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The centrifugal spinning method is a recently invented technique to extrude polymer
melts/solutions into ultra-fine nanofibres. Here, we present a superior integrated
string-based mathematical model, to quantify the nanofibre fabrication performance in the
centrifugal spinning process. Our model enables us to analyse the critical flow parameters
covering an extensive range, by incorporating the angular momentum equations, the
Giesekus viscoelastic constitutive model, the air-to-fibre drag effects and the energy
equation into the string model equations. Using the model, we can analyse the dynamic
behaviour of polymer melt/solution jets through the dimensionless flow parameters,
namely, the Rossby (Rb), Reynolds (Re), Weissenberg (Wi), Weber (We), Froude (Fr),
air Péclet (Pe∗) and air Reynolds (Re∗) numbers as well as the viscosity ratio (δs),
corresponding to rotational, inertial, viscous, viscoelastic, surface tension, gravitational,
air thermal diffusivity, aerodynamic and viscosity ratio effects. We find that the nonlinear
rheology remarkably affects the fibre trajectory, radius and normal stresses. Increasing
Wi leads to a thicker fibre, whereas increasing δs shows an opposite trend. In addition,
by increasing Wi, the fibre curvature is enhanced, causing the fibre to spiral closer to the
rotation centre.

Key words: rotating flows, slender-body theory, viscoelasticity

1. Introduction

Thanks to their remarkable features such as large surface-to-volume ratio and high
porosity, nanofibre webs underpin many everyday technologies, from scaffold production
for tissue regeneration in tissue engineering (Barbosa et al. 2021), drug delivery in medical
technologies and nano-filtration of water and air, to sensor production (Huang et al. 2003;
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Nayak et al. 2011; Rogalski, Bastiaansen & Peijs 2017; Zhang et al. 2019). The
development of the recently invented centrifugal spinning (CS) methods (also known
as forcespinning or rotary jet spinning), to fabricate non-woven nanofibre webs, brings
important new opportunities for the mass production of nanofibres, from both polymer
solutions and melts. In the CS process, jets of polymer melt or solution emerge from a
rapidly rotating nozzle under the centrifugal force. As the jets evolve through the space,
they stretch into very thin and long fibres, until they land on collectors where the resultant
nanofibre web is assembled. However, despite its simplicity, the CS process suffers from
jet instabilities which can cause the jet (throughout this work, the terms ‘fibre’ and ‘jet’
are used alternatively) to break into arrays of drops or lead to beaded fibre formation, in
both of which scenarios the resultant web is considered low grade or even low quality. On
the other hand, with the CS technology still being at the early development stages, several
fundamental aspects of the CS process are still unknown to date, especially due to the
complexity of the interconnected phenomena and the variety of competing forces involved
(Noroozi & Taghavi 2020).

Through the CS process, as the centrifugally driven jet evolves, it is influenced by
a myriad of forces and phenomena, including e.g. inertial, viscous, surface tension,
gravitational and centrifugal forces (Badrossamay et al. 2010; Andrade et al. 2017; Atıcı,
Ünlü & Yanilmaz 2021); there also exist other factors such as solvent evaporation, heat
transfer effects (temperature variation) and geometrical parameters (Padron et al. 2013;
Lai et al. 2021). The interactions of these phenomena and forces, coupled with inherently
complex viscoelastic features of the rotating fibre, may cloud our interpretation of the
effects of each individual parameter on the process performance. Among the key forces
and phenomena, investigating the viscoelastic properties of a rotating jet is of significance,
due largely to their complex and nonlinear behaviours, which may even affect the jet
dynamics in a counterintuitive way.

Although many experimental studies have been dedicated to characterizing the CS
process, such as Chen et al. (2021), Li et al. (2020), Lu et al. (2013), Ren et al.
(2013), Weitz et al. (2008), Mary et al. (2013), Zhmayev et al. (2015) and Ren et al.
(2015), the experimental investigations require long-term investments of fund and time
and, ultimately, they are not able to provide a rigorous prediction of the effects of
key flow parameters on the resultant fibre and its web quality. On the other hand,
although mathematical modelling of the CS process can provide promising insight into
the process, there exist several limitations and constraints that one encounters when using
mathematical modelling techniques to address thin viscous fibre flows.

There exist mainly two techniques that one can pursue to mathematically model the
CS process, namely, the string models and the Cosserat rod models. At a first glance,
thanks to its mathematical simplicity, it may seem straightforward/easy to use the classic
string model approaches, also known as thin fibre or asymptotic models, to analyse the CS
process. The string methods are based on slender body theories, providing a framework to
predict the dynamic behaviour of a jet flow whose radius of curvature is large compared
with its radius (see e.g. Noroozi et al. 2020). However, the classic string models suffer from
near-nozzle singularities that arise due to ignoring terms related to bending and twisting
in these regions (Götz et al. 2008; Arne et al. 2010; Noroozi et al. 2017). Unless a remedy
is used to overcome the near-nozzle singularities, the string models cannot be correctly
applied to predict the viscous curved jet behaviours in the CS process.

During the last decade, several works have relied on the string models to investigate
the impacts of different parameters in rotating jet systems, such as prilling or glass
particle production processes, all sharing the same mechanism in producing micro- or
nanofibres. Many studies such as Caruntu, Padron & Lozano (2021), Shikhmurzaev &
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Sisoev (2017), Wallwork et al. (2002), Decent, King & Wallwork (2002), Panda (2006),
Părău et al. (2007) and Marheineke & Wegener (2009) have considered the effects of
gravity, surface tension and polymer solution viscosity on the jet morphology, radius and
instability using the string model. Some non-Newtonian effects, such as shear thinning and
viscoelastic effects, on the curved jet instability have been investigated by Uddin, Decent &
Simmons (2008), Uddin & Decent (2009, 2010), Hawkins et al. (2010), Alsharif, Uddin &
Afzaal (2015), Alsharif & Uddin (2015) and Marheineke et al. (2016). Nevertheless, a few
studies have been dedicated to solving the singularity problem of the string techniques.
To eliminate the near-nozzle singularity for the CS applications, Noroozi et al. (2020),
Noroozi et al. (2017) and Taghavi & Larson (2014a,b) have used a simple yet effective
approach, known as the regularized string approach, to yield a stable solution even at
regions adjacent to the nozzle.

As a promising approach, the Cosserat rod theory has been used so far with fewer
limitations compared with its counterpart, i.e. the classical string model techniques, to
study the CS process mathematically. In the Cosserat rod approach, the fully coupled
conservation equations including mass, linear and angular momentum equations are solved
(see e.g. Mahadevan & Keller 1996; Ribe 2004; Ribe, Habibi & Bonn 2006), avoiding
singularities such as the ones observed in the classic string model; this is done via
including the bending and twisting terms in the near-nozzle regions. Arne et al. (2010) and
Arne et al. (2015) have used a Cosserat rod theory to model a curved jet in two-dimensional
(2-D) stationary and 3-D transient frames, respectively, to study a viscous curved jet in the
glass wool spinning process. In another attempt, Liu & Parker (2018) have developed a
Cosserat beam theory to model a viscoelastic curved jet in a 2-D stationary frame, to
study the CS process. However, compared with the string model, extending the rod model
to include the surface forces and nonlinear viscoelastic models is more difficult and the
resulting model equations are eventually more demanding to solve.

In the majority of the previous works, due to their limitations/singularities, the string
model equations cannot be directly applied to study the CS process (which involves a
rapidly rotating viscous flow). Therefore, in this work, we develop a rigorous mathematical
model to remove the existing barriers to properly analyse the CS process. The novelties and
contributions of the current work are as follows. First, when developing our mathematical
model, we use the Bishop bases to define the jet baseline using its full curvature
components; this enables us to develop and solve the final equations in the 2-D and
3-D spaces much easier since the jet baseline torsion is not dealt with explicitly.
Second, we successfully remove the singularity problem of the classic asymptotic string
equations via incorporating the angular momentum conservation equations into the
model. As we consider viscoelastic slender jets, the first-order viscoelastic extra stress
terms are also included into the angular momentum conservation equations; using this
approach, the equations can also be easily extended in future to consider a jet with
non-circular cross-sections. Furthermore, our model equations includes the Giesekus
nonlinear constitutive model coupled with the energy equation, the kinematic expressions
as well as the aerodynamic drag force relations; this inclusiveness, in return, allows us
to predict the effects of viscoelastic, inertial, rotational, surface tension, gravitational,
polymer melt/solution temperature and aerodynamic effects, on the fibre flow. Finally, we
develop the model equations in their general form and in the 3-D space so that they can be
easily tailored to study any spinning processes, in unsteady or in steady state conditions.
Thanks to the comprehensiveness of the model developed, it is possible to explore the
effects of a wide range of key dimensionless flow parameters. This makes it possible to
rigorously analyse the performance of the CS process in the current work and similar
processes (melt spinning, prilling, etc.) in future, for a wide range of material choices,
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Figure 1. Left image: a schematic view of a typical laboratory scale CS process. The nozzle inner diameter is
marked by a, the spinneret radius by s0 and the fibre angles by α and β. Right image: a segment of the jet with
the reference frames. In the left and right images, we show several parameters related to the model explained
in the model section; ωN1 , ωN2 , ωT are the components of the jet cross-section angular velocity vector.

from a Newtonian solvent to a highly viscoelastic solution to a viscoelastic polymer melt,
not addressed in previous works.

The outline of the current paper is as follows. In § 2, we present the methods used to
derive our mathematical model, comprising the assumptions, the governing equations, the
boundary and initial conditions and finally the asymptotic method employed to simplify
the resultant equations. In § 3, we first show the behaviour of a transient jet and then study
parametrically the effects of various flow parameters on the steady jet dynamic behaviour.
Finally in § 4, we conclude the paper with a brief summary of the main findings.

2. Problem formulation

In this work, we derive the asymptotic equations for a viscoelastic curved jet emanating
from a rotating nozzle with the constant rotation speed Ω rad s−1, diameter a and length s0,
as schematically shown in figure 1. Our derivation is based on the slender body approach
consisting of projecting the equations in a 3-D space onto the Bishop basis vectors (Bishop
1975), used to eliminate the baseline torsion and accordingly ease the derivation procedure.
In the next step, we use the cross-sectional averaging techniques followed by expansions of
cross-averaged variables based on the slenderness parameter, i.e. the aspect ratio ε = a/s0,
to derive our set of asymptotic equations. Finally, we solve the leading-order equations in
ε with the aid of numerical approaches.

2.1. Controlling parameters of the CS process
In the CS process, under a centrifugal force, a polymer solution or melt emerges from a
nozzle of a rapidly rotating reservoir, also known as the spinneret, forming a nanosized
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Figure 2. Experimental observation of a growing fibre over time in a typical CS experiment, using a
poly(ethylene oxide) (PEO) solution. The field of view in all images is 140 mm × 250 mm. The solution is
7 %wt PEO (with the molecular weight of Mv = 9 × 105 (g mol−1)), and the experimental parameters are
Ω = 370 (rad s−1), s0 = 8 (cm) and a = 1 (mm). The times with respect to the beginning of the experiment
are given in seconds in the corner of each image.

curved jet as schematically sketched in figure 1. As the jet emerges from the nozzle
(regime 1), it starts to stretch and it develops a time and position dependent trajectory and
radius. However, at long times when the fibre touches the collectors, its behaviour becomes
steady (regime 2) in a way that the jet trajectory does not change with time anymore,
provided that there are no perturbations or jet breakups. To better visualize how the jet is
initially developed and reaches the steady state, figure 2 shows the formation of a growing
polymer solution jet over time, in our laboratory CS set-up, a detailed description of which
can be found in Noroozi et al. (2020). As observed, at short times, the polymer solution is
extruded into a straight jet and starts to bend in the anti-rotation direction. With increasing
time, the fibre goes through a range of transient shapes, from a pedant drop, to an anti-S
shape jet (Li et al. 2020), to a necking point, etc. Next, the fibre continues to grow until
it finally reaches the steady condition where its trajectory no longer changes with time.
According to the figure, one can realize that the transient part of the fibre formation in the
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Parameter Name Definition Typical Range

ε Nozzle aspect ratio a/s0 10−3–10−1

δs Viscosity ratio μsnoz/μnoz 0–1

Rb Rossby number Unoz/(Ωs0) 10−3–10−1

Re Reynolds number ρnozs0Unoz/μnoz 10−3–10

We Weber number ρnozaU2
noz/σ̄noz 10−2–10

Fr Froude number Unoz/
√

gs0 10−1–5

Wi Weissenberg number λnozUnoz/s0 10−2–102

Pe∗ Air Péclet number ρ∗c∗
pUnoza/k∗ 1–102

Re∗ Air Reynolds number ρ∗aUnoz/μ
∗ 10–102

Pr∗ Air Prandtl number μ∗c∗
p/k∗ 0.65–0.8

θ∞ Dimensionless ambient temperature θ∗∞/θnoz 0.5–1
χ Mobility factor — 0–1

c̃p Specific heat ratio c∗
p/cpnoz 0–102

ρ̃ Density ratio ρ∗/ρnoz 0–10−3

Table 1. Definitions of the dimensionless groups along with their typical ranges in a typical CS process. The
subscript ‘noz’ marks the polymer solution/melt jet parameters at the nozzle exit and the dimensional and
dimensionless parameters describing properties in the air are marked with an asterisk (∗). We also use the
subscript ‘p’ to mark the polymer properties and ‘s’ to mark the solvent properties. Here, ρ stands for the
density, U the velocity, σ̄ the surface tension, μ = μs + μp the zero-shear viscosity (with μs and μp being
the solvent and polymer contributions to the zero-shear viscosity, respectively), λ the relaxation time, θ the
temperature, cp the specific heat capacity, k the conductivity and g the gravitational acceleration. In addition
to the parameters presented, our steady state and transient models will respectively use � = L/s0 and τend (the
end time, made dimensionless using the characteristic time s0/Unoz), as additional input parameters.

