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Abstract. In this paper we prove that the weighted group algebra L,(G,w) is
semi-regular if and only if G is either abelian or discrete.

1. Introduction. A number of Banach algebras commonly occurring in functional
and harmonic analysis are not Arens regular. In fact, the group algebra L,(G) of a locally
compact Hausdorff group is regular if and only if G is finite, and the closure of the algebra
of finite rank operators on a Banach space X is regular if and only if X is reflexive (see
[13], [14]). In 1984, Grosser [5] introduced a notion for Banach algebras with a bounded
approximate identity which on the one hand is weaker than Arens regularity but on the
other is adequate to characterise some of the nicer non-regular Banach algebras. These
algebras are called Arens semi-regular Banach algebras. For members of this class the
Arens products behave in a reasonable way although in general they do not coincide (see
[S, Theorem 3]). It turns out that every commutative Banach algebra with a bounded
approximate identity is Arens semi-regular [5, Theorem 2], so that, in particular, L,(G),
for an infinite commutative locally compact group, is semi-regular but not Arens regular.
The Arens semi-regularity of the algebra of compact operators on a Banach space has
been studied in detail by Grosser in [6).

In [5] Grosser states that the group algebra L,(G), where G is a locally compact
Hausdorff group, is semi-regular if and only if G is either abelian or discrete. This
observation is based on results established by Losert and Rindler in [8]. The proof of [8,
Theorem 1], however, assumes that, if G is a non-discrete locally compact Hausdorff
group, then there exists a closed subgroup H such that the quotient space topology on

G/H is metrisable and non-discrete. Whilst this result is true for a compact group (see, for
example, 8.20 of [7, p. 80]), it is not clear whether or not the result is true in general.

There appears therefore to be a gap in Losert and Rindler’s arguments. In this paper we
prove by arguments which do not involve the above result that the weighted group
algebra L,(G,w) is semi-regular if and only if G is abelian or discrete.

2. Preliminaries. Throughout we assume that A is a Banach algebra with a bounded
two-sided approximate identity (abbreviated to b.a.i.). For the definitions of the two
Arens products on the bidual A** of A, and a survey of the results on Arens regularity up
to 1979, we refer the reader to [2].

A mapping S:A — A (resp. T:A— A) is said to be a left (right) multiplier on A if and
only if S(ab) = (Sa)b (T(ab)=aTb). Every left and right multiplier on a Banach algebra
with a b.a.i. is linear and continuous, and, if M,(A) (resp. M,(A)) denotes the set of all left
(right) multipliers on A, then M;(A) and M,(A) are Banach algebras with identity under
the usual algebraic operations for operators and the norm given by the operator norm. An
ordered pair (S, T) of mappings on A is said to be a double multiplier if and only if
aSb =(Ta)b for all a, b € A. If (5, T) is a double multiplier on A, then § € M,(A) and
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T € M,(A), and the set M(A) of all double multipliers on A is a Banach algebra with
identity under the algebraic operations

S, TN+, B)=(5+S5,T1 + L), a(S, T) =(aS, aT)(a € C),

(Sl, T])(Sz, TZ) = (SISZ, TZTI),
and the norm
IS, Il = max([IS|, IT1).

For details of the above results, see, for example, §3 of [10].

An element E of A** is said to be a mixed unit if it is a right identity with respect to
the first Arens product and a left identity with respect to the second. It is clear that every
o(A**, A*)-cluster point of a b.a.i. is a mixed unit. On the other hand, if A** has a mixed
unit, it follows from the fact that the canonical image of the unit ball in A is
o(A**, A*)-dense in the unit ball of A** and Proposition 4 of {1, p. 58] that A has a b.a.i.
If we denote by - (resp. *) the product which leads to the definition of the first (second)
Arens product on A** we define A*A and AA* by

A*A={f-a:feA*,acA}and AA*={a*xfaec A, f € A*}.

It is easy to show that, if E is a mixed unit in A**, then E + (A*A + AA*)* is the set of all
mixed units, where, for any subset % of A*,

F*+={F e A**(f,F)=0for all f € Z}.

It follows that a mixed unit in A** is unique if and only if (A*A4 + AA*)* ={0}.

