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Abstract

A classical result about Markov jump processes states that a certain class of dynamical
systems given by ordinary differential equations are obtained as the limit of a sequence
of scaled Markov jump processes. This approach fails if the scaling cannot be carried
out equally across all entities. In the present paper we present a convergence theorem for
such an unequal scaling. In contrast to an equal scaling the limit process is not purely
deterministic but still possesses randomness. We show that these processes constitute a
rich subclass of piecewise-deterministic processes. Such processes apply in molecular
biology where entities often occur in different scales of numbers.
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1. Introduction

In molecular biology there is a growing interest in a stochastic description of the underlying
chemical reactions. In particular, this is the case in functional genomics where experimental
findings provided evidence that gene expression is rather a stochastic than a deterministic
process [3], [4], [9].

Gillespie [7], [8] showed that the dynamics of discrete entities in a well-stirred physical or
biological system is well described by Markov jump processes. Moreover, if the number of
each species is high, such systems can often be described by ordinary differential equations.
This fact is substantiated by the work of T. G. Kurtz, who showed that, under an equal scaling
of the particle numbers, the corresponding Markov jump processes can be approximated by
ordinary differential equations; see [10], [11], and [12]. However, if the scaling cannot be
made equal, such an approach may fail. A case-by-case study of unequal scaling can be found
in [1]. Important examples of such situations can be found in molecular biology, in particular
in genetics where genes normally occur in two-digit numbers but the number of the gene
products, i.e. the mRNAs and the proteins, can achieve hundreds or thousands. Although the
dynamical behaviour of gene regulatory networks can often be well described by systems of
ordinary differential equations, some of the features of the stochastic nature of such systems

Received 14 September 2010; revision received 14 February 2012.
∗ Postal address: Faculty of Mathematics of Besançon, University of Franche-Comté, Route de Gray 16, 25 030
Besançon cedex, France. Email address: uwe.franz@univ-fcomte.fr
∗∗ Postal address: Faculty of Mathematics and Sciences, Ernst Moritz Arndt University Greifswald, Walther-Rathenau-
Straße 47, 17487 Greifswald, Germany. Email address: volkmar.liebscher@uni-greifswald.de
∗∗∗ Postal address: Kinesis Pharma BV, Lage Mosten 29, 4822 NK Breda, The Netherlands.
Email address: stefan.zeiser@kinesis-pharma.com

729

https://doi.org/10.1239/aap/1346955262 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1346955262


730 U. FRANZ ET AL.

get lost. An alternative approach to describe systems possessing species appearing in high and
low numbers is to use a class of piecewise-deterministic Markov processes (PDMPs) [5]. In
several recently published works gene regulatory networks were modelled by such a class of
stochastic processes; see [15], [16], and [17].

PDMPs were introduced by M. H. Davis in a more general setting as a particular class of
stochastic processes in 1984. They form a family of Markov processes which move determinis-
tically interrupted by random jumps. The motion of a PDMP is determined by three parameters
(v, λ, Q), which are sometimes called the local characteristics. The vector field v determines
the deterministic movement of the PDMP. Starting from an initial point in the state space, the
motion of the process follows the corresponding flow until the first jump time is reached. This
jump time is triggered by a transition rate function λ. The distribution at the jump time is given
by the transition kernel Q. After the jump the process restarts in a deterministic way until the
next jump time is reached.

In the present work we will show that such an approach can be justified in a rigorous
way. To this end, we will use an alternative representation of PDMPs. We use a certain
time-change representation which is similar to that used by Kurtz in his approximation results.
However, now the reactants are partitioned into two subpopulations, described by discrete and
continuous variables. The slow reactions causing changes of the discrete variable are triggered
by independent Poisson processes, whereas the fast reactions causing temporal changes of the
continuous variables are given as deterministic solutions of integral equations. Thus, in contrast
to the representation used in [12], now, besides terms involving Poisson processes, there occur
terms describing purely deterministic motion too. Moreover, since even the limiting process is
discontinuous, we need a mode of convergence different from uniform convergence. For our
purpose, the Skorokhod J1-topology proves useful and strong enough to also derive convergence
of path properties.

As an example, we consider a small autocatalytic genetic network. The system consists
of an inducible gene with one binding site in its promoter, and of proteins which are present
as monomers. The gene is activated by binding of a translated protein to the binding site in
the regulatory region of the gene. In a recently published paper [17] we have modelled such
a system by a Markov jump process as well as by a PDMP. For both systems, we showed
by numerical means that the expression of the gene expires in finite time. Moreover, in [15]
we proved that the point mass in zero is indeed the only stationary distribution of the system
modelled by a PDMP. In the present work we show that the system fulfills the conditions of the
presented convergence theorem. This way the numerical results from [17] and the mathematical
results from [15] find their deeper justification in convergence of any reasonable path property.

The paper is structured as follows. In Section 2 we give a formal definition of a class of
PDMPs which covers, among other possibilities, our model for certain two-time-scale gene
regulatory networks. In Section 3 we present an alternative description of PDMPs given by the
abovementioned time-change representation. Section 4 contains the convergence theorem for
partially scaled Markov jump processes to a PDMP. In Section 5, we discuss the autocatalytic
network example mentioned above. All proofs and some additional lemmas can be found in
Appendices A and B.

2. PDMPs

To define the class of PDMPs, we follow the construction of Davis [5] in a somewhat simpler
setting. We will mention the few simplifications below. The state space and the dynamics of
a PDMP X = (Xt )t≥0 are defined as follows. Let M be a discrete set. Furthermore, d ∈ N
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together with E ⊂ R
d will be fixed. The state space of X is given by

S = M × E. (2.1)

Let S be provided with the Borel σ -algebra B(S). The state space S can be considered as a
disjoint union of distinct E, labelled by an element of M . Later, we assume without loss of
generality that M ⊂ N0 such that S ⊂ R

d+1 safely. We will call a set {i} × E an arm or a
branch of the state space.

The deterministic motion of the process on a particular branch {i} × E is specified by a
vector field given by locally Lipschitz continuous maps

v(i) : R
d → R

d , i ∈ M.

Throughout this paper, we will assume that, for all these vector fields, there is no blow up in
finite time. Thus, the corresponding flow �i(z0, t) is uniquely determined by the differential
equation dz/dt = v(i)(z) with z(0) = z0 for all t ≥ 0. That is, �i(z0, 0) = z0 and

d

dt
�i(z0, t) = v(i)(�i(z0, t)).

Jumps of the PDMP from one branch to another are governed by a transition rate function

λ : S → [0, ∞),

which is assumed to be positive and measurable. The function λ is a measure for the jump
intensity of the process, i.e. it determines the distribution of the waiting times of the process in
a particular branch. The post jump location is determined by a transition kernel

Q : S × B(S) → [0, 1].
It specifies the distribution of the process at the instant when a jump has occurred. We assume
that Q(x, {x}) = 0 for all x ∈ S so that each jump is a ‘proper’ jump.