CS process, i.e. regime 1, is very fast and it merely takes one or two spinning cycles for a
growing fibre to turn into a steady jet (regime 2). Although the major part of the process
occurs in regime 2, studying regime 1 is also of importance, since it will eventually make
the analysis of the jet stability possible. Thus, in this work, we derive a complete set of
model equations including the transient forms, to set the stage for future analysis of jet
stability.

During jet flight time, many parameters affect the jet dynamic behaviour and,
consequently, its size (radius) and shape; these parameters may include rotational
(comprising centrifugal and Coriolis effects), viscoelastic, inertial, gravitational,
aerodynamic (air drag), surface tension and jet temperature variation effects. In this
study, the effects of these parameters will be taken into account in our model, through
several dimensionless numbers as the input parameters of the model, listed in Table 1.
These dimensionless numbers quantify the aforementioned phenomena and forces. In
particular, Rb, Fr, Re, We, Pe∗ and Re∗ can be interpreted as the inverse dimensionless
rotation rate, gravitational acceleration, polymer solution viscosity, surface tension, air
thermal diffusivity and air viscosity, respectively, provided that the flow rate, density and
geometrical parameters are constant. Also, Wi is similarly a representative of the polymer
solution/melt relaxation time, λ.

To preserve the generality of the results, we present all the variables and equations in
their dimensionless forms throughout this study. To do so, we use the nozzle diameter (a)
to scale the fibre radius and we use s0 as a length scale, s0/Unoz as the time scale, Unoz
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as the velocity scale, Unoz/s0 as the angular velocity scale, Aref = πa2/4 as the reference
area, μnozUnoz/s0 as the stress scale and, finally, θnoz as the temperature scale.

2.2. Governing equations
The CS of a viscoelastic fibre can be described using the transient three-dimensional
conservation equations, along with viscoelastic constitutive equations of the polymer
solution/melt. To write out the governing equations, we treat the jet as a single
incompressible phase and ignore the effects of the solvent evaporation on the fibre
behaviour. Therefore, the dimensionless continuity, momentum, angular momentum,
energy and Giesekus viscoelastic constitutive equations can be represented respectively
as

∂tρ̄ + ∇ · (ρ̄v) = 0, (2.1)

∂tv + v · ∇v = ∇ · Π + F , (2.2)

∂t (d × v) + v · ∇ (d × v) = ∇ · (d × Π) + d × F , (2.3)

∂tθ + v · ∇θ = 1
Pe

∇2θ, (2.4)

λ̄Wi
(
∂tS + v · ∇S − (

S · ∇v + (∇v)T · S
)) +

(
λ̄Wiχ

(1 − δs)
S + I

)
· S = 2(1 − δs)γ ,

(2.5)

in which v denotes the velocity vector, ρ̄ = ρ(θ)/ρnoz the relative density, d the position
vector, Π the stress tensor (yet to be determined), S the extra stress tensor related
to viscoelasticity, θ the dimensionless jet temperature, γ the strain rate tensor, χ the
mobility factor, λ̄ = λ(θ)/λnoz the relative relaxation time, δs the viscosity ratio; also,
μ̄ = μp(θ)/μpnoz stands for the relative polymer zero-shear viscosity; see table 1 for the
definitions of the dimensionless numbers. We also define Wi = λnozUnoz/s0 in which λnoz
is the polymer relaxation time at the nozzle. Finally, F stands for the external force vectors
consisting of the Coriolis, centrifugal, gravitational and drag forces, defined as

F = − 2
Rb

Ω × v − 1
Rb2 Ω × (Ω × d) + g

Fr2 + F drag, (2.6)

where Ω = (1, 0, 0) denotes the angular velocity vector, g = (−1, 0, 0) is the gravity
acceleration vector and F drag stands for the aerodynamic drag force vector, yet to be
defined. Solving the full 3-D set of equations coupled with the viscoelastic constitutive
relations and the boundary conditions at the jet free surface (to be defined) is not feasible,
in a transient or even stationary frame. Therefore, in this work, we define the variables
based on the cross-averaged values in the axial direction and then develop a set of
quasi-1-D equations using the asymptotic estimations of the key parameters. Prior to
deriving the governing equations, however, we need to define some geometrical and
kinematic relations to frame an unsteady viscoelastic curved jet, presented in the following.

2.3. Coordinate systems and basis vectors
In this section, we introduce the coordinate systems and their corresponding bases to
frame our unsteady curved jet. To this aim, we use 3-tuple (n1, n2, s) as our curvilinear
coordinate system so that s defines the arc length and (n1, n2) defines the jet cross-section
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as rectangular coordinates normal to the jet baseline. When defining the jet cross-section,
we can also find it helpful to use polar coordinates (r, ϕ) whose relations with (n1, n2) are

r =
√

n2
1 + n2

2, ϕ = tan−1
(

n1

n2

)
, or

n1 = r sin(ϕ), n2 = r cos(ϕ).

⎫⎪⎬
⎪⎭ (2.7)

In this study, whenever more appropriate, we use the polar coordinates to describe the jet
cross-section using back-and-forth transformation relations expressed in (2.7).

Next, we present the basis vector expressions to define the baseline of the jet. We choose
the Cartesian coordinate system as an outer frame to define the jet baseline, so that the
nozzle, from which the jet emerges, is fixed. Given this, we can introduce a time-dependent
three-dimensional curve function

D(s, t) = X(s, t)x̂ + Y(s, t)ŷ + Z(s, t)ẑ, (2.8)

as the jet baseline position in which t is time and (x̂, ŷ, ẑ) are the Cartesian basis vectors.
We also use the Bishop basis vectors (N1, N2, T ), which are orthonormal, as the moving
frame of reference for our curved jet centreline and derive the final uniaxial equations.
In this work, we use the Bishop basis vectors instead of the commonly used Frenet basis
vectors to frame our curved baseline for two reasons: first, we would like to exclude the
baseline torsion from our calculation when deriving our set of equations and, second, we
would like to ease the cumbersome derivation procedure of the governing equations in
the previous works in this area; see for instance Noroozi et al. (2020) or Shikhmurzaev &
Sisoev (2017). Furthermore, to simplify the basis vector derivatives with respect to time
and space and also the kinematic expressions (yet to be introduced), it may be a good idea
to use the fibre angles (α, β; see figure 1), to compute the baseline function derivatives as

X,s = cos(β),

Y,s = cos(α) sin(β),

Z,s = sin(α) sin(β),

⎫⎪⎬
⎪⎭ (2.9)

which automatically satisfy the arc length condition expressed as

X2
,s + Y2

,s + Z2
,s = 1. (2.10)

It is noted that, herein, for convenience we use H,s or H,t as the partial derivative of an
arbitrary function H(s, t) with respect to s or t. We also define 〈H〉T as the projection of a
given vector H onto an arbitrary base vector such as T . We further introduce the baseline
curvature components, i.e. κi, i = 1, 2, 3, determined as

κ1 = β,s, κ2 = α,s sin(β), κ3 = α,s cos(β). (2.11a–c)

The two former components are also known as the Bishop curvatures. Using (2.11a–c) the
baseline curvature κ and torsion T can be obtained as

κ =
√

κ2
1 + κ2

2 , (2.12)

T = κ3 + |κ|−2 (κ1κ2,s − κ2κ1,s
)
. (2.13)
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Now, using the aforementioned expressions, we can define the Bishop basis vectors
(N1, N2, T ) as (Bishop 1975):

N1 = B
κ2

κ
− N

κ1

κ
, (2.14)

N2 = −B
κ1

κ
− N

κ2

κ
, (2.15)

T = T , (2.16)

in which (T , N, B) are the Frenet basis vectors, i.e. the tangent, normal and binormal unit
vectors, respectively, defined as

T = dD
ds

= X,sx̂ + Y,sŷ + Z,sẑ, (2.17)

N = dT
ds

∣∣∣∣dT
ds

∣∣∣∣
−1

= X,ssx̂ + Y,ssŷ + Z,ssẑ√(
X,ss

)2 + (
Y,ss

)2 + (
Z,ss

)2
, (2.18)

B = T × N =
(
Y,sZ,ss − Y,ssZ,s

)
x̂ + (

Z,sX,ss − Z,ssX,s
)

ŷ + (
X,sY,ss − X,ssY,s

)
ẑ√(

X,ss
)2 + (

Y,ss
)2 + (

Z,ss
)2

.

(2.19)

Using (2.9), (2.11a–c) and (2.14)–(2.19), we can find

N1 = (sin(β)) x̂ − (cos(α) cos(β))ŷ − (sin(α) cos(β)) ẑ,

N2 = (sin(α))ŷ − (cos(α)) ẑ,

T = (cos(β)) x̂ + (cos(α) sin(β))ŷ + (sin(α) sin(β)) ẑ.

⎫⎪⎬
⎪⎭ (2.20)

Next, using (2.11a–c) and (2.20), the derivatives of the Bishop basis vectors can be
obtained with respect to the arc length s as

∂N1(s, t)
∂s

= κ1T + κ3N2,

∂N2(s, t)
∂s

= κ2T − κ3N1,

∂T (s, t)
∂s

= −κ1N1 − κ2N2,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.21)

and with respect to time t as

∂N1(s, t)
∂t

= (
β,t

)
T + (

α,t cos(β)
)

N2,

∂N2(s, t)
∂t

= (
α,t sin(β)

)
T − (

α,t cos(β)
)

N1,

∂T (s, t)
∂t

= − (
α,t sin(β)

)
N2 − (

β,t
)

N1.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.22)

Now, we turn from the baseline geometry to that of the fibre as a whole, for the definition
of which we use the covariant basis vectors, g1, g2 and g3 corresponding to n1, n2 and s
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directions, respectively; see figure 1. Based on our definition here, the time-dependent
position vector of an arbitrary point d inside the fibre at a given time t can be expressed as

d(n1, n2, s, t) = D(s, t) + εn1N1 + εn2N2 = D(s, t) + εr, (2.23)

in which r is (n1, n2, 0), so as |r| = r, and ε is the aspect ratio. Given the position vector
of an arbitrary point d, i.e. (2.23), we can define the covariant basis vectors as

gi = ∂d
∂si (i = 1, 2, 3) and (s1 = n1, s2 = n2, s3 = s), (2.24)

and therefore we have

g1 = ∂d
∂n1

= εN1, g2 = ∂d
∂n2

= εN2,

g3 = ∂d
∂s

= − (εn2κ3) N1 + (εn1κ3) N2 + (1 + εn1κ1 + εn2κ2) T .

⎫⎪⎪⎬
⎪⎪⎭ (2.25)

Thus, we can define the metric tensor as

(gij) = gi · gj =
⎛
⎝ ε2 0 −ε2n2κ3

0 ε2 ε2n1κ3
−ε2n2κ3 ε2n1κ3 h2 + ε2r2κ2

3

⎞
⎠ ,

∣∣gij
∣∣ = ε4h2, h = (1 + εn1κ1 + εn2κ2) ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.26)

in which |gij| denotes the determinant of the metric tensor. As vividly seen, our local
bases are neither orthogonal nor normalized due to non-zero off-diagonal elements and
non-unity of the diagonal ones. Using (2.26), we can attain the conjugate metric tensor gij

such that

gik · gkj = δi
j, (2.27)

where δi
j stands for the Kronecker delta; therefore, we arrive at

(gij) = ε2∣∣gij
∣∣
⎛
⎝h2 + ε2n2

2κ
2
3 −ε2n1n2κ

2
3 ε2n2κ3

−ε2n1n2κ
2
3 h2 + ε2n2

1κ
2
3 −ε2n1κ3

ε2n2κ3 −ε2n1κ3 ε2

⎞
⎠ . (2.28)

Using (2.25), (2.26) and (2.28), we can obtain the gradient operator in our curvilinear
coordinate system as

∇ = gikgk
∂

∂si =
(

1
ε

N1 + n2κ3

h
T
)

∂

∂n1
+

(
1
ε

N2 − n1κ3

h
T
)

∂

∂n2
+

(
1
h

T
)

∂

∂s
, (2.29)

from which we can later determine the strain rate tensor. In the next step, we derive the
corresponding kinematic relations, the stress tensor and the dynamic boundary condition
equations using the aforementioned expressions.