The notion of Arens semi-regularity was introduced by Grosser in [5], where he
defines a Banach algebra with a b.a.i. to be Arens semi-regular if and only if S**E = T**E
for all (S, T) € M(A) and mixed units F in A**.

The elementary properties of Arens semi-regular algebras may be found in §3 of [5].
In particular, Grosser proves [5, Proposition 1] that, for any mixed unit £ in A** and
(S, T)e M(A), S**E — T**E e (A*A + AA*)*. 1t follows that, if (A*A + AA*)* ={0},
then A is semi-regular. This observation motivates the following definition.

DeriniTioN 1. If a Banach algebra A with a b.a.i. is such that A** has a unique mixed
unit, then we say that A is semi-regular of the first kind.

We now give some results on semi-regular algebras of the first kind.

THEOREM 2. If the bidual of a Banach algebra A has an identity with respect to either
the first or second Arens product, then (A*A + AA*)* ={0}, and so A is semi-regular of
the first kind.

Proof. Suppose that E is an identity in A** with respect to the first Arens product,
and let F be any element of (A*A + AA*)*. Then, for any a € A, d - F =0, where 4
denotes the canonical image of a in A**. Let {a,:a € I} be a bounded net in A such that
E = o(A**, A*)-lim d,. Then

F=E-F=o(A*, A*)-lima, - F =0;
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that is, (A*A + AA*)* = {0}, as required. (The proof for the second Arens product is
almost identical.) O

CoROLLARY 3. A Banach algebra A with an identity is semi-regular of the first kind.

Proof. If e is an identity for A, then ¢ is an identity for A** with respect to both
Arens products. a

CoroLLARY 4 ([5, Theorem 1]). If A is an Arens regular Banach algebra with a b.a.i.,
then A is semi-regular of the first kind.

Proof. Since A is regular, then A** has an identity with respect to either the first or
second Arens product. a

It follows from Corollary 4 that a B*-algebra is semi-regular of the first kind and so
has a unique mixed unit (cf. [5, p. 48]). The Banach algebra M(G) of bounded regular
Borel measures on a locally compact group G has an identity, and so is semi-regular of
the first kind by Corollary 3. However, M(G) is Arens regular if and only if G is finite [2].
The following provides us with an example of a semi-regular Banach algebra which is not
of the first kind.

ExaMPLE. We recall from remarks made in the introductory paragraph that the group
algebra L,(G) of an infinite compact commutative Hausdorff group is semi-regular but
not Arens regular. However, in this case, L,(G) is not semi-regular of the first kind, as we
now show. We denote L,(G) by A. If {e,:a e/} is a b.ai. in A and A, is the set
{f e A*:e, = f — f}, then it is straightforward to show that A, is a closed subspace of A*
and it follows from the factorization theorem (see, for example, Theorem 10 of [1, p. 61])
that A, = AA*. Recently, Ulger [11] has proved that wap A = AA* = A*A, where wap A
is the set of all weakly almost periodic functionals on A. Since A is not Arens regular, wap
A is a proper closed subspace of A* [2, Theorem 2]. It follows that (A*A + AA*) is a
proper closed subspace of A* and so by the Hahn-Banach theorem there exists a non-zero
element F e A** such that (A*A + AA*, F)=0. Thus A is semi-regular but not of the
first kind.

For the sake of completeness, we give an improvement of a result due to Grosser [S,
Corollary on p. 48] which characterizes the semi-regularity of a weakly completely
continuous (abbreviated to w.c.c.) Banach algebra in terms of its regularity. (A Banach
algebra is said to be w.c.c. if and only if, for each a € A, the mappings x — ax and x — xa
are weakly completely continuous on A.)

THEOREM 5. Let A be a w.c.c. Banach algebra with a b.a.i. Then A is regular if and
only if it is semi-regular of the first kind.

Proof. If A is regular, then by Corollary 4 it is semi-regular of the first kind.

