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Abstract

We consider the global behaviour for large solutions of the Dirac—Klein—Gordon system in critical
spaces in dimension 1 + 3. In particular, we show that bounded solutions exist globally in time
and scatter, provided that a controlling space-time Lebesgue norm is finite. A crucial step is to
prove nonlinear estimates that exploit the dichotomy between transversality and null structure, and
furthermore involve the controlling norm.
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1. Introduction

The Dirac—Klein-Gordon system for a spinor ¥ : R — C* and a scalar field
¢ : R — Ris given as

=iy Y + My = oy
O¢ +m’¢ = Yy,

for the Dirac matrices y* € C***, using the summation convention with respect to
u=0,...,3, where dy = 9, and 9; = 9,, for j = 1,2, 3. Further, m, M > 0 are
mass parameters and ¥ = ¥7y°, where v/ is the conjugate transpose. The system
(1) arises as a model for the description of particle interactions in relativistic
quantum mechanics; see [2] for more details, and we also refer the reader to [23]
for a thorough introduction to Dirac equations. The aim of the present paper is
to initiate the study of large dispersive solutions to (1), building on our previous
results [1, 6] on the initial value problem (1) with small initial data.
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Recently, global well-posedness and scattering results have been proven for
initial data (¥ (0), ¢ (0), 9,¢(0)), which are small in spaces close to the critical
Sobolev space, which is

L*(R*) x H'2(R?) x H 2(RY).

More precisely, in the nonresonant case 2M > m > 0, [24] proved a small data
result in a critical Besov space with angular regularity. In [1] we treated the
subcritical Sobolev spaces, and for arbitrary M, m > 0 we proved this for small
initial data in the critical Sobolev space with some small amount of additional
angular regularity in [6]. We refer the reader to the introductions of [1, 6] for
more details of earlier work.

The key in [1, 6, 24] is the use of the null structure in (1) discovered in [9] and
the construction of custom-made function spaces, which allow for global-in-time
nonlinear estimates. Here, as the first step towards a better understanding of large
solutions to (1), we aim at identifying space—time Lebesgue norms that control
the global behaviour of dispersive solutions.

We always assume that the Sobolev regularity is sy > 0, the angular regularity
is 0 > 0, and the masses M, m > 0 satisfy

either 0<so<«K1, 0=0, and 2M >m > 0, )
or 5=0,0>0, and M,m > 0. 3)
We take data in the Sobolev space
HP(R) = (1 — Ag) " H*(RY), with norm || f]| 0 = [[(1 = Ag)” f 0.

Thus in the nonresonant regime, (2), we consider data in the standard Sobolev
spaces H* x H**1/2 x H*=1/2 while in (3), which includes the resonant regime
0 < 2M < m, we work in the critical spaces with a small amount of angular
regularity H? x H!> x H;'/?, 0 > 0. Given an interval / C R and s > 0, we

define the dispersive type norm |[u||ps ) = (V) ull 4 (;xr3), and fors > 0,0 >0,
we define
1/2
2 s 2
el 1y = ( YN “||<V>‘HNu||L¢X(,XR3)) , )
Ne2N

where Hy denotes the projection on angular frequencies of size N; see (7) below.
Our main result is the following.

THEOREM 1. Letsy,0 > 0, and M, m > 0 satisfy either (2) or (3). Consider any
maximal H°-solution

¥ € Coe(I*, H*(R*, C*) and
(¢, 8,¢) € Cioe(I*, H* 2R, R) x HY™'2(R, R))
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of (1), which is bounded, that is,

P ()l e, + 18 A O 1, 7)) < 0.
If 1Y llp-12e) < 400, then we have I* = R and (, ¢) scatters to a free solution
ast — +oo.

The norm | - lIp-12 is scaling-critical for (1), and in particular, if i is a
free solution to the Dirac equation, we have the Strichartz bound 1V llp-12 gy <
14 (0) [ 0. It is important to note that a condition of the form ||gh||])n_|/z(1*> < 00
is necessary to ensure scattering. This follows from the fact that (1) admits global
stationary solutions of the form

Yt =Y., o) =m* =)' (Yy.), e 0, M), &)

where v, : R® — C* is smooth and exponentially decreasing; see [11]. In
particular, there exist global solutions to (1), which do not scatter to free solutions
ast — Zoo.

In recent years, the notion of type-I and type-II blow-up has played an important
role in the study of nonlinear wave equations; see the survey [13] for more details
and references. Roughly speaking, a maximal solution is of type-I if its spatial
Sobolev norm goes to infinity in finite time, and it is of type-II if the spatial
Sobolev norm stays finite, but it does not exist for all times. Thus an alternative
phrasing of Theorem 1 is that any type-II blow-up solution (¥, ¢) of (1) with
maximal interval /* must satisfy

”W”D;'/z([*) = +o0. (6)

The main technical result behind Theorem 1 is Theorem 4, which gives good
control over any (strong) solutions with a small D'/> norm. We remark that it is
possible to replace the hypothesis 1V lIp12 ey < +00 by (¢, (V)“&,¢)||Dg(,*) <
~+o00, which follows immediately from the statement of Theorem 4 and the proof
of Theorem 1 presented in Section 4.

In the case of radial data, Theorem 1 covers the critical regularity case ¥ € L?,
(¢, 0,9) € H'/? x H~'/2, Strictly speaking however, as the linear Dirac operator
does not preserve radial solutions, it is better to consider the partial wave subspace
of the lowest degree. More precisely, we let 2 be the collection of spinors v, €
L*(R3, C*) of the form

f(lxl)((l))

Yo(x) = 4
w| + 1w,
g(|x|)( o )
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with w = x/|x|, and f, g € L*([0, 00), r>dr). The subspace H is preserved under
the linear Dirac operator [23]. Moreover, a computation shows that the subspace
‘H is preserved under the nonlinear evolution (1), provided that ¢ (0) and 9;¢ (0)
are radial. It is worth noting that there are other partial wave subspaces that remain
invariant under the evolution of (1) [23]. However, the class H is used frequently
in the literature, for instance the stationary solutions (5) belong to H.

Applying Theorem 1 to data ¥ (0) € H, and exploiting the conservation of
charge, || ()| .2, we can then drop the assumption || Y| L7+, o) < +00.

COROLLARY 1. Let m, M > 0. Suppose that
(¥ (0), 9(0), 3,9(0)) € L*(R’) x H'*(R*) x H™*(R?)

with ¥ (0) € H, ¢(0), 3,¢(0) radial, and that the corresponding L*-maximal
solution

1// € ClOC(I*s LQ(R31 (C4)) and
(¢.0:¢) € Coe(I*, H*(R*, R) x H™'*(R*, R))

of (1) satisfies
sup [[ (¢, 9:0) ) | w2xu-12@wsy < +00  and ||<V>71/2W||L4(1*xR3) < +o00.

tel*

Then we have I'* = R and (¢, ) scatters to a free solution as t — =oo0.

The main novelty of this paper is a certain refinement of the multilinear
estimates from [1, 6] in the sense that we allow for small positive powers of
suitable L, norms on the right-hand side; see Theorem 2. This is achieved by
exploiting the recent progress on bilinear adjoint Fourier restriction estimates [4].
The particular result from [4] we will exploit here is summarized in Theorem 6.
These Lix norms have the elementary yet crucial property that they can be made
arbitrarily small by shrinking the time interval. This has been used successfully
to prove global well-posedness and scattering results for wave and Schrodinger
equations with polynomial nonlinearities; see for example, [3, 8, 14] and the
references therein. However, for equations with derivative nonlinearities, such as
wave maps or the Maxwell-Klein—Gordon system, this is more difficult to exploit
due to the presence of more involved norms. Recently, there has been significant
progress, such as [18, 19, 21, 22]. Our contribution here is closer in spirit to the
controlling norm result in [10] in the context of Schrodinger maps.

The estimates proved in this paper have further applications. In particular, they
are applied in [5] to prove scattering results for solutions that approximately
satisfy a so-called Majorana condition, which defines an open set of large initial
data yielding global solutions that scatter.
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The paper is organized as follows. In Section 2 we introduce notation, which
is consistent with our previous work [6]. Further, we define the relevant function
spaces and provide some auxiliary results. In Section 3 we prove our main local
results, namely Theorems 3 and 4, based on nonlinear estimates in Theorem 2,
whose proof relies on the results of the last two sections. In Section 4 we prove our
main result of this paper, Theorems 1 and Corollary 1. In Section 5 we introduce
further notation and preliminary results, which are important in the remaining
sections. Section 6 is devoted to the proof of the crucial multilinear estimates in
the subcritical regime, while in Section 7 the critical regime is considered, thereby
completing the proof of Theorem 2.

2. Notation and function spaces

Let Z denote the integers and N the nonnegative integers. Given a function f €
LL(R%), welet f(§) = [ f(x)e™"** dx denote the spatial Fourier transform of f.
Similarly, for u € L} ,(R'*?), we take (7, §) = [ u(t, x)e™' @09 dx dr to
be the space—time Fourier transform of u. We extend these transforms to tempered
distributions in the usual manner. Let p € C{°(R) be a smooth bump function
satisfying supp p C {% <t <2band ), ,zp(t/A) = 1fort # 0, and take
o<1 = ZKI pt/) fort #0,and p<;(0) = 1. Set p<,(t) = p<i(¢/A) for A € 2Z,
For each A € 2" and d € 2% we define the Littlewood—Paley multipliers P,, and
the modulation localization operators C;"

Pif () = p(m)f(é) ifA>1, PifE) = p(E])fE),

+ &)l N~
Ci"u(r, &) = p('rT@)l)A(T, §),

where (£),, = (m?>+|&|?)"/2. Thus P, localizes to frequencies of size A, and C;"
localizes to space—time frequencies at distance d from the surface t + (£),, = 0.

We also define
o=y cam
'<d
which localizes to space—time frequencies within d of t + (£),, = 0. We define
the localization operators to angular frequencies of size N € 2" by

(Hy f)(x) = ZZ ( )f(lxl) Yen)LZ(s’))’Zn(| |>(N>1>

teN n=0

H f (x) = ZZp<1<z> FAXE). Yeud 2@ m(l’“'),

£eN n=0

(N
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where (¥.,)n—0...2¢ denotes an orthonormal basis for the space of homogeneous
harmonic polynomials of degree ¢, as in [6, Section 7B].
To simplify notation somewhat, in Sections 6 and 7, we use the shorthand

C:=C;', Cr=rI.c;",

where the projections 1, are defined as

1 1 .
Oy =-(1+-——iy’%/9, + My") ). 8
+ 2( <V>M( 1y yl0; + )’)> (®)
The projections 1. diagonalize the Dirac operator, for instance we have the

identity
(—iy" 3 + My = y°(=id £ (V)u) 1,

and are also used to uncover the null structure hidden in the product ¥ v/. See
Section 5 for further details.

Define the propagator for the homogeneous half-wave equation as UF (1) =
eT'™Vin and let Uy, denote the free Dirac propagator. Explicitly we have

Uy (1) = U (DT + Uy, ()T
Giventye I C Rand F € L¥L(I x R%), for t € I we let Z;""[F](t) denote the
inhomogeneous solution operator for the half-wave equation

Io"F1@) =i / Ut —tYF(t)dt

and If(‘f[F](t) = Ig’M[H+F](t) + LE’M[H_F](I) denote the inhomogeneous
solution operator for the Dirac equation. Thus, if —id,u + (V),u = F, then we
can write the Duhamel formula as

u(t) = U, (t — to)u(to) + L, " [F1(t).
Similarly, for the Dirac equation, if —iy*d,¥ + My = G, then we have
Y (1) = Un(t = 10)¥ (t0) + ' [y G1().

We now define the main function spaces in which we construct solutions. The
basic building blocks are the V2 spaces introduced by Koch and Tataru [15], and
studied systematically in [12, 16]. Let Z = {(#;)jez | t; € Rand¢; < t;11} and
1 < p <oo. Forafunctionu : R — L?, the p-variation of u is defined as

1/p
Julv» = sup (Z||u<rj>—u(r,~_1>||';;) :

(tj)eZ ez
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The normed space V7 is then defined to be all right-continuous functions u : R —
23 e
L (R”) satisfying
lullve = Nullrerz + luly, < oo.

