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Let G be a finite abelian group of rank m,Man oriented compact connected surface,
and F(G,M) the set of all orientation preserving free G-actions on M. Two actions <&u

<J>2eF(G,M) are equivalent if there exists an orientation preserving homeomorphism h
of M such that

If F(G,M) is nonempty then there is an oriented surface N = M/G such that for each
•5 e F(G, M), M/<I> is homeomorphic to N. The classification of the elements of F(G, M)
has been the subject of much research work (see e.g. [2], [3], [4], [5], [7], [8], [9], [10],
and [11]). A. Edmonds, in [2], showed that the bordism invariant of such actions defines
an injective function B:F(G, M)/ *H2(G). If m <genus(N), then B is a bijection (see
[2]). However the characterisation of the set Im(B) in the remaining cases, i.e. when
genus(N) < m < 2 genus(N), has remained open. It is only known that 0 $ Im(B). The aim
of this paper is to solve this problem when G = (Zp)m and p is a prime number. The main
ingredient of the solution, given in Section 2, is a technical result relating the determinant
of a matrix to a recursively defined polynomial in the symplectic products of its rows.
Slight modifications of the arguments, in Section 2, lead to a solution of the problem for
general primary abelian groups. For nonabelian groups G, C. Livingston [7] and B.
Zimmerman [11] studied the relation between H2(G) and the stable equivalence classes of
G-actions on surfaces.

In Section 1, we reduce the problem of classifying free G-actions on surfaces to that
of classifying free actions of the primary decompositions of G, and introduce the
symplectic invariant on matrices through which the bordism invariant factors. We also
give a simple constructive proof of the injectivity of the symplectic invariant which
depends on the original Witt's theorem for symplectic vector spaces over finite fields.
Throughout all homeomorphisms are orientation preserving, and all homology groups are
taken with integral coefficients. If R is an equivalence relation on a set X then X/R is
written as X*.

1. Let G be a finite abelian group and M an oriented compact connected surface.
For any OeF(G,M) , the map p^-.M—^M/^ is a regular G-covering. Let C(G,N) be
the set of all regular G-covering projections over N. Two regular G-coverings
p,, pi: M -» N are equivalent if there exist homeomorphisms F of M, and / of N such that
Fis a G-map and fp{=p2F. If / = INr then p, andp2 are isomorphic. Up to isomorphism,
each element p e C(G, N) is uniquely determined by an epimorphism pp ://,(N)—* G. For
any two groups K and L, let E(K, L) be the set of all epimorphisms from K to L. If
g = genus(N), then HX(N) =» I?8 and the intersection number defines a symplectic product
on Ht(N). The set B of the homology classes of the simple closed curves
{aubi,...,ag,bg}, shown in Figure 1, forms a symplectic basis for H^N), which is fixed
throughout this paper. Two epimorphisms pu p2£ EiH^N), G) are said to be equivalent
if there exists a symplectic automorphism a of HX(N) such that p ,a = p2. The sets
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Figure 1.

F*(G, M), C*(G, N), and E*(H{(N), G) are in bijection with each other (see e.g. [2], or
[5]). A symplectic automorphism of Z2* is one which preserves the symplectic inner
product. A symplectic automorphism of Z2s is said to be elementary if and only if

VJC € B, By e B U {0} such that a(y) =y and a{x) = x±y.

The group Sp2g(Z) of symplectic automorphisms of Z2s is generated by 3g — 1 elementary
automorphisms which are induced by the "Dehn twists" around the simple closed curves
{aubu. . . ,ag,bg,cu. . . , cg_t}, shown in Figure 1. This is the main factor in the proof
of the following proposition.

1.1. PROPOSITION. If G\ and G2 are finite abelian groups of relatively prime order and
N is a closed surface, then the map

E*(H{(N), G, © G2)^E*(Hl(N), G,) x £*(//,(N), G2): [ p H ([r,p], [r2p])

is a bijection, where r, :G\®G2—> G, is the natural projection onto the i-th coordinate. (See
[5]-)

1.2. COROLLARY. / / G = 0 GPi, i = 1,. . . ,n, is the primary decomposition of G and
N is a closed surface, then there are bijections

i=\

S:F*(G,M)-*n^(Gp,.M,),

where Mt is a homeomorphic image of a close surface of genus

l + |GpJ(genus(M)-l)/|G|.