Conversely, suppose that A is semi-regular of the first kind. By [5, Lemma 4],
AA* = A*= A*A, Let f € A*. Then there exist elements a € A, g € A*such that f =g - a.
Thus, for any F, G € A**, we have

(fF-G)=(g-a,F - G)=(G(g-0a),F)=(G-g,a*F)=(g,(d *F)-G).
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Since A is w.c.c., the canonical image of A is a two-sided ideal of (A**, -) or (A**, x) by
[12, p. 443], and so

(f,F-G)y=(g,d*F*xG)=(g-a,F*G)=(f,F * G),
which implies that F - G = F = G; that is, A is regular, as required. a

Let G denote a locally compact Hausdorff group with identity e and left Haar measure
dx. Following §7.1 of [9, p. 83] a real-valued function w on G is said to be a weight
function if it has the following properties:

(i) wx)=1forallx e G,
(i1) w is measurable and locally bounded, and
(iii) w(xy)=w(x)w(y) for all x,y € G.
With multiplication by convolution, the functions fin L,;(G) such that fw e L,(G) form a
subalgebra of L,(G) which is a Banach algebra under the norm

1flla = fG ) w(x) dx.

This algebra is denoted by L,(G, w) and is called the weighted group algebra. If Coo(G) is
the space of continuous real-valued functions on G with compact support, then
Coo(G) = L (G, w), and, since Cy(G) is dense in L,(G), it follows that Cy(G) is
[I-ll,w,-dense in L,(G,w). The dual space of L,(G,w) is L.(G,w), the space of all
complex-valued measurable functions ¢ on G such that

|1l = €SS. SUP M< o,
xeG W(X)

See §7.3 of [9, p. 84].

The group algebra L,(G) has a b.a.i. which consists of functions u, in Cy(G) with
the properties that ||u, ||, =1 and the support of each u, is contained in some compact
neighbourhood, S say, of e. (See, for example, §5.6 of [9, p. 77]). It is straightforward to
show that the net {u,:a€} is also a b.a.i. for L,(G, w).

For the measure theoretic concepts required, we follow the presentation given by
Reiter in [9, p. 46 et seq.] and refer the reader to this reference for details; we merely
note one or two results which we use in the proof of our main theorem.

For a bounded measure p on G and f e L,(G), the convolution products u * f and
f * n are defined respectively by

(> NW = | £ du(y)

and
(00 = S I80™ ) du),

where A(.) is the modular function of G. It follows immediately from the above
definitions that, for the Dirac measure 8, concentrated at a € G, (8, * f)(x) = f(a™'x)
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and (f * 8,)(x) =f(xa~")A(a™"). If G is discrete, then, for any a € G, the characteristic
function yy,, is in Cyo(G) and determines the measure 8,. In this case each §, € L,(G,w)
and, in particular, 8, is an identity for L,(G, w).

Let M(w) consist of those measures u € M(G) for which the upper integral
JEw(x) d|el(x) is finite. It is straightforward to show that, for any a € G,

[ W) deouo) = wia

and so, since w(a) is finite, §, € M(w).

The multiplier algebras of L,(G,w) have been characterized by Gaudry in [3]. It
follows from [3, Theorem 4] that the double multiplier algebra of L,(G, w) is algebraically
and topologically isomorphic to M(w), the correspondence (S, T) < p being such that

Sf=p*fand Tf=f*p.

3. The main result. We open this section with a result on locally compact Hausdorff
groups which are not extremely disconnected. (Extremally disconnected means that the
closure of every open set is open.) A locally compact extremally disconnected group is
discrete [4, p. 322], and so, if the locally compact group G is not discrete, then it is not
extremely disconnected.

LemMa 6. Let G be a locally compact Hausdorff group. Then the following are
equivalent.
(a) G is not extremally disconnected.
(b) For each non-empty open subset U of G, there exists a non-empty open subset V
of U such that V N (U\V)° 5 @,

Proof. Suppose that (b) holds for any open subset of G and that G is extremally
disconnected. With U = G, the set V is clopen and so (G\V)°=(G\V)=G\V, which
implies that (G\V)° NV =@, contradicting’ (b). Thus (b)=> (a).