The space V7 is complete and functions in V¥ have one-sided limits at each point,
including +o0. Define V¥ ,, = U (1) V? with the norm

+
lullvy, = U, (=Dullys.

m

Form > 0and 2 < g < 00, and any d € 2% we have
=+, —1 .
ICa " ulla S d /q||M||v§_m,

see [12, Corollary 2.18]. We also require an additional auxiliary norm, which
is used to obtain a high—low frequency gain in a particular case of the bilinear
estimates appearing in Sections 6 and 7. Given 1 < a < 2 and b > 0 we define

b
1 =+,
lullysn = supd"/ ) ICF" Patll -

de2Z

min{d, A}
("

The parameters a and b are fixed later in Sections 6 and 7, but roughly we take
1/a— 5 ~ o +sp,and b ~ 1/a — ; where sy and o are as in (2) or (3). For s € R
and o > 0, we define our main function norms as

1/2
2 2 2
luellvsg, =( Y AN °||PAHNu||Vim)

A,Ne2N

172
2 2 2
lullyse, = ( E AZN "IIHNMIIYf.m>

A,Ne2N
while if o = 0 we take

1/2
_ 2s 2
lullyss, = (Z A ||Pﬂu||vim>

Ae2N

1/2
2 2
lullyso, = (Za f||u||Y;,m) :

Ae2N

Note that strictly speaking || - Iy, is not a norm, as ||UE (1) f llysz, = 0O for all
f € H;. We finally define

lullgss, = Nullvye, + llullyse, -
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The wave component of the DKG equation is estimated in V17,. On the other
hand, to control solutions to the Dirac equation, we define

I llvyy = L llvse, + -V llvee, . W vy = LY Dy, + Y lys,

and

1Vley = ¥ llvye + 11y

The Banach space V3’, is then defined as the collection of all right-continuous
functions u € L°H} such that |Ju|lyss < oo. The Banach spaces V};” and F}/
are defined similarly.

We next localize the spaces constructed above to intervals. Let I C R be a left-
closed interval and right-open (in the sequel, left-closed for short) and take 1,(¢)
to be the corresponding indicator function. Given a function u on I, we make a
harmless abuse of notation and think of 1;(#)u(¢) as a function defined on R. In
other words, 1;u is the extension of u by zero to a function on R. We then define

V39, (I) as the set of all right-continuous functions u € L®H? (I x R?) such that
1,u € VL’, with the obvious norm

||”||V§g’m(1) = ||11M||Vi,,,

The Banach space F}; (), and the norms || - lEse oy and || - [lyse ) are defined
analogously. Note that the existence of left-sided limits in V2 immediately implies
that if u € V%7, (1) then there exists f € H} such that [lu(r) — ,f(t)fHHg — 0
as t — sup I. In particular, if I = [t, tl), fi < 00, and |lullyss, ) < oo then
u(t;) € H) is well defined.

The following lemma shows that we may freely restrict the spaces to smaller
intervals.

LEMMA 1. Let M > 0,s,0 > 0, and I and I’ be left-closed intervals with I C I'.
Ify e Fy/(I') and ¢ € V)’ (I'), then

||W||F“’(1) ~ ||¢||F“’(1’), ||¢||V“’ ) ~ ||¢||V” -

Proof. By taking differences, exploiting translation invariance, and unpacking the
definitions of the spaces F; (1) and V%%, (1), it suffices to show that

1Lrullve < 2]lullye )
and for any A € 2N

1Ll e S I Pal sz + lully (10)
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with I = [0, oo). The first inequality follows by noting that for any increasing
sequence (f;) jez we have

2 2 2 _ 2
> ML) = Qi) (-0 ey < Nullyegs + bz = lullfz -
JEZL

On the other hand, to prove (10), we start by defining the time frequency
localization operators P;” = p(| —id,|/d) and PL) = p<(| —id;|/d), where

p is as in the definition of the C 34 * and P, multipliers. Suppose for the moment
that we have the bounds

11, — PO e Sd™, PO~ S 1. (11)

Let F (1) = UY (—t)u. The identity C;" = UM (1) P"UY (1), together with (11)
and the fact that the free solution propagators are unitary on L?(RR?), implies that
ICT " Qwllagrz = 1P QA F) gz
<P (L = PO gez + 1P (PELF) s
Sy = PELAF ey + sup IPLL P Fliper
d'=~d

-1 =M
Sd /a||14||L,°°‘L§ +sup [|Co " ullLerz.
d'~d

Thus, by definition of the Y;"" norm, the required bound (10) follows.
Consequently, it only remains to prove the bounds (11). To this end, the definition
of the P<(<’fi multipliers implies that there exists a rapidly decreasing function
o € C®(R) with [; o(¢) dt = 1 such that

nggl,(t):/ o(td — s)ds.
0

Hence the second estimate in (11) is immediate. On the other hand, for the first
term, we observe that the rapid decay of o gives

11,(0) — POL,(0)] =

1,(t)/o(td—s)ds —/ooo(td—s)
R 0

< ‘/o(lﬂd—i—lsl)ds
R

< (td)™"°

+ ‘ / o(—|tld — |s|)ds
R

and hence (11) follows. O
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A straightforward computation implies that linear solutions belong to the
spaces F; and V%7,. Lemma | implies that for any s, > 0,and 7, € I C R we
have

UM = ) Vollee oy S Nollug, Uy & = ) dollvie,ay S lIdollay.  (12)

The Strichartz type spaces are also controlled by the F}; and V%, norms. We
give a more precise version of this statement in Section 5, and for the moment we
simply recall that we have the bounds

IV Nl g my 1 xsy + 1V lIpg-12¢ < 1% llvse oy

(13)
“¢“L,°°H;+1/2(l><]R3) + ||¢||Df,(1) S “¢“V§::”/2~”(1)-

These estimates follow directly from the fact that the estimates for the free
solutions immediately imply bounds in the corresponding V2 space, the details
can be found in, for instance, [12]. We also need to understand how the norm
Il - g5 (1) depends on the interval 1. Clearly, if I is left-closed, and we can write
I = I, U I, with I, I, disjoint left-closed intervals, then by the triangle inequality
we have the bound

lullvsie oy = 11i@Oullvse, < 11, Oullvye, + 11, Oullvse,
= llullvye, ) + lullves, - (14)

An identical argument gives

||M||F~j‘f(1) < ||u||Fj\;’(11) + ||u||F;f(12)‘ (15)

3. Local theory for the Dirac—Klein—-Gordon system

In this section, we derive two key consequences of the bilinear estimates
obtained in Sections 6 and 7, namely Theorems 3 and 4. These theorems show
that the time of existence of solutions to the DKG system can be controlled by
the Li . horm, or, more precisely, by the || - [[py norms. In particular, we refine
the previous local and small data global results obtained in [1, 6]. The proof of
Theorem 1 is then an easy consequence.

We now start with the local theory. By time reversibility, it is enough to consider
the forward-in-time problem; thus we always work on left-closed intervals I =
[#o, t;) where potentially we may have #; = oco. In addition, instead of the second-
order system (1), we prefer to work with a first-order system. More precisely, we
construct ¥ : [ x R* — C*and ¢, : I x R?® — C solving the first-order system

—iy" 0¥ + My =Re(p )y

. —1 /7 (16)
=094 + (V) = (V),, W¥).
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If we let ¢ = Re(¢,), a standard computation using the fact that /¥ € R then
shows that, at least for classical solutions, (Y, ¢) is a solution to the original
Dirac—Klein—Gordon system (1).

We next clarify precisely what we mean by solutions and maximal solutions.

DEFINITION 1. Lets, o € R.

(1) Wesay (¥, ¢1) : I x R®* - C* x C is an H}-strong solution on an interval
I CR,if
(W, ¢y) € CI, H: (R, C* x HITVA(R?, C))

and there exists a sequence (,, ¢,,) € C>(I, H™(R?, C*xC)), m = max{10,
s}, of classical solutions to (16) such that, for any compact I’ C I,

sup([[9 (1) — (Dl g @ .ct) + 194 ) = Gu (Ol 12+ g3 ) = 0.

tel’

(2) Wesay (¥, @) : [to, t*) x R* — C* x C is a (forward) maximal H}-solution
if the following two properties hold:

(a) forany t; € (f, t¥), (¥, ¢4) is a strong H}-solution on [#y, #,);

(b) if (¥', ¢,) : I x R? - C* x Cis a strong H}-solution on an interval /
satisfying I N [ty, t*) # @ and (Y, @) = (¥, ¢;) on I N [ty, ), then
I N [t, 00) < [1o, 7).

We remark that H;-strong solutions are unique, owing to the fact that classical
solutions are unique and the local Lipschitz continuity of the data-to-solution
map in H] established below. Moreover, the local theory we develop below
implies that an H°-strong solution to (16) on an interval [ is also locally in
Fy° x fojnl /%9 Furthermore, we also show that if we have control over both the

Lix type norm ||¢||po ;) and the data norm ||(v/, ¢+)(t0)”H;°xH;0“/2’ then in fact

W, ) e Fy° ) x fojnl/ >9(I). In view of the existence of right and left limits

of elements of V2, this second fact is, roughly speaking, simply a restatement of

Theorem 1. We give a more detailed description of this argument in Section 4.
We state the bilinear estimates that we exploit in the following.

THEOREM 2. Let sg,0 = 0 and M, m > 0 satisfy either (3) or (2). There exist
l <a<?2b>0 and C > 0 such that if I C R is a left-closed interval, t, € I,
and ¢, € V,s,fjl/z‘o(l), v, ¢ € Fy,° (1), then we have the bounds

IZY Re(@2)y " W)livee oy < CUIsliopan ¥l

1-6
: (||¢+||V-»$>;1/z.a(1)||1//||F.;-3.a(1)) ,
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IZY Re@0)y° Wllyne ) < CUs oy 19l )’
U ywee g 1 g i)'~

and

T3 (90, oD lhgere gy < CO o g )’
: (”vf||F';3'”(1)||¢||F’;3'”(1)) a

Moreover, for any s > so, we have the fractional Leibniz type bounds

l M(Re(¢+)1/0¢) lEse ()

4
< 2°C I+ g ) 19411 - ez W ller o 104 lyinme g1V, VRN 2 [ F0° )

and

IZg™ (W”(W(ﬁ))llvﬂlm

SLCUVI v 1V s o N0 ez + 1 g 01, Nt )
Proof. First, suppose that / = R. By rescaling, we may assume m = 1. The
bounds are immediate consequences of Theorem 7 (in case (2)) and Theorem 9
(in case (3)), because of 2Re(¢,) = ¢, + @7, as well as the fact that for any s’
andm; > 0, we have | - [lpy S Il - Il i/

ny

Finally, we remark that Lemma 1 1mp1ies the claims for arbitrary left-closed
intervals I with 7y € I, since we have

1,7 Re(¢)y°¥) = LT (Re(1,¢,)y"1,9),
and similarly for Z;" " (V)1 (¥ 9)). O

Note that we have elected to separate the statement of the bounds in F};” for
spinor components into a V3, bound, and a Y}, bound. The motivation is that
although the bound in V};° requires ¥ € F};°, the control of the Y};° norm
only requires ¥ € V};°. Consequently, if required, by using a two-step iteration
argument, it is possible to develop a local theory using just the V? type norms,
without explicitly using the Y}, spaces. Another way of stating this, is that for
solutions to the DKG system, if ¢ € V);°, then we immediately have ¢ € F};°

We now give a precise version of the local well-posedness (and small
data global well-posedness) theory that follows from the bilinear estimates
in Theorem 2.
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THEOREM 3 (Local well-posedness). Let sg, 0 > 0 and M, m > 0 satisfy either
(3) or (2). There exist 6 € (0, 1) and C > 1, such that if

A,B>0, 0<a<(CA™)™ 0<B<(CB™),

and I C R is a left-closed interval, then for any initial time ty € I, and any data
(Yo, o) € H x HM/ satisfying

Wollgo < A WUt — 1) Wollp 12, < @,

and
ligoll o2 < B, U, (1 — to)dollvo 1y < B,

there exists a unique H)'-strong solution (Y, ¢;) of (16) on I with (Y,
¢ (o) = (Yo, Po). Moreover, the data-to-solution map is Lipschitz-continuous
into Fy;7 (I) x V7 (I) and we have the bounds

Y — Un(t = 1) Yollgo ) < Ca’ A" (A" + B B'?)
s — Z/[;(Z - tO)d)O”V“f“/z’” < C(aeA]_(’)z_

Finally, if we have additional regularity (Yo, ¢o) € H x H:T'/? for some s > s,
then (Y, ¢) € Fy,”(I) x V5%, (1) is also an H?-strong solution.

Proof. Let €y = o’ A% + B?B'~% and €, = |[Yllus + loll:+12. For ease of
notation, we take

U =Uu(t — )Y, ¢ =USE —1t)po, Yn=V — V1, ¢y=0¢— .

Define the set X; C F};/ (1) x V%7, (I) as the collection of all (/, ¢) € Fy/ (I) x
V7, (I) such that

l¥nllgoe gy + Idnllyoe gy < €0, ¥NIE D) + loNllvir ) < €-
v (D +om (D) M M

Our goal is to construct a fixed point of the map T = (7, T2) : X; — X, defined
as

T, @) =y + IV [Re(d)y"¥]. (¥, ¢) = ¢ +L"[(V),, W ¥)].