With these ingredients we are ready to describe the temporal evolution of the process. Let
the state of a random variable Xt : � → S at any time instant t ∈ [0, ∞) be described by a
two-dimensional vector Xt = (It , Zt ). The sample paths of the PDMP X with above local
characteristics (v(i), λ, Q) are constructed as follows. At time t = 0 the process X starts at
some x0 = (i0, z0). Consider a random variable τ1 (the waiting time till the first jump) having
distribution

P(τ1 > t) = exp

(
−

∫ t

0
λ(i0, �i0(z0, u)) du

)
.

Then, the S-valued random variable (Iτ1 , Zτ1) is selected independently having distribution

Q((i0, �i0(z0, τ1)), ·).
In this way, the process Xt is defined up to the first jump time, and its trajectory reads

Xt = (It , Zt ) =
{

(i0, �i0(z0, t)), t ∈ [0, τ1),

(Iτ1 , Zτ1), t = τ1.

In our applications, we may assume that the concentrations of the continuous entities (the Z-part
of X) do not change at a jump time. This implies that Zτ1 = �i0(z0, τ1). Starting from Xτ1 , the
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sojourn time τ2 −τ1 in the branch {Iτ1} × E and the post-jump location are selected in a similar
way. Proceeding in this way we obtain a piecewise-deterministic trajectory with random jump
times τ1, τ2, . . . . Let Nt = ∑∞

i=1 1{t≥τi } denote the random variable giving the numbers of
jumps in [0, t]. To ensure that the process is uniquely determined for all t > 0 almost surely
(a.s.), we suppose that Nt < ∞ for all t a.s. Hence, the explosion time τ∞ = limi→∞ τi is
infinite a.s. The so-constructed process is a PDMP.

Definition 2.1. A stochastic process (Xt )t≥0 on a probability space (�, F , P) and state space
S defined in (2.1) is called a PDMP if its dynamics are given by the three local characteristics
(v(i), i ∈ M; λ; Q) and constructed as described above.

The above defined PDMPs constitute a subclass of PDMPs defined by Davis in a more general
setting in which the set E may differ among the branches and the integral curves may also hit
the boundary of the sets Ei ; see [5]. The latter is excluded by us through the nonexplosion
condition for the vector fields v(i). In [5] it was shown that the defined processes possess the
strong Markov property and a characterisation of the extended generator was given.

3. PDMP as a time-change representation

In the following we describe the subclass of PDMPs from the previous section using a certain
time-change representation. It is similar to that used in [12] for a Markov jump process. In
contrast thereto, our representation also contains a deterministic integral. Again, the state space
S is given by (2.1). In the following sections we require the set M to be finite. Furthermore,
we identify M with a subset of natural numbers such that S ⊆ N0 × R

d ⊂ R
d+1.

Let ek ∈ Z × R
d , 1 ≤ k ≤ J, J ≥ 1, be transition vectors of the form

ek = (mk, 0, . . . , 0),

where mk ∈ Z. These transition vectors are fixed jump sizes between discrete elements of the
setM . Furthermore, we needJ transition rate functions rk , andJ independent Poisson processes
�k which trigger the random times of the discrete transitions. The deterministic movement
between the jumps is triggered by a vector field V : S → R

d+1 such that V (i, z) = (0, v(i)(z))

for all i ∈ m.
Let (�, F , P) be a probability space. Throughout the paper, let �k : � → N0, 1 ≤ k ≤ J ,

be independent right-continuous Poisson processes with rate 1.

Definition 3.1. Let (�, F , P) be a probability space, {ek}1≤k≤K be (d + 1)-dimensional real
vectors, rk : S → R, 1 ≤ k ≤ J , be nonnegative locally Lipschitz functions, V : S → R

d+1

be a locally Lipschitz function, and let x0 ∈ S be fixed.
A stochastic process X = (Xt )t≥0 with Xt : � → S is said to obey the time-change

representation with respect to (�k)
J
k=1 determined by (ek)1≤k≤J , (rk)1≤k≤J , and V if it solves

the equation

Xt = x0 +
J∑

k=1

ek�k

(∫ t

0
rk(Xs) ds

)
+

∫ t

0
V (Xs) ds a.s. (3.1)

for all t ≥ 0.

Observe that, if X is given by the time-change representation, the vector field V cannot
possess explosions and

∫ t

0 rk(Xs) ds has to stay finite for all t . Thus, the random variable Nt
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which counts the number of jumps in the time interval [0, t) is finite. The stochastic process in
the above definition starts in the fixed state x0 and moves deterministically determined by the
vector field V as long as t has not reached the first jump time of any of the Poisson processes �k,

1 ≤ k ≤ J . As soon as it has reached the smallest jump time, the respective Poisson process
jumps and the deterministic movement, determined by the vector field V , changes. Hence, X

exhibits behaviour very similar to a PDMP. Indeed, the main goal of this section is to show
that X is a PDMP. Observe that we just use the structure (3.1) for this, i.e. S could be a more
general subspace of R

d+1 than M × E.
We can regard the integral terms inside the Poisson processes in (3.1) as time transformations

and denote them sometimes by

βk(t) =
∫ t

0
rk(Xs) ds, 1 ≤ k ≤ J.

Such a representation determines (Xt )t≥0 uniquely.

Proposition 3.1. If X = (Xt )t≥0 solves the random time change representation (3.1) then this

solution is unique, i.e. if X̃ = (X̃)t≥0 is another solution to (3.1), it holds that

Xt = X̃t a.s. for all t ≥ 0.

As already mentioned, the aim of the present section is to show that a process solving the
time-change representation (3.1) is a PDMP.

Theorem 3.1. Let X = (Xt )t≥0 be the solution of the time-change representation (3.1). It
holds that

(i) X possesses the strong Markov property,

(ii) X is a PDMP.

With a little more effort we can show that a PDMP given by a time-change representation
fulfills the Feller property as well. However, we omit this result since we do not need it for our
purposes.

4. Convergence of pure jump processes to PDMPs

In this section we formulate the convergence theorem, which states that, under appropriate
scaling, a family of Markov jump processes converges pathwise to a certain type of PDMP. Our
method of proof relies on the fact that both the family of Markov jump processes and the PDMP
obey a time-change representation with respect to the same Poisson processes. This technique
has been used in [10], but with deterministic limits only.

The members of the one-parameter family of Markov processes {(X(N)
t )t≥0 : N ≥ 1} are of

the form

X
(N)
t = x

(N)
0 +

K∑
k=1

e
(N)
k �k

(∫ t

0
r
(N)
k (X(N)

s ) ds

)
, (4.1)

where the �k are independent Poisson processes, the e
(N)
k are (d +1)-dimensional real vectors,

and the r
(N)
k : R

d+1 → R+ are real functions for k = 1, . . . , K . In contrast to the convergence
results of Kurtz we do not scale the transition vectors ek equally. That is, we scale one part
of the original Markov jump process by 1/N and leave the other part unscaled. Only the
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transitions triggered by reaction channels including reactants in high numbers are scaled by the
parameter N . Hence, we need to separate the class of transition vectors e

(N)
1≤k≤K into a set

{e(N)
k : 1 ≤ k ≤ J }, (4.2)

which converges to the vectors {ek ∈ R
d+1 : 1 ≤ k ≤ J }, and into a set

{e(N)
k : J + 1 ≤ k ≤ K}, (4.3)

where the Ne
(N)
k converge to the vectors {ek ∈ R

d+1 : J + 1 ≤ k ≤ K}. We call transitions
induced by elements of (4.2) big jumps, and transitions induced by elements of (4.3) small
jumps. We want to conclude that the sequence (X

(N)· )N≥1 of scaled Markov jump processes
converges a.s. to a PDMP given as the solution of

Xt = x0 +
J∑

k=1

ek�k

(∫ t

0
rk(Xs) ds

)
+

∫ t

0
V (Xs) ds (4.4)

with the special vector field V (x) = ∑K
k=J+1 ekrk(x).

