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1. Introduction

In our article [8] we examined asymptotic mean square stability for linear retarded
f.d.e.'s which are perturbed by white noise. It is shown in [8] and [10] that if the
deterministic linear retarded f.d.e. is asymptotically stable, then so is the perturbed
stochastic f.d.e.

In this note we wish to examine the asymptotic behaviour of the trajectory {x,: t ̂  0}
of the stochastic f.d.e.

dx(t) = H(x,)dt + G(x,)dW(t), r£0 -]

x,(s) =x(t + s), —r^sgO

where the deterministic linear f.d.e.

) = H(y,)dt, t*O •}

r (ii)
y,(s) =y{t+s),

is assumed to be hyperbolic with at least one asymptotically unstable solution. More
specifically, following the notation of Hale [5] and Mohammed [9, 8], let J = \_ — r,0],
C = C(J, W) be the Banach space of all continuous paths tj:J->W given the supremum
norm

Denote by | | the Euclidean norm on IR". In (I) and (II), the drift coefficient H:C->R" is
continuous linear and the diffusion coefficient G:C-*L(Um, IR") is a (globally) Lipschitz
map into the space L(Um, IR") of linear maps B:Rm-»IR'1 with the operator norm

||B|| = sup{|B(t))|:t;elRm,|t;| = l}.

The stochastic f.d.e. (I) is driven by m-dimensional Brownian motion W:M-° x Q->Um

on a filtered probability space (Q,^,(^,),^0,P). It will be assumed throughout that the
filtration (^,),g0 ' s right-continuous.
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2 S. E. A. MOHAMMED

The set of all initial distributions JSf 2(fi, C; J^) is the space of all Bochner square-
integrable .^-measurable maps 6:O.-*C with the complete semi-norm

If de£C2(Cl, C;^o), it is known that the stochastic f.d.e. (I) admits a unique sample
continuous solution 8x:[—r, oo) xQ-»RB which is (#",),§0-adapted and satisfies xo = 6.
The trajectory {"x,:t^0, rjeC) describe a continuous C-valued Feller process
(Mohammed [9, Chapter III]).

The dynamics of the deterministic f.d.e. (II) is well understood through the work of
J. K. Hale [5, pp. 165-190]. Indeed, according to [5], the space C has a topological
splitting

(1)

which is invariant under the semi-flow Tt:C->C, t^O, of (II):

^O, t]eC (2)

where the unique solution of (II) starting off at rj is denoted by ",y:[ —r, oo)->R". The
unstable subspace % is finite-dimensional and one has the following exponential
estimates on °U and the stable subspace &1:

(3)

(4)

where L, K, 5 and a are positive constants independent of £, and t (Hale [5, p. 181]).
The Markov trajectories {'1x,:t^0, rjeC} induce a contraction semi-group P,:Cb->Cb,

defined on the Banach space Cb of all bounded uniformly continuous functions <f>:C-*U
(Mohammed [9, pp. 66-69]). The space Cb is furnished with the supremum norm

Let Jt(C) be the Banach space of all finite (regular) Borel measures n on C given the
total variation norm

f * ")
= u(/z)(C) = sup< Y, \KBi)\'BteBorel C, i = l,...,k, disjoint Borel partition of C>

= supj :<t>eCb,

where v(n) is the total variation measure of \i. The natural continuous bilinear pairing
<v>: CbxJ((Q->R

<0,/i>= J mdvtn), 4>eCb, neJt(C) (5)
r,eC
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defines the adjoint semi-group Pf:J((C)-+J({C) through the relation

>, 4>eCb,

If {p(n, t,) = P° ("x,) ~!: t ̂  0, tj e C} are the transition probabilities of the Markov process
{"x,:t^0,r]eC}, then

(P,V)(B)= J p(r,,t,B)dfi(rl) (6)
C

for every Borel set B in C and each fie^f(C). (Mohammed [9, pp. 68-69]).
Since the splitting (1) is completely determined by the drift H only, the unstable

subspace <% will never be invariant under the sample "stochastic flow" {'x,:t^0,)/eC}
unless G is identically zero. Even if the segment x, momentarily visits °ll, the Brownian
forcing term will clearly "diffuse" it away from <% during subsequent times. Moreover,
when G is continuous linear and has a positive memory, the sample flow {*x,:t2;0, tjeC}
has measurable versions fixR+xC->C which are a.s. non-linear on C! (Mohammed
[9, pp. 186-190]). Such flows will a.s. never respect the topological splitting in (1). It
therefore seems reasonable that one should look for the "stable" and "unstable
manifolds" of the stochastic f.d.e. (I) within the space of square integrable distributions
S£2(Q, C) or J{(C) rather than the underlying state space C, cf. deterministic results of
Hale [5], Hale and Perello [6]. As a first step in this direction, we shall isolate a subset
of distributions in if 2(fi, C) (or Ji(C)) which is invariant under the stochastic flow
({P*},j0) and on which trajectories of (I) diverge to infinity exponentially in the mean
(square sense).