To this end, if (¥, ¢) € X, then after decomposing the product ¢y = ¢ +
ONVL + ¥y + Yoy, an application of Theorem 2 together with bounds (12)
and (13) implies there exists C* > 0 such that

IZ (Re@)y ") lge oy < C*(B"B'™ + €n)eg

(17
||1—,?]4(Re(¢))’01ﬁ)||F;~j(1) < C*(B'B'™? + €))e,.
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Similarly, decomposing ¥ = ¥, ¥+ y ¥+, Yn + ¥ y ¥y, we have C* > 0
such that
C*el

’ (18)
C

*ep€Es.

”I;)rm (v)ZIWW)ij_“;(]) <
”Irt’m((V),;lE‘ﬁ)||Vi‘_’,,,(1) <

To show that 7 is a contraction on X, we observe that for (¥, ¢), (¥', ¢') € X
after decomposing the difference of the products as

Y — Y = (¢ — )WL+ Yn) + (L + o)W —¥)

another application of Theorem 2, (12), and (13) implies that there exists C* =
C*(s) > 0 such that

IZ Re@)y"v) — Ty Re(@)y ¥ g )
< CHBB"" + ) IV — Vlleor oy + 16 — @' lyor ) (19)
and
IZy Re(@)y*¥) — T Re(@)y ¥ ) Iy )
S C BB + el — ¥ lwyay + 16— ¢'llvee, o))
+ C& (1Y = ¥llpoe ) + 19 — ¢llyos ). (20)

Similarly, we have C* = C*(s) > 0 such that
IZE" (9, T ) = T (), ) s o
< Celly = llpwe gy + 6 = @llyor ) 1)
and
IZ5" (V) ) — " (V) W ) v, oy
< Che(ly — w,”F‘;\’;(I) + ¢ — ¢/||V¢j,l(1))
+ C*Gs(”v/ - V//HF‘;?]’”(]) + ”d’ - ¢,||V3;2(1))‘ (22)

Consequently, taking C* = C*(s) > 0 to be the largest of the constants appearing
in (17)—(22), we see that provided

ﬁ@Bl—e +(¥9A1_0 < (zc*)—l
we have 7 : X, — X and the difference bounds

1T (¢, &) — Ti(y, ¢/)||Fj'g"’<1) + 1 T2(¢, ¢) — Ta(y', ¢,)||vf§{;§(1)
< 5UY =¥ gy + 1o = @'llyoe ;)
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and

1T, @) = TL(Ws ) lee oy + T2, @) = T (s D) lvee, )
<3y - Vlleea + ¢ — &'llvee, )
+ 2C*¢, (Il — Ip/”FjS‘U(I) + ¢ — ¢/||V:°"’(1))'

+.m

Therefore, a standard argument implies that there exists a unique fixed point in
A, and that the resulting solution map depends continuously on the initial data.

Fix C = sup, c,<o2C*(s) and suppose that 0 < o < (CA'""?)~"% and
0 < B < (CB'")~Y% Then running the above argument with s = s, shows
that for data (Yo, do) € HPH* /2 we get a unique solution (y, ;) € A,
which depends continuously on the data. Approximating the data with functions
in H!° x H!°"'/2 and applying the previous argument with s = 10, we obtain a
sequence of solutions in X}y, which converge to (v, ¢, ). In particular, (v, ¢, )
is an H°-strong solution to (16). The claimed bounds on the norms of (v, ¢.)
follow directly from the fact that (¥, ¢, ) € X together with (17) and (18). Finally,
if in addition we have additional regularity (Y, ¢9) € H; with s > s, then
running the fixed point argument as above gives a solution in F} (I") x V37, (I')
provided that the interval I’ C I is chosen sufficiently small such that

6 1-6 2 1-6 —1
IV 1y 101+ 182 g 9001 < 2C7 ()7

Since we can cover the full interval I by O, (1) smaller intervals I', we deduce
that (y, ¢,) € Fy/ (1) x V37 (I) as claimed. O

Note that we may take I = [0, oo) in the previous theorem. In particular, if
(1//0, ¢0) S H;O X H;0+1/2 then provided ”Z/{M(I)I//OHD;I/Z(]) and ||Unf(t)¢0||])g(,> are
sufficiently small, we have global existence and scattering.

The next result we give implies that H°-strong solutions belong to Fj;° (1) x

V‘ffj,,l/ >7(I), provided that the L;"X type norm is sufficiently small relative to || (¥,

S )| oo, o172

THEOREM 4. Let so,0 = 0 and M, m > 0 satisfy either (3) or (2). There exist
C>1land0 < 6 < 1 such that, if A > 0 and I C R is a left-closed interval,
to € I, and (Y, ¢) is an H°-strong solution on I satisfying

19 o) o + 1 (o) v < A
and  min{|[y [y, s lopy) < (C(L+ AP0 A1,

then (Y, ¢) € Fy” (1) x Vfﬁ’j,,l/z’a(l) and we have the bound
HI/IHF‘;S’G(I) + ||¢+||Vs+o;1/2,o(1) < CA(1+ A).
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Proof. Let C* be the largest of the constants appearing in Lemma 1, Theorems 2
and 3, and (12), (13). We first consider the case I = [fy, t;) with #; < o0o. Let
(¥, ¢) be an H°-strong solution on /, and define

8 = min{[¥ -2 [+ Inor)

and

T:{[0<T<l1

sup ||¢||Fj3"’([mj')) < 2C*A,
T

to<T'<

SUp. 94y 1) < RCACL + A)}.

to<T'<T

An application of the local well-posedness result in Theorem 3 implies that T € 7
provided that T — f, is sufficiently small, in particular, 7 is nonempty. If we let
Ty = sup T, then our goal is to show that Ty, = #,. Suppose that T, < #; and let
T, € T be a sequence of times converging to Ty,,. The continuity of the solution
(Y, ¢4) at Ty, together with (13) and the definition of 7 implies that

19 (Tap) g + 16+ (Tl oo < C* sup (Nl iy + 1920 )

to<T <Tsup

< 2CH*A(1 + A).

Hence, again applying Theorem 3, there exist n and ¢, > 0 such that for all
0 < € < ¢y we have on the interval [T, Ty, + €) the bound

1V 87 47, e + 1Dy o < 207U (Tap) o + 64 (Taap) 120
< 2CH’A(1 + A).

We now exploit the smallness assumption on the Lf’x norm. An application of (13),
(15), and (14), together with Theorem 2 and the fact that (¥, ¢,) is an H;°-strong
solution on [fy, t;) implies that

0
19 60 g 1y e < CIE @+ C U 21 e 16 100 10 b0)

(A ey .m0 + 1V e 7, 1)

M
1-6
: (||¢+ ||V:(_):‘1/2'”([ZO’TU)) + ||¢+ ||VT;I/ZU([nraTsup+€))))

< C*A+8°CH(1 + A P47,
Consequently, provided § < [(2C*)'2(1 + A)?>YA'=9]71/% we see that

||‘/f||F“;;’”<[zo,TsuP+e>> <2C7A.
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To bound ¢, we simply observe that another application of Theorem 2 implies
that

* * 2
||¢+||Vj(_);,l/2([lo,7-sup+€)) < Cc ||W+([0)||H;o+1/2 + C ||w||Fjg‘7

< 2CH%A0 + A).

([to, Tsup+€))

Therefore T,,,+€ € T, which contradicts the assumption 7y,, < ;. Consequently,
we must have Ty, = #; and hence ¥ € Fy;°(I), ¢, € Vfﬁ’jnl/ *(I), and the claimed
bounds hold. In the general case, when f, is not the left end point of I, we simply

need to run the above argument for times smaller than 7. O

4. Proof of Theorem 1 and Corollary 1

Here we give the proof of Theorem 1 and Corollary 1.

4.1. Proof of Theorem 1. We first observe that since (1) and (16) are
equivalent in the class of H:°-strong solutions, and the Dirac—Klein—Gordon
system is time reversible, it is enough to consider the forward-in-time problem
for the reduced system (16). Thus let (¥, ¢,) : [to,t*) x R® — C* x C be a
forward maximal H°-solution to (16) such that

sup (1 Ol + 15Ol yorie) < A, (Wl 12 ey < 00

t€lto,1*)

The finiteness of the dispersive norm || - [|,-12, ). together with the dominated
convergence theorem, implies that for every § > 0 we can find an interval I = [1,,
t*) with #; < t* such that

”1””[);”%1) < 4.

In particular, choosing § sufficiently small, depending only on A, an application
of Theorem 4 implies that (v, ¢,) € Fi5° (1) x V21> (I). Therefore, by the
existence of left limits in V2, there exists (Yo, ¢o) € H x H**'/2 such that

Lim ([l (1) = Un O Vol o + 16(0) — U, ol y0+12) = 0.

The local well-posedness theory in Theorem 3, together with the definition of
maximal H°-solution, then implies that we must have t* = oco. Consequently, the
solution (¥, ¢ ) exists globally in time and scatters as t — oo. O
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4.2. Proof of Corollary 1. In view of Theorem 1, and the fact that the spinor
remains in H and that the wave component ¢ remains radial, it is enough to show
that for ¢y € H, 1 < p < 00, and o > 0 we have the bound

> NI Hyolle < %ol (23)

Ne2N

However, this follows directly from the definition of the angular frequency
localization operators Hy, since the orthogonality of the spherical harmonics y, ,
implies that for £ > 2 and j = 1, 2, 3 we have

(L, yin) 2y = (@), Yen) 22y = 0.

Therefore, Hyyy = 0 for N >> 1 and hence (23) follows.

5. Further notation and preliminary results

In this section, we recall a number of results that will be used in the proof of
the bilinear estimates in Theorem 2. The setup and notation follow closely our
previous paper [6]; in particular, we refer the reader to [6] for further details and
references.

We start by recalling the key fact that estimating a Duhamel term in Vim can be
reduced to estimating a bilinear integral. More precisely, suppose that F € L™L?,
and

sup

IPaHNvl,2 <1
+.m

< Q.

/(PAHNUU), F(t))2dt
R

Ifu € C(R, L}) satisfies —id,u £ (V),,u = F, then PyHyu € V{, and we have

IP2Hyullyz, S IPAHyu(0)ll2 4+ sup /(PAHNU(Z)» F(0))adr. (24)
R

P2 Hy vl <1
m

An analogous bound holds without the angular frequency multiplier Hy. See, for
instance, [6, Lemma 7.3] for a proof of this inequality.

Let Q, be a collection of cubes of diameter proportional to u covering R* with
uniformly finite overlap, and let (p,),cgo, be a subordinate partition of unity. For
g € Qlet P, = p,(|—iV]). Given o < 1 and a collection C, of spherical caps
of diameter « with uniformly finite overlap, we let (o, )<c, be a smooth partition
of unity subordinate to the conic sectors spanned by «, and define the angular
Fourier localization multipliers as R, = p,(—i V). In certain regimes, we need to
use the fact that the modulation localization operators are uniformly disposable.
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LEMMA 2. Let 1 < q,r < oo, andm > 0. Forany 0 < a < 1, 1 € 2V, k € C,,
q € Qup, and d € 2% with d > a*A, we have

||Cj’mRKPAPq14||L;’L; + ||C§;;nRKPAPqM||L§’L; SR Py Pyull oy (25)

Here, if a > X', the operator P, can be dropped, and if A ~ 1, the operator R,
can be dropped. Further, for every d € 2%

=+, =+,
ICE"ullyz, + 1CE ullyz, S lullvz, - (26)

Proof. First, it is enough to consider 0 < a < 1, 4 € 2V, ry > 0 satisfying (ry) ~ A
and d € 2% with d 2 «*4, and any function u satisfying

supp(u() C (§ € R | [1§] = rol S ad’, (§) & 4,1y (1E] = £ < Aar),
and to prove the estimate
ICZ ullory S Nullpor- 27
The support assumptions imply that we can write
Ci;,mu =w*u
for @ a smooth bump function adapted to the set
{(r.6) e RV ||t £(8) Sd. 11§ —rol S’ (&) ~ A, 1, (|&] — €)' < Aar).