Before we specify the kind of convergence, we collect several attributes in a global condition
which is assumed to be fulfilled throughout the rest of the paper.

Condition 4.1. (PDMP conditions.) Let (X
(N)
t )t≥0, N ≥ 1, be Markov jump processes, and

let (Xt )t≥0 be a PDMP solving (4.1) and (4.4), respectively. For x
(N)
0 , x0, r

(N)
k , rk , e

(N)
k , and

ek, k = 1, . . . , K , the following statements are assumed to hold.

(i) limN→∞ x
(N)
0 = x0.

(ii) e
(N)
k → ek as N → ∞ for k = 1, . . . , J .

(iii) Ne
(N)
k → ek as N → ∞ for k = J + 1, . . . , K .

(iv) r
(N)
k → rk as N → ∞ for k = 1, . . . , J uniformly on compacts.

(v) (1/N)r
(N)
k → rk as N → ∞ for k = J + 1, . . . , K uniformly on compacts.

(vi) rk is locally Lipschitz on R
d+1 for all k = 1, . . . , K .

(vii) There is a locally bounded function c : R
d+1 → R+ such that, for all x ∈ E, all

L, N ∈ N, and every sequence (kl)l∈N ⊂ {J + 1, . . . , K}N with x + ∑L
l=1 e

(N)
kl

∈ E, it
holds that

1

N
r
(N)
k

(
x +

L∑
l=1

e
(N)
kl

)
≤ c(x)

(
L

N
+ 1

)
.

Let us briefly comment on the statements of Condition 4.1. Statement (i) means convergence
of the initial conditions. Statement (ii) is the scaling of the large jumps, whereas (iii) describes
the scaling of the small jumps. Likewise, (iv) and (v) describe the scaling of the transition rates
of the large and small jumps, respectively. Statement (vi) is used for uniqueness of the process
and (vii) is a uniform nonexplosion condition on (X

(N)· ).
In the following we will show that the family of scaled Markov jump processes converges

to a PDMP a.s. In contrast to [10] we cannot hope for uniform convergence since the limiting
process still has jumps and uniform convergence does not allow for flexible jumps. In our
opinion, the correct mode of convergence is given by the Skorokhod or J1-metric [14] on the
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space D of càdlàg paths (i.e. right continuous functions from [0, ∞) to R
d+1 with left limits

everywhere). Let us describe this metric briefly.
Let � be the family of Lipschitz continuous functions λ : [0, ∞) → [0, ∞) which are strictly

increasing and onto. For those functions, we declare

γ (λ) = sup
s>t≥0

∣∣∣∣ log
λ(s) − λ(t)

s − t

∣∣∣∣.
Now, for two càdlàg functions x, y ∈ D, and λ ∈ � and u ≥ 0, we set

d(x, y, λ, u) = sup
t≥0

‖x(t ∧ u) − y(λ(t) ∧ u)‖
1 + ‖x(t ∧ u) − y(λ(t) ∧ u)‖ .

We can define the Skorokhod distance of x and y as

dS(x, y) = inf
λ∈�

(
max

{
γ (λ),

∫ ∞

0
e−ud(x, y, λ, u) du

})
.

With these preparations we are ready to state the convergence theorem for PDMPs.

Theorem 4.1. Let (X(N)
t )t≥0, N ∈ N, be a sequence of Markov jump processes, and let (Xt )t≥0

be a PDMP obeying the PDMP conditions. Then, a.s.,

X(N)· → X·

in the Skorokhod topology as N tends to ∞.

The proof of the above theorem shows that X· is continuous at fixed t ≥ 0 a.s. Hence, we
immediately obtain the following result.

Corollary 4.1. Let (X
(N)
t )t≥0 and (Xt )t≥0 be as in Theorem 4.1. Then it holds for all t ≥ 0

that
X

(N)
t → Xt P -a.s.

as N tends to ∞.

Let us remark that, if X
(N)· and X· are not necessarily defined on the same probability space,

convergence in distribution with respect to the Skorokhod topology still holds.

5. Example: an autocatalytic network

As an example, we will investigate a small gene regulatory system consisting of an inducible
gene and its gene product. Consider a gene g which is transcribed into mRNA, which in turn
is translated into protein p. In general, transcription and translation takes place in several
intermediate steps. In the following we will ignore these individual processes and consider
only the gene g and its gene product p. A protein which regulates the transcription of its own
encoding gene or others is called a transcription factor. If the transcription factor p activates
transcription of its own encoding gene g, the gene g and the transcription factor p constitute a
positive feedback loop. Such a system is called an autocatalytic genetic network. We assume
that the gene g possesses only one binding site in its regulatory region to which p can bind,
and that the transcription factor p binds as a monomer to this binding site.
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Let g0 and g1 denote the unoccupied and the occupied states of the promoter. Since p acts
as an activator, g0 and g1 also denote the inactive and the active states of the gene, respectively.
Then, such an autocatalytic network can be described by the following four reaction channels:

g0 + p
κ1−→ g1, (5.1a)

g1
κ−1−→ g0 + p, (5.1b)

g1
α−→ g1 + p, (5.1c)

p
γ−→ ∅. (5.1d)

The first reaction channel describes activation of the gene. The activation rate is given as the
product of the association rate constant κ1 and the concentration of the transcription factor p.
Hence, if there is no gene product or any other external stimulus present, no synthesis will take
place. On the other hand, dissociation of p from the binding site of the promoter, described
by the second reaction channel, is assumed to take place at a constant rate κ−1. The third
and fourth reaction channels describe production and degradation of the transcription factor p,
respectively, where the symbol ∅ denotes the decay products. If the gene is activated, protein
is synthesised at a rate α, whereas it is degraded at a constant rate γ independently of the gene
state.

Such autocatalytic systems typically convert a graded signal of inducer amounts into a binary
response. By this, experimentalists mean that the cells are observed to be essentially in either
of two distinct states. For example, in [13] it was shown that the positive feedback loop of
the ComK system in Bacillus subtilis responds to increasing inducer concentrations in such a
binary way. A similar expression behaviour was observed for the synthetic positive feedback
system of rtTA in Saccharomyces cerevisiae [2]. There, in contrast to the constitutive system,
the autocatalytic system also exhibits a binary response on increasing inducer concentrations.