2. Semi-groups and stopping times

Let 3~ be the family of all P-essentially bounded stopping times (or Markov times)
T:fi-*R=° with respect to the filtration (F,),z0

 F o r e a c h ze^~ define J^ to be the
ex-algebra generated by all sets /4eJ* such that y4n(i<()ef, for every £^0. If
x:[ —r, oo) x fJ-»R" is the solution of (I), define the ^-measurable map xt:Q-+C by

xz((o)(s) = X(T(O>) + S,CO), (o e Q, s e J.

Define also the stopped families {Pt:T£^"} and {Pf:Te$~} by setting

t), <t>sCb, r,eC (7)

and

To see that each Pr maps Cb continuously into itself, we need the following two lemmas:
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4 S. E. A. MOHAMMED

Lemma 1 (Doob's Inequality). Let ^:R-°xfi-»R" be a sample continuous ifp-
integrable martingale on (Q, 3F, (#",), ̂ 0,P), where p>\. Let z e J . Then the functions

sup \X{u,to)\p,

to ^'(Q, R; ^ t ) and

£ sup |X(U)|^f-P-Y£|X(T)|". (8)
OSuSt \p—\J

Proof. Suppose ||T||00=essup|T(aj)|<oo. For each t^O, let t A T be the stopping time

min(t,z)e&~. Define the stopped process ^ :R-° x £1->W by

tf(r, •) = *(* AT,-),

Since X is a sample continuous martingale, then so is X (Doob [3, p. 373], Lipster and
Shiryayev [7, p. 69]).

Fix any coeQ, then

sup |A(u,co)|" = max| sup
OSoSHrll^

= sup \X(u,a>)\'.
OSuSt(to)

Since the function ^(HTU^, )|P is integrable, then Doob's inequality for X tells us that

sup ' "

is also integrable. Now for each

\X(-c{(o),co)\"^ sup ^(u.tuJl'g sup |A"(M,<O)|P.

Thus |A"(T)|P is integrable. We must prove that the function

cot-^ sup |X(U,OJ)|''
O S u S r(o>)

is integrable. It suffices to indicate its ^%-measurability. To see this define the process
n->nby

Y(t,co)= sup \X(u,a))\", t^O, coeQ.
O S S
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Since X is sample continuous and (#,),£ 0-adapted, then so is Y. In particular, Y is pro-
gressively measurable (Stroock and Varadhan [11, p. 20]). Thus
is ^-measurable and in fact belongs to JSP1(f2, R; J^).

Finally, apply Doob's inequality to X so as to get

E sup 1^)1" = £ sup
OSuSt 0SuS||r|

p V

p - 1

This completes the proof of the lemma. D

The next lemma describes the dependence of the "stopped" solution segment exz on
the initial process 6.

Lemma 2. For each 6 e i?2(Q, C; J^), /et 9x:[-r , oo) x n-^IR" be t/ie unique solution
of the stochastic f.d.e.

dx(t) = H(x,) dt + G(xt) dW(t), t >0 ]
Y (HI)

J
w/iere #:C->R", G:C-»L(IRm, R") are globally Lipschitz with a common Lipschitz constant
L>0. Then for every zeST and flj^eJzf^Q, C;&0) we have

where K=4m2.

Proof. Let 01)02eJS?2(£I,C;#o) and te^r. Fix Ogf^HTl^. Define the process
«P:[0,||T||<o]xn-»IRby

1 ' U<(AT(OJ)

o, «>tAT(a,)

for UG [0, | |T | | ,J and coefi. Clearly T is (J^,),^-adapted.
Using the simple facts
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6 S. E. A. MOHAMMED

and the previous lemma, one easily sees that

seJ

sup
seJ

I A t + S

+ 3£ sup
seJ

I A t+S^O

J {G(°>xu)-G{<»xu)}dW(u)

1 A t

o

12£ J T(u, •) {e(8'x. A t) - G(9% A t)} d W(u)

12K

Therefore Gronwall's lemma implies that

for all
(9).