Multiple integration by parts yields

-N
lo(t, X)| Sy dﬁ/l(otﬂ)2<1 +dt| + pAjx; £ t;—o)‘ + (oz/l)|(x2,x3)|) ,
0

where 8 = min{l, «d} and N € N. Clearly, this implies (25).
Second, from CZ)" = U P<,Uz(—) and

llo*xvllva S llollelvllve,
the estimate (26) follows. L]
In a similar vein, for all 1 < p < oco, we note that

sup [|HyllLr@3)—Lr@3) < +00,
N1

and Hy commutes with any radial Fourier multiplier such as P,. While Hy
also commutes with C,, it does not commute with the cube and cap localization
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operators R, and P,. We also note an angular concentration bound [20, Lemma
5.2], which corresponds to [6, Lemma 8.5]. Let2 < p < ocoand 0 < s < 2/p.
Forall A, N > 1,a > 27!, and ¥ € C, we have

||RKPAHNf||L§(R3) 5 asNS||PAHNf||Lf(R3)- (28)

The proof of Theorem 2 requires carefully exploiting the structure of the
product 1. To this end, we recall a number of null form bounds that have been
used frequently in the literature; see for instance, [6] and [1] for further details.
We start by recalling that the multipliers /1. satisfy

(T, — My (Ao (N R Py f Iy, S allRe Paully, (29)

provided that A > 1, @ > 17!, and k € C,. Similarly, in the Klein—-Gordon regime
we have
Ty, — My (50)R Py Pof Nl S allR Py Paut| (30)

provided 1 > 1,0 <« < A7', k € C,, and g € Q 2, With centre &. Consequently,
the identity
(1., f1y° My, g = [Ty, — i (x) f17y° M4, g

+ UTs, (1) [Ty (s, — M, ()8 + f e, (0)y s, (9)g,
together with the pointwise null form type bound
|=£1 [x] £ [yl
2, ()Y My ] S 0T, day) + = 2 G31)

then immediately implies, for instance, that

11, Rea oy R Ml S el llzellellee, (32)

where 1/r =1/a+1/b,1 < r,a,b < 0o, and the caps «, k¥’ € C, satisfy | &1k —
+,1'| < a, with o > (min{a;, A,})~!. Similarly, if we have the V? bound

1 el < ClY iz gl

under some conditions on supp 17/\ and supp @, then we also have, under the same
conditions on supp v and supp @, the null form bound

s, RV T, Rogll, S @Cllyllyz | lgllv: (33)

aM

These estimates are used frequently in the proof of Theorem 2.
Next, we recall the Strichartz estimates for the wave equation, which
corresponds to [6, Lemma 8.2] and relies on [1, Lemma 3.1] and [20, Appendix].
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LEMMA 3 (Wave Strichartz). Letm > 0and2 < g < oco. [f0<u <4 N > 1,
and 1/r = % — 1/q then for every q € Q, we have

e Py Py fll oy, S w2 ATV PPy f 2
Moreover, if 1/q +2/r < 1 and € > 0, we have

[| T (Vim PAHNf”L?L; < /13(1/2_1/r>_1/qN1/2+6”P/lHNf”L_%-

We also require Strichartz estimates in the Klein—Gordon regime. The first
bound can be found in, for instance, [17, Lemma 3], while the second is a special
case of [7, Theorem 1.1] and corresponds to [6, Lemma 8.3].

LEMMA 4 (Klein-Gordon Strichartz). Let m > 0. Then for { < 1/r < < we
have ;
e Py fller, S AP iz

tx N

On the other hand, lf]3—0 <l1/r < % and € > 0 we have

[| TV PiHy flir, S Az*S/rNM/r%/lO)H”PAHNf||L§-

Both Lemmas 3 and 4 have analogues in Vim. This follows by decomposing
into U7 ,, atoms, and applying the estimate for free solutions; see for instance, the
arguments used in [12, Proposition 2.19 and Corollary 2.21]. For instance, under
the assumptions in Lemma 3, the first inequality in Lemma 3 implies that

1/2-1/r y1/2-1
1Py Pl gy S w7227V Py Ptz
Similarly, the remaining bounds in Lemmas 3 and 4 imply corresponding versions
inV,.
We now turn to the bilinear estimates that we require in the proof of Theorem 2.

To simplify the gain of the L* type norm in a particular high modulation
interaction, we use the following ‘cheap’ bilinear L} estimate in V2.

THEOREM 5. Let u < Ay = Ay. Then for any 0 < y < 1 we have

”PM(H:tlw/l]H:Ez(p/lz)”L[z_x

_2}/
uw _ _ _
< M(Z> @ g A P Wl ) Uz, lleas vz, )17
Proof. We consider separately the cases +-; = %+, and +; = —%,. In the former

case, the fact that the output frequencies are restricted to be of size w, implies that
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we can directly exploit the null structure together with the standard Lix Strichartz
bound to deduce that for every € > 0 we have

_ v
1P, (T W Ty o) 2, S = D 1Pl 1Py s,

~ /l] ,
q.9'€Qy
lg—q'l~u
i 1/2—€
< M(Z) W vz ez,
On the other hand, in the =, = —=, case, the frequency restriction implies that

the free waves (—id;, &1 (V)y)¥ = (—i9, £, (V)@ = O are fully transverse. In
particular, for free waves, we have the bilinear estimate

1P (e Y Ty ) 2, S il (O) 22l (O 223

see for instance [6, Lemma 2.6]. Arguing as in [12, Proposition 2.19 and Corollary
2.21], by interpolating this with the standard L; . bound, we deduce that for every
€ > 0 we have the V7 ,, bound

Lad

||PM[(Hil/(plll)TJ/OHi2§0/{2]“Lt2.X S M(/l
1

—€
) 1l lonllvz -
Thus in either of the &+ cases, by L? interpolation, we obtain

I Pl (T, ) Ty My 0,111 12,

—e(l=y)—y
12 -1/2 -1/2 1=
< u(z> A0, A3 s )Y A llz, Dz, )17

Therefore, the result follows by choosing € sufficiently small. O

The main bilinear input in the critical case is the following bilinear restriction
type bound from [4], which extends the corresponding bound in [6]. The key point
in the following is that the estimate holds for functions in V2, in the full bilinear
range. This is a highly nontrivial observation, which, in contrast to the linear and
bilinear estimates mentioned above, does not follow from the same bounds for
free homogeneous solutions. Instead it requires a more involved direct argument;
see [4, 6] for further details.

THEOREM 6. Lete > 0, 1 < q,r < 2, 1/g +2/r < 2. For all m;,m, > 0,
0 < o < 1, and &, ny € R® such that (&), = A1, (No)m, ~ Ay, and

malol = mulnoll - (16olnol F &m0\
/1]/12 /1]/12 ’
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and for all u, v satisfying

supp@ C {|15] — 15|l < Bi, (1]15] — & - &) < ady),
supp® C {|[£] — Inoll < BAa, (I&lImol — & - 10)"* K ada),

then we have the bilinear estimate

1/q—1/2+
luvllyo,, < 2272 gi-1/r j-3/r=1/a Amax \ ? E“u“ ol
LiL: ‘min Vil my V:%z.mz ’

~ /lmin
where Aynin = min{d;, b}, Ama = max{d;, b}, and B = (m/ad; +
mz/O[/lz + ])71.

6. Multilinear estimates in the subcritical case

Our aim in this section is to establish the following result, which applies to the
nonresonant regime. Here, after rescaling, we have m = 1 and M > % Nnow.

THEOREM 7. Let M > % If sy > 0 is sufficiently small, there exist 0 < 6 < 1,

l <a<2and C > 1, such thatif b = 4(1/a — %),foralls >50>0
11+, T [oy My el ,,

—so—1/2 2] 1-6
S sup (il 57 P llenlles, ) gy ol )

na =1
§—S8 —1/2 _
+ sup (W0 @ulls A, / ”goxlz”Lj‘X)e(”‘»b”Vl/Z“”gD”FiO M)l f (34)
w2 =1 ' ' i 2
and
1112, T [y T, ]y
:t] M d)y izgo Y:t],M
s—so—1/2 —
S osup ([[pllps 4 /”(p/lz”Lj‘x)e(”(p”Vl/”SO”w”V; D
w21 ’ ’ +1 »
5—50 ﬂ*l/z % ) ) 1-6 35
+osup (Wl ulls A P lenlls ) Ulgllyieliglye )0 (35)
n,Ax>1 ’ 7 +,1 2,
Similarly,

(V) T [T ) Ty M@l s
S sup (47 P e AT el ) A e

1-0
e o Jele, )

s—s0—1/2 —1/2 ) ! 1-6
+AI§ZI;](11 Wl A lealls )" lley , l@llee ). (36)

The proof, which we postpone to Section 6.2, relies on trilinear estimates.
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6.1. A subcritical trilinear estimate. Here, we consider frequency localized

estimates and use the shorthand notation f, = P, f.

THEOREM 8. Let M >

N =

,O<Q<<1,§<a<2,ana’0<b<g/4.Let

¢ : R — C, and ¢, : R'"" — C* such that M,y = ¥ and M, = .

Define
—1/2 —1/2
A= ldullis 42100 e 45 1 e -
There exists 0y € (0, 1) such that

¢,LW_11§0/12 d)C dt
RI+3

1/10
M 0, 1/2 1—
< pof " o / 0o
Nu( P 42}) AYGP gl W llve | lonllye )1,

If A1 > Ay, we can improve this to

‘ / Dua Pa, — Z CcauCla, Ci s, dx dt
RI+3

d<n

1/10

2 _
S A§<Z> APz Wl ez, )"

and

RI+3

d S/lz

A 1/9H(1/a—1/2)
(2 1/2 1—-6,
< /15)(/1—]> ARG Pz, Dz, Il o).

Similarly, if 4, < A,, we have

’ / . DuVa 1, — Z C<atuCy' V1, CZa, dx di
RIH3

dﬁ/l]

1

1/10
2 1/2 1-6
saf(z) ARGl 1l gl )"

and

‘ f Z ng‘ﬁucz:itl 1///11C§fz%z dxdt
RI+3

df/l]

A 1/H(1/a—-1/2)
6 1/2 1-6
< Af(z) APz 19 s llonllvz, )10
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Proof. The first step is to decompose the trilinear product into the modulation
localized terms

¢M(Hi1¢/l|)fyoniz(p/lz = Z AO + Al + AZ!
d

where
Cd ¢M (C<<d w/ll ) f Y C<<d Prr»

Al C<d¢7u(ci V) )’OC<d(P/12,
Ay = C5d¢u(c<d1ﬁ/11)f7/oc(}t2%2-
We now consider separately the small n:odulation cases:
nwSA~andd < p, w> min{d;, 4} and d < min{4;, A}
and the high modulation cases:
w <A ~Aandd > p, wp>> min{d;, A,} and d > min{d;, 4,}.

Due to the L}, Strichartz inequality we have the obvious bound
o llvz

< 12
AS wldullve 1V, ||v§] " YN

Therefore, if we have the bounds (37), (38), and (40) for some 6,, we can
always replace 6, with a smaller factor. In particular, in each of the various cases
considered below, it is enough to get some (potentially very small) power of A;
the factor 6, can then be taken to the minimum of the powers obtained. In the
remaining estimates involving the || - || +,m-norms, as this norm does not give

control of the L4 norm, we directly verlfy the fact that it is possible to make the
exponent of A smaller if needed.

Before we start the case-by-case analysis, we recall some facts from the
modulation analysis for the Dirac—Klein—-Gordon system [1, 6, 9]. As in [6,
Section 8B], we define the modulation function

My, s, (€ m) =1 —n) F1 (§) 2 (M),
where we take § € supp fp\ , 1 € supp @, and & —n € supp a . A computation shows
that, forany j =0, 1, 2,
/ A;dxdt # 0implies M., 1, (&, n) < d within the domain of integration.
RI+3

42)
Furthermore, since m = 1 and M > 1 we are in the nonresonant case where

M, 4, 2 (Minfpe, A, LY (43)

In particular, in the case-by-case analysis below, we may assume that d 2>
(min{y, A1, L)~
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Case l: u S A ~ A andd < . We first observe that the sum over the modulation
is restricted to the region w! < d < . Moreover, the resonance identities in [6,
Lemma 8.7] together with (42) imply that

/12
d>Me 4,(E, 1) 2 jez(ﬂ:ls, +,1)+ 102 (E—n, 1) +pb*(E—n, £21). (44)

Consequently, the angle between the Fourier supports of ¥ and ¢ must be of
size @ = (dp/A3)"?. In particular, decomposing ¥ and ¢ into caps of size o and
cubes of size i, applying Holder’s inequality, and using the null form bound (32)
we deduce that for every 0 < § < 1:

/ A() dx dt
RI+3

Sa Y Y 1Cule PR s 1Py Rl

q.9'€Qu Kk’ €Cy
lg—q' |~ |1k —£21 |~a

A\ "2\
—1/2,-1/2
S <;> </l_) M1/2||¢IL||V_E](/11 //12 / ||%1 ”LiX”(p/lz”Lﬁx)a

1 .