We define a one-parameter family of Markov jump processes X
(N)· = (X

(N)
t )t≥0, N ∈ N,

as follows. The parameter N measures the scale of the system; we can think of it as the
volume of the cell. X(N) takes values in the state space S = {0, 1} × (1/N)N. Writing
X

(N)
t = (X

(N)
1 (t), X

(N)
2 (t)) the random variable X1(t) ∈ {0, 1} denotes the state of the gene g

at time t , and X2(t) ∈ (1/N)N denotes the concentration of the transcription factor p present
at time t . According to the reaction scheme (5.1) there are five possible transitions. Together
with the corresponding transition vectors they read(

0,
n

N

)
�→

(
1,

n − 1

N

)
, e

(N)
1 =

(
1, − 1

N

)
,(

1,
n

N

)
�→

(
0,

n + 1

N

)
, e

(N)
2 =

(
−1,

1

N

)
,(

1,
n

N

)
�→

(
1,

n + 1

N

)
, e

(N)
3 =

(
0,

1

N

)
,(

1,
n

N

)
�→

(
1,

n − 1

N

)
, e

(N)
4 =

(
0, − 1

N

)
,(

0,
n

N

)
�→

(
0,

n − 1

N

)
, e

(N)
5 =

(
0, − 1

N

)
.

Observe that the transition vectors which cause the turning on and off of the gene g converge
to nonzero constant vectors as N → ∞. Such jumps are called big jumps. On the other hand,
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the components of the transition vectors describing formation and degradation of the gene
product p become smaller and smaller. Jumps induced by these vectors are called small jumps.
Given that the process is in state (i, n/N) at time t , the following scaling of the transition rates
is sensible:

r1

(
i,

n

N

)
=

{
κ1

n

N
if i = 0,

0 otherwise,
r2

(
i,

n

N

)
=

{
κ−1 if i = 1,

0 otherwise,

r3

(
i,

n

N

)
=

{
Nα if i = 1,

0 otherwise,
r4

(
i,

n

N

)
=

{
Nγ

n

N
if i = 1,

0 otherwise,

r5

(
i,

n

N

)
=

{
Nγ

n

N
if i = 0,

0 otherwise.

The one-parameter family (X
(N)
t )N>1 describing the autocatalytic system is defined as the

solution of the following time-change representation:

X
(N)
t = x

(N)
0 +

5∑
k=1

e
(N)
k �k

(∫ t

0
r
(N)
k (X(N)

s ) ds

)
. (5.2)

The transition vectors e
(N)
k and rate functions r

(N)
k , 1 ≤ k ≤ K , fulfill the PDMP conditions.

According to the scaling in the PDMP conditions, the limit transition vectors read

e1 =
(

1

0

)
, e2 =

(−1

0

)
, e3 =

(
0

1

)
, e4 = e5 =

(
0

−1

)
. (5.3)

Furthermore, with z = n/N , the limit transition functions read

r1(i, z) =
{

κ1z if i = 0,

0 otherwise,
r2(i, z) =

{
κ−1 if i = 1,

0 otherwise,
(5.4a)

r3(i, z) =
{

α if i = 1,

0 otherwise,
r4(i, z) =

{
γ z if i = 1,

0 otherwise,
(5.4b)

r5(i, z) =
{

γ z if i = 0,

0 otherwise.
(5.4c)

By Theorem 4.1, the one-parameter Markov jump processes given by (5.2) converge to the
PDMP given as the solution of

Xt = x0 +
2∑

k=1

ek�k

(∫ t

0
rk(Xs) ds

)
+

5∑
k=3

ek

∫ t

0
rk(Xs) ds,

where the transition vectors and the transition functions are given by (5.3) and (5.4), respectively.
A more detailed analysis of the behaviour of the limit process can be found in [15] and [17].

In [17], we also analysed the influence of dimerisation on the expression behaviour of the above
autocatalytic network by numerical means. In [15], we investigated the response of different
autocatalytic networks on different initial inducer amounts and different expression durations.
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Furthermore, we have shown that the stationary distribution of the above-discussed network
is the point mass at zero. As a consequence, the proteins become extinct in contrast to a
purely deterministic system which converges to its positive stationary point. Note that we need
convergence in the path space D to transfer this extinction statement in the right manner to the
approximating processes.

Appendix A. Proofs of the results for the time-change representation

In this appendix we present the proofs of the results from Section 3. For these proofs, note
that after a jump time τ the process X moves again deterministically till it reaches the next
jump time τ ′ > τ . In that situation, we call a process Y (τ) = (Y

(τ)
t )t≥0 the deterministic part

of X after the jump time τ if it solves the equation

Y
(τ)
t = Xτ +

∫ t

0
V (Y (τ)

s ) ds.

Owing to the uniqueness of solution for ordinary differential equations, it follows that Xτ+t

and Yt coincide in the time interval [0, τ ′ − τ).

Proof of Proposition 3.1. Let X̃ solve the equation

X̃t = x0 +
J∑

k=1

ek�k

(∫ t

0
rk(X̃s) ds

)
+

∫ t

0
V (X̃s) ds,

and denote by (τi)i≥0 and (τ̃i)i≥0 the jump times of X and X̃, respectively.
We assumed that V is locally Lipschitz. Thus, if 0 ≤ t ≤ τ1 ∧ τ̃1, uniqueness of the

solution of the ordinary differential equation implies that Xt = X̃t . Since Xt and X̃t coincide
in [0, τ1 ∧ τ̃1), we find that τ1 = τ̃1. Thus, it holds that Xt = X̃t for all t ∈ [0, τ1] too. Now
we proceed by induction. Suppose that equality holds up to a jump time τi, i > 1. Consider
the deterministic parts of X and X̃ solving the equations

Y
(τi )
t = Xτi

+
∫ t

0
V (Y (τi )

s ) ds, Ỹ
(τi )
t = Xτi

+
∫ t

0
V (Ỹ (τi )

s ) ds,

for t ≥ 0. Again, we see by the Picard–Lindelöf theorem that Y
(τi )
t and Ỹ

(τi )
t are identical and

X and X̃ are identical on [τi, τi+1 ∧ τ̃i+1). This gives τi+1 = τ̃i+1. The principle of induction
completes the proof.

Now let (Xt )t≥0 be given by a time-change representation. To show that X· is strong Markov,
we still need some further preparation. Let u = (u1, . . . , uJ ) ∈ R

J+ be a fixed real vector. The
stopped process at u, (X

(u)
t )t≥0, is defined as

X
(u)
t = x0 +

J∑
k=1

ek�k

(∫ t

0
rk(Xs) ds ∧ uk

)
+

∫ t

0
V (Xs) ds. (A.1)

Observe that the Poisson processes �k are stopped, not X. The Poisson processes �k, 1 ≤
k ≤ J , define a multiparameter filtration F � = (F �

u )u∈R
J+ , where

F �
u = σ({�k(w) : 0 ≤ w ≤ uk, k = 1, . . . , J } ∪ NP)

and NP denotes all the null sets of P.
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Let ζk : � → R+, 1 ≤ k ≤ J , be random variables. Then we call the random variable
ζ = {ζ1, . . . , ζJ } : � → R

J+ a multivariate stopping time with respect to F � if

{ζ ≤ u} = {ζ1 ≤ u1, . . . , ζJ ≤ uJ } ∈ F �
u

for all u = (u1, . . . , uJ )∈ R
J+. The σ -algebra of the ζ -past is defined by

Fζ = {A ∈ F : A ∩ {ζk ≤ uk, 1 ≤ k ≤ J } ∈ F �
u for all u ∈ R

J+}.
Let ζ : � → [0, ∞) be a random variable, and let � : � → N0 be a Poisson process. The
randomly shifted Poisson process (�(ζ)(u))u≥0 is defined by

�(ζ)(u) = �(ζ + u) − �(ζ). (A.2)

For multivariate stopping times, these processes have nice properties.