. Putting ^^[|T||QO ' n last inequality yields the required estimate
D

Remark. Estimates similar to (9) also hold if the coefficients H and G in the
stochastic f.d.e. (HI) are allowed to depend explicitly on t^O, a>e£l. We will not need
these results here.

We can now prove
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STOCHASTIC DELAY EQUATIONS 7

Theorem 1. For each bounded stopping time I E J , Pz:Cb-*Cb is a continuous linear
map of Cb into itself. Similarly, P*:Jt(C)->J{(C) is continuous linear with respect to the
total variation norm (or the vague topology). Furthermore, ifxe3~ and t ̂  0, then

P t oP I = P r + , (10)

and

P*oP* = P*+t. (11)

Proof. Let (t>eCb, we must show that Pt(<£):C->R is bounded and uniformly
continuous on C. It is clear that the function

is bounded by ||0||c6- To prove it is uniformly continuous, let e>0. By uniform
continuity of <p, there is a <5'>0 such that \4>(£,i) — 0(<^2)|<£/2 whenever ^ , ^ 2 e C ,
||£i-£2||<<5'- Take <5>0 such that

Suppose nut]2eC are such that H î— ̂ H c ^ - Then

xj\ dP+

<£.

Thus Pt(<̂ ») is uniformly continuous and so belongs to Cb.
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8 S. E. A. MOHAMMED

Since ||Pt($)||C|>^||$||C(> for all 4>eCh, then Pt is continuous linear and
Because of the duality

in (5), the linear map P*:Jt{C)-*M(C) is continuous in the variation norm if and only
if it is vaguely continuous. Also | |P* | |^1, since | |Pt | |gl.

By duality the "semi-group" properties (10) and (11) are easily seen to be equivalent.
But property (10) is a direct consequence of the time-homogeneity and the Feller
property of the trajectory field Cx,:t^0, tjeC}. Indeed if 4>sCb, and rjeC, then

= J 1 *[*W»>x,(a>')] dP(<o')dP(co)
toed a'eii

= J
i

J
toeil

Hence the proof is complete. •

Remarks, (i) Define the family of Borel measures {pC, x, •): r\ e C, x e 3T) by setting

p(r,, x, B) = P{("xz) ~
 J(B)}, B e Borel C.

Then Lemma 2 implies that for each i e J the map

is bounded and uniformly continuous (Elworthy [4, pp. 300-301]). Furthermore we may
write

= J *tf)pfo,T,<«), * 6 C b f,eC.

(ii) The last theorem is well known for Feller processes with values in a locally
compact metric space (Chung [2, pp. 48-59]). In our infinite-dimensional case, the
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STOCHASTIC DELAY EQUATIONS 9

theorem yields the extra regularity property that the operator Pt leaves the set Cb of all
bounded uniformly continuous functions invariant. In fact, if the coefficients H and G in
(III) are C1 (or C00), the proof of Lemma 2 may be modified to show that the map

9\->ext

is also C1 (or Cx) (cf. Mohammed [9, Theorem II3.2, pp. 41-45]). Hence Pz leaves
invariant the smooth functions in Cb whenever the coefficients of the stochastic f.d.e.'s (I)
or (III) are smooth.

3. Unstable distributions

Let the coefficients H and G in the stochastic f.d.e. (I) be as in Section 1.
If i j^O, consider the set ^ <= i?2(fi, C; &,) of aH initial distributions 9 such that the

trajectory {^xj1:!^^} of the stochastic f.d.e.

x,)dW(t),

leaves the stable subspace y at some bounded random time after tj with positive
probability. We shall prove that each trajectory of (I) starting off on ^ will diverge to
infinity asymptotically in the mean (-square) with exponential speed.

Theorem 3.1. Let 0ei?2(Q, C;Ptl), t^O. Define Tfl:fi->(R^0 by

Suppose L,5>0 are as in (3) and let Pm:C-*"ll denote the projection onto "U given by the
splitting (1). Then T9 is a stopping time. If, further | |T8 | | 0 0<OO then

WlW^WP^xJil (12)
for all t ^HT 9 ^ , Pj—a.s.

Proof. Recall that the filtration (J*,),so is right-continuous. Since { 'xj1 :^^} is
sample continuous, then T" is clearly a stopping time (Stroock and Varadhan [11, p.
22]).