2.4. Kinematic relations
To study an unsteady growing curved jet, two kinds of velocities can be realized at each
point inside the liquid jet. The first one is the fluid velocity and it can be expressed as the

934 A9-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1135


Centrifugal spinning of viscoelastic nanofibres

material derivative of the position vector d as

v = dd(n1, n2, s, t)
dt

= ∂d
∂t

+ ∂d
∂n1

∂n1

∂t
+ ∂d

∂n2

∂n2

∂t
+ ∂d

∂s
∂s
∂t

= ∂d
∂t

+ ui
∂d
∂si , (2.30)

in which ui stands for the convectional velocity vector, i.e. ui = (∂n1/∂t, ∂n2/∂t, ∂s/∂t) =
(u1, u2, u3). The second velocity field is the coordinate velocity w expressed as

w = ∂d
∂t

= ∂D(s, t)
∂t

+ εn1
∂N1

∂t
+ εn2

∂N2

∂t
. (2.31)

Now, the fluid velocity can be calculated using the coordinate velocity w and the
convectional velocity u vectors, with the help of (2.30); in the steady state condition,
however, the coordinate velocity is zero. In this work, to avoid an arduous procedure to
derive the dynamic equations and deviatoric stress terms, we use the velocity projections
onto the Bishop basis vectors so as v = (vN1, vN2, vT). However, one can also easily obtain
the equations based on the velocity vector projections onto the covariant basis vectors
using (2.25).

2.5. Stress tensor
The stress tensor Π in our curvilinear coordinate system is defined as

Π = −PI + 1
Re

(2δsμ̄γ + S) , γ = 1
2

(∇v + ∇vT) , (2.32a,b)

in which P is the pressure, I the identity matrix and δs the viscosity ratio. Also, γ stands
for the strain rate tensor whose components can be obtained with the help of (2.29) as

γTT = 1
h

(
vT,s + κ2vN2 + κ1vN1

) + κ3

h

(
n2vT,n1 − n1vT,n2

)
,

γN1N1 = 1
ε
vN1,n1, γN2N2 = 1

ε
vN2,n2,

γTN1 = γN1T = 1
2h

(
−κ1vT + vN1,s + h

ε
vT,n1

)
+ κ3

2h

(
n2vN1,n1 − n1vN1,n2 − vN2

)
,

γN2T = γTN2 = 1
2h

(
−κ2vT + vN2,s + h

ε
vT,n2

)
+ κ3

2h

(
n2vN2,n1 − n1vN2,n2 + vN1

)
,

γN1N2 = γN2N1 = 1
2ε

(
vN1,n2 + vN2,n1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.33)

2.6. Dynamic boundary conditions
Due to the existence of the surface tension, at the jet free surface, we have a stress balance
equation known as dynamic boundary conditions. The interface causes a jump in the
normal component of the stress, leading to altering the mean interface curvature, expressed
as

Π∗ · n − Π · n = 1
We

nH, at r = R(s, t), (2.34)

where R(s, t) is a function characterizing the free surface of the jet and Π∗ indicates the
stresses exerted by air on the jet interface; we also have f drag = Π∗ · n, which is the air

934 A9-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1135


S. Noroozi, W. Arne, R.G. Larson and S.M. Taghavi

drag force per unit area. Furthermore, n is the unit normal vector to the interface pointing
outwards from the jet surface, and H is the mean local curvature of the interface which
can be obtained as

H = I1J3 + I3J1 − 2I2J2

I1I3 − I2
2

, (2.35)

where

I1 = ∂d
∂s

· ∂d
∂s

, I2 = ∂d
∂s

· ∂d
∂ϕ

, I3 = ∂d
∂ϕ

· ∂d
∂ϕ

at r = R(s, t),

J1 = ∂2d
∂s2 · n, J2 = ∂2d

∂s∂ϕ
· n, J3 = ∂2d

∂ϕ2 · n at r = R(s, t),

n =
(

∂d
∂s

× ∂d
∂ϕ

) ∣∣∣∣∂d
∂s

× ∂d
∂ϕ

∣∣∣∣
−1

at r = R(s, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.36)

wherein {I1, I2, I3} and {J1, J2, J3} stand for the first and second fundamental forms.
It is noted that, when setting the dynamic boundary conditions to describe the jet
cross-section, one finds the polar coordinates (r, ϕ) to be more appropriate than the
rectangular coordinate (n1, n2). In this sense, one can simply use (2.7) and (2.23) to attain
corresponding expressions for d and then compute the related terms in mean curvature
and normal vector definitions (see, for example, Marheineke & Wegener (2007) and
Shikhmurzaev & Sisoev (2017)). To write out the stress jumps in the normal and tangential
directions, one can simply take the inner product of (2.34) with the unit normal n and
tangent ti vectors to the interface. The latter has two components in the s and ϕ directions
defined as

ts =
(

∂d
∂s

) ∣∣∣∣∂d
∂s

∣∣∣∣
−1

, tϕ =
(

∂d
∂ϕ

) ∣∣∣∣∂d
∂ϕ

∣∣∣∣
−1

at r = R(s, ϕ). (2.37a,b)

Therefore, the jump conditions in the normal and tangential directions at the jet surface
can be expressed as

n · Π · n = − 1
We

H + n · f drag, (2.38)

ti · Π · n = ti · f drag, at r = R(s, ϕ), i = s, ϕ. (2.39)

In what follows, we will express the relations needed to simplify our equations presented
so far by integrating the equations over the jet cross-section and then using asymptotic
series to estimate the key variables.

2.7. Asymptotic analysis
The uniaxial asymptotic model to be developed here is first based on the cross-sectional
averaging of the conservation equations, followed by use of asymptotic expansions of
cross-averaged variables in the leading-, first- and second-order terms; this allows one
to more easily evaluate the key variables throughout the computational domain. Here,
the cross-sectional averaging is performed to dimensionally reduce the conservation
equations; to do so, we use the Reynolds transport theorem as our averaging rule (see
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also Marheineke et al. 2016) expressed as

∫
A

(∇ · f ) dA = ∂s

∫
A

(f · T ) dA +
∫

l
(f · n) dl, (2.40)

∂t

∫
A

(f ) dA =
∫

A
∂tf dA +

∫
l
((n · u) f ) dl, (2.41)

in which A = R2 is the given dimensionless cross-section of the jet and l is its perimeter
and u = (u1, u2, u3) is the convectional velocity vector. Additionally, f stands for any
differentiable and integrable scalar, vector or tensor valued function. Applying these
averaging rules on our three-dimensional set of equations, under the assumption of radial
symmetry, leads to a set of uniaxial equations.

2.7.1. Asymptotic expansion
Considering the jet as a long thin object with the aspect ratio ε, we can expand the
governing equations based on the asymptotic series of the cross-averaged key parameters
and use the dominant terms as a reasonable approximation to the jet behaviour. To do so,
we assume that the velocity components can be expanded as (see Yarin 1993; Marheineke
et al. 2016)

v = v0 + v1 (εr) + ω × (εr) + Φ, (2.42)

where v1 is the first-order velocity expansion term in the N1 and N2 directions and Φ is
the second-order velocity expansion in r. In addition, ω denotes the angular velocity of the
cross-section whose components, i.e. (ωN1, ωN2, ωT), can be defined using ∂N1/∂t and
∂N2/∂t; see (2.31) and figure 1. Next, we expand stress and pressure terms in powers of
εr and R, X, Z, Y, θ in powers of ε (see Eggers 1997; Hohman et al. 2001); therefore,

vN1 = v0N1 + ε (n1v1 − n2ωT) + ε2ΦN1 + O
(
(εr)3

)
,

vN2 = v0N2 + ε (n2v1 + n1ωT) + ε2ΦN2 + O
(
(εr)3

)
,

vT = v0T + ε
(
n2ωN1 − n1ωN2

) + ε2ΦT + O
(
(εr)3

)
,

STT = S(0)
TT + εn1S(1)

TT1 + εn2S(1)
TT2 + O

(
(εr)2

)
,

SNN = S(0)
NN + εn1S(1)

NN1 + εn2S(1)
NN2 + O

(
(εr)2

)
,

Sij = (εr) S(1)
ij + O

(
(εr)2

)
, i /= j,

P = P0 + (εr)P1 + O
(
(εr)2

)
,

C = C0 + εC1 + O
(
ε2
)

, C = {θ, A, X, Z, Y}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.43)

Now, we compute the governing equations using the velocity expansion relation in our
coordinate system. Starting from the strain rate tensor, we obtain the projection of its
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components onto the Bishop basis vectors as

γN1T = γTN1 = 1
2

(
v0N1,s − κ1v0T − κ3v0N2 − ωN2

)
+ 1

2

(
ΦT,n1 + n2

(
κ1κ2v0T − κ1ωN1 − ωT,s − κ2v0N1,s + κ3κ2v0N2

)
+n1

(
κ2

1v0T + κ1ωN2 + v1,s − κ1v0N1,s + κ3κ1v0N2

))
ε + O

(
ε2
)

,

γN2T = γTN2 = 1
2

(
v0N2,s − κ2v0T + κ3v0N1 + ωN1

)
+ 1

2

(
n1

(
κ2ωN2 + ωT,s − κ1v0N2,s + κ1κ2v0T − κ3κ1v0N1

)
+n2

(
κ2

2v0T − κ2ωN1 + v1,s − κ2v0N2,s − κ3κ2v0N1

)
+ ΦT,n2

)
ε + O

(
ε2
)

,

γN2N1 = γN1N2 = 1
2

(
ΦN2,n1 + ΦN1,n2

)
ε + O

(
ε2
)

,

γTT = v0T,s + κ1v0N1 + κ2v0N2

+
(

n2

(
ωN1,s − κ1ωT − κ3ωN2 + κ2v1 − κ2v0T,s − κ2

2v0N2 − κ1κ2v0N1

)
+ n1

(
κ2ωT − ωN2,s − κ3ωN1 + κ1v1 − κ1v0T,s − κ2

1v0N1 − κ1κ2v0N2

))
ε + O

(
ε2
))

,

γN1N1 = v1 + (ΦN1,n1)ε + O
(
ε2
)

,

γN2N2 = v1 + (ΦN2,n2)ε + O
(
ε2
)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.44)

Next, we proceed to evaluate the leading-order terms to simplify our equations. First, the
incompressibility condition, i.e. tr(γ ) = 0, at the leading and first order reads

v1 = −1
2

(
v0T,s + κ1v0N1 + κ2v0N2

)
,

ΦN1,n1 + ΦN2,n2 = n2
(
ωN1,s − κ1ωT − κ3ωN2 + 3κ2v1

)
+n1

(−ωN2,s + κ2ωT − κ3ωN1 + 3κ1v1
)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.45)

Afterwards, from the normal stress jump condition at the jet surface, we have

P = − 1
Re

(
δsμ̄

(
v0T,s + κ1v0N1 + κ2v0N2

) − S(0)
NN

)
+ 1

We
√

A0
− f drag · n

+ εn1

(
δsμ̄

Re

(−ωN2,s + κ2ωT − κ3ωN1 + 3κ1v1
) − 1

Re
S(1)

NN1 + κ1

We
√

A0

)

− εn2

(
δsμ̄

Re

(
ωN1,s − κ1ωT − κ3ωN2 + 3κ2v1

) − 1
Re

S(1)
NN2 + κ2

We
√

A0

)
. (2.46)

From the tangential stress balances, we can obtain

ωN1 = −v0N2,s + κ2v0T − κ3v0N1,

ωN2 = v0N1,s − κ1v0T − κ3v0N2,

}
(2.47)

(
ΦN2,n1 + ΦN1,n2

) = 0. (2.48)
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Using (2.45) and (2.48), we can simply obtain

ΦN1 = −1
2 n1n2

(
ωN1,s − κ1ωT − κ3ωN2 + 3κ2v1

)
+1

4

(
n2

1 − n2
2

) (−ωN2,s + κ2ωT − κ3ωN1 + 3κ1v1
)
,

ΦN2 = 1
2 n1n2

(−ωN2,s + κ2ωT − κ3ωN1 + 3κ1v1
)

+1
4

(
n2

2 − n2
1

) (
ωN1,s − κ1ωT − κ3ωN2 + 3κ2v1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.49)

Now, using the relations presented, we derive the kinematic and dynamic equations.

2.8. Kinematic expressions
As a next step, we derive the kinematic equations in the leading order. To do so, starting
from the projections of (2.30) onto the Cartesian basis vectors, we have at the leading order

X0,t + uX0,s = v0N1 sin(β) + v0T cos(β),

Y0,t + uY0,s = −v0N1 cos(α) cos(β) + v0N2 sin(α) + v0T cos(α) sin(β),

Z0,t + uZ0,s = −v0N1 sin(α) cos(β) − v0N2 cos(α) + v0T sin(α) sin(β).