Lemma A.1. Let ζ = (ζ1, . . . , ζJ ) be a multivariate stopping time, and let {�(ζk)
k : 1 ≤ k ≤ J }

be the associated randomly shifted Poisson processes. Then Fζ and {�(ζk)
k : 1 ≤ k ≤ J } are

independent.
Furthermore, {�(ζk)

k : k = 1, . . . , J } are again J independent Poisson processes.

Proof. We show that, for all bounded f : N
K×M → R and each A ∈ Fζ , it holds that

E(1A f (�
(ζ1)
1 (t

(1)
1 ), . . . , �

(ζ1)
1 (t

(1)
M ), . . . , �

(ζK)
K (t

(K)
1 ), . . . , �

(ζK)
K (t

(K)
M )))

= P(A) E(f (�1(t
(1)
1 ), . . . , �1(t

(1)
M ), . . . , �K(t

(K)
1 ), . . . , �K(t

(K)
M ))).

For n ≥ 1, define ζ (n) = �nζ�/n. Then, ζ (n) = (1/n)(l
(n)
1 , . . . , l

(n)
K ) for an (l

(n)
1 , . . . , l

(n)
K ) ∈

N
K
0 , and ζ (n) is again a multivariate stopping time with ζ (n) ↘ ζ componentwise as n tends

to ∞. If n is large enough, �
(ζ

(n)
k )

k (t) is pointwise equal to �
(ζk)
k (t) by the right continuity

of �k . Together with the stationarity of increments, we obtain

E(1A f (�
(ζ

(n)
1 )

1 (t
(1)
1 ), . . . , �

(ζ
(n)
1 )

1 (t
(1)
M ), . . . , �

(ζ
(n)
K )

K (t
(K)
1 ), . . . , �

(ζ
(n)
K )

K (t
(K)
M )))

=
∑

(l1,...,lK )∈N
K
0

E(1A 1{ζ (n)=(1/n)(l1,...,lK )} f (�
(ζ

(n)
1 )

1 (t
(1)
1 ), . . . , �

(ζ
(n)
1 )

1 (t
(1)
M ), . . . ,

�
(ζ

(n)
K )

K (t
(K)
1 ), . . . , �

(ζ
(n)
K )

K (t
(K)
M )))

=
∑

(l1,...,lK )∈N
K
0

E(1A∩{ζ (n)=(1/n)(l1,...,lK )}) E(f (�
(l1/n)
1 (t

(1)
1 ), . . . , �

(l1/n)
1 (t

(1)
M ), . . . ,

�
(lK/n)
K (t

(K)
1 ), . . . , �

(lK/n)
K (t

(K)
M )))

= P(A) E(f (�1(t
(1)
1 ), . . . , �1(t

(1)
M ), . . . , �K(t

(K)
1 ), . . . , �K(t

(K)
M ))).

By applying Lebesgue’s dominated convergence theorem we obtain

E(1A f (�
(ζ)
1 (t

(1)
1 ), . . . , �

(ζ)
1 (t

(1)
M ), . . . , �

(ζ)
K (t

(K)
1 ), . . . , �

(ζ)
K (t

(K)
M )))

= lim
n→∞ E(1A f (�

(ζ
(n)
1 )

1 (t
(1)
1 ), . . . , �

(ζ
(n)
1 )

1 (t
(1)
M ), . . . , �

(ζ
(n)
K )

K (t
(K)
1 ), . . . , �

(ζ
(n)
K )

K (t
(K)
M )))

= P(A) E(f (�1(t
(1)
1 ), . . . , �1(t

(1)
M ), . . . , �K(t

(K)
M ), . . . , �K(t

(K)
M ))).

https://doi.org/10.1239/aap/1346955262 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1346955262


740 U. FRANZ ET AL.

For the proof of Theorem 3.1, we need two more technical lemmas. First, we show that, for
any random time τ , the stopped process and the nonstopped process are equal on the set

W(τ) =
{∫ τ

0
rk(Xs) ds ≤ uk, k = 1, . . . , J

}
(A.3)

for any real vector u = (u1, . . . , uJ ) up to time τ .

Lemma A.2. Let u = (u1, . . . , uJ ) ∈ R
J+, and let the processes (Xt )t≥0 and (X

(u)
t )t≥0 be

solutions to (3.1) and (A.1). Then, for each random variable τ , it holds that∫ τ

0
rk(Xs) ds ≤ uk ⇐⇒

∫ τ

0
rk(X

(u)
s ) ds ≤ uk

for all k = 1, . . . , J .
Furthermore, on the set W(τ) defined by (A.3), the processes (Xt )t≥0 and (X

(u)
t )t≥0 are

indistinguishable for all t ≤ τ .

Proof. Assume that, for a real positive vector u = (u1, . . . , uJ ) and a random time τ , it
holds that

∫ τ

0 rk(X
(u)
s ) ds ≤ uk for all k = 1, . . . , J but

∫ τ

0 rk(Xs) ds > uk for at least one k.
Let k̃ denote the smallest of those k. Consider the random variable

T = sup

{
t ′ :

∫ t ′

0
r
k̃
(Xs) ds = u

k̃

}
.

It holds that T < τ and Xs = X
(u)
s for all 0 ≤ s ≤ T . Since both processes are right continuous,

there exists an ε > 0 with T + ε < τ such that Xs = X
(u)
s for all 0 ≤ s ≤ T + ε. This implies

that ∫ τ

0
r
k̃
(X(u)

s ) ds ≥
∫ T +ε

0
r
k̃
(X(u)

s ) ds =
∫ T +ε

0
r
k̃
(Xs) ds > u

k̃
,

contradicting the initial assumption. The reverse direction is obvious.

Recall the definition

βk(t) =
∫ t

0
rk(Xs) ds for k = 1, . . . , J.

Corollary A.1. Let τ be a stopping time of (Xt )t≥0. Then β̄(τ ) = (βk(τ ))Jk=1 ∈ R
J+ is a

multivariate stopping time with respect to F �.

Proof. Assume first that τ is countably valued, τ(�) = {tn : n ∈ N}, and u ∈ [0, ∞)J . For
n ∈ N, we find that

{βk(τ ) ≤ uk, k = 1, . . . , J } ∩ {τ = tn} =
{∫ tn

0
rk(Xs) ds ≤ uk, k = 1, . . . , J

}
∩ {τ = tn}.