Without loss of generality, suppose that rt =0 .
We first prove the following version of the stochastic variation of parameters formula

(Mohammed [8], Mohammed, Scheutzow and Weizsacker [10]): Let H:C-*W be
continuous linear and g:U-° xfi->L(IRm, W) a measurable (^t),^0-adapted process such
that faE\\g(t,-)\\2 dt<ao for each a > 0 . Suppose z:[ — r, oo) x Q-*W is a solution of the
stochastic f.d.e.

) = H(z,)dt+g(t)dW(t), t>0. (IV)
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10 S. E. A. MOHAMMED

Let T0 £ 9~ be any essentially bounded stopping time. Then

(13)

a.s. on ( t^

In (13), A = x(0,idRn, xm:J-*U is the indicator function of {0}, Ag(u):J-*L(Rm, W)
denotes the map

fe(«) s=0, uZ

and (7J),>o is the natural semi-flow induced by (7J),g0 on the Banach space
B(J, L((Rm, R")) of all bounded Borel-measurable maps J->L(Mm, W) with supremum
norm. The stochastic integral in (13) is a "stopping-time-version" of the Pettis-Ito
integral introduced in [8]. In fact, when To==toeR-° is deterministic, it is proved in [8,
Theorem 3.1] that a.s.

(13)'

Since (IV) admits sample continuous trajectories (z,:t^0} on C, it is evident from the
equality in (13)' that the Pettis-Ito integral on the righthand side has the C-valued
version z, — 7J_,o(z,o) which is jointly sample continuous in to,t,to^t. Therefore one can
substitute a simple stopping time f0 for t0 in (13)'. Hence by approximation with simple
stopping times it follows that (13) holds a.s. on (t^i0) for any (bounded) stopping time
T0 (cf. Elworthy [4, Corollary 7A, pp. 44-48]). If {x,:t^0} is a trajectory of the
stochastic f.d.e.

t>0 (I)

then a.s. on (t^x0)

xt = 7;_to(xro) + } %-u Ag(xu)dW(u), (14)
' 0

Apply the continuous linear projection Pv to both sides of (14) and use the properties of
the Pettis-Ito integral to get

P ^ ) = 7;_ro[P^(xIO)] + } tt_u{Pm(A)}G(xu)dW{u) (15)
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STOCHASTIC DELAY EQUATIONS 11

a.s. on (t>r0) (Mohammed [8]). Now in (14) and (15) take C-valued Bochner
conditional expectations with respect to !FZQ. Thus

and y (16)

a.s. for all t

Next we proceed to prove the estimate (12). So let TH = inf{t:t^0, ux,£Sf} be
essentially bounded. In (16) put TO = T6 and estimate the (Bochner) conditional
expectations to obtain a.s.

(17)

^ \\E{PmlexA \PJ\\ (Elworthy [4, p. 5])

for all t^llr9!^. Taking expectations in the above inequality yields the conclusions of
the theorem. •

Corollary 1. If 9 s &\Q, "U; 3?0), then

E||M|£Le*£||0|| (19)

for all t^O.

Proof. In the theorem, take rfl = 0. D

For each t^O, define the subsets <%'w and 9"m of if2(fi, C;#,) by

and

Note that V is the solution of the stochastic f.d.e. (I) satisfying ex't = 6. Denote by
<&^.te\n, C;3FH)-^£e\Q., C;S?,2), t^t2, the "stochastic flow":

https://doi.org/10.1017/S0013091500006532 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006532


12 S. E. A. MOHAMMED

Then one knows that

(Mohammed [9, Theorem H.2.2, pp. 39-40]).

Our next corollary shows that the family of distributions {W^t^O} plays the role of
a stochastic unstable manifold for the stochastic f.d.e. (I) viz. it is invariant under the flow
<J>|J,t1^t2, and for every 0 e ^ the trajectory O|'(0), t^tly diverges to infinity asymp-
totically in the mean square. Within the space of measures M(C) the family { ^ }
corresponds to a set of probability measures

Mm = {\i:nsm{C), there exist t ^ O and OeW^ such that n = Pod~1}

which is invariant under the semi-group {P,*},go-

Corollary 2. Let ti^Q. Then

(i) «Ji isopenin&2(Q,C;Ph);
(ii) <»!'{«»} s « ^ / O r a / / t ^ ;
(iii) P*{^r«}s^r«/ora//t^0;
(iv) if 9 = <%%, there exist Le>0, t 2 ^* i such that

* - ' 0 /or aW t^t2. (20)

Proof. We first prove (ii).
Fix ti ^ 0 and take 0e<^. Pick tj SST such that

We contend that if xe$~ is such that r ^ ^ + Ti a.s. then P(Pqio
ex'z

l=f=0)>0. Suppose, if
possible, that there exist xeST so that T ^ ^ - I - T ! a.s. and P^o8Xjl = 0 a.s.