Let p be a prime number, and G = 0 Zp*,, where &,<.. .<&„,. We fix as a basis for
G the set {e,,. . . , « „ } , where e, is the vector with 1 in the ith position but zero
elsewhere. For any <J>eF(G,M) (equivalently p eC(G,N)), let B& be the mx2g
integral matrix representing

with respect to the fixed bases. B<p has row rank m and its /th row consists of integers
modulo pk'. Let M(g, G) be the set of all such matrices. Two matrices BuB2e M(g, G)
are said to be equivalent if for some SeSp2g(Z), BX = B2S. Each of F*(G,M) and
C*(G, N) is in bijection with M*(g, G).
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The column operations that are needed to prove symplectic equivalences can be
achieved by a small list of matrices in Sp2g(Z). The list contains, for l < i , ; '<g, the
following matrices which are obtained from I2g by the indicated operations, as well as
their inverses:

adding the ith column to the (i + g)th column,
)3,: adding the (i +g)th column to the ith column,

adding the ith column to the yth column, and subtracting the (y+g)th column
from the (i + g)th column,
adding the ith column to the (y' + g)th column, and the yth column to the
(i +g)th column,
interchanging the ith column with the yth column, and the (i+g)th column with
the (y +g)th column,
interchanging the ith column with the (y' + g)th column, the yth column with the
(i+g)th column (if i¥=j), and then multiplying the (i+g)th column and the
(y +g)th column by - 1 , and

1.3. LEMMA. If l^m<2g and AeM(g,G), then there is an integer i, l £ i ^ 2 g ,
such that A is equivalent to a matrix B whose i-th column is a zero one.

Proof. Since rank(/4) = m <2g, then, up to symplectic equivalence, there is a
column of A which is a linear combination of the previous ones. Let c, be the first such
column and suppose that

If i < g , then B = A(dliy< . . . (<5,_!,)""-' is the required matrix. If i = g + l, then
B = /4(a-,)"a'T,1(521)~

a2. . . (<5g,)~
a« is the required matrix. For i>g + 1, let k = i -g and

d = ak - a , a g + , - . . . - ak_lag+k_l. Then

is the required matrix.

1.4. DEFINITION. Let B e M(g, G) be any matrix. For any two integers i and y with
l s i < y < m , let

where (r^B), ry(fi)) is the symplectic product of the ith and yth rows of B. The symplectic
invariant is the function

§:Af(g,G)->H2(G)

defined for each matrix B e M(g, G) as:

£(B) = (B12,. . . , BXm, B23, • • • , B2m, • • • , Bm_lm).

Note that, H2(G; Z) = (Z^,)"1"1 0 (Zp^)m'28... 0 Zp*m_,.
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The domain of § can be extended to the set Mm g of all mx2g integral matrices in
the obvious way, and sometimes we will refer to this extension. It is obvious that
equivalent matrices in M(g, G) have the same symplectic invariant and hence £ is a
function on M*(g, H). Up to an isomorphism of G, related to the choice of basis for G,
the Bordism invariant

B:F(G,M)*-+H2(G),

defined by Edmonds in [2], factors through §. By proving a generalisation of Witt's
theorem to symplectic spaces over local rings, Edmonds showed that B is an injection. In
fact, Edmonds proved that § is injective. However, we shall now provide a simple, and
somehow constructive, proof of the injectivity of § in which only the original Witt's
theorem for symplectic vector spaces over finite fields is needed. We first prove a lemma
which results in the reduction of the problem in the case of general p-groups into that of
groups of the form (Zp*)r.

For any p-group G = © (Zp*,), with k^ < . . . < kr, let G = (Zp*,)'. For any natural
number g, the modulo projection p:G—*G induces a function pg:M(g, G)—>M(g, G).

1.5. LEMMA. Let 1 < h< k, G = ZPH @ (Zp*)"\ A e M(g, G) any matrix with 1 < m <
2g, and let Z(A) = (£12,. . • , §mm+i). / / a = {sX2,. . . ,slm+i) is any sequence of numbers
in Tjpk such that su = ̂ u (modph), i = l,. . . ,m + l, then there exists a matrix A e
M(g, G) such that pg(A) is equivalent to A, and §(A) = (sl2,... ,slm+l, Z-23,. . . , £mm+1)-

Consequently, if G is any abelian p-group and A, B e M{g, G) are two matrices such
that %{A) = %(B), then there exists a matrix B e M(g, G) such that ps(B) is equivalent to
B, and, as matrices in M(g, G), %(A) = §(B).