XA

), (45)

||v§2.M

where we absorbed the square over caps and cubes using [6, Lemma 8.6], which
gives, in particular

1/2
< > ||P1,Rm||i¢x)

q€Q, keCy

—26
e B )
Sa 2 </l_) (M/ll)l/“(/l1 I/ZHW/II ”L;‘,X)(S”%l ”i/zé ] (46)

1 2

On the other hand, applying the Klein—Gordon Strichartz estimate and (44), we
deduce that for £ <r < 4and g = (d/p)"/*

/ A()d.xdt
RI+3
+ +
Sa > Y ICaReul e IR CE W iy, IReCi 01, 1z,
Kk,k'€Cqy k"eCg

|1k =k M | — o’ | < B

d 4/r—1-268 " —65
8/r—2 8/r=2, 12 3-8
5(;) (Z) WG T Pl T vz lgadlvz, -
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Combining these bounds with r = 1%—0 then gives, forevery 0 < §,0 < %,

/ Aodx dt
RI+3

d\2 i 1/2—6(6+8)
< (;) <7) LAY gz WDz, o,
) | |

1-860
he )1

Summing up over u=' < d < p and choosing 8,6 > 0 sufficiently small then
gives the required estimate for the A, term.

To estimate the A term, we again put the high modulation term into Lf’x, which
gives

‘ / Aldxdt
RI+3

+ +
Se Y. D IR Catullis IRCT Va, Nl I RCEprs s,

k' €Cy k"eCg
|1 —=ar’ | Sar |6 =2k | <

d —28 w 1/2—-68
s(ﬁ) <7> AR RN
1

1/2 1-3
Sz llealve )1l

" e @7

To gain an Li . horm of v¥,,, we essentially repeat the argument used in the A,
case. More precisely, we observe that using the Klein—Gordon Strichartz estimate
for ¢, and ¢,, gives for every ? <r<4andé > O:

‘/ Ardx dt
RI+3
<a

3-8/ 8/r—2
> ICullig NCaRA I IR I 2N Ca Rt i,
K,k'eCqy : :

|1k —t2k | Sa

d 4/r—1-48 " 3/2—4/r—48
< (= ~ 4/r—1,,.1/2
N <M> </ll) W vz

-l 8/r—2 3-8/r
12N TP M TN e O PP

where the square sums over caps were again controlled by using [6, Lemma 8.6].
Together with (47), this completes the proof for the A; component. An identical
computation gives an acceptable bound for the A, term. Hence, by choosing §

sufficiently small and summing up over u~! < d < u, we get the required bound
in Case 1.
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Case 2: p > min{d;, L} and d < min{4;, A,}. We only consider the case 1; > A5,
as the remaining case is identical. As previously, we first estimate A, by placing

¢, € L?* and V¥, 91, € L*. From the resonance identities in [6, Lemma 8.7]
together with (42) we obtain

2
n
d Z i):),t:l:],:tz(S’ 77) Z /1_92(5 - 777 :I:lg) + /1292(:':155 :':2)7) + /1292(5 —-n, :l:2n)
2
(48)
Hence, if we let B = (d/1,)'/? we obtain
‘ / Agdx dt
RI+3
SB Y D WPy Cadllz IR P s | Reoas s,
q,q”EQ,l2 K.k’ eCp
lg—q" 1= |16 —E26" | SB
d\“P L\
el 2 /2 -1/2 —-1/2 E)
N </12) (M) w N bullve Ay lliee A lleallze)
(¥, ”Vi,,M ||<.012||v§2vM)1_(S 49)

for every 0 < 6 < 1. Thus we have a high—low gain provided we place the
functions ¢,,, ¥,,, and ¢,, into the relevant V2 space. On the other hand, letting
a = (dAy/u*)"? and applying the Klein—-Gordon Strichartz estimate gives for

% <r< 4
/ A() dx dt
RI1+3
+ +
SBOY. Y ICRel e IRCT Wl | ReCi s,
k.k'eCp k" eCq

|£i—tou|<B 1F1IK—K"|Set

- i 4/r—1-28 ﬁ l+4/r/18/r_2
~ /12 /12 2

12 3-8 8/r=2
. (,l,L/ ||¢P'||Vil) /r||¢u||Ll42 ||1ﬁ/h ”VilvM”(plz”VinM’

where we used that sup, ¢, {" € Co: |tk —k"| Sa} < (/)% Provided we
choose § > 0 sufficiently small, the above estimates and summation with respect
to 4,' <d < u give an acceptable bound for the A term.

The argument to control the A, term is similar. We just reverse the roles of ¢,
and v, and note that, with & = (d4,/u*)'/?,
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‘ / Aydxdt
RI+3

SBY. Y > Py Rl IR PC Y N2 | Reay

9,9"€0x, K,k €Cy k'eCg
lg—q" |~y |Fik—k"|Se | £e—£26’|<B

d —48 1 1/4—43
—1/2
s( ) (E) 1Wallve |, (lbullis, 45" g llis)*

L
Pl w1 (50)

2.M

As in the Ay case, we can apply the Klein—Gordon Strichartz estimate to gain a
positive factor of d/4, as well as an L} factor of v, . Hence summing up over
A5 ! < d <« A, gives the claimed bound for the A; term.

Finally to bound the A, component, we can either lose € high derivatives, or
avoid this loss by exploiting the Yf‘M type norms. More precisely, using the wave
Strichartz pair 2r/(r — 1), 2r) with 1/r = 1/a — %(l/a — %) and a as in the
definition of the ¥;"" norm, we see that for any § > 0 sufficiently small:

‘ / A2 dx dt
RI+3

o Z Z Z Il Py RK”C%dQSM I zrre=v o

q,q”eQA2 k,k"eCqy k'eCg
lg—q" |~ 11— | Se | £ 10— |<B

+ +
' ”RK chslﬂ///ll ”LIZ’/(””LEV ”RK’C([ 2‘/’/12 ||L;L;/(r’l)

4\ A 1/2a—1/4—48 o L
5(2) (;) AP gz, I vz, el (51)

Here, we have used two estimates, which require further explanation. First, L”
interpolation together with Bernstein’s inequality implies

+
Il RK’Cd 2(/)/12 “L,’L;/(r*l)

d\ " 2/r=3/2,,-1/2 B ~
S (;) B PP IR 9l ) (N R CE gl gn2) ™,
2

with &y € (0, 1) satisfying 1/r = §y/4 + (1 — &p)/a. Then, by writing C;;Q(/J,lz as
a superposition of free waves and applying the Strichartz estimate and Holder’s

inequality, we obtain

—1/2 + 1 E=)
L P IRCP o, lls, S A IRCP iy oz
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We conclude that for all 0 < § < §g

—1/2—b
+ 1/a—1,4-1/2 8 1-8
||RK/C/%||L,L;_/<,-ns(ﬂ—) DO N PP 7
2 o)

since R,(,Cdiz is uniformly disposable here. The second estimate used above is the
5

following: Since $ < a < 2 we have via [6, Lemma 8.6] for every 0 < 4 < %

1/2
+ 2
( Y D IRPCI Y, ||L;,/<,-I>L2,)

qeQq, keCy
1/2
1/2—1/2r —1/2 28 2-28
< ()Y (Z S ATl ) ”W”v;,M)
qEQ/lz KGCﬂ
—28 —28
< (—) (—) ()5 T P g s D N2
1% A , .M

together with a similar bound for the ¢, term. Thus summing up over ;' <
d < A, and choosing § > 0 sufficiently small (depending on both a and ), we
get an acceptable bound for the A, term.

We also require a bound for the A, component without using the Yf’M norm.
To this end, we note that for every § > 0 we have the weaker bound

‘/ A2 dx dt
RI+3
B Y. > Y IR PyCL byl
q,q”eC,lz K.k €Cy k'eCg

lg—q"|~dy |E1e—k"ISa | k—dk' | <P

+ +
IR, chsiﬁ/fal ”Ljfx ”RK’Cd z(p/lz ”Lﬁx

d —48 1 —48 -
5(7> <ﬁ) (Ul AT Ml )
2

PNl Wz, D ez, .

To gain a power of the L, norm of ¢,,, we exploit the Klein—Gordon Strichartz
estimates as previously, which gives for %0 <r<4andé > 0:

‘ / A2 dx dt
RI+3

B Y Y IC<aRe i IC<a R, N1y,

Kk,k'eCy k'eCg
[Fie—Fon IS 10—tk | <B
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3-8 8
NCaRepull: IC R I}y
d 4/r—148 L —1/2-25 8
< (£ " /r 2 1/2
< ( 12) . Ibullvz, I vz,
1 8 2 3-8
A el )Y e

Combining these bounds and summing up with respect to A, '<d < a4y, we
obtain an acceptable contribution for the A, term.

Case 3: p <K Ay = A, and d > p. To bound the Ay component, we first observe
that f]Rm Ay # 0 implies d ~ 9., 4,. In particular, since either M., ., < u or
M., 1, ~ A, the sum over the modulation is restricted to d 2 A,. If we now apply
Theorem 5 with y = % we see that

‘ / A() dx dt
RI+3

SNCT bl NPICE ) Y Chpan]ll 2,

AN\
S (/1_1) (/l_1> Ml/2||¢u||v3'1

—1/2 —1/2 1/8 7/8
@, AP el ) e, el )7

+9.M

On the other hand, using the Klein—Gordon Strichartz estimates, and noting that
the C, multipliers are now disposable, we have for < r < 4 the estimate

‘/ Agdx dt] < N Cadpull o2 1Vallz; M@ iy,
RI+3 & ’ ’

a7
< (< W52, [P
~\ Bl

~(M”zll%llvgy])H/’III//M||v2 lewlvz - (33)

+y.M

In particular, interpolating between these bounds and summing up over d 2 4,
gives an acceptable contribution for the A term.

The bound for the A, term is slightly different as we no longer have My, ., ~ d,
and thus have to consider the full region d > . We first deal with the region
d > A,. Here we argue as usual by controlling the integral by L* x L? x L*,
which gives for every 0 < § < 1
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/ A dxdt
RI+3
Slulls, Y IPCava,lliz 1Py s,

q.9'€Qu

la—q'|<n

d —1/2 1 1/4-25 |
-1/2 ) 1-8

S’(Z) (Z) Iullie Itz 2l llenllys o (54)

where we controlled the square sum as previously via an estimate analogous to
(46). To gain an Lf’x norm of i, we again exploit the Klein—-Gordon Strichartz
estimate and observe that for '3—0 < r < 4 we have

‘ / A1 dx dt
RI+3

3-8/ 8/r—2
S 1l ICav, I I Ca R 15 N, i,

4/r—3/2
< d\"" /18/r72 12 12 8/r—2 3-8/r
(3 TR T D VN PP s 2N PP ki 2N

(55)

Combining bounds (54) and (55), and summing up over modulation, we deduce
the required bound for A; in the region d 2 A;.

We now consider the case i < d < 4. This implies that 9, ., < 4;, which
is only possible if & = 4-,. The key point is that we may now exploit the null
structure in the product of the spinors ¥ and ¢, since we gain 6(&, n), and the
angle between the supports of ¥ and ¢ is less than s /A;. In particular, exploiting
the standard null structure bound implies that we may improve (54) to

‘/ A dxdt
RI+3

d —-1/2 M 5/4-25
-1/2 —
S (7) <7) 19ullis 1Vl 7 P llonllis Plenlls? . (56)
1 1 2.

Again combining this bound with (55), and summing up over u < d < 4;, the
required bound for the A, term follows. The A, term follows from an identical
argument.

Case 4: u 2 min{A;, A} and d 2 min{A,, A,}. It is enough to consider the case
Ay = A,. To estimate the A, term, we first observe that as in the previous case, we
may restrict the sum over modulation to d 2> u. If we now observe that
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SUCTSulliz s Nl

d\ "2 1 172
—1/2 —1/2
5(;) (;) WPl A1 s A s,
(57)

then, together with (53), summing up over d 2 u gives the required bound for the
Ap term.

If we suppose that d = u, then a similar argument handles the A; term. Again
supposing that d 2 , to bound the A, term, we decompose into cubes of diameter

/ Aogdx dt
RI+3

| to obtain
‘/ Azdx dt
RI+3
+
S Y WPl 1P lls IC 00 2,
9,9'€Q2,
lg—q"1~n
d —1/2 L 1/2—48 i
- )
< (—) = Uyl AT 10 ls )
2 iz ' ’

RS T P 720 T S N (58)

An analogous estimate to (55) then gives an additional L} norm of ¢,,. This
gives an acceptable bound when d 2> u. '

It remains to bound the A, and A, terms when A, < d < . We first recall that
either M, o, & 4; or My, 4, < A,. Hence the restriction 1, < d < p implies
that 914, +, < d and consequently, a short computation shows that at least two of
the functions ¢, v, and ¢ must have large modulation. More precisely, we have
the decomposition

/ A, dxdt = / Cra (C Y0,) ¥ °CE 00, dix dt
RI+3 RI+3

2.
Vi, m

+ / CaauCEU) Y Coip dxdr. (59)
RI+3

To bound the first term in (59), we observe that

/ CabuCE) Y C o, de i
RI+ ~

+ +
S NCxadulli2 NCG Va2 NICZ; 02,2,

A\~ PR 12
- s 1/2
5(12) <M> 1 Plgullz 1allvz ez,
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On the other hand, to bound the second term in (59), we decompose into cubes of
size A, and apply Bernstein’s inequality, which gives for every € > 0

‘/1 C<<d¢u(cj11ﬁ/ll)f7/ocj<i2%2 dx dt
RI+3 ~

+ +
S E 1€t Pyryull s 1 Py Co Wray Nl 2 NICSG0 112,
q.9'€Qn,
lg—q'I< 02

d\"! PR 1/2—¢
- hid2 1/2 5 ,
< ( ﬂz) <M> 1Plgullz 1allvz L lenllve,

Thus we deduce that for 1, € d < p and u ~ 1; 2 A, we have

d\"! L 1/4
‘ /  Avdxds 5(2) (;) w2lgullv: Wz llonllvz - (60)
R

To gain powers of the Ljfx norm, we simply use an analogous bound to (57) and
(53). Thus summing up over 4, < d < u then gives the required bound for the
A; term.

