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Abstract

An alternative version of the necessary and sufficient condition for almost sure fixation
in the conditional branching process model is derived. This formulation provides an
insight into why the examples considered in Buckley and Seneta (1983) all have the same
condition for fixation.
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1. Introduction

Donnelly (1986) discussed a general exchangeable model used to study gene survival in
populations whose size changes without density dependence. He provided necessary and
sufficient conditions on the rate of growth of the population size for the maintenance of genetic
diversity.

In this paper we focus on conditional branching process models. These models were first
considered by Moran and Watterson (1959), and fixation was investigated for generations of
a fixed size by Karlin and McGregor (1964). Buckley and Seneta (1983) studied the variable
population size situation and provided a sufficient condition for almost sure fixation. This
condition was noted in Donnelly (1986) as equivalent to the necessary and sufficient conditions
given in Donnelly (1986).

By applying the techniques developed in Karlin and McGregor (1964), we obtain an alterna-
tive formulation of the necessary and sufficient condition for fixation. One consequence of this
formulation is a unified way of dealing with the three special conditional branching process
models considered by Buckley and Seneta (1983). The formulation also has a natural extension
to conditional bisexual branching process models. These results complement the fixation results
for the class of exchangeable bisexual models considered by Möhle (1997).

2. The general exchangeable model

Assume that the population evolves in discrete generations. Let Mn denote the size of
generation n. Assume that 1 < Mn < ∞, n = 0, 1, 2, . . . . Consider a haploid asexual
population of genes. At a single locus of interest there exist two neutral alleles, a and A. Let
Xn denote the number of type a alleles in generation n, 0 < X0 < M0.
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Conditional on Mn and Mn+1, let ν
(n)
i denote the number of offspring of individual i in

generation n. Assume that the offspring are of the same allelic type as the parent and that
{ν(n)

i } are exchangeable with ν
(n)
1 + ν

(n)
2 + · · · + ν

(n)
Mn

= Mn+1. Furthermore, assume that the
distribution of {ν(n)

i }, given M0, M1, . . . , depends only on Mn and Mn+1.
Let Yn := Xn/Mn and Fn := σ {X0, M0, . . . , Xn, Mn}. Then, as noted by Donnelly (1986),

(Yn, Fn) is a martingale and since |Yn| ≤ 1, we have Yn → Y almost surely (a.s.). The
probability of fixation is P(Y = 0) + P(Y = 1).

Let

Vk := E(ν
(k)
1 (ν

(k)
1 − 1) | Mk, Mk+1) and Wk := MkVk

Mk+1(Mk+1 − 1)
.

Let ‘
a.s.= ’ denote almost sure equality.

Theorem 2.1. (Donnelly (1986).) A necessary and sufficient condition for certain fixation is

∞∏
k=0

(1 − Wk)
a.s.= 0.

If Wk < 1 a.s. for all k then this condition is equivalent to
∑∞

k=0 Wk
a.s.= ∞.

Note that the condition Wk < 1 a.s. for all k is needed. If Mn = 2n+1 and each allele produces
zero or four offspring, each with probability 1

2 , then the population is fixed at generation 1, but
Wk = 3/(2k+2 − 1), so

∑∞
k=0 Wk < ∞ a.s.

3. Conditional branching process models

Let R
(n)
i denote the number of offspring produced by the ith individual in generation n,

where R
(n)
i , n = 0, 1, . . . , i = 1, 2, . . . , are independent and identically distributed random

variables. Then, given Mn and Mn+1,

ν
(n)
i

d=
(

R
(n)
i

∣∣∣∣
Mn∑
i=1

R
(n)
i = Mn+1

)
, (3.1)

where ‘
d=’denotes equality in distribution. Each branching process model (R(n)

i , Mn)i,n induces
an exchangeable model via (3.1). Thus, the class of conditional branching process models is
a subclass of the class of exchangeable models. In particular, if the offspring distribution is
Poisson then the conditional branching process model reduces to the classical Wright–Fisher
model with

P(Xn+1 = j | Xn, Mn, Mn+1) =
(

Mn+1

j

)(
Xn

Mn

)j(
1 − Xn

Mn

)Mn+1−j

.

Therefore, in order to analyze a conditional branching process model, we can use the theory of
exchangeable models or the special structure of the branching process model.

Theorem 3.1. (Buckley and Seneta (1983).) Let

V ′
n := var

(
R

(n)
1

∣∣∣∣
Mn∑
i=1

R
(n)
i = Mn+1, Mn, Mn+1

)
and W ′

n+1 := V ′
n

Mn − 1

(
Mn

Mn+1

)2

.

