Theorem 1. Choose radial function ¢ € C§°(R"™) such that 0 <
¢ <1,supp¢ C {1/4 < [¢] <4} and

d ¢l =1, ¢ #0.

lez

Define the multiplier operator .S; by
SiIf(€) = 6(276) F(©).
Set 1m;(€) = K;(€), mk(€) = m;(€)¢(27¢) and

~

TH(§) = m(©)F(©).
Obviously, supp m§(2*j§) c {|¢] < 22} and
(15) [Im5(277)[loo < C'min {A2', log™*(2+2')}, [|[Vm}(27:) [l < C.
Let

Uif(@) =3 ((Si5TiSi)suf ) @)

JET
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We claim that for f, h € C5°(R"),

(16) | meis@dn = [ 1) 3 s @)

lez

and that

a7 Ul <C Z 1Bl 580 )

(S Iisint?) ),

JEZ

Both of these had been proved in [7, page 365], but for the reader’s con-
venience and for the sake of self-containment, we give their proof here. To
prove (16), let B = B(O, R) be the ball centered at the origin and large
enough radius R such that supp f, supp h C B(O, R). Denote by bgp the
mean value of b on B. Define the operator 7' by

ZZKj*f(JU)

JEZ

Note that (b(xz) — bg)'h(x) and (bp — b(x))*~*f(x) belong to the space
L?(R™). Thus, as in [5, page 545], it follows that

[ bt @
k .
—ZCIQ/ (b(x) = bg)'h(x) ) K; *(Zsl (b = b()* f))( )d
i=0 Rr JEL lez
k
=G [ 00 = b)) S Y (ST (0 — 00) ) (@)
i=0 R l€Z jET
/ ZZ(SI JTSljbk;f>()
I€Z jer

https://doi.org/10.1017/5002776300000790X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000790X

66 G. HU

This establishes (16). With the aid of the formula

k

(b(z) = b(y)* = Ci(b(x) = b(2))'(b(z) = b(y)* ", z, y, z € R",
=0

the Fubini theorem and trivial computation leads to that for f, h C C5°(R"™),
[ b S TIS15), 1 @)
k .
= ZCZ;/ W@)Si— ;v k—i((T}S1—5)y, 1 f ) (@) de,

which via Lemma 1 yields the estimate (17).

We first consider ) 1 U1 f|l2, where we use [a] to denote

1<[log ()]
the integral part of the real number a. Let le be the operator defined by

p—

TIf(€) = mb(279€) ().

The inequality (15) via Lemma 2 (with ¢ = 1 — v) says that for positive
integer 1,

~ 1 v 7 1
||le‘;b,z‘f\|2 < Clog’ (Z)(AQZ) ||b||BMO(R")HfH27 I < [log(ﬁ)] + 1L

Note that if b € BMO(R"), then for any ¢ > 0, b;(x) = b(tx) € BMO(R")
and [|b|[gmo(rn) = [[bllBMmo®ny- By dilation-invariance,

7 1 v 7 1
(18) HT;;b,if”2 < Clog (Z)(A2l) 1bllEno@m)llfll2, 1< “Og(ﬁ)] + 1.

On the other hand, since \m§(£)| <Cmin{A2!, 1} < C(A2")", the Plancherel
theorem states that the estimate (18) is also true for ¢ = 0, that is,

(19) 1T fll2 < C(A2')”||f]l2-

Observe that for f, h € C5°(R"),

[ @Sy d @de =30 Ch [ h@) T (Simginmei e
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It follows from the estimates (18), (19) and Lemma 1 that

14(Z\<Tf51j>b,mf12)1/2\\§

JEZ

< O(A21)% log?* Z I8l En oy D 1Si—jib.m—if1l3

JEZ
< C(A2)? log?* ( DIblERo @ I f1I3, f € Co(R™).