We now consider the A, term in the region 4, < d < p. As in the argument
for the A term, we have the decomposition

/ Mpdvdi = /  Caabu(CLYn) Y C g dx di
RI+ RI+ ~

+ / 1 3C<<d¢,t(c:;x/u1>*y°cd*2% dx dt. (61)
]R+

The first term in (61) can be handled in an analogous manner to the second term in
(59). Namely, decomposing into cubes and applying Bernstein’s inequality gives
for every € > 0

‘ /1 3 C”'d‘pu(cglllf/llfyocdiz(pﬂz dxdt
R+ ~

+ +
S D NCwaPydll IPC s IC3 0, 2,
q.9'€Qn,
lg—q'1S 0

d\"! 1 1/2—€
_ e 1/2
< ( A) (M) 1Pl 1l vz

Applying an identical argument to the second term in (61), we deduce that

d -1 /12 1/4
< s 1/2
‘ /R | Avdxdr] S ( ;i ) (M> wlgullv 1¥allv: | lenllz - (62)
https://doi.org/10.1017/fms.2018.8 Published online by Cambridge University Press

2


https://doi.org/10.1017/fms.2018.8

Conditional large data scattering for DKG 35

Together with the standard bound (58) and the A, version of (55), after
summing up over A, < d < pn we deduce the final bound required for the A,
component. 0

6.2. Proof of Theorem 7. The first step is to obtain frequency localized
versions of the required bounds. Namely, if o > 0 is sufficiently small and we take
1/a = % +0/32and b =4(1/a — %), our aim is to show there exists 0 < 6; < i
such that for all 0 < 6 < 6, we have for the Dirac Duhamel term, the bounds

174, PAIIi"M((Pu)/OHiZ(PAZ) llv2

.M

< (min{u, A,})° minfu, Lo} Qmo(ll(b e A5 @ lls )P
min{/,
~ : max{u, 1} wlled - PRI,

1Bl gl ) 63)
and
”H:tl-’z:i]’M((buyOHﬂ:z(p/lz)”YfllM

min{z, A,} )Q/“’”

PRl )
max{/u, A} (1dulles, A Npaling)

), (64)

< (minf, /12})"<

(P2 e,

”VizM

while for the wave Duhamel term, we have
M71/2 ” PMI+'1 (n:t] 1/’/11 Hizgo/lz) || Vil

. o min{u, 41, 1} qne “12 0
S (minfu, Ay, LD ——— A M llis A e s )
max{/-’l/’ /ll’ /12} " "~

: (||1/f||Fj]|vM||</>||Ffzz«M)l_0- (65)

Assuming bounds (63), (64), and (65) for the moment, the estimates in Theorem 7
are a consequence of a straightforward summation argument. More precisely, fix
so > 0 sufficiently small. We have

| T @y sy

< § :/ﬁ‘)( § ||PAInilzil'M(myOHh%)Ilvgl,M
A1 A2
PR A

+ > ||PA]niIIiI’M<¢,Ly°ni2%>||V;1_M).

w2
Ay~max{u, A2}
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An application of (63) with o = 1%, gives 0 < 6, < % such that forall 0 < 6 <

101
min{6, 2#02} we have
|, T Gy Mgl

—-1/2 2 1—
N <Sup(ll¢ullL;fx/lz Plloallzs ) (! +s“ll(Mlv@/@”IIQz)IIFsz,M)( “)

A
w —(102/101-20)s¢ w 050
—(1/101-26)s —(1/101-26)s
(X224 3 224 "
/11 /11
A w>a 4 uSA

—1/2 0/, 1/24s 1-6
< suﬂp(||¢>,LI|L,4,X/l2 @, llzs ) (e +‘°II¢MIIViI/l;OI|</)|IFEZ‘M)‘ N
M,A2

Thus we obtain (34) in the case s = sy. The general case s > sy follows by using
the fact that A} < A" (max{u, 2,})* ™. An identical argument using (64) gives the
Y, ,, bound (35). Similarly the bound (36) follows from (65).

We now turn to the proof of estimates (63), (64), and (65). It is enough to
consider the case 8 = 6y, as the Lix terms are dominated by the corresponding V>
norms. Bounds (63) and (65) follow directly from Theorem 8 together with (24).
On the other hand, the argument used to obtain (64) is slightly more involved.
We start by considering the case 1 < A,. An application of the Klein—Gordon
Strichartz estimate gives for every € > 0:

e (min{d, A1}

1-3/5
2 ) | PUCE M TN (B, M) 2
1

1/2
(Z ||¢MP4¢AZ||;>

quu

12
-2/5 2
5 4 ”‘p#”L,lgﬂ( Z ||Pq(/)/12||Lr10/3L5)

qeQy

5 11—2/5

L

—2/5 M ‘
<4 /<uﬁz)3/‘°(7> wlullvz lenllz, -
5 . ,

As we may assume that max{u, 4,} & A,, by choosing € > 0 small, we deduce
that

g5 (min{d, A}

1-3/5
7 ) 1Py C M Ty My ) 375,
1 :

1/11
"
< “1/5(7) 12 gullvz g llvz - (66)
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On the other hand, an application of (37) in Theorem 8 gives
d'2| P, C M TN (Y M) iz,

Sl PAIHiIIiI'M@MVOHiz%z) ”VilM

1/10
" —-1)2 _

< W(;) (Upullie, "1l 0 1 Ugullvz Nlpllyz )= (67)
, , ,

Hence (64) in the region u < /12 follows by interpolating between (66) and (67)
and using the condition 1/a = 5 + 0/32.

We now consider the case p >> A,. For this frequency interaction, Theorem 8
requiresa Y ;Z’M norm on the right-hand side. Thus, as our goal is to obtain a bound
only using the Vizy 4 horms, we have to work a little harder. We start by writing
the product as

by My, = (qsuy“Hizs% Yo e (c@f¢ﬂy°ci?%))

d’</l
+ Y CiM(Caatuy Crron). (68)
d'Shy

The first term can be bounded by adapting the argument used in the case u < Ay
as here (38) in Theorem 8§ gives a bound without using the Y M norm. More

precisely, letting 8 = (d’/A,)"/? and exploiting the null structure we have

4\ 13
d3/5(/1—> PAIC;]Ii"M( > Coi (ng'%yocﬂ?z%z))
1

'Sty
1/2
Suhy < > ||Rknil(ngfm”RKfCizwz)“i.%>

L5/2L2

d’slz K,K’ECﬂ Lf/3
lk—k'|<B
1/2
-2/5 + 2
Sut Yy ﬂ”cgd/(Pu”L}gB( Y IRC %goﬂzud%)
d'<a K'eCp '

1 2/5
1/5
<Ay (;) 12l lewllv: -

Consequently, applying a similar argument to the ¢, y°I1.,¢,, component, we
deduce that

d N3
3L
4

R 2/5
1/5 1/2
<A (;) 12 gullvz g llvz, -

P, C T (m“nim - czz,vM(cgd/as,LyOc%m))

5/3
<y L7712
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On the other hand, an application of Theorem 8§ gives

42

PA]C;IIi]’M (qbuyoniz(pb — Z Ci;’/M(ng/(PlLyOCi/z@Jz))

d’slz

2
Lr.x

S

PA,Hi,I*"M(m(’Him -y sz,zM<c<d/¢uy°cifwz>>

d’slg

2
Viim

1,0\ /10
2 2 —1/2 _
< <H) Ugllie, 4 Mol ) 2 gullva Nlewllvz, )

and therefore interpolating as before gives the required bound for the first term
in the decomposition (68). It remains to bound the second term in (68). Let 1 <
r < a. Exploiting the null structure and decomposing ¢, into caps of size o =
(d' 2>/ u*)'? and ¢,, into caps of size B = (d'/A,)"/?, we deduce that for all 0 <
6 < 1 and max{d, ;'} S d' < A, we have

+ +.M 0+
1P, C' C2y (C<a v Crl )l arz

(= %

q€Q1, K,k"eCy k'eCg
k=" |Ser e—i'|<B

< dl/rfl/a

172
Py R4, (C<a R quy“cifRwaznﬁg)

Ly
1/2 172
1/r—1 2 + 2
<d' /”/3( >y ||c<d/RK~Pq¢,L||L%,L§,,(,n) (Z||Cd?RK%||L3&)
q€Qn, k"eCy k'eCg
3/2-3/2r—66 1-1/r—26
< JV/r=1/a 1—1/r(/12) (d/>
~ 12 — -
jz A
—172 0,,.1/2 1-6
cUlulle, 5 Il ) (1 P dullvz, Non vz )" (69)

where we used the bounds

12
2
< E E ”ng’ R, qubﬂ ||Lr2rL§r/(r—|)>

K"€Co 4€Qn,

A\ /2120
1/r=1/2 29 2 [ 1/2 1-6
< A (;) 1910 G2 1uly2.)

and

1/2
=+ 2 -6 451-1 1/2—1 -1/2 4 1-6
(§:||C/RK%||L;,) B @) A el ) lealls
X v 2.

K'EC/_L;
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which, similar to (46), hold for all sufficiently small & > 0 and follow from L”
interpolation, Lemma 3, an application of Holder’s inequality, and the square sum
bound for V2. An application of (43) implies that after restricting the output to
modulation d, the sum over the modulation is only over the region max{d, 4; <
d’ < A,. Consequently, summing up (69) we deduce thatfor 1 <r <aand6 > 0
sufficiently small

P/llcleIIiMM< Z Cgiy’M(C<d’¢MVOC#2‘pﬂz))

a'<a

L{LY

Sdt Y PG (Cea by Cron) g

max{d,4; '} <d’' S

1 3/2—3/2r—66 d 1—1/r—26
5 dl/rl/alull/r<ﬁ) Z (_)

A
max{d, ;1 <d' S

ulls, A P lloallis ) (el v2

+,m
1/r=1 1-1/r
<o) (%)
~ w w

—1/2 —
Ul A 1ol ) Pz, sl )1 (70)

1—-6
lewlvz )

Therefore, taking 1/r =1 —4(1/a — %) we obtain (64). This completes the proof
of Theorem 7.

7. Multilinear estimates in the critical case

In this section, we consider the scale-invariant regime with a small amount of
angular regularity. Here, after rescaling, we have m = 1 and M > 0.

THEOREM 9. Let M > Qand o > 0. Thereexist 0 <9 < 1,1 <a < 2, and
b > 0 such that forall s > 0

|1, T4 ¢y ) v,

0
1-0
5( sup [l ||¢az||Dauz) (U lyss1e lpllgse )

wAr 21

0
+ ( sup (16, llmo ||¢42||D;-m> Ugllyze ol )\ (7D

noA2 21
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and
|12, 5% (M) e,
0
< s - /20 . )0
S (MSEI; ||¢;L||DU”§0/12”DU'/2> (U@ llyaeliellves )
0
+ ( sup I|¢u”Dg”§0/b”Dél/2) Ulgllyizel@lvee )0 (72)
w1 +.1 2

Similarly,

(V) 20 (T Y Ty ) s 120
+,1

0
1-6
S( sup [|¥a, IID;—'/ZII%IID;I/Z) U lley , llellges )

A1, 221

4
+ < sup [V |,,61/2||¢)2||D,/2> Ul oz ) (73)

A, 221

The proof will be postponed to Section 7.2.

7.1. The trilinear estimate. To obtain the L;, norms in Theorem 9, we use
the following consequence of Theorem 6, which gives the required L} at a cost
of modulation and high—low factors. However, as we have room in our estimates,
we can always absorb a small power of this loss elsewhere, which is sufficient to
obtain the required Strichartz norms in Theorem 9.