Then fixation is certain if
∑∞

k=0 W ′
k+1

a.s.= ∞.

https://doi.org/10.1239/jap/1197908828 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908828


Fixation in conditional branching process models 1105

Donnelly (1986) commented that the Buckley and Seneta (1983) condition is in fact necessary
and sufficient for certain fixation. To see this note that

Vn = E(ν
(n)
1 (ν

(n)
1 − 1) | Mn, Mn+1)

= V ′
n − E(ν

(n)
1 | Mn, Mn+1) + (E(ν

(n)
1 | Mn, Mn+1))

2

= V ′
n + Mn+1

M2
n

(Mn+1 − Mn).

Thus,

1 − Wn = 1 − M−1
n

1 − M−1
n+1

(1 − W ′
n+1)

and, hence,
k∏

n=0

(1 − Wn) = (1 − 1/M0)

(1 − 1/Mk+1)

k∏
n=0

(1 − W ′
n+1).

Adapting the technique of Karlin and McGregor (1964), we develop an alternative form
for the above condition. We will exclude trivial cases where individuals can have only zero
or one offspring. In these cases Vn = Wn = 0 and fixation is not certain. Let f (w) :=∑∞

j=0 P(R
(1)
1 = j)wj denote the common offspring probability generating function (PGF).

Theorem 3.2. Fixation is certain for the conditional branching process model if and only if

∞∏
n=0

(Mn − 1)Kn

1 + (Mn − 1)Kn

a.s.= 0,

where

Kn := Coefficient of wMn+1−2 in f (w)Mn−2(f ′(w))2

Coefficient of wMn+1−2 in f (w)Mn−1f ′′(w)
.

If Kn > 0 a.s. for all n then this condition is equivalent to
∑∞

n=0(1 + (Mn − 1)Kn)
−1 a.s.= ∞.

Proof. From

P(ν
(n)
1 = j | Mn, Mn+1)

= P

(
R

(n)
1 = j

∣∣∣∣
Mn∑
i=1

R
(n)
i = Mn+1, Mn, Mn+1

)

= P(R
(n)
1 = j,

∑Mn

i=2 R
(n)
i = Mn+1 − j | Mn, Mn+1)

P(
∑Mn

i=1 R
(n)
i = Mn+1 | Mn, Mn+1)

= (Coefficient of sj in f (s))(Coefficient of tMn+1−j in (f (t))Mn−1)

Coefficient of wMn+1 in (f (w))Mn

= Coefficient of sj tMn+1−j in f (s)(f (t))Mn−1

Coefficient of wMn+1 in (f (w))Mn

= Coefficient of rjwMn+1 in f (rw)(f (w))Mn−1

Coefficient of wMn+1 in (f (w))Mn
,
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it follows that

G(r) :=
∑
j

P(ν
(n)
1 = j | Mn, Mn+1)r

j = Coefficient of wMn+1 in f (rw)(f (w))Mn−1

Coefficient of wMn+1 in (f (w))Mn
.

Differentiating G(r) twice with respect to r gives

G′′(r)

= Mn+1(Mn+1 − 1)

Mn

× Coefficient of wMn+1−2 in f ′′(rw)(f (w))Mn−1

Coefficient of wMn+1−2 in (f ′′(w)(f (w))Mn−1 + (Mn − 1)f (w)Mn−2(f ′(w))2)
.

Thus,

Vn = E(ν
(n)
1 (ν

(n)
1 − 1) | Mn, Mn+1)

= G′′(1)

= Mn+1(Mn+1 − 1)

Mn

1

1 + (Mn − 1)Kn

,

and the result follows by applying Theorem 2.1.

If Kn = 0 for some n then Wn = 1 and fixation is certain. If Kn = K > 0 then KMn/2 ≤
(1 + K(Mn − 1)) ≤ (K + 1)Mn, as Mn ≥ 2, so in this case

∑∞
n=0 M−1

n
a.s.= ∞ is necessary

and sufficient for certain fixation.

Corollary 3.1. If the offspring PGF satisfies

(f ′(w))2 = Kf (w)f ′′(w)

for some constant K > 0 then
∑∞

n=0 M−1
n

a.s.= ∞ is necessary and sufficient for certain fixation
in the conditional branching process model.

Solving the differential equation gives

f (w) =

⎧⎪⎨
⎪⎩

eµ(w−1) for K = 1,(
1 + µ(K − 1)

K
(w − 1)

)K/(K−1)

for K �= 1.

For K = 1, we obtain the Poisson offspring distribution and the classical Wright–Fisher model.
If 0 < K < 1, we have the negative binomial offspring distribution, and if K = 1 + (d − 1)−1

for some integer d then the offspring distribution is binomial with parameters (d, µ/d).

Corollary 3.2. If the offspring PGF is a polynomial, f (w) = p0 + p1w + · · · + pgw
g of

degree g, and if there exists a constant K1 < ∞ such that p2
1 ≤ K1p0p2 then

∑∞
n=0 M−1

n
a.s.= ∞

is sufficient for certain fixation in the conditional branching process model.