Proof. The proof is by induction on m.
If m = 1, then by definition there is a positive integer / such that, up to symplectic

equivalence, 2g>i>g and a2i = 1. If sn- %i2 = tph, as integers, then the matrix
A e M(g, G), obtained by replacing a, ,_A, with a, ,_g + tph, is the required matrix.

Suppose that the lemma is true for m = r and let G = Zp/.© (Zp*)r+1. Let A' be the
submatrix of A obtained by deleting the 2nd row, and consider the subsequence
a' = (su,... ,slm+l). Let A' eM(g, G/Zp*) be the matrix that satisfies the conditions
above, and obtained by the induction hypothesis. Let B be the matrix obtained from A'
by inserting the 2nd row of A between its 1st and 2nd row. Obviously, B is of rank r + 2.
Hence, there exists a positive integer / such that, up to symplectic equivalence, 2g>i>g,
b2i = 1, and all the entries of B below b2i are zeros. Again, if *12 - §12 = tph, as integers,
then the matrix AeM(g,G) obtained from B by replacing bu_g with bU-g + tph, is the
required matrix.

1.6. PROPOSITION. The symplectic invariant is injective on M*(g,G) {i.e. if
then A is equivalent to B).

Proof. By 1.5, one can assume that G is a free Zp*-module. The proof is divided into
2 cases.

Case (1): m = 2g. Let A~l be the inverse of the matrix A considered as a Zp* matrix,
and consider the 2g x 2g matrix Q =A~lB. Let

j 2 g U 0 J
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Since %(A) = %(B), then AJ2gA
x = BJ2gB

x. Hence

QJ2gQ
x = A-iBJ2sB'(Axyi = A-'AJ2gA\AxYl =J2g,

i.e. Q e Sp2s(Zp*). The fact that AQ = B proves the result in this case.
Case (2): m <2g. Since A is of rank m<2g then there is a column of A, say the

ith, which can be assumed, by 1.3, to be a zero column. Let A' be the matrix whose 1st
row is the unit vector e, in (Zp)

2g, and for j > 1 its /'th row is the (/ — l)th row of A. Let
A' and B be the Zp matrices obtained from A' and B, respectively, by reducing all entries
mod p. Now, A' and B are of rank m + 1 and m, respectively. Then by the original Witt's
theorem for symplectic spaces over Zp, there is a vector v e (Zp)

2s which is linearly
independent of the rows of B and such that

(v, ry(B)) = (e,, ry+1(A'))(mod/?), for j = l,...,m.

Let B' be the (m + 1) x 2g matrix whose 1st row is the vector ve(Zp)2 s , w.r.t. the
standard basis, and for/ > 1 its /th row is the (/ — l)th row of B. Now, A' and B' are two
(m + l )x2g matrices in M(g,ZpffiG) such that %(A') = %(B') in H2(ZP®G).
Repeating this process 2g — m times produces two matrices A" and B" in
M(g, (Zp)2s~"'©G), whose last m rows are those of A and B, respectively, %(A") =
§(£") in H2{{Zpf

8~m © G). By case (1), and Lemma 1.5, there exists a symplectic
2g X 2g matrix 5 such that A"S = B". Clearly AS = B, and the proof is complete.

1.7. PROPOSITION. If \<m^g, then % is surjective.

Proof. Le t v = (vl2,. . . , vlm, v23,. . . , u m _ , „,) e H2(G) be any e l e m e n t . If

" l 0 . . . 0 0 . . . 0 0 u 1 2 . . . vlm 0 . . . 0

0 1 . . . 0 0 . . . 0 0 0 . . . v2m 0 . . . 0

then,

0
0

0 . . .

0 . . .
1
0

0 . .
1 . .

. 0

. 0
0
0

0 .
0 .

vm-\m

0

0 . . .
0 . . .