LEMMA 5. Letd > Oand for j =1,2,3, letm; >0and A;, N; > 1. If o > 0
there exists 0 > 0 such that

+1,m
‘/ Cd Up Ny VA, N, W5, Ny dx dt
RI+3

. —1/2-0

min{d, 4;} . 0

S Noio <—/11’ Ain Ul v, ||L;‘,x lv,. 34 ||L§fx lwa,, N ||L§‘,r)
() Py vz Mvswllve lTwasllve, )0
114243 A1,N; Vil~”’l A2, No Viz»mz A3,N3 Vi}/"} 5

where /lmin = min{/ll, /12, /13} and Nmin = min{Nl, N2, N";}

Proof. We first observe that an application of Holder’s inequality gives

+1,m
‘ / Cd U Ny Vay, N, Wz, Ny dx dt
RI+3

ESE
g ”Cd B u/l[,N] ”L:"J ”U/lz,Nz ”L;‘J ||w/l3,N3 ”L?J
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—-1/2
S d / ”u/ll,Nl “ij:] my ”v/lz Ny ||L4,x ||w/13,N3 ”L?,x

< (min{d, Ay}

1/2
. ) LAV e vz, ol o ssllis - (74)

Thus it only remains to show we can gain a power of the L4 norm of u,, y,. To
this end, we first consider the case where N, = Nyi,. An apphcatlon of the wave
Strichartz estimate with angular regularity in Lemma 3 gives for 3 < p < 4:

+1,
‘ / Cdl MIu/ll.Nl v/]z,Nzw/l3,N3 d.x dt
RI+3
+ 4/p=1) ~E 24/
SIC " uan Il s - ||C Mg, || p||U17 Ml lwg, N3||L4

< min{d, A,}
~ /l[

3/2-4/ 12
N T vay vz s Wi ||V§W

=32

min{d, 4;} Nrin 4/p—1,41/2 24

N oty vl 3 DA Ny Nl YR
/ll /1min 1

2172
o, e llz, A5 ||w43,N3||@3,,,,3, (75)

—5/2<4/p e
p=1 1—1/2 2-4
) ||u/11 N || S llea, v, ”Vi..m.) /”

1/2

where to remove the C;"™' multiplier from the L}, norm, we let « =

(min{d, A,}/4;)"/? and apply Lemma 2 to deduce that
IC " g, < Y Y NCT ™ Re Pyt w11

k€Coy q€Q, 12
Sa”? (@) + Dl vyl
min{d, ;}\ "
< (/l—> lloea,, m, ||L;{X- (76)
1

If we combine (74) and (75) we deduce that

+1.m
‘/1 sz U N VA, N, W5, Ny dx dt
RI+

. - l—o
min{d, 4,} 12
S |:</l—1’ /1mm/1 Nl v, vz, 1V ms g Nwas s i,

min{d, A -3/
- [(%) Ao N2, 3 11
1

o
1/2 2—4 1/2 1/2
. (/ll ”u/l],Nl “Vi].m] ) /P/lz ”v/lz,Nz ||Vi2_m2 /13 I|w/13A,N3 ” Vi},l?zg}
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< No min{d, A}
~ min /1]

12
(A A223) P g, vz, I mllve | lwasvllve

-3/2
-1 4/p—1
) ﬂmin(”u/l].Nl||L?»X||U/12,N3I|Lj‘_x||w/13,N3||Lj‘_X)O—( /p=1)

)1—(7(4/17—])

as required. A similar argument gives the case N3 = Ny;,. Thus it remains to
consider N; = Npy,. It is also straightforward to deal with the case 4, ~ 1,
since we may then apply the Klein—-Gordon Strichartz estimate. More precisely,
an application of Lemma 4 to v,, y, together with L interpolation, gives for
10 < 4
3 X p < 4

+1,m
‘ / Cd U NV, N, Wz, Ny dx dt
RI+3

=+, 4/p—1 =+, 2—4
g ”Cd ! mlu/ll.Nl ”L{lp ||Cd ! mlu/l],N] ”LZ /p”U/iz,Nz ”Lf’x ||w/13,N3 ”L;‘{
1.x 1,x o o

: ~(5/2)@/p-1)
min{d, A} 12 4/p=1, 112 -4
S (/l— A gy |l " /||UA|,N1||v§1_,,,1) /v
1

Lis
“Mvay. vy ||v§2vm2 lwas. v ||v§w3

. 3/2—8/p
min{d, 4,} _1 4/p=1,,1/2 2-4
5(— b, 1 Y D, 47

~

A

1/2 1/2
Mo llvz,, A Twoa vz, s (77)

where we applied bound (76). Combining (74) and (77) we obtain the required
bound in the case where 4, &~ 1. A similar argument gives the case 4; ~ 1.

It remains to gain a power of the L* norm of u 1,.N,» 10 the case where Ny, = N
and A, 43 > 1. Clearly we may also assume that A, > A;. In this region we apply
the bilinear restriction estimate to deduce the required bound. The first step is to
observe that, as either 4, < A, = A3 or 4; & max{4,, 43}, an angular Whitney
type decomposition gives the identity

SR
/ Cd UL, NV, N, W5, N3 dx dt
RI+3

+1,my
= E E / Cdl I/l,h,[\/lR,(U/lij\/zR,{/'LU,ILN3 dx dt
RI+3

1/23 <e<max{1,4; /43} k' €Cy
|i2K—i3K/|%e

+ Z / Cj]’mlll,h’NlRKUAZ’NZRK/U)M,NS dth. (78)
RI+3

K,K/EC]//13
|k —£3"|<1/23
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To estimate the first term in (78), we note that as we may restrict the support of
Uy, v, to lie in the set
{(=E+m 1§ ek nex [§]l~ A, Inl~ A3},

we have for «, k' € C, with | &, ¥ — d3k’| & £:
+1,m
/ Cd I ]u/ll.,Nl R, Uiy, N, RK’w/l3,N3 dxdt
RI+3

— +1,m
B / Cy " Rerutg, vy Revay v, Rowg, vy dx dit,
eE RI+3

where & is the setof all k” € Cy(y, 4, satisfying min{|k” —« |, [«"+« [} S €(A3/A1)}.
Notice that we have #£ < 1. Consequently, applying Holder’s inequality, the
angular concentration bound (28), and Theorem 6, we deduce that for «, ¥’ € C,
with | £, k — £347| %Kand% < p < 2 we have

+1,m
/ Cd 1/1/1]’1\]1R,(U/IZJ\/QR,(/u),h’]\{z dx dt
RI+3

£, 471 1/2) £, 34
5( sup (| Renttay i I ||cd""'ka/uﬂl,N,||L;j")

k" €Ceaz/))

[ Rcva, v, R ’w/13,N3||L,’{X

A
< NY (g/;) (24P Q1S e Yl e ot 1”4(1/17 1/2)

1

. (d—l/Zl u )3—4/p

ANy ||V§]le

. 7/2—8/p
min{d, 1,}
+2—4 ) 4(1/p—1/2)
SJ £ /PN;T( /11 mm” A1,Nq ”

172 3.4 172 172
: (/ll ”u/l],Nl ”Vi%lv'"l) . /12/ ||RKU/12,N2 ”Viz_mz/lS ||Rx’w/13~,N3 ”Vi}m3 )

“NReva, |l V2, | Rerws s “Vi}ng

where we again applied bound (76) to dispose of the C, multiplier. Hence
summing up over caps, letting 1/p = % + 0/8, and applying the square sum
bound in V2, we deduce that

2 2

1/3<e<max{1,4;/43} k' €Cy
|i2K—i3K’\%e

. —1/2-0
min{d, 4,} 2, ,1/2 1—0/2
5Nf<T At w172 A Dz, )

1/2 1/2
AR wllvz,, I Rewa v

+1.m
/ Cd u/h,NlRKU/lz,NzRK’w/l3,N3 dx dt
RI1+3

||V§3,m3-
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Together with (74), we obtain an acceptable bound for the first term in (78). To

bound the second term in (78), we apply a similar argument together with the
Klein—Gordon Strichartz estimate to deduce that for % < p < 2 we have

§ +y,m)
‘ / Cd u/ll,NlRKU/lz,NzRK’w/l3,N3 dx dt
RI+3

KK €C1/1
|k —23k" |<l//l’;
+1,m; 4(1/p—=1/2) | ;~E1.m 3-4/p
< E sup  [1C Reway vyl s 1€ Rerua w2
KJ(/GCI/,IS k" €Ce(az/a)

|:E2K*i3/(/‘5]//13

° ” RK vﬂz Ny ”Lz” ” RK’w/b N3 ”L’z’;

7/2-8/p
min{d, A} 8(1/p=1/2-0 41/p=1/2)
< e (T pi ol v 17

“12 3-4/p 12 12
- vl ) v, v wllvz,, A3 ||w/13,N3”Vi3.N3'

Choosing 1/p = % + 0/8 as before and combining the resulting bound with (74),
the lemma follows. (|

We now give the proof of the main step in the proof of Theorem 9.

THEOREM 10. Let M > 5,

0<oxkl, —<a<2 and 0 < b < g/4. Define

—1/2 —1/2
A= lgunlls A7 P10 les A3l @anns N

There exists 6y € (0, 1) such that, if © < A1 ~ A, we have

(pM,Nnﬁ:l v//h.,Nl n:tqu/lz,Nz dx dt

‘ R3+!1

1/10
I -
< N‘i'“(/l > AP PN llvz 1Y, vz, M||§0,12,N2||vf§2M)1 “.o(19)
; : , :

On the other hand, when u ~ A; > A, we have

T 7. + +
Gun e Vi v T pis = D CatunCain mCi o v, dx dt

‘ R3+!1
' <dSa

/12 1/10 -
Nf]m<ﬂ> AR nllv Ian vz onmllz )7 (80)
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and

2

5'<ds

/ C<d¢u,N621¢’/ll,N, Cj:z(p/lz,Nz dx dt
R3+!1
, 1/10
< (min{N, Ny ))° <;) AS G lle e Nowmslle )%
81
Moreover, if we also use the Y =M norm, we have

2

4'<d<

I ot
/W C<a®unCy¥a, mCq” Py N, dx dt
R.

A (1/H(1/a—=1/2)
< N:;m<;> AS G 1wz, W, 03l 20 0
(82)
Analogous bounds hold in the case 1, < A,.

Proof. As in the proof of Theorem 8, we begin by decomposing

b (T, ) Y ey, = Y Ag + A + Ay,
d

where

Ao = Cad (CL¥a) v Csnn.

A= ng¢,L(C;“%1)*V°C§§,<m2,

Az = C<i$, CZ¥) v °Cl o,
and consider separately the small modulation cases:

uwL i~ and d<Sp, wp2>min{d;, b} and d < min{d;, A}
and the high modulation case:
d > min{u, Ay, A,}.

Note that bound (43) does not hold in the case M <
now.

Case I: © < A1 = A and d < . From [6, (8-16)] we have the bound

d\ /3 0 -1 Ut 1
‘/Aodde 5( ) N Nm/mM/ ||¢M,N||V3A1||W/II,N1 ||V§I’M||(P/12,N2||V§2_M-

122 A
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Combining this bound with Lemma 5, choosing ¢ > 0 sufficiently small, and
summing up over d < p, then gives 6 > 0 such that

1/4
It 0, 1)2 1-6
gN,f,m(Z) APl Wl ol )

We now turn to the bound for the A; term. From [6, (8-18)] we have for every
€ > 0:

'/Aldxdt

d\ V3 i -1/2
< (= ~” 1(4 1/2
N(M) <al) Noai 21ty Wa sl Ienwsllve -

Again combining this bound with a small power of the estimate from Lemma 5,
we get an acceptable contribution for the A, term. The proof for the A, term is
identical.

Case 2: u = min{1;, A,} and (min{4;, 1;})~! < d < min{1;, 1,}. We may assume
that A; > A,. From [6, (8-23)], we have for every € > O:

‘/ Aodxdt +‘/ Aldth
RI+3 RI+3

d 1/8—€ X
/4,12
< (Z) Noot 2l llv: Wam vz ey -

An application of Lemma 5, summing up over A, ' < d < A, then gives an
acceptable bound for both Ay and A;.
It remains to bound the A, term. From [6, (8-25)] we have

‘ f Az dx dt
RI+3

1/4—€ 1/4—€
s (L L min{N, N} ldunllv: 1wl Ienmlve -
~ b " s WNIVE LNUVE, y 2N VL) y

As previously, together with Lemma 5, this is enough to deduce the required
estimates. The remaining case, where N, = N, requires the use of the Yf’M
norm. To this end, a similar argument to (51) implies that if we let 8 = (d/4,)"/?,
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then for every € > 0 by using the angular concentration bound on ¢,, ,
we have

‘/ A, dx dt
RI+3

S Z Z ﬂ ” Pq” RK”ng(bu,N ”led/(afl)L%a

q.9"€0x, KaK/K”,ECﬂ
lg—q"1~,  |1E1c—K"|<B,
|£1k—F2k"|SB

+ +
IR, chsl]jw/ll,lvl ”L,z“/("*“[‘%a ll RK/Cd z‘p/lz,Nz ”L,”L_',‘(/("*l)

d\ e A 1/2a—1/4—¢
1/2
< (Z) (;) NE P lls Wl Il

Therefore, since 1/a = % + o0/16, provided we choose € > 0 sufficiently small,
by combining the above estimate with Lemma 5 we get the claimed bound for the
A, component.