Proof. First note that (f ′(w))2 and f (w)f ′′(w) are both polynomials of the same degree.
Compare the coefficients term by term for wj . For j = 0, we need to compare p2

1 with 2p0p2,
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and by assumption there exists a finite constant such that K1p0p2 ≥ p2
1. By considering each

term in turn for j ≥ 1, it is easy to see that

(f ′(w))2 ≤ K2f (w)f ′′(w),

where K2 ≥ max(2g, K1/2). Thus,

∞∑
n=0

(1 + (Mn − 1)Kn)
−1 ≥ (K2 + 1)−1

∞∑
n=0

M−1
n ,

and the result follows.

Donnelly (1986) commented that the ‘offspring distribution plays far too prominent a role’
in determining necessary and sufficient conditions for certain fixation. ‘Conditions (. . .) which
depend only on the population size process would be of more interest.’ Corollaries 3.1 and 3.2
go some way towards addressing this comment.

4. Extension to bisexual models

Daley (1968) introduced the bisexual Galton–Watson branching process whereby at each
generation, Fn females and Mn males form Zn = L(Fn, Mn) mating pairs, each of which
independently produce a random number of offspring. The function L(x, y) = min(x, y)

denotes the perfect fidelity mating function. One variation examined by Daley has mating
pairs producing offspring according to the PGF f (s) and then each offspring is independently
classified as male, with probability α, or female, with probability 1−α. This structure naturally
extends to produce a bisexual conditional branching process model.

Möhle (1997) extended the ideas of Donnelly (1986) to a bisexual model based on the
structure of Moran (1958). Möhle obtained necessary and sufficient conditions for certain
fixation and applied these to the bisexual analogues of the Wright–Fisher model and Moran
models. He did not consider the conditional branching process model, but it can be considered
as a special case of the general bisexual exchangeable model.

Using Möhle’s notation, we will briefly describe his general bisexual model. Consider a
diploid, dioecious population of genes which, at a single locus, has two neutral alleles, a and A.
Males and females in generation n are randomly paired to form Nn pairs. As time goes from n

to (n + 1), Vn pairs are removed from the population, and Un newborn pairs are added:

Nn+1 = Nn + Un − Vn, n ≥ 0, Nn ≥ 2, Un ≥ 1.

Each child receives one gene from its mother and one gene from its father randomly, inde-
pendently of the process. A pair alive at time n is called an n-pair. An individual alive at
time n is called an n-individual. The sons and daughters produced by the n-individuals are
randomly paired to form Un new pairs. Let ν

(n)
j and µ

(n)
j respectively denote the number of

daughters and sons of the j th n-pair, and suppose that
∑Nn

j=1 ν
(n)
j = ∑Nn

j=1 µ
(n)
j = Un. Define

the offspring vectors K(n) := (ν
(n)
1 , µ

(n)
1 , ν

(n)
2 , µ

(n)
2 , . . .), with the convention ν

(n)
j := µ

(n)
j := 0

for j > Nn. We assume that, conditional on U := (N0, U0, U1, . . .) and V := (V0, V1, . . .),
the vectors K(n) are independent. Furthermore, we assume exchangeability. Conditioned on
U and V and for fixed n, let π be a permutation on N with π(j) = j for all j > Nn. Then
πK(n) := (ν

(n)
π(1), µ

(n)
π(1), ν

(2)
π(2), µ

(2)
π(2), . . .) has the same distribution as K(n). It is initially

assumed that both alleles are present in the population.
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We are concerned with certain fixation on a genetic level. Define Hn to be the probability
that two genes chosen from generation n at random with replacement are of different allelic
types.

Lemma 4.1. (Möhle (1997, Lemma 4.2).) For the model described above, certain fixation
occurs if and only if limn→∞ Hn = 0.

Next apply the arguments in Lemma 2.3 and Theorem 2.1 of Donnelly (1986).

Theorem 4.1. Fixation is certain if and only if
∑∞

n=0 W ∗
n

a.s.= ∞, where

W ∗
n := P(two distinct genes in generation n + 1 have the same

ancestor gene in generation n | U, V ).

Note that since each individual receives a gene from its mother and father, the genes in
generation n cannot all be descended from a single (n + 1)-ancestor gene, so W ∗

n < 1 a.s. Our
aim is to evaluate W ∗

n . Fix n ≥ 1. Choose two n-genes (with replacement) and consider their
ancestral genes in generation k ∈ {0, . . . , n − 1}.

Define

ζ
(n)
k := ζk :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if the two ancestor genes are the same,

2 if the ancestor genes are distinct, but belong to the same individual,

3 if the ancestor genes belong to different individuals of the same k-pair,

4 if the ancestor genes belong to different k-pairs.