⎫⎪⎬
⎪⎭ (2.50)

Differentiating the expressions in (2.50) with respect to s and after some manipulation, we
end up with

β,t + uβ,s = −ωN2, α,t + uα,s = ωN1

sin(β)
, u,s = v0T,s + κ1v0N1 + κ2v0N2,

(2.51a–c)
and consequently from (2.11a–c) we arrive at

κ1,t + (uκ1),s = (−ωN2

)
,s,

(
κ2

sin(β)

)
,t

+
(

uκ2

sin(β)

)
,s

=
(

ωN1

sin(β)

)
,s
. (2.52a,b)

In the following, we derive the dynamic equations that govern the behaviours of a slender
curved jet and, afterwards, we present the corresponding constitutive relations to capture
the rheological features of a viscoelastic jet through the CS process.

2.9. Dynamic equations
In this section, using the asymptotic expressions for pressure (2.46) and velocity (2.43) we
deliver the dynamic equations of a viscoelastic curved jet consisting of mass, momentum
and angular momentum equations. Considering a control volume V bounded by the jet
lateral surface and two cross-sections, A1 and A2 corresponding to s1 and s2 in figure 1, and
ignoring the density change by temperature variations, i.e. ρ̄ = 1, the mass conservation
equation reads

∂

∂t

∫
V

dV+ ∂

∂s

∫ A2

A1

((v − w) · T )dA = 0. (2.53)

It is worth mentioning that mass transfer velocity through the boundary of our infinitesimal
element is equal to (v − w) · T , which, in the leading order, is the convectional velocity
at the baseline u3; hereafter, for simplicity of the presentation, we use u instead of u3,
representing the projection of the convectional velocity onto the Bishop frame in the
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tangential direction. Using the cross-sectional averaging rules, i.e. (2.40) and (2.41), and
the asymptotic expansion expressions (2.43), we have

∂A0

∂t
+ ∂ (uA0)

∂s
= 0. (2.54)

Now, we turn to derive the momentum balance equations. After integrating (2.2) over
our control volume and using the averaging rule (2.40) and (2.41), we arrive at

∂

∂t

[∫
V

v dV
]

+ ∂

∂s

[∫ A2

A1

((v − w) · T ) v dA
]

= ∂

∂s

[∫ A2

A1

(Π · T ) dA
]

+
∫

V
F dV.

(2.55)

After applying the asymptotic expressions and some manipulations, we end up having

∂ (A0v0)

∂t
+ ∂ (uA0v0)

∂s
= 1

Re
∂η

∂s
+ A0F , (2.56)

in which η = ∫
A 〈Π〉T dA = (ηN1, ηN2, ηT) denotes the tensile force vector, in which ηN1

and ηN2 stand for the shearing forces and ηT stands for the longitudinal force. From the
definition of η, we have

ηT = A0

(
3δsμ̄u,s +

(
S(0)

TT − S(0)
NN

)
+ Re

We
√

A0

)
. (2.57)

It is noted that the shearing force components, i.e. ηN1 and ηN2 , are rather complicated
and thus cannot be obtained explicitly. Next, to attain the external forces F , we project the
related terms in the outer bases (here Cartesian bases) onto the Bishop basis vectors; in
doing so, we arrive at

FN1 = − cos(β)
(Y0 cos(α) + Z0 sin(α))

Rb2 + 2v0N2 cos(β)

Rb
− sin(β)

Fr2 + 〈
Fdrag

〉
N1

,

FN2 = (Y0 sin(α) − Z0 cos(α))

Rb2 + 2
Rb

(
v0T sin(β) − v0N1 cos(β)

) + 〈
Fdrag

〉
N2

,

FT = sin(β)
(Y0 cos(α) + Z0 sin(α))

Rb2 − 2v0N2 sin(β)

Rb
− cos(β)

Fr2 + 〈
Fdrag

〉
T .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.58)

To calculate the cross-averaged aerodynamic drag force F drag, we rely on the drag model
of Marheineke & Wegener (2011), in which we assume a one-way coupling. In this model,
we calculate the drag force as a function of the dimensionless air-jet relative velocity, V ∗

rel ,
the local tangent vector to the fibre baseline, T̂ , and the air and jet physical properties;
thus, we have

F drag = F

(
T̂ , Re∗

w
V ∗

rel∥∥V ∗
rel

∥∥
)

= Fn(Wn)n̂ + FT(WT , Wn)T̂ , (2.59)

with Re∗
w = RRe∗‖V ∗

rel‖, WT = Re∗
w〈V∗

rel〉T̂‖V ∗
rel‖−1 and Wn = Re∗

w〈V∗
rel〉n̂‖V ∗

rel‖−1; we
also have

n̂ = V ∗
rel − 〈

V∗
rel
〉
T̂ T̂〈

V∗
rel
〉
n̂

,
〈
V∗

rel
〉
T̂ = V ∗

rel · T̂ ,
〈
V∗

rel
〉
n̂ =

√(
V ∗

rel
)2 − (〈

V∗
rel
〉
T̂

)2
.

(2.60a–c)
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Centrifugal spinning of viscoelastic nanofibres

Here, the double bars ‖.‖ represents the norm of the quantity. To calculate the relative
velocity, we use

V ∗
rel = − 1

Rb
(Ω × D) − v · T̂ , (2.61)

in which we assume that the surrounding air is stagnant and, thus, its velocity is equal to
the velocity of our rotating frame. It is worth mentioning that, in practical situations or
experiments, as the CS spinneret rotates around its axis, it induces airflow (known as free
vortex flow) affecting the velocity of the ambient air and accordingly the air-to-fibre drag
force. To include the effect of the free vortex flow due to the spinneret head motion, i.e.
the non-stagnant air, one can modify the V ∗

rel as

V ∗
rel = − 1

Rb

(
Ω ×

(
D − D

‖D‖2

))
− v · T̂ . (2.62)

Most results presented in this work will make the stagnant air assumption, although one
figure near the end will consider the effect of the vortex flow. Eventually, we have

Fn(Wn) = (Wn)
2cn, (2.63)

FT(Wn, WT) = WnWTcT , (2.64)

with cn and cT are the drag coefficients in the normal and tangential directions as functions
of the normal velocity Wn, presented in Appendix A. Now, having the drag force as

F drag = F1x̂ + F2ŷ + F3ẑ, (2.65)

we merely need to have their projections onto the Bishop basis vectors, giving

〈
Fdrag

〉
N1

= (sin(β)) F1 − (cos(α) cos(β))F2 − (sin(α) cos(β))F3, (2.66)〈
Fdrag

〉
N2

= (sin(α))F2 − (cos(α))F3, (2.67)〈
Fdrag

〉
T = (cos(β))F1 + (cos(α) sin(β))F2 + (sin(α) sin(β))F3. (2.68)

We refer the reader to Marheineke & Wegener (2011) for more details on the drag model
extended herein.

Now, following the same procedure as for the momentum equation, we derive the
angular momentum equation (2.3). After integrating over the jet cross-section, we obtain

∂

∂t

[∫
V

(d × v) dV
]

+ ∂

∂s

[∫ A2

A1

((v − w).T ) (d × v) dA
]

= ∂

∂s

[∫ A2

A1

d × (Π · T ) dA
]

+
∫

V
d × FdV. (2.69)

Afterwards, taking a cross-product of the momentum equations (2.55) with D, and then
subtracting them from the angular momentum equations (2.69) followed by using the
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asymptotic expressions and keeping only the terms of order ε2, we arrive at

∂

∂t

[∫
V

(r × ω × r) dV
]

+ ∂

∂s

[∫
A

u (r × ω × r) dA
]

= ∂M
∂s

+ 4
Re

1
ε2 T × η +

∫
V

r × F dV, (2.70)

where M = ∫
A r × 〈Π〉T dA is the moment of stresses vector whose components can be

decomposed into

MN1 = I1

Re

[
3δsμ̄

(
ωN1,s − κ1ωT − κ3ωN2 − 3

2
κ2u,s

)
+

(
S(1)

TT2 − S(1)
NN2

)
− Reκ2

We
√

A0

]

+ I12

Re

[
3δsμ̄

(
κ2ωT − ωN2,s − κ3ωN1 − 3

2
κ1u,s

)
+

(
S(1)

TT1 − S(1)
NN1

)
− Reκ1

We
√

A0

]
,

MN2 = − I12

Re

[
3δsμ̄

(
ωN1,s − κ1ωT − κ3ωN2 − 3

2
κ2u,s

)
+

(
S(1)

TT2 − S(1)
NN2

)
− Reκ2

We
√

A0

]

− I2

Re

[
3δsμ̄

(
κ2ωT − ωN2,s − κ3ωN1 − 3

2
κ1u,s

)
+

(
S(1)

TT1 − S(1)
NN1

)
− Reκ1

We
√

A0

]
,

MT = δsμ̄

Re

(
I1
(
κ1ωN1 + κ2ωN2 + ωT,s

) + I2
(
κ2ωN2 + κ1ωN1 + ωT,s

))
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.71)
in which I1, I2, I12 are the second moments of area of the cross-section defined as

I1 =
∫

A
n2

2 dA, I2 =
∫

A
n2

1dA, I12 =
∫

A
n2n1 dA. (2.72a–c)

Since the cross-section is assumed to be fully circular, we have in dimensionless form
I = I2 = I1 = A2/4π and I12 = 0 and, therefore, we arrive at

MN1 = A2
0

4Re

[
3δsμ̄

(
ωN1,s − κ1ωT − κ3ωN2 − 3

2
κ2u,s

)
+

(
S(1)

TT2 − S(1)
NN2

)
− Reκ2

We
√

A0

]
,

MN2 = A2
0

4Re

[
3δsμ̄

(
ωN2,s − κ2ωT + κ3ωN1 + 3

2
κ1u,s

)
−

(
S(1)

TT1 − S(1)
NN1

)
+ Reκ1

We
√

A0

]
,

MT = A2
0

4

(
2δsμ̄

Re

(
κ1ωN1 + κ2ωN2 + ωT,s

))
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.73)
Now, using the related expressions and after some manipulation, we have

∂
(
A2

0ω
)

∂t
+ ∂

(
uA2

0ω
)

∂s
= 4

(
∂M
∂s

+ 4
Re

1
ε2 T × η

)
+ F ′, (2.74)

with F ′ being the moment of external forces defined as

F′
N1 = 1

Rb
A2

0u,s sin(β), F′
N2 = 2

Rb
A2

0ωT sin(β),

F′
T = − 2

Rb
A2

0
(
ωN1 sin(β) − u,s cos(β)

)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.75)

Of note, when deriving the moment of the forces here, we use
∫

A r dA = 0. Throughout
this study we also assume that |κ × εr| 
 1 always holds.
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Centrifugal spinning of viscoelastic nanofibres

Now, it is time to derive the constitutive relations and the energy equation to take the
viscoelastic extra stresses and temperature effects into consideration, as carried out in the
upcoming subsections.

2.10. Constitutive modelling
To take the viscoelastic effects into account, here we use the Giesekus constitutive
model, (2.5), which is a nonlinear viscoelastic model. In this study, to be consistent with
experiments, we use the material properties of PEO dissolved in deionized water and
set χ = 0.15 (see Gauri & Koelling 1997), unless otherwise stated. After applying the
corresponding asymptotic relations into the constitutive equations, in the leading order,
we end up having

λ̄Wi
(

S(0)
TT,t + uS(0)

TT,s − 2u,sS
(0)
TT + χ

(1 − δs)

(
S(0)

TT

)2
)

+ S(0)
TT = 2μ̄ (1 − δs) u,s,

−λ̄Wi
(

S(0)
NN,t + uS(0)

NN,s + u,sS
(0)
NN + χ

(1 − δs)

(
S(0)

NN

)2
)

− S(0)
NN = μ̄ (1 − δs) u,s,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.76)

and in the first order, we arrive at

λ̄Wi
(

S(1)
TT1,t + uS(1)

TT1,s − 2u,sS
(1)
TT1 − 2K2S(0)

TT

)
+ S(1)

TT1 = 2μ̄ (1 − δs) K2,

λ̄Wi
(

S(1)
TT2,t + uS(1)

TT2,s − 2u,sS
(1)
TT2 − 2K1S(0)

TT

)
+ S(1)

TT2 = 2μ̄ (1 − δs) K1,

−λ̄Wi
(

S(1)
NN1,t + uS(1)

NN1,s + u,sS
(1)
NN1 + K2S(0)

NN

)
− S(1)

NN1 = μ̄ (1 − δs) K2,

−λ̄Wi
(

S(1)
NN2,t + uS(1)

NN2,s + u,sS
(1)
NN2 + K1S(0)

NN

)
− S(1)

NN2 = μ̄ (1 − δs) K1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.77)

with K1 and K2 as

K1 = ωN1,s − κ1ωT − 3
2κ2u,s, K2 = −ωN2,s − κ2ωT − 3

2κ1u,s. (2.78a,b)

It is of note that the leading-order equations of the normal stresses in the N1 and N2
directions are exactly the same and, therefore, we simply mark the corresponding normal
stresses in both directions by the subscript NN.