Since τ is a stopping time, {τ = tn} is measurable with respect to (Xs)0≤s≤tn . By Lemma A.2
we obtain

{βk(τ ) ≤ uk, k = 1, . . . , J } ∈ F �
u ,

which proves the assertion in the case of countably valued τ .
For general τ , we see that, for τn = 2−n�2nτ�, {βk(τn) ≤ uk, k = 1, . . . , K} ∈ F �

u .
Observe that F �

u is the canonical σ -algebra generated by the process (
∑J

k=1(1/k)�k(ukt))t≥0
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at time 1. The filtration of the latter is right continuous; see, e.g. [6]. This shows that
the multiparameter filtration (F �

u )u∈R
J+ is right continuous too. Now continuity of βk and

τn ↘n→∞ τ imply the above result for general τ also.

Recall that the rate functions rk are nonnegative, meaning that the time transformations βk

are nondecreasing. However, a stronger result is true.

Lemma A.3. Let X = (Xt )t≥0 solve the time-change representation (3.1), let 0 < τ1 be the
first jump time of X, and let Y = (Yt )t≥0 be the deterministic part of X starting at x0 at time 0.
Furthermore, let k1 denote the index of that Poisson process which jumps at time βk1(τ1). Then
the time transformation β

(Y )
k1

derived from Y ,

β
(Y )
k1

(t) =
∫ t

0
rk1(Ys) ds,

is strictly increasing at τ1 a.s.

Proof. Since the rate functions rk are nonnegative, the time transformations β
(Y )
k are non-

decreasing. Now, by the continuity of rk , the set

Dk =
⋃

I⊆R+ interval
rk(Ys)=0 for all s∈I

I

on which β
(Y )
k is not strictly increasing consists of at most countably many intervals. If β

(Y )
k1

is not strictly increasing at τ1 then τ1 would be the leftmost point of a left closed interval
within Dk1 . For arbitrary k, let D0

k be the set of all leftmost points in Dk . That is,

D0
k =

{
t ≥ 0 : rk(Yt ) = 0,

∫ t

t−ε

rk(Ys) ds > 0 for all ε > 0, there exists δ > 0

such that
∫ t+δ

t

rk(Ys) ds = 0

}
.

Let η
(k)
1 be the first jump time of the Poisson process �k . Observe that D̃0

k = β
(Y )
k (D0

k ) is
still at most countable. Thus, by continuity of the exponential distribution, the probability that
τ1 ∈ D0

k1
can be estimated as follows:

P(τ1 ∈ D0
k1

) = P(η
(k1)
1 ∈ D̃0

k1
) ≤

J∑
k=1

P(η
(k)
1 ∈ D̃k) = 0.

Proof of Theorem 3.1. (i) For any stopping time T > 0, we obtain

XT +t = x0 +
J∑

k=1

ek�k

(∫ T +t

0
rk(Xs) ds

)
+

∫ T +t

0
V (Xs) ds

= XT +
J∑

k=1

ek

(
�k

(∫ T

0
rk(Xs) ds +

∫ T +t

T

rk(Xs) ds

)
− �k

(∫ T

0
rk(Xs) ds

))

+
∫ T +t

T

V (Xs) ds.

Set τk = ∫ T

0 rk(Xs) ds for k = 1, . . . , J . Then τ = (τ1, . . . , τJ ) is a multivariate stopping
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time for F �. With the notation for �
(τ)
k given in (A.2) we obtain

XT +t = XT +
J∑

k=1

ek�
(τk)
k

(∫ t

0
rk(XT +s) ds

)
+

∫ t

0
V (XT +s) ds.

Now XT is Fτ -measurable. By Lemma A.1, the distribution of (XT +t )t≥0 conditional on
σ(Xs : 0 ≤ s ≤ T ) is equal to the distribution of (Xt )t≥0 conditional on XT .

(ii) We know that X = (Xt )t≥0 is strong Markov. Therefore, it is enough to look at the
distribution up to the first jump time τ1. Let X be given by (3.1) starting in the fixed state
x0 = (i0, z0) ∈ S. Let η(k)

1 denote the first jump times of the Poisson processes �k, 1 ≤ k ≤ J ,
let (Yt )t≥0 be the deterministic part of X starting at x0 at time 0, and let β

(Y )
k (t), k = 1, . . . , J ,

be the time transformations of the Poisson process �k with respect to Y . As long as t < τ1, it
holds that �k(β

(Y )
k (t)) = 0 and the process moves deterministically given by

Yt = x0 +
∫ t

0
V (Ys) ds. (A.4)

The distribution of τ1 computes to

P(τ1 > t) = P(β−1
k (η

(k)
1 ) > t, 1 ≤ k ≤ J ) = exp

(
−

J∑
k=1

βk(t)

)
. (A.5)

Thus, up to the first jump time the process evolves like a PDMP.
The jump time of X is distributed with rate function λ(i0, �i0(z0, t)) = ∑J

k=1 βk(t) and the
flow �i0(z0, t) is determined by the vector field V through (A.4).

At the jump time the process chooses a new state according to a discrete distribution. We
show that, for j = 1, . . . , J ,

P(Xτ1 = Yτ1 + ej | τ1) = rj (Yτ1)∑J
k=1 rk(Yτ1)

. (A.6)

Observe that we showed in the proof of Lemma A.3 that, a.s., rk(Yτ1) > 0 for at least one
k = 1, . . . , J . From (A.5) we derive the density fτ1(t) = (

∑J
k=1 rk(Yt )) exp(− ∑J

k=1 βk(t)).
Thus, for a < b, we find that

P(Xτ1 = Yτ1 + ej , τ1 ∈ [a, b]) =
∫ b

a

P(t < β−1
k (η

(k)
1 ), k �= j)f

β−1
j (η

(j)
1 )

(t) dt

=
∫ b

a

exp

(
−

∑
k �=j

βk(t)

)
rj (Yt )e

−βj (t) dt

=
∫ b

a

rj (Yt )∑J
k=1 rk(Yt )

fτ1(t) dt.

This shows (A.6).

Appendix B. Proof of the convergence theorem

Now we derive the almost-sure uniform convergence of X(N) to X in the absence of jumps
in the limiting process X. To this end, we consider Markov jump processes Y (N) with small
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jumps only and their corresponding limit process Y :

Y
(N)
t = Y

(N)
0 +

K∑
k=J+1

e
(N)
k �

(N)
k

(∫ t

0
r
(N)
k (Y (N)

s ) ds

)
(B.1)

and

Yt = Y0 +
K∑

k=J+1

ek

∫ t

0
rk(Ys) ds. (B.2)

The counting processes�
(N)
k will be derived from parts of the trajectories of�k . Thus, they obey

a ‘strong law of large numbers (SLLN) property’. More precisely, we require the following.

Definition B.1. (SLLN property.) A family of counting processes (�
(N)
k (t))t≥0 fulfills a

uniform SLLN property if

(i) there exists a random variable M such that, for all t ≥ 0, N ∈ N, and k = 1, . . . , K , it
holds that

�N
k (t) ≤ Mt a.s.,

(ii) there exists a random variable M̃ such that, for all T > 0, t ≥ 0, t̃ ∈ [0, T ], N ∈ N, and
k = 1, . . . , K , it holds that

�
(N)
k (t + t̃ ) − �

(N)
k (t̃) ≤ 1 + M̃t a.s.,

(iii) for all m > 0, it holds a.s. that

lim
t→∞ sup

N,k

sup
a≤m

∣∣∣∣�
(N)
k (at)

t
− a

∣∣∣∣ = 0.