Recall that, on "U, each t\^l is a linear homeomorphism. For simplicity let T-,
denote (t,\<%)~1. Then putting T0 = t 1 + t 1 in (15) gives

a.s. on ( t^ r j+ t i ) . We shall replace ( in the above equation by the Markov time T. TO
do so suppose T' = ̂ ,t'xn. is a simple Markov time such that z'^tl + zi a.s. and each

,i+tl. Therefore

O|7;l J T.jiPm

9 (21)
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STOCHASTIC DELAY EQUATIONS 13

a.s. on ( t '^ t j + Ti). Approximate xe^ a.s. by a decreasing sequence {xk}^=l of simple
Markov times viz. xh^x a.s. for all fc^l and xk{co)[x(u>) as /c-»oo for a.a. coeil (Lipster
and Shiryayev [7, p. 60]). Hence we may replace x' in (21) by xk and then pass to the
limit (in probability) as fc->oo so as to get

p.o«x{» = :r (p%o»x{;+tl) + Tt J T-jLPmoA)GC#)dW(u) (22)
+

a.s. on ( T ^ ^ + T J (Elworthy [4, pp. 45-48]).
Now Pm°Bx'T

1 = 0 a.s. and Tx(u)) is a linear (bijection) for a.a. co in ( T ^ ^ + TJ; thus (22)
gives

T_(i_ti(P*oflx|;+ti)+ | f^(PmoA)G(ex^)dW(u) = 0 (23)

a.s. on (x^ti+Xi). Taking ^-valued conditional expectations with respect to ^(,+t!
then yields

a.s. Since T-(,-r i is 1:1 a.s., then

F oflv<i _ n
* x l 1 + t 1 — u

a.s. This contradicts our initial choice of xu and so our contention is proved. In
particular, if t^.tu then

Therefore,

i.e., O['(0)6^. This proves the invariance property (ii).
Next we prove that ^ is open in ^2(il, C;&t). Fix any t e ^ . Then by Lemma 2 of

Section 2 the map

is continuous. Since ^\{0} is open in °U, it is easy to see that the function
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14 S. E. A. MOHAMMED

is lower semi-continuous (Stroock and Varadhan [11, pp. 7-10]). Thus the set

Wlt =: {9:6 e if 2(Q, C; Pt%), P{P* o flx|;+, ̂  0) > 0}

is open in &2(Q, C; &,). Therefore

wu> — \J "eo, r

is also open in i?2(Q, C;^h). This proves assertion (i).
Now we prove the estimate (20). Suppose Oetfl'^. Then there is a xvsST such that the

event

has positive probability in -^1,+t,. Take t2 = t\ + ||t1||co. Then by the theorem we get

|^L£->«-'» J e-*'||P.o»xj;+tI||dP

for all t g (2. Thus (20) is valid where

We complete the proof of the corollary by indicating the invariance of Jtm under
{P*}(g0. Let ti€Mm be such that n^PoO'1 where 0 6 ^ for some t ^ O . Let (^0 and
<j> e Cb. Then by time-homogeneity and the Markov property we get

co'efi coeft

= J </>[9x

(Mohammed [9, pp. 51-69]). Therefore

But e x ; ; + , G ^ + I , so P*neJtm. D

Our next corollary gives a version of a "stochastic stable manifold theorem" for small
linear or delayed diffusions. Indeed all solutions starting off on &„ (i.e., outside < °̂) are
exponentially asymptotically stable in the mean square. The result is a generalization of
those in [8, 10].
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Corollary 3. Let

and suppose G satisfies one of the following conditions:

(i) G is continuous linear,

(ii) G is of the form

or

G(r,)=] g(r,(s))dX(s), neC,

where g:W->L(Um, W), is a given map, 0^do^r and X is a finite Borel measure on J.
Suppose tj^O. Then there is an e>0 such that if l<e and 9e^, there exist M,y>0

so that

| | | | | P (24)

for all tZzti.

Proof. We prove the estimate (24) when G:C^>L(Mm, W) is continuous linear and
|| is sufficiently small. The proof resembles that of Theorem (5.1) in [8].
Let G correspond to a Borel L{W,L(Um, R"))-valued measure v with finite total

variation v(v), viz.