2.11. Energy equation
Here, we derive the asymptotic energy conservation (2.4); using the cross-averaging
technique and having the diffusion flux at the jet surface equal to the air convectional
heat flux, we arrive at

∂tθ0 + u∂sθ0 = −2Nu∗(�∗, Re∗
w, Pr∗)c̃pρ̃

εPe∗√A0
(θ0 − θ∞) , (2.79)

in which θ∞ and θ0 denote the dimensionless ambient temperature and the zeroth-order
temperature in ε, respectively; Nu∗ stands for the air Nusselt number, �∗ the air attack
angle, Pr∗ the air Prandtl number, Re∗

w the air local Reynolds number, Pe∗ the air Péclet
number and finally c̃p and ρ̃ denote the ratios of the air specific heat and air density to
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that of the polymer melt/solution, respectively. To compute Nu∗, we extend the model of
Wieland et al. (2019) to our curved fibre in the CS process expressed as

Nu∗(�∗, Re∗
w, Pr∗) = (

1 − 0.5G(�∗, Re∗
w)
) { 𝔫1(Re∗

w, Pr∗), Re∗
wPr∗ ≥ 7.3 × 10−5

𝔫2(Re∗
w, Pr∗), Re∗

wPr∗ < 7.3 × 10−5 ,

(2.80)

G(�∗, Re∗
w) =

⎧⎨
⎩
(
�∗Re−1

w
)2

, Rew ≥ ξ = 10−7(
1 − (

Rewξ−1)2
)2 +

(
3 − 2

(
Rewξ−1)2

) (
�∗Rewξ−2)2

, Rew < ξ.

(2.81)

𝔫1(Re∗
w, Pr∗) = 0.462

(
Re∗

wPr∗)0.1 + f (Pr∗)
(
Re∗

wPr∗)0.7

1 + 2.79
(
Re∗

wPr∗)0.2 ,

𝔫2(Re∗
w, Pr∗) = 𝔪1(Pr∗)

(
Re∗

wPr∗)3 + 𝔪2(Pr∗)
(
Re∗

wPr∗)2 + 0.1,

𝔪1(Pr∗) = −3.5636 × 1011 − 3.138 × 109 × f (Pr∗),

𝔪2(Pr∗) = 4.0694 × 107 − 3.9768 × 105 × f (Pr∗),

f (Pr∗) = 2.5(
1 + (1.25Pr∗1/6)

2.5
)0.4 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.82)

where ξ is a regulating parameter. To compute �∗ and Re∗
w, we use

�
∗ =

(√
A0Re∗V ∗

rel

)
· T̂ , (2.83)

and
Re∗

w =
√

A0Re∗ ∥∥V ∗
rel

∥∥ . (2.84)

It is worth mentioning that since the air attack angle and the relative velocity vary along the
fibre length, the value of Nu∗ is computed locally, as an output of the model. Moreover, the
variations of the jet and air specific heat capacities and convection heat transfer coefficient
as well as the surface tension coefficient with temperature are neglected. However, the
temperature variation during the CS process causes the rheological behaviour of the fibre
to change rapidly, which, in turn, remarkably alters the fibre dynamic behaviour. Thus, to
take this into account, we calculate the relative viscosity and relaxation time based on the
Arrhenius expressions (see Yarin, Sinha-Ray & Pourdeyhimi 2010; Yarin, Pourdeyhimi &
Ramakrishna 2014), represented respectively as

μ̄ = exp
(

B
(

1
θ0

− 1
))

, λ̄ = 1
θ0

exp
(

B
(

1
θ0

− 1
))

, B = E
Reθnoz

, (2.85a–c)

wherein E is the activation energy and Re is the absolute gas constant; in this work, we set
B = 10 (Yarin et al. 2010).

Thus far, we have derived the asymptotic cross-averaged kinematic, dynamic and energy
equations along with the boundary condition equations and viscoelastic constitutive
relations in the 3-D space. In the following section, using our assumptions and conditions,
we tailor the set of equations presented so far to the one appropriate to analyse the CS
process.
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Centrifugal spinning of viscoelastic nanofibres

2.12. Transient set of equations for the CS process
Now, we derive a set of transient equations customized for CS applications. Since in the
CS process, the gravitational force is very small in comparison with the centrifugal one
(Rb 
 Fr), the jet primarily flies in a horizontal Y − Z plane until it sits on the collectors.
Therefore, we ignore the gravitational effects (quantified via Fr) and solve the set of
equations in the Y − Z plane to analyse the fibre behaviour. In such a case, β = π/2 and
X(s, t) = 0 always hold true and, hence, all the equations concerning the components of
ω, M and κ are ruled out from our set of equations; this is with the exception of ωN1 ,
MN1 and κ2 which for convenience are termed hereinafter as (ω, M, κ), respectively. To
avoid a continual repetition of indices, we put m0 = S(0)

TT − S(0)
NN , m1 = S(1)

TT2 − S(1)
NN2, p0 =

S(0)
NN , p1 = S(1)

NN2 and, for simplicity, we drop the zeros from the leading-order parameter
subscripts. Given these, our transient coupled system of partial differential equations in
the 2-D space can be obtained as

Y,t + uY,s = vT cos(α) + vN2 sin(α), Z,t + uZ,s = vT sin(α) − vN2 cos(α),

u,s = vT,s + κvN2 , ω = κvT − vN2,s, α,t + uα,s = ω, κ,t + (uκ),s = ω,s,

A,t + (uA),s = 0, ∂tθ + u∂sθ = −2Nu∗c̃pρ̃

εPe∗√A
(θ − θ∞) ,

vN2,t + uvN2,s − vTω = 1
ARe

(
ηN2,s − κηT

) + FN2 ,

vT,t + uvT,s + vN2ω = 1
ARe

(
ηT,s + κηN2

) + FT ,

(
A2ω

)
,t

+
(

uA2ω
)

,s
= 4

Re
∂M
∂s

− 16
ε2Re

ηN2 + 1
Rb

A2u,s,

m0 + λ̄Wi

(
m0,t + um0,s − (2m0 + 3p0) u,s + χ

(
m2

0 + p0m0
)

(1 − δs)

)
= 3μ̄ (1 − δs) u,s,

p0 + λ̄Wi

(
p0,t + up0,s + p0u,s + χp2

0
(1 − δs)

)
= −μ̄ (1 − δs) u,s,

m1 + λ̄Wi
(
m1,t + um1,s − (2m1 + 3p1) u,s − (2m0 + 3p0) K1

) = 3μ̄ (1 − δs) K1,

p1 + λ̄Wi
(
p1,t + up1,s + p1u,s + p0K1

) = −μ̄ (1 − δs) K1,

ηT = A
((

3δsμ̄u,s + m0
) + Re

We
√

A

)
,

M = A2

4

(
(3δsμ̄K1 + m1) − Reκ

We
√

A

)
,

K1 = ω,s − 3
2
κu,s,

FN2 = (Y sin(α) − Z cos(α))

Rb2 + 2vT

Rb
+ 〈

Fdrag
〉
N2

,

FT = (Y cos(α) + Z sin(α))

Rb2 − 2vN2

Rb
+ 〈

Fdrag
〉
T .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.86)

The set of transient equations outlined is developed for a growing curved jet in an Eulerian
frame, for the solution of which one requires the fibre end velocity, which is not known
a priori; this makes the problem at hand very hard to solve; namely, in the Eulerian
description, the computational nodes are fixed in space and the jet can only grow at
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the end boundary. To deal with the problem, however, we can use a simple procedure
to map our equations of interest from the Eulerian into the Lagrangian configuration; in
this way, we would not need the end velocity in order to solve the equations numerically,
thanks to a moving domain, i.e. the computational nodes are moving and, thus, the
new nodes are added at the nozzle location whose conditions are known beforehand.
To derive the equations in the Lagrangian frame, we first determine the Jacobian matrix
of the transformation from (s, t) in the Eulerian setting to (σ, τ ) in the Lagrangian one.
Introducing the elongation parameter e in a way that ∂s = e∂σ and having ∂t = ∂τ , we
can compute the mapping Jacobian matrix J as

J = ∂(t, s)
∂ (τ, σ )

=
(

1 0
u e

)
⇒

[
J−1

]T =
(

1 −ue−1

0 e−1

)
, (2.87)

in which T represents the matrix transpose operator; therefore, we have
∂

∂t
= ∂

∂τ
− u

e
∂

∂σ
,

∂

∂s
= 1

e
∂

∂σ
,

⎫⎪⎪⎬
⎪⎪⎭ (2.88)

using which we can simply derive the corresponding differential terms in time and space
in the Lagrangian setting. For the expression of u,s, we also have

u,s = ∂

∂s

(
∂s
∂t

)
= 1

e
∂

∂σ

(
∂s
∂τ

)
= 1

e
∂

∂τ

(
∂s
∂σ

)
= 1

e
∂e
∂τ

, (2.89)

and for the continuity we end up with

A,t + (uA),s = 0 ⇒ (Ae),τ = 0, (2.90)
and then all the equations can be transformed into the Lagrangian setting using (2.88),
(2.89) and (2.90), giving

Y,τ = vT cos(α) + vN2 sin(α), Z,τ = vT sin(α) − vN2 cos(α),

e,τ = vT,σ + κ̃vN2 , e2� = −vN2,σ + κ̃vT ,

α,τ = e�, κ̃,τ = (e�),σ , θ,τ = −2Nu∗c̃pρ̃
√

e
εPe∗ (θ − θ∞) ,

vN2,τ − e�vT = 1
Re

(
ηN2,σ − κ̃ηT

) + (Y sin(α) − Z cos(α))

Rb2 + 2vT

Rb
+ 〈

Fdrag
〉
N2

,

vT,τ + e�vN2 = 1
Re

(
ηT,σ + κ̃ηN2

) + (Y cos(α) + Z sin(α))

Rb2 − 2vN2

Rb
+ 〈

Fdrag
〉
T ,

�,τ = 4
Re

M,σ − 16
ε2Re

eηN2 + vT,σ + κ̃vN2

e2Rb
,

m̃0 + λ̄Wi

(
m̃0,τ − 3(m̃0 + p̃0)

e,τ

e
+ χ

(
m̃2

0 + 2p̃0m̃0
)

e (1 − δs)

)
= 3μ̄ (1 − δs) e,τ ,

p̃0 + λ̄Wi

(
p̃0,τ + χ p̃2

0
e (1 − δs)

)
= −μ̄ (1 − δs) e,τ ,

m̃1 + λ̄Wi

(
m̃1,τ − 3

(
m̃1 + p̃1

) e,τ

e
− (

2m̃0 + 3p̃0
) K̃1

e

)
= 3μ̄ (1 − δs) K̃1,

p̃1 + λ̄Wi

(
p̃1,τ + p̃0

K̃1

e

)
= −μ̄ (1 − δs) K̃1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.91)
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in which

ηT = 1
e2

(
3δsμ̄e,τ + m̃0 + Re

We
e3/2

)
,

M = 1
4e3

(
3δsμ̄K̃1 + m̃1 − Re

We
κ̃ e1/2

)
,

K̃1 = κ̃ ,τ − 3
2
κ̃

e,τ

e
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.92)

with � = ω/e, m̃0 = em0, p̃0 = ep0, m̃1 = em1, p̃1 = ep1 and κ̃ = eκ . To numerically
solve the set of partial differential equations presented here, we need several boundary
and initial conditions, coupled to a rigorous solution algorithm, presented in the following
sections.

2.12.1. Initial and boundary conditions
We require appropriate boundary conditions to solve our set of fourteen equations. Starting
from the nozzle exit, we assume that the fibre leaves the nozzle perpendicular to the
rotation axis as a straight jet, giving κ̃(0, τ ) = α(0, τ ) = 0. We assume that the jet is not
stretched at the nozzle exit and, hence, e(0, τ ) = 1; we also assume that there is no fibre
twist at the exit and thus �(0, τ ) = 0. According to our choice for the reference values, we
have vT(0, τ ) = θ(0, τ ) = Y(0, τ ) = 1 and we also have Z(0, τ ) = vN2(0, τ ) = 0. When
the fibre is growing, the stress-free condition is applied at the jet end, implying that all
the stresses, forces and their couples are zero at the fibre end, i.e. m̃0(�, τ ) = p̃0(�, τ ) =
m̃1(�, τ ) = p̃1(�, τ ) = ηN2(�, τ ) = 0. To start the solution, we use the boundary condition
values on the two-node domain as initial conditions and then update the flow parameters
as the domain grows. For simplicity, we also set ε = 0.1 throughout this study. Of
importance, the magnitude of the ε only affects the solution in the regions close to the
nozzle and, as long as one keeps it sufficiently small, the value of ε does not much
influence the overall solution, e.g. in terms of the fibre radius and trajectory; see Noroozi
et al. (2017).