Case 3: u = min{d;, A,} and d < (min{4,, A,})~'. We now turn our attention

to the resonant region where we no longer have a lower bound on d. It is worth

noting that in this region the proof deviates somewhat from the argument in [6],

as here we obtain an improvement in the amount of angular regularity required.
If & > min{4,, A}, [6, Lemma 8.7] implies that

My, 1, 2 (min{d;, LY, (83)

which is ruled out in Case 3. Hence from now on we may assume pu & A; & A,.
If+) = +,,0or (£, %) =(—,+),or M > % [6, Lemma 8.7] implies (83) again,
so that it remains to consider (4, ;) = (+, —) and we are either in the weakly
resonant regime M = % or the strongly resonant case 0 < M < % In order to treat
this case, we use

M, (&)
~ 1 2 (|f|—|77|)2 . 4M2_1'
<$)+(n>' o 1l 4 a2 TIEIA S
! (€] = Mg —n))? 2M_1‘
>_ —_ —_ . —
N<n>'<s>M<s—n>+|sns—n|+M+|é||s =g -+

(84)

from [6, Lemma 8.7]. We start by considering the case M = % The key
observation (originally made in [6]) is that the null structure now acts at
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all scales 0 < d < min{d;, 4,}. More precisely, (84) and (31) imply that for
&1~ Inl ~

2
1T.€)y° ()P < ‘w G, —m| < uTM 6.

which we exploit via (30). In particular, letting 8 = (d/1)"/?, using (84) and the
L} Strichartz bound in Lemma 3 we obtain

/ Aodx dt
RIH3

B > MR Canlliz IR Pyra, vl 1R Py ol

s

K.k’ k" €Cp 9.9'€Q 24
’ "
e+l le="ISB g —g'| <

1/4 1/2
S B Pl nly: 1Wamllvz 9 vy -

Together with Lemma 5, and as the sum over modulation 0 < d < ™! is bounded,
this gives control over the trilinear product when M = % The arguments for the
A; and A, terms are essentially identical.

It remains to consider the fully resonant case 0 < M < % In this regime the null
structure no longer gives any gain at modulation scales d < u~'. Consequently,
if we followed the argument used in the M = % case, we would not be able to
sum up over modulation scales. Instead, our goal will be to simply estimate the
remaining trilinear term

—_—
/Rm CrimBunCl, ¥ nC 1 @ann, dx dt

directly. The key observation, which was exploited in [6], is that in this trilinear
interaction the three waves are already transverse, and thus we can apply the
bilinear restriction estimates contained in Theorem 6. The argument is as follows.
We first observe that, by Lemma 3 and L” interpolation, for every % <1/r <=

14
there exists & > 0 such that
3/14 A72/5 9 1-6
Ippnllz;, S w’/ N II%,NIIL;{XII%,NII%I-

Interpolating with the trivial L>°L? estimate, we conclude that for all %(% —1/r) <
1/g < 3(3 — 1/r) and sufficiently small 6 > 0 the bound

I uligey S p o0 NSESORAD g L (gl (89)
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On the other hand, by interpolating Theorem 6 with Holder’s inequality and
exploiting the null structure, we have for 1 < ¢,r < 2, 1/g + 2/r < 2, and
all sufficiently small 6 > 0:

Z Z ”RKPqC:;M—l]///l],N[ RePyC, 1on.m iy

Ku'€C 1 q.9'€Q,
lg—q'l/ >+l |~

1/g—1/r460 ;1 y—1/2 —1/2 0
< 0 QP g s 5 s )

1-6
'(||‘/f11,N1”ViI.MH(pAZ'Nz”VizM) .

1

Therefore, if we let 1/r = % +eand l/g =1 — %e, then the above estimates,
together with the orthogonality implied by (84), give

T -
‘ /1 , C<</L’1¢;L,NC<<M—1w/ll,N1C<<M—1§0/lz,Nz dxdt
RI+

Y > Il

K’ €C q.9'€Qu
lg—q'|/ i +lic+i' |

+ -
IR, ch<<u—1 Vv Re Pq’c«u—l(p/lz,Nz lzger

70—(13/4 13/5 % 1/2 1-0
S WINPT R, e vz I vz )

-1

Choosing € and 6 sufficiently small, we obtain the required bound in the case
Npin = N. The remaining cases Ny = Ny, and N, = Ny, are similar; the only
change is to use (85) on the term with the smallest angular frequency, and control
the remaining pair using the bilinear restriction estimate in Theorem 6.

Case 4: d > min{u, A;, A,}. We start by estimating the Ay component. As in the
subcritical case, nontrivial contributions require 9., .+, & d. From the definition
of My, +, we see that either My, o, < minfu, 4, L} or My, o, ~ max{u,

A1, A2}. In conclusion, we must have d ~ max{u, A, ,}. If u < A} & A,, an
application of Theorem 5 gives

/ AO dx dt
RI+3

* +
< ||Cd¢u,N I L7, ||C<<IL1W11,N1 C<<2d§0/12,1v2 ”L,ZVX

a4\ u 1/2—e
< - ~ 1/2
< ( ﬂz) ( b) 12 nllv: W llvz |, ol

On the other hand, if © > min{A4,, A,} (thus u is essentially the largest frequency),
we simply have
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+
<N Catppn iz NC Y m s NCE P m, 12,

d\ " /min{A,, L\ "*
<(p) () e
% “

Npnllvz vz, lon vz, -

/ Aodx dt
RI+3

Thus in either case we have a high—low gain, and consequently applying Lemma 5
to gain Lf_x norms, and summing up over d &~ max{u, 4;, 4,} we obtain the
required bound for the A, component.

To estimate the A; component, as in the subcritical case, we consider separately
the cases min{u, 4;, 1} € d <« max{u, 4;, ,} and d = max{u, 1;, ,}. In
the latter case, we only require Holder’s inequality together with the (refined)
L} Strichartz estimate. In particular, decomposing into cubes of size Ay, =
min{u, 41, A,}, we obtain

4.9".9" €,

A] dx dt 5
RI+3
19=4"+q"1 S Amin

< <i)_]/2</1min>l/4_é (ﬂmin>1/4_€lul/2
~\ A2 jz

Nbunllve 1amllve, | 1023 llvz

iM

+
> WPyl NPCT Y w2 | Py, s,

Again applying Lemma 5 and summing up over d 2 max{u, 4;, 4,} controls the
Aj term.

We now consider the region min{u, 4;, 4} < d <« max{u, 4;, 4,}. Here we
can simply observe that the bounds in the subcritical case, namely (56) and (60),

imply that we have
12, 1/4
min{u, 4;, 4
/ A, dx dt min{u, 41, 2} e
RI+3 mln{u, A1, A2} max{pu, 4, A2}
MNdnllvz 1amlvz |, Nonn,

Again applying Lemma 5 and summing up over

||V§2‘M-

min{u, A;, ,} K d < max{u, 1, A2},

we deduce the required bound for the A, term. An identical argument bounds the
A, term. O
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7.2. Proof of Theorem 9. Similarly to Section 6.2, the first step is to obtain
frequency localized versions of the required bounds. Let A,,;, = min{u, 4;, 4>}
and A.x = max{u, 41, A,}. Our aim is to show that, if o > 0 is sufficiently small,
1/a =1+ 0/16,and b = 2(1/a — 3), then there exists 0 < 6; < } such that for
all 0 < 0 < 6, we have for the Dirac Duhamel term, the bounds

1Py Hy I, 5 By My ) vz,

~\ 0/100
5@MMMW@?) (Upunllzs A3 l@am,llis )’

Ptz lpns ™ (86)
and

|| HN1 H:Elz-i],M(d)ll«,NyOHﬂ:z(p/lz,Nz) || y/lil*M
1

) 0/100
smMMMw@f) U llzs A3 @ mylls )’
WPl lenmllve, )1 (87)

while for the wave Duhamel term, we have

PP HYTE (e, Y, M, 00,82,

A 0/100

. min —1/2 —1/2

smMMwm{TJ O T I e IO
(Ul o )~ (88)

Assuming bounds (86), (87), and (88) for the moment, the estimates in Theorem 9
are a consequence of a straightforward summation argument. Fix o > 0. As in the
subcritical case, it is enough to consider the case s = 0 by using that, due to the
convolution constraint, we always have 1] < (max{u, 4,})*. Summing up (86)
with o = o/2 over angular frequencies N; gives 0 < 6p < % such that for all
0 < 6 < 6, we have

12
( Z lea | Py, Hy, H:tlI/jV:]' (¢M/01’[¢2§012)||%/i21.M>

N] €2N

L\ /20
min
N <_/l ) (16 llpoe [|@a, Ip-172.0)°

max

1/2 1/291-6
{W{ZWWM%)<ZWWM%0}' (89)
g pYs

Ne2N Npe2N
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Note that for 1/q + 1/r = % and € > 0 we have the elementary inequality

min{y, A} Ar\*
(2 (™5 ar) L0 (3)
s €2N 2N le2 e 2 2N

#+/lz~/ll uRL 2 A

ez
§ ”(au);LEZN Il a ||(b/12)12e2N ller.

Thus summing up (89) over spatial frequencies, and assuming that 0 < 6 < i, we
deduce bound (71). An identical argument using (87) gives the Y% ,, bound (72).
Similarly the bound for ¢ follows from (88).

We now turn to the proof of estimates (86), (87), and (88). It is enough to
consider the case § = 6;, as the L} terms are dominated by the corresponding
V2 norms. Bounds (86) and (88) follow directly from Theorem 10 together with
(24). On the other hand, the argument used to obtain (87) is slightly more involved.
We first note that, from [6, (8-38)—(8-40)], we have the bound

/3<min{d, A1}

1-2/3
1 ) ||PA,HN,Cdi'Iil’M(d’u,NVOHizfmz,Nz)||L§/2Lg
: :

/lmax 1/3
<MWM%M>WWMWMMMM (90)
On the other hand, if © < A,, then an application of (79) gives
d"?|| Py, Hy,C;' T (¢ vy "My 02080 | 12,
< 1Py Hy, Cj:]Iil’M((pu,NVOH:tzQD/IZ,Nz)”Vi]M
1/10
< . 9/2 l’l’ 0o
S (min{N, N>}) ~ ) Ueulls, 5 lea i)
2
. (//«]/2”(15#”\/3[ ||¢Az||V§2vM)]790. 91)

Hence (87) in the region u < A, follows by interpolating between (90) and (91)
and using the conditions 1/a = % +o0/16 and b = 2(1/a — %). The case u© > A,
and N < N, follows from a similar argument using (80) and (81).

It remains to consider the case u > A, and N, < N. For this frequency
interaction, Theorem 10 requires a Y i’M norm on the right-hand side. Thus, as
our goal is to obtain a bound only using the V} , norms, we have to work a
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little harder. We start by writing the product as

Guny e, v, = <¢u,NVOHiz<PAz,Nz > CLi (Céd"vaNyoci’z(pﬁz-Nz))

d'<h
+ ) CaiM(Caauny Clon ). (92)
d'<hy

The first term can be bounded by adapting the argument used in the previous
cases as here (80) in Theorem 10 gives a bound without using the Y7 norm.
More precisely, letting 8 = (d’/A,)'/? and exploiting the null structure together
with the now familiar modulation bounds, we have

o 4\
A

Su Y

d/f_/lz

L2

PA] H}\/]c;hz‘ﬂn,M( Z C<d’ (ng/(pu,NVOCi/z(pﬂzyNz))

<

L2

1/2
( > ||RK(ng/RKH%,NVORK/C*,Zso,lz,Nz)||i§>

k' k"eCg
[ESV == AN K”|§,ﬂ

12
—1/3 2
Swh iy ﬂ( > ||c<d/Rw¢M,N||L¢X> 1,5 112754

&<, N K'eCq

PRNG
S N2(;) 'y, vlv len.m,

Together with (90), we deduce that

s ((mindd, )\
4

L

|| ViZ,M'

Py Hy C' T (qbu.zvy“wz,zvz

- Z CcZy (ng’¢u,N)’ocj2%2,Nz)>

d’sﬁz

32

L7Lg

13
Ik 12
S N(Z) WP 1Bl lonalve, -

Applying L? interpolation together with (80) and arguing as previously, we
deduce that

HHNIHiIIi"M(¢M,N)/O(P12.N2 Z c<y (ng"pu,NyOCﬂfz@lz,Nz))

< YAi]"M
0/100
2 -1,2 12 -0
SNQ(;) (N ppwllzs A, 2lle, Mollzs ) (W, vz 19w vz, M) :
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Therefore, it only remains to bound the second term in (92), but this follows by
taking 1/r =1—-2(1/a — %) in (70).
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