G(r,)=] dv(s)(n(s))

for every neC. Fix tx^0. It is clear from the definition of ¥'£ that

2"J, = {6:0e&2{Q,C,&,),"<[+•<£S? a.s. for all t e

In particular "xj 'ey a.s. for all f£.tv Without loss of generality assume that ti = 0.
Apply the continuous linear projection Py:C^SP to the stochastic variation of
parameters formula (14) (T O E0) SO as to get

\ T,-u{PyoA}G(exu)dW(u) (25)
o
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16 S. E. A. MOHAMMED

a.s. for all t^O. Note that d(a>)eSf for a.a. coed, so (4) implies

J dv(s)(e

<2K2e-2ME\\e\\2 + 2m K"J.-» du

Hence

e-2"E\\0\\2 + 2m2K2e'2"]e2auv(v)(J)E j \ex(u + s)\2 dv{v)(s)du
0 - r

(Holder's inequality)

*f e2*ue-2xsE\ex(u)\2dudv(v)(s)
r s

(Fubini's theorem).

m2K2

+ 2m2K2i;(v)(J) j e~2asdv(v)(s) ] e2mE\ex(u)\2 du
0

for all t ̂  0. Gronwall's lemma then yields the required estimate (24) where

m2K2 °
M = 2K2+ v(v)(J) J (e-2xs-l)dv(v)(s)

CC —r

= 2oc-2m2K2v(v)(J) ~2xs dv(v)(s).

The proof is quite similar when G takes one of the forms in (ii), cf. Mohammed
[8]. •

Remarks, (i) It is not clear whether the segment ex',1, t^.tu satisfies an estimate
similar to (24) when 9e ^ .

(ii) It is not hard to see that the above corollary holds when G has several discrete
and/or distributed random delays (cf. [8, Theorems (1.1), (4.1), (4.2)]).

(iii) Itt*tlt then<D!'{^}e^L.
(iv) Define the set of probability measures Jty c M{C) by

Ms/. = {\v.n&M{C), there exist tj^Oand 0e£/"^ such that n = P<>6~1}.

Then P*{Jty £ Jt <, for every t^O.
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We close this section by giving sufficient conditions on the drift and diffusion
coefficients H:C-*W and G:C-*L(nm, W) for the family SPa to be trivial—so that one
almost always gets unstable solutions of the stochastic f.d.e. (I). To this end we need the
following lemma:

Lemma 1. Let A e L(Um, W) be onto. Then (P% o A)A = 0 if and only if% = {0}.

1 Proof. We need only prove that {PqioA)A = 0 implies <2r = {0}. Assume that
/4:Rm-»IRn is onto and let ((Py ° A)A) = 0. We adopt the notation of Hale [5, pp.
168-182]). Recall that the unstable subspace % has finite dimension d. Define
C* = C([0, r], W*) where W* is the space of all n-dimensional row vectors. Set the bilinear
map(v):C* x C-»R to be

W,*) = *(<>)#))- J ]t(s-u)dii(u)(Ks)ds
~r

when ^:BorelJ->L([R'1) is the measure representing H:C->W. Let AH:D(AH)<=C->C be
the infinitesimal generator of the semi-flow Tt:C-*C, t^O of (II)

dy(t) = H(y,)dt. (II)

Denote by AH*:D* cC*->C* the adjoint of AH under the above bilinear form: (AH*\ji, 4>) =
(\i/,AH(j>), ipeD*,(t>eD (Hale [5, p. 174]).

The unstable subspace °U is the sum of the generalized eigenspaces of A
corresponding to the eigenvalues with non-negative real parts. The space "ll* is
constructed in a similar way (Hale [5, pp. 174-179]). Furthermore, pick a basis

<&=($!,...,#,,) of °U and a basis 4> = for <%*.

Approximate AA pointwise by a uniformly bounded sequence of continuous functions
and use the identity

J M 0 = <DOF,0, ct>eC

(Hale [5, p. 178]) to obtain

(P» oA)A=<W¥, A A) A = W(0)i4

(Mohammed [9, p. 207]). Therefore by assumption

<D4'(0)/4=0
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18 S. E. A. MOHAMMED

where products in the above formulae are "matrix-like". Hence, for every ueR™, we
have

Since {#,}?= i are linearly independent, then

veUm.