2.12.2. Solution procedure
To solve our set of equations in an unsteady frame, we implement the finite volume method
to estimate the spatial derivatives and source terms. To this aim, first we classify the
governing equations into flux function terms and source terms. In the next step, we use
different schemes to discretize the flux terms based on their directions: we use the upwind
scheme for the convective terms f u, the downwind scheme for the normal stresses f d and
the central differences for the viscous terms f c. Following this procedure, we can represent
our set of equations in a general form as

∂τ G(φ) = ∂σ f d(φ) + ∂σ f u(φ) + ∂σ f c(φ, ∂σ H(φ)) + S1 (φ, ∂σ H(φ)) + S2(φ), (2.93)

with S1 and S2 denoting the source terms with and without the spatial derivative terms,
respectively. Here, G and H are arbitrary functions and φ is a given variable. Now, the idea
is to integrate the set of equations in the form of (2.93) over a control volume, leading to a
system of integro-differential equations, expressed in a generalized form as

dGi

dτ
= 1

�σ

[(
f d
i+1/2 − f d

i−1/2

)
+

(
f u
i+1/2 − f u

i−1/2

)
+

(
f c
i+1/2 − f c

i−1/2

)]

+ 1
�σ

∫ i+1/2

i−1/2
S1 (φ, ∂σ H(φ)) dσ + 1

�σ

∫ i+1/2

i−1/2
S2(φ) dσ , (2.94)
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in which the cell centres are indexed as i and, thus, i ± 1/2 gives the finite volume up- and
down-wind boundaries. Moreover, to implement the Lagrangian setting and handle the
growing jet, we determine the dynamic cells, such that at the end of each iteration the new
distance of the first cell centre from the nozzle is calculated, and the new cells are added
at the nozzle with the aid of the floor function. The new cells are initialized with boundary
conditions imposed at the nozzle. Henceforth, we use the implicit Runge–Kutta scheme,
i.e. the Radau IIa technique, for time integration and solve the resultant set of equations
using Newton’s method. We refer the reader to Arne et al. (2015) for further details of the
numerical approach implemented here.

2.13. Steady state set of equations for the CS process
In a typical CS process, at short times, the fibre flow passes through an unsteady phase
before reaching a steady state at long times (see e.g. the experimental results of Noroozi
et al. 2020). Since the production of fibres at long times may be a steady process in the
CS method, it is reasonable to also present and analyse the steady set of equations in this
study; this allows us to more easily investigate the effects of different flow parameters on
the jet dynamic behaviour.

At steady state, in our moving frame of reference, the coordinate velocity is zero and,
thus, the leading-order fluid velocity at the jet axis direction is equal to the convectional
velocity of the fluid, i.e. (vN2, vT) = (0, u). On the other hand, the angular velocity ω

is reduced to uκ and, due to the constant mass flux, we have A = 1/u. Giving the new
relations for the velocities and angular velocity, removing the unsteady terms from our
transient set of equations in the Eulerian setting (2.86), and using some rearrangement, we
eventually end up with our set of equations in the steady frame as

Y,s = cos(α), Z,s = sin(α), α,s = κ, ∂sθ = −2Nu∗c̃pρ̃

εPe∗√u
(θ − θ∞) ,

ηN2,s = (ηT − Reu) κ − Re (Y sin(α) − Z cos(α))

uRb2 − 2Re
Rb

− Re
u

〈
Fdrag

〉
N2

,

ηT,s = Reu,s − κηN2 − Re (Y cos(α) + Z sin(α))

uRb2 − Re
u

〈
Fdrag

〉
T ,

M,s = Re
4

κ,s + 4
ε2 ηN2 − Re

4u2Rb
u,s,

u,s = 1
3δsμ̄

(
uηT − Re

√
u

We
− m0

)
,

κ,s = 1
3δsμ̄u

(
4u2M + Reκ

√
u

We
− m1

)
+ 1

2u
κu,s,

m0 + λ̄Wi

(
um0,s − (2m0 + 3p0) u,s + χ

(
m2

0 + p0m0
)

(1 − δs)

)
= 3μ̄ (1 − δs) u,s,

p0 + λ̄Wi

(
up0,s + p0u,s + χp2

0
(1 − δs)

)
= −μ̄ (1 − δs) u,s,

m1 + λ̄Wi
(
um1,s − (2m1 + 3p1) u,s − (2m0 + 3p0) K1

) = 3μ̄ (1 − δs) K1,

p1 + λ̄Wi
(
up1,s + p1u,s + K1p0

) = −μ̄ (1 − δs) K1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.95)
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in which K1 = uκ,s − 1
2κu,s. In the ensuing sections, we present the boundary conditions

and solution algorithm to solve our set of steady equations.

2.13.1. Boundary conditions
Akin to the unsteady case, having thirteen equations, we need thirteen boundary conditions
to solve our set of steady equations. Again, a straight fibre assumption at the nozzle exit
implies that κ(0) = α(0) = 0. We also have u(0) = θ(0) = Y(0) = 1 and Z(0) = 0 at the
nozzle exit. We further assume that the extra stress gradients vanish at the nozzle, due to
the steady state stretching at this boundary (see also Liu & Parker 2018), i.e. m0,s(0) =
p0,s(0) = m1,s(0) = p1,s(0) = 0. Finally, given the stress-free condition at the fibre end,
we have ηN2(�) = ηT(�) = M(�) = 0. For the steady case, we use a prescribed domain
length and, unlike the transient case, the stress-free boundary condition at the fibre end
may thereby not be fully consistent with the free-moving end; therefore, to ensure that the
solutions are not adversely affected by imposing the stress-free boundary condition, we
consider a large domain length, �  1, to obtain the solutions in the steady state condition.

2.13.2. Solution procedure
To solve our steady set of equations, we use an implicit fourth-order integration
Runge–Kutta method, i.e. three-stage Lobatto IIIa collocation scheme (Kierzenka &
Shampine 2008). Using this, we integrate our ordinary differential equations and solve
the resulting nonlinear algebraic equations by Newton’s method. To cope with stiffness
of the equations and avoid solution divergence, we employ a mesh refinement routine to
alter the collocation nodes during the iterations. We also adopt a continuation method to
iteratively update the solution to furnish each iteration with a proper initial guess. Here,
the idea is to define Z ∈ [0, 1]n, n ∈ N as a continuation parameter whose value is set
to zero as a starting point; thus, we solve the equations via consecutive steps towards the
desired parameters for which Z = 1. We found this method remarkably effective to obtain
the solution convergence.

2.13.3. Polymer melt jet modelling constraint
As seen explicitly in (2.95), the stationary (steady state) equations for u,s and κ,s become
singular when δs = 0; this is the case when the fluid is a polymer melt. For such a
condition, the viscous effects of solvent play no role on the fibre dynamics. To solve the
problem, one can derive the set of stationary equations anew applying δs = 0, as carried
out in Appendix B. However, as seen in Appendix B, the terms q2 and q3 appear in the
equations for u,s and κ,s, implying further limitations: when q2 and q3 approach zero,
the equations for u,s and κ,s become singular; in addition, when q2 and q3 are negative,
the aforementioned equations have no physically relevant stationary solutions and they
would need a regularization. Therefore, to avoid any singularity issues that may arise in
the solution of the set of (B1), for δs → 0, we instead use the set of (2.95) but consider
a small value of δs = 10−4, to keep this set from becoming singular (see also Lorenz,
Marheineke & Wegener 2014).

Before we proceed, let us note a limitation on the assumptions used in our study.
Our results for polymer melts reveal that the fibre temperature can decrease significantly
during the CS process; in reality, this considerable temperature drop may bring the fibre
temperature below its solidification or crystallization temperature, which we ignore in this
study. While outside of the scope of this paper, these phenomena and their effects on the
fibre dynamics could be accounted for within our framework by introducing appropriate
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Parameter Name

(X, Y, Z) Fibre baseline position components
R Fibre radius
(α, β) Fibre angles
κ Baseline curvature
θ Polymer temperature
m0 Normal stress difference
Nu∗ Nusselt number

Table 2. Main model output parameters. These parameters are at the leading order and they are functions of
the arc length s and time t.

crystallization rate equations and the constitutive equations for the amorphous melt and
semi-crystalline phases, into the string model equations (see for instance Ettmüller et al.
2021).

In the upcoming section, we analyse the CS process using the input parameters given
in table 1. The solutions of our transient and stationary mathematical models with certain
input parameters provide us with several output parameters, presented in table 2, with the
help of which we can quantify the effects of the flow parameters in the CS process.

3. Results and discussion

In this section, we quantify the effects of flow parameters on a viscoelastic curved jet in
the CS process. In the upcoming subsections, we first look at a growing jet (evolving over
time) based on the transient set of equations and, then, focus on a parametric study based
on the steady state set of equations. Throughout the results section, when necessary, we
choose the flow parameters to be consistent with experiments; in particular, regarding the
fibre flow material properties, such as thermal and rheological features, in most cases we
use the properties of PEO dissolved in deionized water.

3.1. Growing jet
Here, the jet unsteady behaviour over time after emanating from the nozzle is analysed. For
the unsteady simulations that will be presented, the process is assumed to be isothermal
and the effect of the aerodynamic drag force is also ignored, for simplicity. Figure 3 shows
the jet trajectory and radius evolving through time for a viscoelastic jet. As seen, the fibre
initially leaves the nozzle as an almost straight jet. As time grows, the jet starts to curve
in the anti-rotation direction, while it is stretched over space. As depicted in figure 3(a),
after a while, the jet trajectory follow an anti-S shape pattern. Additionally, as illustrated
in figure 3(b), due to the zero stretch at the fibre end, i.e. e = 1, the fibre radius is equal
to the nozzle radius at this point. Therefore, when the jet is stretched, the fibre becomes
thinner until a certain point, known as necking (see Duan et al. 2019; Li et al. 2020); then,
the fibre radius gradually increases with the arc length, s, up to the end of the fibre; this
is where the fibre recovers completely its original radius because the initial ‘droplet’ that
emerges from the nozzle is never stretched but is simply transported without stretch as the
fibre is formed.

To better understand the jet transient behaviour and better visualize the development of
an unsteady jet, figure 4 illustrates the jet trajectory line whose thickness represents the
fibre diameter at four different times. As seen, in the first step, i.e. figure 4(a), the fibre
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Figure 3. (a) Trajectory and (b) radius variations of a growing fibre over time, initiated at position (Y = 1,

Z = 0), with Re = 0.1, Rb = 0.1, Wi = 1, δs = 0.5 and We = 100; �τ = �σ = 2 × 10−4 and the time varies
between τ = 0 and τ = τend = 1.3 (marked by the bold line here and everywhere else in § 3.1).

0(a) (b)

(c) (d )

–2Z
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Figure 4. Viscoelastic jet evolution at four different times, i.e. (a) τend = 0.35; (b) τend = 0.5, (c) τend = 0.55;
(d) τend = 0.6. The flow parameters are Re = 0.1, Rb = 0.05, Wi = 1, δs = 0.5, We = 100. Also, �τ = �σ =
1 × 10−4. The thickness of the trajectory lines represent the diameter of the jet at each point.

emerges from the nozzle as a pendant drop and begins stretching, albeit gradually. With
sufficient stretch, inertial forces take over and the jet stretches more rapidly, as viewed in
figure 4(b). Afterwards, the jet curvature increases under the high centrifugal force and
the jet begins to bend, creating the anti-S shape, in figures 4(c) and 4(d). In the literature,
there are debates about the reason behind the anti-S jet formation, with arguments on the
maximum velocity of the pendant drop at the jet end (Xu et al. 2014) and others invoking jet
instabilities (Duan et al. 2019). However, our results here show that the anti-S jet formation
is simply due to the tangential velocity difference between the necking point, at which the
vT is maximum, and the fibre end (i.e. the pendant drop) with the smaller velocity.

It is worth mentioning that, since in this study we are using the asymptotic technique
(i.e. keeping only the leading- and first-order terms in the equations) to derive the uniaxial
equations, we are not able to recover the full shape of the pendant drop at the jet free end
boundary, observed in our experiments. In fact, to predict/recover the complete form of
the pendant drop, one must retain and solve for all the higher order terms (e.g. the terms
involving R,s and R,ss that would appear in the jet free surface curvature expressions). In
that case, the radius of the jet would approach zero at the jet free end and the corresponding
terms for the jet radius are no longer the leading-order terms.
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Figure 5. A growing fibre (a) trajectory, (b) radius and (c) normal stress difference over time with Re = 0.1,
Rb = 0.1, δs = 0.1 and We = 100; �τ = �σ = 5 × 10−4 and τend = 1.25. The rows, from top to bottom,
correspond to Wi = 0.01, 0.1 and 1, respectively.

Figure 5 depicts the results for three unsteady jets, whose lengths are growing over
time, at different values of Wi. The jet length grows much faster when Wi is smaller; this
is probably because of the smaller viscoelastic force against thinning, which in turn leads
to a smaller jet radius. Although for all the cases, the normal stress difference m0 is almost
the same at the nozzle, presumably because the jet diameter is the same near the nozzle,
at higher Wi the growth of m0 is much faster than that for the cases with the smaller Wi;
again, this shows the higher resistance against the fibre thinning at larger Wi.

Before we proceed, it is worth mentioning that, according to figure 5(c), in transient
cases for which we do not prescribe the extra stresses at the nozzle, the gradient of
m0 is in fact zero at longer times, confirming that the steady state stretching (m0,s = 0)
implemented as the boundary condition at the nozzle for the steady case holds true (see
§ 2.13.1).