Let Gn := P(En | U, V ), where En denotes the event that the two individuals of a randomly
chosen newborn (n + 1)-pair are brother and sister. Furthermore, let Wn := P(Fn | U, V ),
where Fn denotes the event that two randomly chosen individuals belonging to different
(n+ 1)-pairs are either both newborn children of the same n-pair, or one individual is newborn
and a child of the other individual.

Lemma 4.2. (Möhle (1997, Lemma 4.8).) Fix n. Conditional on U and V , the backward
Markov chain {ζk}, k ∈ {n, n − 1, . . . , 0} has initial distribution

P(ζn = i | U, V )
a.s.=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

4Nn

for i ∈ {1, 2},
1

2Nn

for i = 3,

1 − 1

Nn

for i = 4,

and transition matrix P = (Pij )1≤i,j≤4 with Pij := P(ζk−1 = j | ζk = i, U, V ), given by

P
a.s.=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 − Uk−1

Nk

Uk−1

Nk

0

1

4

Gk−1Uk−1

Nk

1

4

Gk−1Uk−1

Nk

1 − Uk−1

Nk

+ Gk−1Uk−1

2Nk

(1 − Gk−1)Uk−1

Nk

Wk−1

4

Wk−1

4

Wk−1

2
1 − Wk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Using the transition matrix in Lemma 4.2, we are able to evaluate W ∗
n .

Lemma 4.3. For the above bisexual model,

W ∗
n = Nn E[(ν(n)

1 + µ
(n)
1 )(ν

(n)
1 + µ

(n)
1 − 1) | U, V ]

4Nn+1(4Nn+1 − 1)
+ 2Un(Nn+1 − Un)

(4Nn+1 − 1)NnNn+1
.

Proof. Two distinct genes in generation n + 1 can either:

(i) belong to the same individual with probability 1/(4Nn+1 − 1),

(ii) belong to different individuals of the same pair with probability 2/(4Nn+1 − 1), or

(iii) belong to different (n + 1)-pairs with probability 4(Nn+1 − 1)/(4Nn+1 − 1).

Then,

W ∗
n = P(two distinct genes in generation n + 1 have the same ancestor

gene in generation n | U, V )

=
3∑

i=1

P(two distinct genes in generation n + 1 have the same ancestor

gene in generation n | U, V, Ai) P(Ai | U, V ),

where A1 is the event that the (n + 1)-genes belong to the same individual, A2 is the event that
the (n + 1)-genes belong to different individuals of the same pair, and A3 is the event that the
genes come from different (n + 1)-pairs. Using Lemma 4.2, we obtain

W ∗
n = 0

1

4Nn+1 − 1
+ GnUn

4Nn+1

2

4Nn+1 − 1
+ Wn

4

4(Nn+1 − 1)

4Nn+1 − 1

= 1

4Nn+1 − 1

(
GnUn

2Nn+1
+ (Nn+1 − 1)Wn

)

= Nn E[(ν(n)
1 + µ

(n)
1 )(ν

(n)
1 + µ

(n)
1 − 1) | U, V ]

4Nn+1(4Nn+1 − 1)
+ 2Un(Nn+1 − Un)

(4Nn+1 − 1)NnNn+1
,

using Lemmas 4.3 and 4.5 of Möhle (1997) to evaluate Gn and Wn.

Consider a bisexual Galton–Watson process, where each of the Nn pairs at generation n

produce a random number of offspring R
(n)
i , i = 1, . . . , Nn. We condition on the requirement

that
∑Nn

i=1 R
(n)
i = 2Nn+1. Theorem 4.1 can now be applied. Note that we are dealing with

nonoverlapping generations, so Un = Nn+1. The techniques in the proof of Theorem 3.2 are
used to evaluate the relevant conditional expectation.

Theorem 4.2. Provided that there exists a nonzero probability of an individual pair having
two or more offspring, certain fixation for the bisexual conditional branching process model
occurs if and only if

∞∑
n=0

(1 + (Nn − 1)K ′
n)

−1 a.s.= ∞,

where

K ′
n = Coefficient of w2Nn+1−2 in f (w)Nn−2(f ′(w))2

Coefficient of w2Nn+1−2 in f (w)Nn−1f ′′(w)
,

provided that K ′
n > 0 a.s. for all n.
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Proof. Since Un = Nn+1, the result follows by evaluating the conditional expectation in
Lemma 4.3. To do this, replace Mn+1 by 2Nn+1 and Mn by Nn in the proof of Theorem 3.2
and apply Theorem 4.1.

Thus, for the Poisson, binomial, and negative binomial offspring distributions, we have
certain fixation if and only if

∑∞
n=0 N−1

n
a.s.= ∞.
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