On the other hand, suppose that G is not extremally disconnected. Then there exists
an open subset W of G such that W is not open. Thus W contains an element x such that
W is not a neighbourhood of x. Let U be any open non-empty subset of G and suppose
that y e U. Let W,=Wx~'y. Then ye W, and W, is not a neighbourhood of y. If
V=W NU, then V is open and non-empty since y € Wi. Now y'e VN (U\V)Y, clearly
y e V, and, since U is a neighbourhood of y and W, is not, every open neighbourhood of
y meets U\W,, implying that y e (U\V)°. Thus (a)=> (b).

TueoreM 7. Let G be a locally compact Hausdorff group. Then L\(G,w) is
semi-regular if and only if G is either abelian or discrete.

Proof. Suppose that G is abelian. Then the algebra L,(G,w) is commutative and so
is semi-regular by [5, Theorem 2]. If G is discrete, then 8, is an identity for L,(G, w), and
so by Corollary 3 is semi-regular of the first kind.

Conversely, suppose that L,(G,w) is semi-regular but that G is neither discrete nor
abelian. Then there exist x, y € G such that xyx~'# y Since G is Hausdorff there exist
non-empty open subsets U,, U, of G such that xyx™' e U, y € U, and U, N U, ={. By
continuity there exists an open set Us, containing y, such that xUpx~'cU,. Let
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U=UsNU, Theny e U, xUx"' = U,, and so xUx~' N U = . Since G is locally compact
we may assume, without loss of generality, that U is relatively compact.

Since G is non-discrete, corresponding to U, there exists by Lemma 6 an open set V
such that V< U and VN(U\V)° =@,

Let € be any positive number. By Lemma 1(ii) of [8] there exists a net {v,} in L,(G),
with suppv, € U, vl =€, [yv,dx=¢€/2, and lim || f * v, |l; = lim |v, * f||, =0 for all

f € Li(G). Since w is locally bounded and U is relatively compact, each v, € L (G, w). If
{u,} is the b.a.i. introduced in §2, then {u, +v,} is a b.a.i. for L,(G,w); for, if g is any
element of Cyy(G), with K = supp g, then

g * (ua +va) ~gliw=118 * tta = gl + 18 * Vall1-

The support of g * v, is contained in KU, and so

g * valliw= sup w(x)|lg * v,[[,—0.

xeKU
Since Coo(G) is |||l »-dense in L,(G,w), {u, +v,} is a right a.i. for L,(G, w). Similarly
we can show that {u, +v,} is a left a.i. The net {u, + v,} is {-||; ,-bounded since

it + vl = 5p () + (0 i) )€
xe§ el

for all a.
With x as defined earlier, we show that

<va * 6y — 6.r * Vg, CVx) = 6/3’
where Cy, denotes the characteristic function of the set Vx. We first note that

(Vo * 8, — 8, * v, )(t) = A(x ") (v, — 8 * v, * 8,-)(tx ™),
and that
(8 * v, * 8-)(tx ) = v (x10).

The support of v, is contained in U and so the support of 8, * v, * §,-1 is contained in
xUx™". Now xUx™"'N U = and so supp(8, * v, * 8,-) NV =. Thus

(00 80— 0. 00y Cu) = 867) | (00 =0, %, 8t~ )Con)
=867 [ (=80 s v )G (7 e
=28 [ (0= 8 %0 8)OCH O de
= vaa(t) dt=€/2,

as required.
Finally, since

(ax * (ua + va) - (ua + Ua) * Sx, CVx) = <8x * Uy — Uy * ax, CVx> + <6x * Uy — Uy * 6xa CVx>
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and Cy, € L.(G,w), it follows that (8, * (u, +v,) — (1, +v,) * 8,) and (8, * u, —u, *

8,) cannot both converge weakly to 0. This contradicts the semi-regularity of L,(G,w);
for, if (S, T) is the double multiplier on L,(G, w) corresponding to the measure §, and E,
(resp. E;) is a cluster point of {u,} (resp. {u, +v,}), then S**E, =T**E, and
S**E, = T**E, imply that both

(6.: *U, — Uy * 6,\r)
and
(8, * (ug +v,) ~ (ug +v,) *8,)

converge weakly to 0, contrary to the above. The contradiction proves that G must be
either abelian or discrete. O

The authors would like to thank the referee for pointing out an error in the original
proof of the main result and for providing the proof of Lemma 6.
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