Finally, let us look at the effect of Rb on the unsteady flow behaviour, as presented in
figure 6 for two different values of Rb. Based on the results, a slightly lower Rb (e.g. an
increased rotation speed) causes the jet length to grow much faster, resulting in a much
smaller radius for the same spinning time; this is obviously due to the larger centrifugal
force resulting in a larger inertial force applied to the jet. The same conclusion follows
from the curvature evolution at smaller Rb, which changes sign at the regions close to the
jet end in the case with smaller Rb (see figure 6c1). For both cases, on the other hand, the
slenderness criteria, i.e. |κ × εR| 
 1 with ε = 0.1, holds true.

Investigating of a curved jet in the CS process in an unsteady frame becomes more
important when jet instabilities come into play. When the jet is perturbed, probably due to
inlet mass flux variations, the jet radius undergoes some fluctuations propagating through
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Figure 6. A growing fibre (a) trajectory, (b) radius and (c) centreline curvature over time with Re = 0.1,
Wi = 1, δs = 0.5, We = 100 and τend = 0.6. The first row is for Rb = 0.05 for which �τ = �σ = 1 × 10−4,
and the second row is for Rb = 0.1 for which �τ = �σ = 2 × 10−4.

the jet interface, known as the Plateau–Rayleigh instability, resulting in jet breakup or
beads-on-fibre formation. If the jet breakup happens before the steady state condition
can be reached, the steady jet pattern will never be met and the whole process can be
considered as transient. On the other hand, a numerical analysis of the CS process in a
transient frame is computationally very expensive, due to the growing curved domain and
the use of the dynamic nodes; therefore, we focus the rest of the results section on the
steady state results and, in the ensuing subsections, we only use the stationary set of (2.95)
to study the CS process.

3.2. Simulations vs experiments
Prior to presenting our parametric study of a viscoelastic curved jet through the CS
process, let us briefly compare our modelling results against experimental data for the
curved jet trajectory. We conduct such a comparison at steady state, for which the
experiment allows us to better control the mass flow rate and, thus, monitor the jet exit
velocity. To extract the experimental jet trajectory, we use an image-processing technique,
a detailed description of which can be found in Noroozi et al. (2020). Figure 7 shows good
agreement between the predicted and experimental fibre trajectories from our experimental
observations (figure 7a) as well as those of Divvela et al. (2017) (figure 7b). The small
deviations may be mainly attributed to small mass flow rate fluctuations in the experiments
and/or to the assumptions made to simplify our current model derivation.

3.3. Parametric study
To provide key insights into the effects of the flow parameters in the CS process, we
consider a single viscoelastic curved jet and examine the effects of our dimensionless
parameters on the fibre trajectory and radius, as major outputs of the model, by solving
our stationary set of equations, outlined in § 2.13. It is of note that, when dealing with
polymer solutions in our calculations, we ignore the solvent evaporation, whose effects on
the fibre dynamics have been thoroughly considered in Noroozi et al. (2020).
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Figure 7. Fibre steady trajectory results from our model (solid line, blue) and experiments (dots). (a)
Comparison against our experimental results, for Re = 6, Rb = 0.055, We = 16, δs = 0.01, Re∗ = 33 and
Wi = 0.016. The solution is 2.5 % (wt) PEO (with the molecular weight of Mv = 4 × 105 (g mol−1)) dissolved
in deionized water. The experiments are at Unoz = 1 (m s−1) and Ω = 300 (rad s−1). (b) Comparison against
the experimental results extracted from Divvela et al. (2017), for Re = 23, Rb = 0.1, We = 23, δs = 0.01,
Re∗ = 41 and Wi = 0.13. The polymer solution is 8 (ppm) Polyisobutylene (with the molecular weight of Mv =
1 × 106 (g mol−1)) dissolved in Trichloroethylene, as the solvent. The experiments are at Unoz = 0.621 (m s−1)
and Ω = 217 (rad s−1).

3.3.1. Polymer solution jet
Here, we use our stationary set of (2.95) to consider the effect of the polymer concentration
on the jet radius and trajectory. To do so, based on the relations outlined in § 2.4, one needs
to consider the effect of Wi and δs on the fibre behaviour.

As the viscosity ratio (δs) changes from zero to one, our given fluid shifts from a polymer
melt to a polymer solution and finally to a pure Newtonian solvent; for the latter, the
polymer has no contribution to the zero-shear viscosity and the elastic effects play no role
in the fibre dynamics. Figure 8 shows the effects of the variations in δs and Wi, on the fibre
trajectory and radius (i.e. the first and second rows). As can be seen, when δs is decreased,
the fibre thinning rate diminishes due to a more pronounced viscoelastic force; however,
the fibre trajectory is not much affected by the change in δs. One can also realize that the
fibre curvature decreases remarkably at δs = 1, since the viscoelastic effects are vanished.
According to the results shown in figure 8(b), one can distinguish three flow regimes (i.e.
regimes I, II and III) in the plane of R vs s, based on the fibre thinning behaviour when
δs and Wi change. In regime I, corresponding to the region in the vicinity of the nozzle
exit, the fibre radii vary slowly up to a certain arc length (s ≈ 0.04); this is where the
cases with larger δs start to thin faster (i.e. the onset of regime II, viscous thinning at
large δs). However, this behaviour changes with decreasing δs in a way that, in regime II
at smaller δs, the fibre radius decreases very slowly, i.e. the thinning rate is almost zero
(i.e. no thinning at small δs). This behaviour is related to the stronger viscoelasticity of the
fibre at smaller δs, preventing the fibre from thinning. In regime III (starting at s ≈ 0.5),
in all the cases, the rate of thinning is almost constant, due to the dominance of inertial
forces (i.e. inertial thinning).

According to the second row in figure 8, by increasing Wi (increasing the fibre elastic
effects), the fibre wraps more around the rotation centre like a curving elastic solid, while
resisting thinning. Curving more towards the rotation centre leads to a smaller centrifugal
force and, consequently, thicker fibres, as shown in figure 8(b2). However, a rise in Wi at
constant δs shows no effect on the fibre thinning rate in regimes I and II.

To be more consistent with experiments, where polymer concentrations are typically
varied in polymer solutions, one can re-define δs as

δs ≡ ζ

Wi + ζ
, (3.1)
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Figure 8. Variation of fibre (a) trajectory and (b) radius vs δs in first row and vs Wi in the second row. In the
first row, Re = 0.1, Rb = 0.05, We = 100, Wi = 0.5, Re∗ = 1, � = 15 and δs is changing from 0.01 (solid bold
line in (b1)) to 1 (dash-dotted line, red in (b1)). In the second row, Re = 0.1, Rb = 0.05, We = 100, δs = 0.5,
Re∗ = 1, � = 15 and Wi is changing from 0.01 (solid bold line in (b2)) to 1 (dash-dotted line, red in (b2)). The
flow is isothermal.

in which ζ = (μs/μp)Wi; in this way, increasing Wi results in decreasing δs, i.e. a typical
experimental situation corresponding to adding more polymer to the solvent. Figure 9
illustrates the variations of the fibre trajectory and radius, for a wide range of Wi, using
relation (3.1). As observed, by increasing Wi, the no-thinning regime becomes more
pronounced and the fibre wraps tighter around the rotation centre. We can also see that
when Wi approaches zero, the fibre exhibits Newtonian behaviour. These results in terms
of changing Wi seem more intuitive. Note that there exist other ways to define a relationship
between Wi and δs, which one can pursue to characterize the polymer solutions; see for
instance Thompson & Oishi (2021).

Figures 9(c) and 9(d) show, respectively, the variation of the centreline curvature and the
viscoelastic normal stress difference along the fibre arc length, as Wi increases. Figure 9(c)
shows that the fibre curvature magnitude is larger at larger Wi, implying more coiling
around the rotation centre. On the other hand, figure 9(d) reveals that, as Wi gradually
increases, the magnitude of the normal stress difference (m0) near the nozzle (small s)
generally increases up to a value of Wi (roughly Wi = 0.1), beyond which increasing Wi
results in decreasing m0 at small s. This counterintuitive non-monotonic behaviour may be
explained as follows. As Wi increases, the viscoelastic forces increase, causing an initial
increase in m0 near the nozzle; however, continuing to increase Wi decreases the fibre
thinning rate, as the fibre spiral becomes much tighter around the rotation centre. This
results in a smaller m0 at small s. Another observation from figure 9(d) is that, at small
and moderate Wi, the variation of the normal stress difference, m0, vs the arc length, s,
is also non-monotonic. In this case, the viscoelastic forces are not large and, thus, the
fibre can start to thin even in regions close to the nozzle (small s). By decreasing the
jet cross-section, the viscoelastic forces rapidly increase (causing m0 to increase) until a
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Figure 9. Variation of fibre (a) trajectory, (b) radius, (c) centreline curvature and (d) normal stress difference
vs Wi with Re = 0.1, Rb = 0.05, We = 100, ζ = 0.01, Re∗ = 1 and � = 15. Here, Wi is changing from 0.01
(solid bold line in (b,c,d)) to 1 (dash-dotted line, red in (b,c,d)). The inset in (c) is a close-up, showing that
κ → 0 as s → 0. The flow is isothermal.

certain value of s at which the inertial forces take over in balancing the centrifugal ones,
causing m0 to decrease and fade away. However, at larger Wi, the fibre thinning rate is
not as large near the nozzle (small s), due to the tight spiral around the rotation centre.
In this case, the value of m0 for large Wi increases only gradually vs s, as the fibre radius
decreases, and its value eventually exceeds that for smaller Wi.

3.3.2. Polymer melt jet
The rest of our results presented here are dedicated to the parametric study of the CS
process when the fluid is a polymer melt, i.e. δs = 0. We also assume that the temperature
variation only causes the fibre viscosity and viscoelastic relaxation to change and it has
no effect on the other properties, e.g. surface tension coefficient and the properties of
the surrounding air. The latter assumption can be justified considering that smallness of
the jet compared with the surrounding environment. Finally, we neglect the polymer melt
hardening throughout the process (Arne et al. 2011).

3.3.3. Effects of rotation rate
Figure 10 shows the effects of Rb (or the inverse dimensionless rotation rate) on the fibre
trajectory, radius and temperature vs the arc length s. As the rotation rate increases, the
centrifugal force and thus the jet linear velocity increases, leading to a thinner fibre. It can
also be seen that the higher rotation speed results in smaller fibre temperature gradients
across the fibre length, bringing about a smaller jet viscosity and relaxation time (results
omitted for brevity); these are other factors that contribute to obtaining a thinner fibre
at higher rotation speeds. In addition, as shown in figure 10(a), increasing the rotation
speed affects the jet curvature in a way that the jet curves less around the rotation centre,
implying a smaller curvature. One reason for this observation is the presence of larger
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Figure 10. Effect of Rb on fibre (a) trajectory, (b) radius and (c) temperature, vs the arc length, with Re = 0.1,
We = 100, Wi = 1, Re∗ = 1, Pe∗ = 2.7, θ∞ = 0.7, c̃p = 0.236, ρ̃ = 0.001275, Pr∗ = 0.69, δs = 0 and � = 15
for Rb = 0.001 (dash-dotted line, green), Rb = 0.03 (dashed line), Rb = 0.05 (dotted line, red) and Rb = 0.1
(solid line, blue).
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Figure 11. Effect of Wi on fibre (a) trajectory, (b) radius and (c) temperature, vs the arc length, with Re = 0.1,
We = 100, Rb = 0.05, Re∗ = 1, Pe∗ = 2.7, θ∞ = 0.7, c̃p = 0.236, ρ̃ = 0.001275, Pr∗ = 0.69, δs = 0 and � =
40 for Wi = 1 (solid line),Wi = 0.1 (dotted line, red), Wi = 0.01 (dashed line, blue).

inertial forces, quickly taking over viscoelastic forces. On the other hand, when Rb is
larger, the fibre wraps tighter around the rotation centre as viscoelastic forces are stronger.

3.3.4. Effects of relaxation time
Next, we study the effect of Wi (or dimensionless relaxation time) on the fibre dynamics
shown in figure 11. According to this figure, by decreasing Wi, the jet curvature becomes
smaller and the fibre goes farther away from the nozzle. This is because of the fact that,
at smaller Wi, the polymer relaxation time is smaller than that of the deformation and
thus viscous effects become more pronounced. On the other hand, by increasing Wi,
the relaxation time value becomes comparable to the deformation time scale and, thus,
the elastic effects become more significant; this forces the jet to behave more like an
elastic rod, which justifies the behaviour observed (i.e. more wrapping of the jet around
the rotation centre at higher Wi). In other words, when viscoelastic forces compete with
inertial ones, the jet is unable to fly much away from the rotation centre, due to the lack of
energy, preventing the inertial forces from overtaking the resisting forces; in this case, the
jet remains close to the nozzle, as it coils more tightly around the rotation centre. Based
on this, the jet with a larger Wi has a smaller velocity, giving rise to a thicker jet that has a
larger temperature gradient across its length. The larger temperature gradient also results
in higher viscosities and slower relaxation times, both keeping the fibre from thinning, as
observed in figures 11(b) and 11(c).