Note that the constant sequence formed from a Poisson process possesses the SLLN property.
Hence, for example, we can consider (B.1) and (B.2) under the choice �

(N)
k = �k , yielding

the processes X
(N)· and X· up to the time of the first big jump in one of the Poisson processes

�k, k = 1, . . . , J .
Now we can derive bounds on Y .

Lemma B.1. There a.s. exist random variables C1 and C2 such that, for all N ∈ N, t ∈ [0, T ],
and k ∈ {J + 1, . . . , K},

max

(
‖Y (N)

t ‖, 1

N
r
(N)
k (Y

(N)
t )

)
≤ C1eC2t .

Proof. From the sublinear growth condition of the PDMP conditions (Condition 4.1(vii))
and condition (ii) of the SLLN property of �(N), we obtain, for all k ∈ {J + 1, . . . , K},

1

N
r
(N)
k (Y

(N)
t ) = 1

N
r
(N)
k

(
Y

(N)
0 +

K∑
k=J+1

e
(N)
k �

(N)
k

(∫ t

0
r
(N)
k (Y (N)

s ) ds

))

≤ c(Y
(N)
0 )((K − J ) + 1) + c(Y

(N)
0 )M̃

∫ t

0

K∑
k=J+1

1

N
r
(N)
k (Y (N)

s ) ds.
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Summation of both sides yields

K∑
k=J+1

1

N
r
(N)
k (Y

(N)
t ) ≤ c(Y

(N)
0 )(1 + (K − J ))(K − J )

+ c(Y
(N)
0 )M̃(K − J )

∫ t

0

K∑
k=J+1

1

N
r
(N)
k (Y (N)

s ) ds.

Introduce two random variables C′
1 = supN→∞ c(Y

(N)
0 )(1 + (K − J ))(K − J ) and C2 =

supN→∞ c(Y
(N)
0 )M̃(K − J ). Then Gronwall’s lemma yields

K∑
k=J+1

1

N
r
(N)
k (Y

(N)
t ) ≤ C′

1eC2t

for all N ∈ N, k ∈ {J + 1, . . . , K}, and t ∈ [0, T ].
Furthermore, again using condition (ii) of the SLLN property of �(N), we find that

‖Y (N)
t ‖ ≤ ‖Y (N)

0 ‖ +
K∑

k=J+1

‖Ne
(N)
k ‖ 1

N
�

(N)
k

(∫ t

0
r
(N)
k (Y (N)

s ) ds

)

≤ sup
N

‖Y (N)
0 ‖ + (K − J ) sup

N,k

‖Ne
(N)
k ‖

(
1

N
+ M̃

C′
1

C2
(eC2t − 1)

)
.

From above we find, with an appropriate choice of the random variable C1, e.g.

C1 = sup
N

‖Y (N)
0 ‖ + (K − J ) sup

N

1

N
‖Ne

(N)
k ‖

(
1 + M̃

C′
1

C2

)
,

that |Y (N)
t | ≤ C1eC2t uniformly for all N ∈ N and t ∈ [0, T ].

With the estimate from the previous lemma we obtain uniform convergence on compacta of
the rate functions of the discrete processes to those of the PDMP.

Corollary B.1. For all T > 0, it holds a.s. that, for k = 1, . . . , J ,

r
(N)
k (Y

(N)
t ) − rk(Y

(N)
t ) → 0 as N → ∞

uniformly in t ∈ [0, T ], and, for k = J + 1, . . . , K ,

1

N
r
(N)
k (Y

(N)
t ) − rk(Y

(N)
t ) → 0 as N → ∞

uniformly in t ∈ [0, T ].
Proof. From Lemma B.1 we know that ‖Y (N)

t ‖ ≤ C1eC2T for some random constants C1
and C2. The assertion follows from the uniform convergence of r

(N)
k and (1/N)r

(N)
k on

compacta.

The following result is a reformulation of Kurtz’s convergence theorem; see Theorem 2.16
of [12].
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Lemma B.2. Let (Y
(N)
t )t≥0 and (Yt )t≥0 be the solutions of (B.1) and (B.2), respectively.

Suppose that Y
(N)
0 → Y0 as N → ∞, and that conditions (ii) and (iii) of the SLLN property

for counting processes, and (iii)–(vii) of the PDMP conditions hold. Then, a.s., it holds that,
for all T > 0,

‖Y (N)
t − Yt‖ → 0

uniformly in t ∈ [0, T ] as N → ∞.

We are now in a position to prove the convergence theorem. Our aim is to show that the
process X(N) has essentially the same big jump times (up to order o(1)) and the same jump
types as X.

Proof of Theorem 4.1. Let (τi)i≥1 be the jump times of the PDMP solving (4.4), and let
(τ

(N)
i )i≥1 be the times of the ‘big’ jumps of the Markov jump processes solving (4.1). Thus,

these times are ordered increasingly and

{τi : i ≥ 1} =
{
t > 0 : Xt �= lim

ε↓0
Xt−ε

}
,

{τ (N)
i : i ≥ 1} =

{
t > 0 : X

(N)
t − lim

ε↓0
X

(N)
t−ε ∈ {e(N)

k : 1 ≤ k ≤ J }
}
.

Furthermore, denote by ki and k
(N)
i the indices of the Poisson processes which cause the jumps

at τi and τ
(N)
i of X· and X

(N)· , respectively.
We proceed by induction over i ≥ 1. The induction hypothesis states that, a.s.,

(a) τ
(N)
i → τi as N → ∞,

(b)
∫ τ

(N)
i

0 r
(N)
k (X

(N)
s ) ds → ∫ τi

0 rk(Xs) ds as N → ∞ for all k = 1, . . . , J ,

(c) X
(N)

τ
(N)
i

→ Xτi
as N → ∞,

for all i = 1, 2, . . . . For i = 1, we derive this by considering processes Y· and Y
(N)· solving

Y
(N)
t = x

(N)
0 +

K∑
k=J+1

e
(N)
k �k

(∫ t

0
r
(N)
k (Y (N)

s ) ds

)
,

Yt = x0 +
K∑

k=J+1

ek

∫ t

0
rk(Ys) ds.

At first, we consider the time transformations β
(N)
k and βk defined by

β
(N)
k (t) =

∫ t

0
r
(N)
k (Y (N)

s ) ds and βk(t) =
∫ t

0
rk(Ys) ds

for k = 1, . . . , J . Observe also that βk(t) = ∫ t

0 rk(Xs) ds as long as t ≤ τ1. A similar formula
is valid for β

(N)
k . It now holds that

|β(N)
k (t) − βk(t)| ≤

∫ t

0
|r(N)

k (Y (N)
s ) − rk(Y

(N)
s )| ds +

∫ t

0
|rk(Y (N)

s ) − rk(Ys)| ds.