0
0

, G) and = v.
1.8. COROLLARY. If M is a closed surface of genus g* and if m is an integer such that

l < m < l + (g*- l ) / |G | , then there are pK equivalence classes of free G-actions on M,
where

2. This section is devoted to the characterisation of the vectors in Im(£), when
2g. This completes the solution of the classification of free actions of elementary

abelian groups G on closed surfaces M. However, analogous results can be obtained for
primary abelian groups by slight modification of the statements and the arguments used.
Throughout, all skew-symmetric matrices are assumed to have zero diagonals. First, a
technical result, relating the determinant of a 2n x 2n matrix to a recursively defined
polynomial function d in the symplectic inner products of its rows, is proved. This yields a
condition which must be satisfied by any element in H2{G) in order to be in Im(§) when
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m = 2g. We then prove that for g < m < 2g one of a number of such conditions, in the d
function of some 2(m - g) x 2{m — g) matrices, must be satisfied by vectors in H2{G) in
order to be

2.1. DEFINITION. Let n be a natural number, v e Z"("~1)/2, and let / = ( / , , . . . , i,) be
an increasing sequence of natural numbers not exceeding n. By v7 we mean the subvector
of v obtained by deleting all coordinates in the set

y {{»V/+i> • • •' M u {"*</: i s * < '/•}}•

If / = (1, i), then we simply write v'.
For even numbers n, let

be the function denned inductively on n as follows:

and, for n>2,

d(v) = j:(-iyvud(vi).
/=2

If 5 is a skew-symmetric 2n x 2n matrix, then we define

d(S) = d((sn,S 13, • • • ,Sl2n,S23,- • • ,S22n,. • • ,S2n-l2n)).

If / = {iu . . . , i,} and J = {/,,... ,/,} are sets of distinct natural numbers not exceeding
m, and ^ i s a n m x m matrix, then A{I;J) denotes the submatrix of A formed by deleting
all rows indexed by / and all columns indexed by J. If / = J then we simply write A{1\).
For integers r, t and n with l<r,t^2n, let n(r, t) = {{2,. . . ,2n}-{r,t}}, and

lt + r-1 if t<r.

Using these notations, we find that

Moreover, it is not difficult to see that d(S) can be expanded recursively in terms of any
row or column. In fact, if 1 < r =£ 2n then

d(S)= S (-lYlk]srkd(S(r,k;)),

where for r > k, srk = — skr. For any square matrix A, D(A) denotes the determinant of A.

2.2. LEMMA. Let n s 2 be an integer, S a 2n x 2n skew-symmetric matrix of integers,
and i and j integers such that 2 < / </' ^ 2n. Then

(1) D(S(1, i; 1,/)) = d(5(l, i;)). d(S(l,j;)), and
(2) 2
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Proof. The proof is done by induction on n.
Base case: n = 2. (1) If i '= min{{2, 3,4} - { / } } , j ' = max{{2, 3, 4} - {;}}, /" =

min{{2, 3,4} - {i}}, and j" = max{{2, 3, 4} - {/}}, then

, i; 1,;)) = srsj.sir = rf(5(l,y;)). d(5(l, i;)).

(2) This part follows from the relation

Induction hypothesis. Assume that both (1) and (2) are true for all m<n, and let 5
be a 2n x 2n matrix.

(1) The case i=j follows from the fact that 5(1,1;) is skew-symmetric and the
induction hypothesis. Thus we assume that i <j.

Expressing d(S(\,i\)) in terms of its (y — 2)th row and d(S(l,j;)) in terms of its
(/ — l)th row yields:

= ( 2 (-l)
\*en(i,y)

= 2 2 (-i)a~2)lk]+u-i)[hlsJksihd((s(i,ij,k-,)))d((s(i,i,j,h-))).
ken(i,j) hen(ij)

But S(l,i,j,k;) = S(i,j;)(l,k';) and S(l,i,j,h;) = S(i,j;)(l,h';), for some k' and /i '.
Since S{i,j\) is a 2(n - 1) x 2(n - 1) skew-symmetric matrix, then

,»,/, A;)) = D(5(i,;;)(l, *'; 1, A')) = ^(5(1, i,j, k; 1, i,y, A)).

Therefore

rf(S(l,i;))rf(5(l,y;))= 2 2 ( - l ) 0 - 2 ^ 1 ^ - 0 " " ^ , ^ ^ ! , / , / , A:; 1, j,y,/t))).
ken(ij) hen(ij)

The last expression is D(5(l, i; l,y;)) when expanded along its (i — l)th column and each
resulting minor along its (y — 2)th row. Note that here the cofactor of s;, is skewsymmetric
of odd size and hence it disappears from the expansion of D(S(l,i; l,y;)). The result
follows by induction.