3.3.5. Effects of air thermal diffusivity
Here, we consider the impacts of Pe∗ (or the inverse dimensionless air thermal diffusivity)
on the fibre features. The computational results for four different values of Pe∗, in terms
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Figure 12. Effect of Pe∗ on fibre (a) trajectory, (b) radius and (c) temperature vs the arc length, with Re =
0.1, Rb = 0.05, We = 100, Wi = 0.1, Re∗ = 1, θ∞ = 0.5, c̃p = 0.236, ρ̃ = 0.001275, Pr∗ = 0.69, δs = 0 and
� = 25 for Pe∗ = 0.3 (solid line), Pe∗ = 0.5 (dashed line, green), Pe∗ = 1 (dotted line, red) and Pe∗ = 10
(dash-dotted line, blue).

of the jet trajectory, radius and temperature, are superimposed onto figure 12. According
to the results, at small Pe∗, the jet cools down quickly to the air temperature, whereas
this process becomes more gradual when Pe∗ increases. In latter case, the jet viscosity
and relaxation time also vary more gradually (results not shown for brevity). Therefore,
the faster the fibre cools down, the faster its viscosity and relaxation time will increase,
both keeping the fibre from thinning. On the other hand, increasing the viscosity hinders
the fibre bending, while increasing the relaxation time makes the fibre behave more as
an elastic material bending more easily, thereby, increasing the fibre curvature. However,
since the relaxation time is more sensitive to the temperature variation (see (2.85a–c)) the
fibre curves more towards the rotation centre when the fibre temperature is reduced.

3.3.6. Effects of air-to-fibre drag
The effect of Re∗ (or the air aerodynamic drag) on the fibre dynamics is presented in
figure 13. As observed, a rise in Re∗ causes the fibre to wrap tighter around the rotation
axis, as a results of a larger drag force, pushing the fibre towards the rotation centre. Thus,
the fibre flies closer to the rotation centre, resulting in a less pronounced centrifugal force
and, correspondingly, a thicker fibre. On the other hand, increasing Re∗ increases the
convective heat transfer, resulting in larger temperature gradients along the fibre. Thus, the
fibre cools down further, compared with the cases with smaller Re∗. In practice, however,
by increasing the drag force (i.e. increasing Re∗) the fibre is more prone to breaking due
to Plateau–Rayleigh-type instabilities.

The bottom row in figure 13 shows the effects of including the free vortex due to the
spinneret head rotation, which would be the case in practical situations or experiments.
The inclusion of the free vortex causes the air to move with a velocity that fades away
from the rotation centre; see (2.62) and the corresponding discussions. As shown, the
free vortex flow causes the fibre to curve less due to the decrease in the drag force along
the fibre length; this also results in the fibre going farther away from the rotation centre
(compared with the case with the stagnant air assumptions), leading to a larger fibre
velocity and, correspondingly, a slightly thinner fibre. Including the free vortex flow into
our computation also results in a smaller temperature gradient along the fibre.

3.3.7. Effects of surface tension
The effects of We (or the inverse dimensionless surface tension) on the polymer melt jet
behaviour are explored in figure 14. According to the results, as the We decreases, the fibre
wraps tighter around the rotation centre; in fact, larger surface tensions forces hinder the
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Figure 13. Effect of Re∗ on fibre (a) trajectory, (b) radius and (c) temperature vs the arc length, with Re = 0.1,
Rb = 0.05, Wi = 0.1, We = 100, Pe∗ = 2.7, θ∞ = 0.7, c̃p = 0.236, ρ̃ = 0.001275, Pr∗ = 0.69, δs = 0 and
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flow into the computations.
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Figure 14. Effect of We on fibre (a) trajectory, (b) radius and (c) temperature vs the arc length, with Re = 0.1,
Rb = 0.05, Wi = 0.1, Re∗ = 1, Pe∗ = 2.7, θ∞ = 0.7, c̃p = 0.236, ρ̃ = 0.001275, Pr∗ = 0.69, δs = 0 and � =
40 for We = 0.008 (solid line), We = 0.01 (dotted line, red) and We = 1 (dashed line, blue).

fibre from flying far away from the rotation centre, concomitantly thickening the fibre. The
change in the radius, however, is trivial as is the change in the fibre temperature. Although
it seems that We only affects the fibre trajectory at small Weber numbers, the jet at small We
is more prone to breaking into series of drops due to Plateau–Rayleigh-type instabilities.
In fact, at sufficiently small We, the polymer solution/melt never exits the nozzle in the
form of a jet but as an array of drops. To study such effects, one should include the full
jet surface curvature expressions into momentum stresses relations and their couples (see
Yarin 1993; Părău et al. 2007; Alsharif & Uddin 2015; Alsharif et al. 2015).

3.3.8. Effects of mobility factor
The effects of the nonlinear rheology on the fibre dynamics in the CS process are here
examined by considering the effect of the mobility factor, χ (see (2.76)). The mobility
factor, χ , originates from the anisotropic Brownian motion and/or the anisotropic drag on
the polymer molecules and it can range from zero to one, depending on the polymeric
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Figure 15. Effect of χ on fibre (a) trajectory, (b) radius and (c) relative viscosity vs the arc length, with
Re = 0.1, Rb = 0.1, Wi = 1, We = 100, Re∗ = 1, Pe∗ = 2.7, θ∞ = 0.7, c̃p = 0.236, ρ̃ = 0.001275, Pr∗ =
0.69, δs = 0 and � = 40 for χ = 0 (solid line), χ = 0.15 (dashed line, green), χ = 0.5 (dotted line, red) and
χ = 1 (dash-dotted line, blue).

fluid, with a value of zero yielding the upper-convected Maxwell model (Bird & Wiest
1995). Increasing χ attenuates the viscoelastic effects and makes the fibre more extension
thinning which reduces the fibre curvature (figure 15a), thins the fibre (figure 15b) and
reduces the viscosity (figure 15c); the latter is also due to the fact that the jet cools down
more slowly and thus is less viscous. This may be because of higher jet velocities at large
χ , due to reduced viscoelastic effects.

4. Summary

Intrigued by the nanofibre formation through the centrifugal spinning process, the current
study delivers a rigorous mathematical model with the following novelties/contributions,
to name a few: (i) the development of the steady state and transient model equations (and
their solutions) for a viscoelastic fluid flow following the Giesekus nonlinear constitutive
equations; (ii) the incorporation of the angular momentum conservation equation into
the model, allowing us to remove the singularity of the classical string models; (iii) the
inclusion of the energy equation into the model, enabling us to analyse the flow of both
polymer solutions and melts; (iv) the incorporation of other key flow parameters into the
viscoelastic fibre flow equations, such as the aerodynamic drag relations (using stagnant
and free vortex air flow assumptions).

To frame our curved jet, we used the Bishop basis vectors and, to simplify our governing
equations, we deployed cross-averaging techniques coupled with asymptotic series used
to approximate our cross-averaged variables. To cope with the singularity problem of
the string model, the incorporation of the angular momentum equations allowed us to
take into account the bending and twisting couples whose lack is the main reason of
the string model failure at large rotation speeds. To study the CS process of polymer
melts, the inclusion of the energy equations allowed us to take into account the fibre
temperature variations and, thus, the fibre viscosity and relaxation time variations over
the computational domain. Finally, considering the Giesekus constitutive model permitted
us to take linear and nonlinear viscoelastic effects into consideration.

The effects of the key flow parameters on the fibre dynamics (e.g. radius, trajectory,
etc.) in the CS process were studied. To do so, two sets of equations, comprising transient
and steady states, were developed. The transient set of equations was developed in the
Lagrangian frame, to make the solution procedure more feasible. To generalize our results,
they were presented/discussed in terms of the key dimensionless numbers of the flow,
including mainly the Rossby (Rb), Weissenberg (Wi), Weber (We), air Péclet (Pe∗) and
air Reynolds (Re∗) number. Based on the transient results, the fibre grows over the

934 A9-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1135


Centrifugal spinning of viscoelastic nanofibres

computational domain in different phases, namely, the pendant drop formation, the straight
fibre formation, the bending and the steady jet phases. The unsteady results also showed
that, at large Wi, viscoelastic stresses hinder the fibre growth, resulting in a thicker fibre.
According to our steady results, when it comes to polymer solutions, by increasing Wi the
fibre curvature is enhanced. It was also found that, by enhancing the viscoelastic features,
the jet thinning mechanism changes, due to the resistance of the viscoelastic fibre against
thinning. When considering the polymer melt spun jet, it was found that decreasing Rb
not only reduces the fibre radius, but it also reduces the fibre curvature during the process,
due to the dominance of inertial forces against viscoelastic forces. The steady state results
also showed that, by increasing Wi, the fibre tends to curve more towards the rotation
centre and the thinning rate decreases. On the other hand, decreasing Pe∗ causes the jet
to abruptly cool down to the air temperature, giving rise to a more viscous fibre with a
slower relaxation time. Since the effect of temperature is more pronounced on the fibre
elastic response, the case with smaller Pe∗ experiences more wrapping and less thinning.
Furthermore, we found that a rise in Re∗ causes the fibre to wrap more towards the rotation
centre, due to the larger drag force. The inclusion of the effect of the free vortex air flow
results in a less pronounced drag force and, consequently, less curvature and jet instability.
Moreover, increasing We changes the fibre curvature remarkably, while it shows negligible
effects on the fibre radius and temperature variations. Finally, increasing the mobility
factor (χ ) shows remarkable impacts on the fibre behaviour, e.g. by reducing the curvature
and viscoelastic effects and, correspondingly, increasing the thinning rate of the fibre.

Future research directions include development of a jet stability analysis in both steady
and unsteady frames. Studies along these lines are now ongoing in our research group.
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Appendix A. Drag coefficients

In this section, we present the correlations used to compute the drag coefficients cn and cT
as

cn(Wn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4π

SWn

(
1 − Wn

S2 − S/2 + 5/16
32S

)
, Wn < v1

exp

⎛
⎝ 3∑

j=0

pnjln jWn

⎞
⎠ , v1 ≤ Wn ≤ v2

2√
Wn

+ 0.5, v2 < Wn

(A1)
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cT(Wn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4π

(2S − 1) Wn

(
1 − (Wn)

2 2S2 − 2S + 1
16 (2S − 1)

)
, Wn < v1

exp

⎛
⎝ 3∑

j=0

pTjln jWn

⎞
⎠ , v1 ≤ Wn ≤ v2

γ ∗
√

Wn
, v2 < Wn

(A2)

pn0 = 1.6911, pn1 = −6.7222 × 10−1, pn2 = 3.3287 × 10−2, pn3 = −3.5015 × 10−3,

pT0 = 1.1552, pT1 = −6.8479 × 10−1, pT2 = 1.4884 × 10−2, pT3 = 7.4966 × 10−3.

S = 2.0022 − ln(Wn), γ ∗ = 2, v1 = 0.1, v2 = 100.

⎫⎪⎪⎬
⎪⎪⎭

(A3)

Appendix B. Two-dimensional stationary equations for polymer melt
Here, we present a 2-D stationary set of equations when working with a polymer melt jet,
i.e. δs = 0,

Y,s = cos(α), Z,s = sin(α), ω = κu, α,s = κ, A = u−1,

∂sθ = −2Nu∗c̃pρ̃

εPe∗√u
(θ − θ∞) ,

ηN2,s = q1κ − Re (Y sin(α) − Z cos(α))

uRb2 + 2Re
Rb

− Re
u

〈
Fdrag

〉
N2

,

u,s =
m0

λ̄
+ Wi

(
χ
(
m2

0 + 2p0m0
) − u2κηN2 − uRe (Y cos(α) + Z sin(α))

Rb2 − uRe
〈
Fdrag

〉
T

)
q1

,

κ,s =
m1

uλ̄
+ Wi

((
m0κ + 3

2
p0κ − 3p1 + 3μ̄κ

2Wiλ̄
− 3Reκ

√
u

2We
− Re

Rb
u
)

u,s

u
+ 16

ε2 u2ηN2

)
q3

,

m0 + λ̄Wi

(
um0,s − (2m0 + 3p0) u,s + χ

(
m2

0 + p0m0
)

μ̄

)
= 3μ̄u,s,

p0 + λ̄Wi

(
up0,s + p0u,s + χp2

0
μ̄

)
= −μ̄u,s,

m1 + λ̄Wi
(
um1,s − (2m1 + 3p1) u,s − (2m0 + 3p0) K1

) = 3μ̄K1,

p1 + λ̄Wi
(
up1,s + p1u,s + K1p0

) = −μ̄K1,

q1 =
(

m0

u
+ Re

√
u

We
− Reu

)
,

q2 =
(

3θ − Wi

(
Reu2 − m0 − 3p0 − Reu3/2

2We

))
,

q3 =
(

3θ − Wi
(

Reu2 − 2m0 − 3p0 + Re
√

u
We

))
,

ηT = m0

u
+ Re

√
u

We
, M = m1

4u2 − Reκ
√

u
4u2We

, K1 = uκ,s − 1
2
κu,s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)
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