Conditions (ii) and (iii) of the uniform SLLN property for counting processes ensures that we
can apply Corollary B.1 and Lemma B.2. From the former we deduce that∫ t

0
|r(N)

k (Y (N)
s ) − rk(Y

(N)
s )| ds → 0 as N → ∞.
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From Lemma B.2 we derive via the Lipschitz continuity of rk that

∫ t

0
|rk(Y (N)

s ) − rk(Ys)| ds → 0 as N → ∞.

Thus, for all T > 0, we conclude that it holds uniformly for t ∈ [0, T ] that

β
(N)
k (t) → βk(t) as N → ∞. (B.3)

Let η
(k)
1 be the first jump times of the Poisson processes �k , and let k1 be the index of the

Poisson process which causes the jump of X at τ1. We know that β
(N)
k (τ1) converges to βk(τ1)

as N tends to ∞. Specifically, β
(N)
k1

(τ1) → η
(k1)
1 . Moreover, since k1 causes the jump at τ1, it

must hold for all k �= k1 that

η
(k)
1 > βk(τ1) = lim

N→∞ β
(N)
k (τ1).

Hence, k
(N)
1 is equal to k1 for large enough N . Since we know from Lemma A.3 that βk1(t) is

strictly increasing at τ1, we deduce for the pseudo inverse β̂k of βk that

β̂
(N)
k1

(η
(k1)
1 ) → β̂(k1)(η

(k1)
1 ) = τ1 and β̂

(N)
k (η

(k)
1 ) → β̂k(η

(k)
1 ) > τ1 for k �= k1

as N tends to ∞. Thus, τ
(N)
1 → τ1 as N tends to ∞, proving (a).

To prove (b), consider the following estimate:

∣∣∣∣
∫ τ

(N)
1

0
r
(N)
k (X(N)

s ) ds −
∫ τ1

0
rk(Xs) ds

∣∣∣∣
≤

∣∣∣∣
∫ τ

(N)
1

0
(r

(N)
k (X(N)

s ) − rk(Xs)) ds

∣∣∣∣ +
∣∣∣∣
∫ τ1

τ
(N)
1

rk(Xs) ds

∣∣∣∣.
Since Xt coincides with Yt , and X

(N)
t coincides with Y

(N)
t for t < τ1 and t < τ

(N)
1 , respectively,

we can apply property (B.3). Together with τ
(N)
i → τi we conclude that both terms converge

to 0 as N tends to ∞, proving (b).
To prove (c), consider the following estimation:

∥∥X
(N)

τ
(N)
1

− Xτ1

∥∥ ≤ ∥∥(
X

(N)

τ
(N)
1

− X
(N)

τ
(N)
1 −

) − (Xτ1 − Xτ1−)
∥∥ + ∥∥X

(N)

τ
(N)
1 − − Xτ1−

∥∥.

Choosing N large enough, we can assume that k
(N)
1 = k1. Since τ

(N)
1 and τ1 are the first jump

times of X
(N)
t and Xt , respectively, it holds that �

k
(N)
1

and �k1 are equal to 1 where all other
Poisson processes �k, k �= k1, are equal to 0. Thus,

∥∥X
(N)

τ
(N)
i

− Xτi

∥∥ ≤ ∥∥e
(N)

k
(N)
1

− ek1

∥∥ + ∥∥Y
(N)

τ
(N)
1

− Yτ1

∥∥.

With (i) and (ii) of the PDMP conditions we obtain (c) and the induction is initialised.
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For the induction step, assume that (a)–(c) hold up to the ith jump, i > 1. We consider the
processes (Z

(N)
t )t≥0 and (Zt )t≥0 satisfying the equations

Z
(N)
t = X

(N)

τ
(N)
i

+
K∑

k=J+1

e
(N)
k

(
�k

(∫ t

0
r
(N)
k (Z(N)

s ) ds +
∫ τ

(N)
i

0
r
(N)
k (X(N)

s ) ds

)

− �k

(∫ τ
(N)
i

0
r
(N)
k (X(N)

s ) ds

))

and

Zt = Xτi
+

K∑
k=J+1

ek

∫ t

0
rk(Zs) ds.

By induction hypothesis (b), we know that
∫ τ

(N)
i

0 r
(N)
k (X

(N)
s ) ds → ∫ τi

0 rk(Xs) ds for all 1 ≤
k ≤ J as N → ∞. Since

�
(N)
k (t) = �k

(
t +

∫ τ
(N)
i

0
r
(N)
k (X(N)

s ) ds

)
− �k

(∫ τ
(N)
i

0
r
(N)
k (X(N)

s ) ds

)

are counting processes following the SLLN of Definition B.1, we can apply Lemma B.2. It
follows that Z

(N)
t → Zt uniformly on compacts as N → ∞.

By similar arguments as for i = 1 we find that k
(N)
i+1 = ki+1 eventually, and τ

(N)
i+1 − τ

(N)
i →

τi+1 − τi as N tends to ∞. Since we already know that τ
(N)
i → τi as N → ∞, we have

shown (a). From this, (b) and (c) follow as in the proof of the initial hypothesis for induction.
To prove convergence in the J1-topology, we choose T > 0, T /∈ {τi : i ∈ N}, and N so

large that all k
(N)
i = ki for all i with τi ≤ T as well as τ

(N)
iT

> T , where τiT is the first jump
time beyond T . Then we construct λN ∈ �∞ from λN(τi) = τ

(N)
i for all i with τi ≤ T and

λN(t) = t for t ≥ T by linear interpolation. Clearly, since τ
(N)
i → τi we obtain γ (λN) → 0

as N → ∞.
In the next step we will show that with the above-defined time dilations λN applied to the

processes (X
(N)· )N≥1, X

(N)· will converge uniformly on each time interval [τi, τi+1). Thereto,
let ζ

(N)
i = (τ

(N)
i+1 − τ

(N)
i )/(τi+1 − τi), and consider the processes

Z
(N)
t := X

(N)

τ
(N)
i +ζ

(N)
i ·t

on the time interval [0, τi+1 − τi). Then, by a linear change of the variable, Z
(N)
t solves the

equation

Z
(N)
t = X

(N)

τ
(N)
i

+
K∑

k=J+1

e
(N)
k

(
�k

(
ζ

(N)
i

∫ t

0
r
(N)
k (Z(N)

s ) ds +
∫ τ

(N)
i

0
r
(N)
k (X(N)

s ) ds

)

− �k

(∫ τ
(N)
i

0
r
(N)
k (X(N)

s ) ds

))
.

Again, as limN→∞(τ
(N)
i+1 − τ

(N)
i )/(τi+1 − τi) = 1, Lemma B.2 is applicable and yields

sup
t∈[τi ,τi+1)

|X(N)
λN (t) − Xt | = sup

t∈[0,τi+1−τi )

|Y (N)
t − Yt | → 0 as N → ∞ for i = 1, . . . , iT .
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In exactly the same way we derive

sup
t∈[τi0 ,T ]

|X(N)
λN (t) − Xt | → 0 as N → ∞.

Consequently,
sup

t∈[0,T ]
|X(N)

λN (t) − Xt | → 0 as N → ∞.

As T > 0 is arbitrary, we obtain dS(X
(N)· , X·) → 0 as N → ∞. This proves the assertion.
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