But A(Um) = W, so il/i(0)v = 0 for every veW. Therefore x;(0)=0 for every l^i^d. Thus
iA(0) = 0 for all i(te<%*. Now <W*<=D* and AH*<%* <=<%*, by construction (Hale [5, pp.
173-179]). Hence for every i//e>%*, we get AH*\j/e^* and (AH*il/)(O) = tl/'{O)=O. Similarly
[(AH*)2ip(0) = il/"(0) = 0, ...,iA(p)(0) = 0 for every integer p ^ l . Since <%* is a finite sum of
subspaces of the form ker(AH* — AI)k where X is an eigenvalue of AH*, we may assume
without loss of generality that \j/e^l* has the form

for some faeM"*, l^jfik, (Hale [5, Lemma 3.3, p. 177]). Now differentiate the above
relation with respect to s p-times for p ̂  k and put s = 0 to obtain

Therefore i/̂ (s) = 0 for all O g s ^ r , <^* = {0} and <& = {0}. This proves the lemma.

The diffusion coefficient G:C->L(Rm, R") is said to be non-degenerate at neC if
G(n):Mm-+M" is onto. Our final result in this section says that if the deterministic linear
f.d.e. (II) is unstable and the diffusion coefficient G is non-degenerate, then the family
SPa is trivial:

Theorem 3.2. Assume that the deterministic drift

dy(t) = H(y,)dt, t>0 (II)

is unstable, i.e., ^ ^ { 0 } , or equivalently the characteristic equation

has at least one root with positive real part.
(i) Suppose there is a 5eJ = [ — r,0] such that G is non-degenerate at every neC with

0. Then, for every t, ^ 0,

Q,C;&h),
 flx|'=0 a.s.for all t^^-

(ii) Suppose G is non-degenerate at every tj^O. Then for t i^O, y ^ is either empty or
{0}.

(iii) Suppose G is non-degenerate at every nsC. Then 9"£ = 0 for all ty ^ 0 .
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Proof. Assume throughout the proof that <^^{0}.

(i) Let G(rj) be onto for every r\ with rj( — <5)=/=0 where — r^S^O is fixed. Fix t 1 = ^
and let 9e^. Then

u ( « ) ( L ' ) d w ( u ) = 0

a.s. for all t^tx (cf. (23)). This implies that

a.s. for every t^tx. Therefore f_u(P<e,oA)G(ex|,1)dw(u)=0 a.s. for all u^tx. As f_u is
injective, then (P^oA)G(exJ,1 = 0 a.s. for every u ^ ^ . Suppose—if possible—there is a
to>tt such that

Therefore by the non-degeneracy of G and Lemma 1, we must have <̂  = {0}. This
contradicts the instability of (II). Hence ex',l(-5)=0 a.s. for all t^tv So 8 x | '=0 a.s. for
every t^tl — 3 + r. This completes the proof of assertion (i).

(ii) To prove assertion (ii), suppose G(r\) is onto whenever rj^O. Let OeSf'^. Then as
before (P^oA)G(flx[') = 0 a.s. for every t ^ t t . If there were a to = ' i s u c n t n a t

P(ex|^0)>0, then we must have * = {0}; which is a contradiction. Therefore e x | l =0
a.s. for all t~£tv In particular 0 = 0; so ^ = {°}-

(iii) The proof of the final assertion (iii) is similar.

The proof of the theorem is complete. •

Remark. In the case m = n, it is easy to formulate ellipticity conditions on G which
are sufficient to give the non-degeneracy requirements of Theorem 3.2. In particular, let
g:W-+L(M") be a Lipschitz map satisfying

(g(x)(v),v)^e(x)\v\2, x,veUn

where e:IR"-+IR+ is continuous with e(x)>0 for every x=£0. The Euclidean inner product
on W is denoted by <•,•> and the corresponding norm by ||, as usual. The diffusion
coefficient

G(ri)=g(r}(-d0)), 0 = <io = r,

is easily seen to satisfy assertion (i) of Theorem 3.2. Similarly

G(r,)=] g(r,(s))ds
— r

satisfies assertion (ii) of the above theorem.
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4. Examples

(i) Dye mixing (Pollution)

A model for the circulation of dye from a tank was proposed by Bailey and Williams
[1]. In [1] the effect of diffusion on the circulation has been neglected. We would like to
investigate the effect of (small) diffusion on the dye-mixing model.