(2) By definition

= 2 2 (-l)k+hsikslhd(S(l,k;))d(S(l,h;))

= 2 2(-^)k+h^kslhD((S(l,k;l,h)).
k=1 h=2

But the last expression is D(S), when expanded along its 1st row and then each minor
along its 1st column.

It was pointed out, by the referee, that the d function is closely related to the pfaffian
polynomial.
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2.3. COROLLARY. If A is a 2g x 2g matrix of integers, then

Here § refers to the extended version.

Proof. This follows from the fact that

AJ2gA
l = S,

where 5 = [s,y] is the skew-symmetric 2g x 2g matrix such that s,y is the symplectic product
of the /th and yth rows of A.

2.4. PROPOSITION. Let k and g be integers with l<k<g. If A is a (g + k)x2g matrix
over Zp of rank m = g + k, then up to symplectic equivalence there exists an increasing
sequence of natural numbers I = (iu. . . , ig-k) not exceeding m, such that:

(1) the symplectic products of the rows of the submatrix A(I;0) are equal to that of
the corresponding rows of A, and

(2) deleting all the pairs of columns indexed by j and g +j, for 1 £/' <g — k, yields a
2k X 2k matrix of rank 2k.

Proof. Lemma 1.3 shows that, up to symplectic equivalence, A has a zero column.
Multiplication on the right by a{j or T,7, if necessary, ensures that the (g + l)th column of
A is a zero column. Let A' be the submatrix of A, obtained by deleting the 1st and
(g + l)th column. If A' is of rank m — 1, then some row of A' must be a linear
combination of the others. Then the required integer ii can be taken to be the smallest
index of such row of A'. However, if A' is of rank m then one can take *, = 1.

Repeating this process g — k times completes the proof.

2.5. THEOREM. Let k and g be integers with \<k<g,m = k+g,G = (Zp)m,

M:M*(g,G)-+Hz(G)

the symplectic invariant, defined above, and v e H2(G) any vector. Then v e Im(£) if and
only if there exists an increasing sequence Iofg — k natural numbers not exceeding m such
that d(v') i= 0 (mod/?). Note that if k = g, then I is empty, and in this case v' is taken to be
v.

Proof. The necessity follows from Corollary 2.3. and Proposition 2.4. The proof of
the sufficiency is divided into 2 cases.

Case (1): (k = g). We use induction on g.
For g = 1, and v e H2(G) - {0}, let

" " L O

Then A e M(g, G) and t-(A) = v.
Assume the result is true for all natural numbers less than g, where g > 1. The fact

that d(\)J=0 (mod/?) implies that there exists an integer r such that 2 < r < 2 g and
(mod/?). Without loss of generality we may assume that r = 2. By the induction
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hypothesis, there exists a matrix B e M(g - 1, G/(ZP)2) such that

C =

0 0 0

^23

.0 fc2(g_l)l • • • 62(A,_|)A,_,

and consider the linear system of equations

0

b2(g-l)g

= v2. Let

Since rank(C) = 2g — 1, then a solution exists. If u = (JC, . . . xgxg+i . . . x2g), and A is the
2g x 2g matrix whose 1st row is u and the rest are those of C, then A e M(g, G)and f(/l) = v.

The proof in this case, then, follows by induction.
Case (2): (k <g). Let v e H2(G), and let / be an increasing sequence of g — k natural

numbers not exceeding m such that d{\') ¥= 0 (mod/?). Without loss of generality, assume
that I = (l,2,...,g-k). Since v' 6 H2(G/(ZP )«"*), then, by case (1), there exists a
2k X 2k matrix B e M{k, G/(Zpy-k) such that §(B) = v'. If

A =

1

0

0

0

0

0 . . .

1 . . .

0 . . .

0 . . .

0 . . .

0

0

0

1

0

0

0

0

0

ft,, .

0

0

0

0

0

" 1 2

" 1 3

" I , - *

v, _ t + ,

0

0

" 2 , •

V2g-k •

v2g_k+t .

0

0

0

0

• • vg-kg-k+>

0

0

0

0

ft,,+l .

0

0

0

0

0 0

then A e M(g, G) and l-(A) = v.
As an example, this means that if k = 1 then for any g, Im(§) = H2(G) — {0}. And

for k=g = 2, V = (v12,u,3,i;,4, V23,v2^, u34)elm(§) if and only if

U 12^34-U 13U24+ "14^23^0 (mod/?).
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