This via the estimate (17) in turn implies

y 1 1
1ULf]l2 < C(A2') log" (Z)Ile'éMO(Rn)HfH% I < [10g(ﬁ)] +1
and
1 — 1%
S 10l < Clogh () AT bl o 7]

1<[10g (J5)]+1
—Qv 1
< Clog™ 1 () [Bllsmogn) I /1l2-

Now we consider ) )1 U f|l2- Again by Lemma 2 and (15),

l>[log(

5

we have

—av 1
10 fllz < Clog™ " *%(2 + 2') [bllEno ey I 12, 1> [log (—=

\/Z)] +1

Recall that av > k + 1. Therefore,

—av 1
> 1T £ll> < Clog™ 545 ()bl ey £ 2
l>[log (ﬁ)]—&-l

This completes the proof of Theorem 1.

Proof of Theorem 2. Set

Qz
Kj(z) = |x(—‘n)X{2j<|m|<2j+1}(x)'

By the integrablity of €2, it is easy to verify that K; satisfies the estimate
(3). On the other hand, Grafakos and Stefanov [6] proved that if ) satisfies
(5), then K satisfies the estimate (4) for A = 1/2. Theorem 2 follows easily
from Theorem 1.
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Proof of Theorem 3. At first, we claim that if [q,_, [Q(2")[log®(2 +
|Q(2")|)dx’ < oo, then for each positive integer I, there exists (2, on S"~!
such that ; € L>°(S"1), and

1| oo (gn-1y < C2, (| — Q|1 (5n1y < CLT

In fact, for given Q as above, set Ey = {2/ € S"~!: |Q(a/)| < 2}, and
Ey = {2/ € S : 24 < |Q(z")] < 21} for d > 1. Denote by Qy the
restriction of 2 on Ey (d > 0). For positive integer [, let

-1
Q) =) Qala").
d=0
It is easy to show that

190 — Q| pr(sn-1) < > 11Qall 1 (sm-1)

d>l
<O 2B < CIm™) d2| By < CI7°,
>l >l

Let [ be a positive integer which will be chosen later. For each fixed
] € Z, set
Q(z
K@) = ho) iy o),

where (2 be the function on S"~! such that (1€ oo (gn-1) < 2l and || —
Qllpr(sn-1y < 17 Let 5 = max{2, s'}. We will use a preliminary Fourier
transform estimate for K Jl-, that is, for for each 0 < v < 1, there exists a
positive constant C' = C(n, 7) such that
(20) KL < Cllulloo|27] 7775,
In fact, if s > 2, then
2R
d
sup [ ()P < oo,
R>0JR r

and the estimate (20) is an easy corollary of the familiar Fourier transform
estimate due to Duoandikoetxea and Rubio de Francia (see [5, page 551]).
On the other hand, if s < 2, set

e = [ e
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Invoking the Holder inequality and the fact that ||I!]so < C||lso, We get
that

97 +1 2J+1

|;{\Jl(f)‘ < (/2] |h(r)|5%>1/5</2j |I,,l,(£)‘8/%>1/8l

27+1
<cle ([ i
27
< Cll Ul

QQ)US/

where in the last inequality, we again employed the Fourier transform esti-
mate due to Duoandikoetxea and Rubio de Francia.
We can now conclude the proof of Theorem 3. Let

Kj(x) = h('x)%X{ﬂ<|x<2j+l}($)'

Obviously, K satisfies (3), and by the vanishing moment of €,
|K;(6)] < C|2¢).

For each ¢ € R™ such that |2/¢| > 2, let [ be the positive integer such that
2l < |27¢]7/(29) < 21F1 We finally obtain

[K;(6)] < [KLE)| + (192 — Qull pr(sny
<€)U poo(sn-1) + 19 — Qull g1 s
< C1P¢[77 39 4 Clog™(127¢]) < Clog™*(12/¢)), 127¢] > 2.

Combining the estimates above, we see that K satisfies (4) for A = 1/2.
This via Theorem 1 establishes Theorem 3.
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