For simplicity, we consider the set-up:

a(t)x(t)

a(t)x(t-r)

and introduce the following notation:

V= volume of the tank (cc)
x{t) = concentration of dye in the tank at time t; (gm/cc)

r = time taken by the dye to traverse the side tube S
<x(t) = random diffusion of dyed solution in S (cc per sec)

0 < a = constant rate of flow of water in V (cc per sec)
= constant rate of flow of dyed water leaving the tank.

In the time interval (t, t + At) the amount of dye entering the tank is equal to the
amount leaving it so that the change in dye concentration Ax(t) at time t is given by

VAx(t) = - <x(t)x(t) At + <x(t)x(t -r)At- ax(i)At.

Therefore,

Ax(t) = - - x(t)At + - lx(t - r) - x(t)Mt)At. (26)
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Now {a(t):t^.Q} is a random process which we may assume to be white noise viz.

where ao>0 is a constant and j?(r)Ar = AW(t), for some one-dimensional Brownian
motion W. Letting At->0, (26) then becomes the stochastic linear d.d.e.

dx{t) = i [oox(t -r)-(a + ao)x(t)] dt+± [x(t - r) - x(t) <W(t). (V)

We wish to find suitable condition(s) on the parameters a0, V, a and r so that the zero
solution of the above equation is asymptotically stable in the mean square.

First consider the deterministic d.d.e.

dy(t) = p [aotft -r)-(a + a0MO] dt. (VI)

Since a, a0, V>0, it follows from [1] that the zero solution of (VI) is globally
asymptotically stable. Indeed the roots of the characteristic equation

VXe» + (a + ao)e
>r-ao = 0 (27)

have all real parts negative. By the notation of Section 1, Section 3, the unstable
subspace % of (VI) is trivial and SP = C. Thus <#L = 0 and 9"a = JS?2(fi, C; &t) for all
t^O. Furthermore applying Corollary 3 of Theorem 3.1, there is a F0>0 so that if
V^V0, then for all initial distributions 9 e i?2(fi, C; ^0) of dye concentration, the dye in
the tank will eventually be washed out at the exponential speed

E\ex(t)\2^Me-y'E\\e\\2

for all t > 0 and some constants M, y > 0.
It is interesting to note here that the above conclusion is independent of the "size" of

the perturbation fl(t) i.e., if V is sufficiently large, the effect of diffusion may always be
ignored (cf. [1]).

It is an interesting question to determine the asymptotic behaviour of x(i) when the
volume V is possibly small.

The stochastic d.d.e. (V) is derived under the assumption that dye mixes
instantaneously within the tank V. Suppose, however, that mixing in V is equivalent to
dye "dissolving" in the tank at white noise rate with constant variance b>0. Then the
model becomes

dxit) = 1 [aox(t - r) - (a + ao)x(t)] + b dW(t). (VII)
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For the sake of simplicity, we have ignored in (VII) the effect of "small" diffusion into the
side tube S. According to Theorem VI (4.2) of [8, p. 208], or [10, Theorem 3], the dye
concentration x(t) is asymptotically close in mean square to a stationary Gaussian
distribution.

Equations like (V) and (VII) may also serve as some possible pollution models on river
banks. We shall not go into this here.

(ii) Population growth

Consider a large population x(t) at time t evolving with a (constant) birth rate n>0,
and a fixed development (incubation) period r>0. Suppose that there is a Gaussian
migration oc(t) from the population viz.

where a o <0 and /?(t) is white noise. Then the change in population Ax over a small
time interval (t, t + At) is given by

Ax = nx(t- r)At + [<x0 + P{t)~]x{t) At

= \jix(t -r)+ «ox(t)] At + x(t) A W.

Letting At-»0 yields the stochastic d.d.e.

dx(t) = \jix(t -r) +«ox(t)] dt + x(t) dW(t). (VIII)

If /z<|ao|, the deterministic d.d.e.

(IX)

is exponentially asymptotically stable, whatever the development period r. Thus if /? (or
W) has sufficiently small variance, one expects the population to become extinct with
exponential speed in the mean square (Corollary 3, Theorem 3.1). On the other hand if
/i>|ao| the d.d.e. is unstable (Bailey and Williams [1]) and so the unstable subspace *%
has positive dimension. From Corollary 1 (Theorem 3.1) it follows that the population
becomes exponentially unstable whenever it starts off with an initial distribution in
jSf 2(Q, °U) (or even on <%).

An interesting statistical problem is to estimate the time T required by x, to hit the
unstable subspace °U.

From a control-theory viewpoint, one would like to "stabilize" the population xt by
"guiding" it away from the unstable subspace <%.
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